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A detailed study of the charged-current supernova electron neutrino and electron antineutrino scattering
off the stable even-mass lead isotopes A = 204, 206, and 208 is reported in this work. The proton-neutron
quasiparticle random-phase approximation (pnQRPA) is adopted to construct the nuclear final and initial states.
Three different Skyrme interactions are tested for their isospin and spin-isospin properties and then applied
to produce (anti)neutrino-nucleus scattering cross sections for (anti)neutrino energies below 80 MeV. Realistic
estimates of the nuclear responses to supernova (anti)neutrinos are computed by folding the computed cross
sections with a two-parameter Fermi-Dirac distribution of the electron (anti)neutrino energies. The computed
cross sections are compared with earlier calculations and the analyses are extended to take into account the effects
coming from the neutrino oscillations.
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I. INTRODUCTION

The neutrino is a neutral particle introduced by Pauli in
1930 to restore the energy conservation in beta decay and
given the name “neutrino” by Fermi in 1932. Since that
time, the neutrino and its properties have attracted great
interest in theoretical and experimental studies of particle and
nuclear physics. Neutrino experiments provide evidence of
neutrino oscillations; therefore, the neutrino can no longer be
considered a massless particle. However, the absolute value
of the neutrino mass is still an open question [1]. Further
questions, such as the nature of neutrino, i.e., being a Dirac
or a Majorana particle, and the mass hierarchy, still remain
unanswered [1].

Neutrino-interaction cross sections are truly important
ingredients in any neutrino experiment. Knowledge of these
cross sections offers a valuable probe to investigate various
questions in particle and astrophysics. Nuclear responses to
supernova neutrinos, for example, are important to investigate
supernova mechanisms [2,3] and the nucleosynthesis of heavy
elements [4,5]. Furthermore, the estimations of neutrino-
nucleus cross sections constitute a significant tool for detecting
different neutrino flavors and exploring the structure of the
weak interactions [6,7].

Neutrinos interact only weakly with matter, and neutrinos
from astrophysical sources, such as supernovae, can therefore
be detected by Earth-bound detectors via charged-current (CC)
and/or neutral-current (NC) neutrino-nucleus interactions. The
CC experiments concentrate on detection of electron neutrinos
(νe) and antineutrinos (ν̄e). Several neutrino detectors around
the world are being established and planned for such a
purpose; see, e.g., [3] for an overview on supernova-neutrino
detectors. One example of such a detector is HALO (Helium
and Lead Observatory) [8] running at SNOLAB, Canada, and
designed for observation of galactic core-collapse supernovae
by a lead-based neutrino detector. The HALO experiment is
complementary to other neutrino-detection experiments in that

it is dominated by νe events over the ν̄e events, since νe events
are enhanced by the large neutron excess of the Pb nuclei
and ν̄e events are suppreseed by Pauli blocking [9]. Hence,
theoretical estimates of neutrino-nucleus responses for stable
lead targets are essential for the interpretation of the results
from HALO and similar detection experiments.

In addition to the above neutrino-nucleus reactions, studies
of neutrinoless double-β decay can provide significant in-
formation on the unknown neutrino properties such as the
neutrino mass [10] and the Majorana nature of the neutrino
[11]. Also, the estimation of charged-current neutrino-nucleus
cross sections is important for probing the nuclear matrix
elements of neutrinoless double-β decay by exploiting the
so-called neutrino beams [12].

The present work is a continuation of our efforts to provide
realistic estimates of neutrino-nucleus interactions in various
nuclei. In our previous works we have studied neutrino and
antineutrino scatterings off molybdenum isotopes [13–16],
cadmium isotopes [17–19], and 136Xe [20]. Thus, the aim
of the present work is to estimate and study in detail the
charged-current supernova (anti)neutrino scattering off the
stable even-even lead isotopes of mass numbers A = 204,
206, and 208. We adopted the proton-neutron quasiparticle
random-phase approximation (pnQRPA) to construct the
nuclear states which are relevant for the (anti)neutrino-nucleus
reactions. We perform self-consistent calculations within a
valence space consisting of 15 major harmonic oscillator shells
using the code HOSPHE [21]. Our computations are based
on three different globally parametrized Skyrme interactions,
namely SkM∗, SkX, and SLy4 [22]. The (anti)neutrino-nucleus
scattering calculations are based on the Donnelly-Walecka
method for the treatment of semileptonic processes in nu-
clei [23]. The nuclear responses to electron (anti)neutrinos
from a supernova are estimated subsequently by folding the
cross sections with realistic energy profiles for the incoming
supernova-(anti)neutrino flux. Concerning the lead nuclei, the
present work is an extension of the works [24,25] where only
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208Pb of the lead isotopes was discussed. We will then compare
our present results with the ones of the aforementioned works
for the isotope 208Pb. In the end we extend our discussion
to viable scenarios where the neutrino oscillations in dense
supernova matter are taken into account. Earlier studies of
this kind suggest that megaton-scale terrestrial experiments
on the supernova electron antineutrino flux could be used to
determine the mass hierarchy of the neutrino, as suggested in
[19] and visible also in the results of [20].

The rest of this paper is organized as follows. At first, in
Sec. II we briefly outline the main theoretical formalism of the
adopted nuclear-structure framework and the charged-current
(anti)neutrino-nucleus cross sections. Then, in Sec. III, we
present and discuss our obtained results. Finally, in Sec IV, we
summarize our main conclusions.

II. THEORY

A. Nuclear-structure calculations

In the nuclear-structure calculations the ground state is
obtained using the Hartree-Fock-Bogolubov (HFB) approach.
The nuclear effective interaction is approximated with the
Skyrme interaction. This interaction consists of the lowest-
order terms in an expansion in momentum space and should be
a reasonable approximation when the relative velocities of the
interacting nucleons are not too large. In addition it contains a
density-dependent part that approximates missing effects such
as three-body interactions and correlation corrections that go
beyond the many-body treatment.

Three different parametrizations of the Skyrme force are
investigated. The SkX parametrization has been tuned with
special emphasis on describing the level structure in a set
of spherical nuclei [26]. The SkM∗ parametrization is tuned
to describe collective excitations and deformation properties
[27,28] and the SLy4 interaction has been constructed with
specific attention to the neutron equation of state [29].

Coulomb and center-of-mass-motion corrections are treated
as specified by the different Skyrme parametrizations. For the
Coulomb interaction, the direct part of the Coulomb potential
is taken into account while Coulomb exchange is treated in
the Slater approximation. In order to correct the kinetic energy
for center-of-mass motion, a one-body correction is generally
adopted.

In addition, we employ a gaussian type pairing interaction in
a separable form [30]. The pairing interaction is parametrized
with two different strengths (G0,G1) for the T = 0 and T = 1
channels [31]. For the range of the interaction we adopt the
value a = 0.660 fm [30]. The contribution from T = 0 pairing
in the HFB ground states is neglected. This part of the pairing
can lead to pn pairing condensates in Z = N nuclei if the
interaction strength is taken to be strong enough.

The excitations are calculated using the same interaction as
used for the ground state and are obtained using the pnQRPA
method in combination with iterative Arnoldi diagonalization
[31].

Considering the spectra of a set of odd-odd nuclei, the best
description was found for a G0/G1 ratio slightly larger than
1 [31]. However, our previous study on 116Cd showed that

G0/G1 should not be much larger than 1 in order to reproduce
the IAS and Gamow-Teller properties [17]. Therefore, we
adopt our previous prescription of keeping G0/G1 = 1, which
should be a reasonable parameter choice considering both
types of data.

The HFB and pnQRPA equations are solved using a new
version of the code HOSPHE [21].

B. Charged-current neutrino-nucleus scattering

We consider in this work the charged-current (anti)neutrino-
nucleus scattering. Therefore, we give in this section a brief
summary of the main points of the formalism and we refer to
[15,32] for a more comprehensive treatment.

In a charged-current reaction a neutrino [antineutrino] is
scattered from a nucleus (A,Z) leading to a final nucleus
(A,Z + 1) [(A,Z − 1)] and an emitted lepton (antilepton):

νl + (A,Z) → (A,Z + 1) + l−, (1)

ν̄l + (A,Z) → (A,Z − 1) + l+, (2)

where l stands for either an electron (e), muon (μ) or tau (τ )
lepton. These reactions proceed via the exchange of a charged
W+ or W− boson. In the case of the supernova neutrinos only
the creation of an electron or a positron in the final state is
possible due to the moderate energy (Eν � 100 MeV) of the
incoming (anti)neutrino. In the present case we then have the
transitions

νe + APb → ABi + e−, (3)

ν̄e + APb → ATl + e+, (4)

where A = 204,206,208.
As mentioned, the energy of the impinging neutrino in our

computations is low, and thus the transferred four-momentum
is small compared to the mass of the exchanged charged boson,
i.e., Q2 = −qμqμ � M2

W± . In this case the corresponding
matrix element of the effective Hamiltonian can be written
in the form

〈f |Heff|i〉 = G√
2

∫
d3rlμe−iq·r〈f |J μ(r)|i〉, (5)

where J μ(r) denotes the hadron current and lμ is the lepton
matrix element, lμ = eiq·r〈�|jμ(r)|ν〉 [15]. For the charged-
current processes the coupling constant is written as G =
cos θCGF where GF is the Fermi coupling constant and θC

denotes the Cabibbo angle.
We assume in the present work that the final states (f )

and initial states (i) have a well-defined angular momentum
J and parity π . Then, the double differential cross section for
neutrino scattering from an initial state J

πi

i to a final state J
πf

f

is given by[
d2σi→f

d	dEexc

]
νe/ν̄e

= G2|k′|Ek′

π (2Ji + 1)
F (±Zf ,Ek′)

×
⎛
⎝∑

J�0

σJ
CL +

∑
J�1

σJ
T

⎞
⎠, (6)
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where k′ is the three-momentum, Ek′ is the energy of the
outgoing electron or positron, and F (±Zf ,Ek′) accounts for
the distortion of the final-state electron (+Zf ) or positron
(−Zf ) wave function by the Coulomb field of the final nucleus.
Here σJ

CL is the Coulomb-longitudinal component and σJ
T is

the transverse component defined as

σJ
CL = (1 + a cos θ )|(Jf ‖MJ (q)‖Ji)|2

+ (1 + a cos θ − 2b sin2 θ )|(Jf ‖LJ (q)‖Ji)|2

+ Ek − Ek′

q
(1 + a cos θ + c)

× 2 Re[(Jf ‖LJ (q)‖Ji)(Jf ‖MJ (q)‖Ji)
∗], (7)

and

σJ
T = (1 − a cos θ + b sin2 θ )

× [∣∣(Jf

∥∥T mag
J (q)

∥∥Ji

)∣∣2 + ∣∣(Jf

∥∥T el
J (q)

∥∥Ji

)∣∣2]
∓ (Ek + Ek′)

q
(1 − a cos θ − c)

× 2Re
[(

Jf

∥∥T mag
J (q)

∥∥Ji

)(
Jf

∥∥T el
J (q)

∥∥Ji

)∗]
. (8)

In the above expressions the minus sign refers to neutrino
and the plus sign to antineutrino, and Ek is the energy of
the incoming neutrino. Furthermore, we have introduced the
notation

a =
√

1 − m2
f

E2
k′

, (9)

b = a2EkEk′

q2
, (10)

c = m2
f

qEk′
, (11)

where the magnitude of the three-momentum transfer q is
given by

q = |q| =
√

(Ek − aEk′)2 + 2aEkEk′(1 − cos θ ). (12)

The definition of the operators TJM = MJM , LJM , T el
JM ,

T mag
JM is given in [32]. In general, these operators contain

both vector and axial-vector pieces, i.e., TJM = T V
JM − T A

JM .
They depend on the nuclear form factors F V

1,2(Q2) (vector),
F A(Q2) (axial-vector), and F P(Q2) (pseudoscalar), which
depend on the four-momentum transfer Q2 = −qμqμ [15].
For small momentum transfers the cross sections are typi-
cally dominated by Gamow-Teller-like transitions mediated
by the operator F A(q)j0(qr)σ and Fermi-like ones which
proceed via the operator F V(q)j0(qr)1. Additionally, for
supernova neutrinos, the spin-dipole-like transitions of the
form F A(q)[j1(qr)Y 1σ ]0−,1−,2− turn out to be important.

For the neutrino and antineutrino scattering we have
adopted the quenched static value FA(0) = −1.00 and the
axial-vector mass MA = 1016 MeV. This is in agreement with
the fact that the charge-exchange experiments measure only
60–70% of the GT strength given by the Ikeda sum rule [33].
It is also in agreement with the determined quenching of the

TABLE I. Computed centroids of the Gamow-Teller giant reso-
nance relative to the ground state in the Bi nuclei. The values on the
left-hand side are the results of our computation with G1 = G0 = Gn

and on the right hand side for G1 = G0 = Gp .

204Pb 206Pb 208Pb

SkM∗ 14.60,14.61 15.32,15.21 16.43,16.37
SkX 12.00,11.97 12.56,12.47 13.74,13.71
SLy4 15.23,15.19 15.94,15.34 16.90,16.84
Expt. 15.23 MeV [39]

Gamow-Teller strength stemming from non-nucleonic degrees
of freedom [34] and based on shell-model calculations [35,36].

At this point it is appropriate to note the treatment of the
final-state Coulomb effects, represented by the Fermi function
F (±Zf ,Ek′) in (6). The distortion is to be treated differently in
the regions of small and large values of the so-called effective
momentum

keff =
√

E2
eff − m2

e± , (13)

where me+ (me−) is the positron (electron) mass and the
effective energy is given by

Eeff = Ek′ − VC(0). (14)

Here VC(0) is the Coulomb potential at the center of the final
nucleus. For small values of keff we use the Fermi function
but for large values of keff we adopt the so-called modified
effective momentum approximation (MEMA), introduced in
[37]. Consequently, for large keff we drop the Fermi function
from (6) and, instead, replace the absolute value of the three-
momentum and the energy of the outgoing electron/positron by
their effective values (13) and (14). For more details see [15].

III. RESULTS

The charged-current cross sections of the (anti)neutrino
scattering off the stable even-even lead isotopes have been
computed in this study, at energies typical of supernova
neutrinos. The charge-changing quasiparticle random-phase
approximation (pnQRPA) has been adopted for the nuclear-
structure description, with the two-body interaction taken to be
of the Skyrme type. The considered Skyrme parametrizations
in this study are SkM∗, SkX, and SLy4. The adopted values of

TABLE II. Computed GTGR β− Gamow-Teller strengths
S−(GTGR) and the measured one for 208Pb. The results on the left are
those for G1 = G0 = Gn and on the right those for G1 = G0 = Gp .
Both choices of pairing give exactly the same GTGR strength for
208Pb. The column “normalized” gives the computed numbers of
column 3 multiplied by the experimental quenching 0.56.

204Pb 206Pb 208Pb 208Pb (normalized)

SkM∗ 81.39,82.92 82.79,87.05 91.93 51.48
SkX 75.22,80.59 83.69,85.45 89.98 50.39
SLy4 87.0,86.64 92.05,92.97 98.21 55.0
Expt. 60.84 ± 13.67 [39]
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TABLE III. Total β− and β+ GT strengths S∓ of Eq. (15). The
values on the left (right) are the results obtained with pairing stength
Gn (Gp). The total strength for 208Pb is independent of the pairing
strength.

204Pb 206Pb 208Pb

SkM∗ β− 124.03,123.42 128.95,128.64 134.09
β+ 3.99,3.38 2.92,2.61 2.06

SkX β− 124.38,123.94 129.17,128.94 134.13
β+ 4.34,3.90 3.13,2.89 2.08

SLy4 β− 123.41,123.03 128.61,128.24 133.93
β+ 3.36,2.98 2.56,2.19 1.88

the pairing strength in these computations are those presented
in [38]. In [38] there are two values for the separable
Gaussian pairing, labeled Gn and Gp. In the present pnQRPA
calculations the results are affected by both G0 and G1 of
the separable Gaussian pairing, present at the HFB level. The
strengths Gn and Gp of [38] relate to G1 only so we chose
to use both strengths in two separate pnQRPA calculations,
one with G1 = Gp and one with G1 = Gn, to see the effect
of pairing on the scattering observables. The value of G0

is not determined at the HFB level without proton-neutron
mixing but a reasonable choice is G0 = G1, adopted also in
our previous study for 116Cd [17].
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FIG. 1. Cumulative β− (a) and β+ (b) strengths for Gamow-Teller
transitions from 208Pb to states in 208Bi and 208Tl computed using the
three interactions. Flanders 1989 refers to Ref. [39].

TABLE IV. Positions of the IAS. The left and right values cor-
respond to the results with pairing strength Gn and Gp , respectively.
The energies in this table are measured relative to the ground state of
lead isotope.

204Pb 206Pb 208Pb

SkM∗ 14.71,14.72 15.00,14.90 15.49,15.43
SkX 17.72,17.73 18.01,17.92 18.62,18.66
SLy4 16.26,16.21 16.49,15.86 16.79,16.73
Expt. 17.47 MeV [39]

A. Properties of the various isovector excitations

We begin by analyzing the spin-isospin and isospin prop-
erties of the studied lead nuclei since experimental data are
available for comparison. We start by a discussion of the
Gamow-Teller giant resonance (GTGR) in the bismuth nuclei.
The calculated energy centroids of the β− GTGR for the
discussed lead isotopes are shown in Table I. The experimental
resonance energy for 208Pb [39] is also shown in Table I.
Unfortunately no experimental data are available for the other
considered lead nuclei. The two values of a computed energy
centroid in Table I come from the two adopted values of the
pairing strength, one for G1 = G0 = Gn and the other for
G1 = G0 = Gp. Our computed centroids for 208Pb are shifted
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FIG. 2. Comparison of the computed total CC neutrino cross
sections as functions of the energy of the incoming neutrino for 208Pb.
The upper panel (a) is a magnification of the low-energy region of
the lower panel (b). In this figure Lazauskas 2007 refers to Ref. [25]
and Kolbe 2001 refers to Ref. [24]
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TABLE V. Average energies for β− and β+ transitions to J π with
L = 1,2 for 208Pb. The energies are in MeV and measured relative to
the ground state of 208Pb. The values on the left (right) correspond to
the pairing strength Gn (Gp).

L J π SkM∗ SkX SLy4 Ref. [43]

β− 1 0− 29.99,29.93 26.42,26.38 31.46,31.40 32.1
1− 26.55,26.49 23.84,23.80 28.10,28.04 29.5
2− 21.00,20.93 19.05,19.02 22.30,22.24 25.1

2 1+ 31.88,31.82 29.18,29.14 33.22,33.16 36.8
2+ 28.63,28.57 26.92,26.89 30.06,30.00 34.7
3+ 23.80,23.74 23.17,23.14 25.27,25.21 28.9

β+ 1 0− 13.91,13.84 12.36,12.32 12.79,12.73 12.5
1− 13.08,13.02 12.15,12.11 11.99,11.93 7.6
2− 13.54,13.48 13.39,13.35 13.12,13.06 14.4

2 1+ 21.14,21.08 19.22,19.19 21.11,21.06 20.2
2+ 16.65,16.58 15.88,15.84 16.89,16.83 13.8
3+ 13.02,12.96 13.47,13.44 13.62,13.56 13.3

up for SkM∗ and SLy4 and down for SkX as compared with the
experimental centroid at 15.23 MeV [39]. The shift up for the
SLy4 interaction is higher than for the SkM∗ interaction. For
the three lead nuclei the two extreme centroids always stem
from SkX and SLy4, the centroid predicted by SkM∗ being in

between, close to the SLy4 prediction. The theoretical GTGR
is mainly a neutron 0i13/2 to proton 0i11/2 transition.

Table II shows the computed β− GTGR strengths for the
spin-isospin operator. This strength is part of the total strength
defined as

S± =
∑
f

∣∣∣∣∣
(

1+
f

∥∥∥∥∥
A∑

k=1

σ k · t±k

∥∥∥∥∥0+
gs

)∣∣∣∣∣
2

(15)

over the 1+ final states, 1+
f , of the involved odd-odd nucleus.

Here t±k is the isospin raising (lowering) operator for the
β− (β+) branch. In this way the total β− and β+ strengths
satisfy the Ikeda sum rule S− − S+ = 3(N − Z), as do also
our present calculations. For the GTGR strength, S−(GTGR)
the sum runs over final states which constitute the GTGR.
It is seen in Table II that the computed strengths for 208Pb
are inside the measured interval 60.84 ± 13.67 [39] for all
the considered Skyrme interactions. Our two computations
(G1 = G0 = Gn and G1 = G0 = Gp) give exactly the same
GTGR strength for 208Pb. It is worth mentioning that the
measurements performed in [39] yield only 56% of the Ikeda
sum rule. Therefore, our computed values in Table II, last
column (labeled “normalized”) have been multiplied by a
factor of 0.56 for 208Pb to allow quantitative comparison with
the data.

TABLE VI. Total cross sections for the charged-current neutrino scatterings in units of 10−42 cm2. The values on the left correspond to our
computation with pairing strength Gn and on the right with Gp . Only one value is present in cases for which the difference between the two
obtained values is less than 0.05%. The numbers in parentheses refer to exponents.

Ek/MeV 204Pb 206Pb

SkM∗ SkX SLy4 SkM∗ SkX SLy4

5.0 (2.55,2.02) (−6) (2.91,3.21) (−7) (5.68,8.11) (−7) (1.36,2.83) (−1) (4.22,5.52) (−6) (3.06,8.04) (−6)
10.0 (1.45,1.35) (1) (1.86) (1) (1.04,1.07) (1) (1.60,1.67) (1) (2.11,2.25) (1) (1.16,1.69) (1)
15.0 (1.34,1.28) (2) (2.18,2.16) (2) (1.05,1.06) (2) (1.38,1.40) (2) (2.28,2.32) (2) (1.08,1.37) (2)
20.0 (4.15,4.00) (2) (8.00,7.94) (2) (3.15) (2) (4.21,4.25) (2) (8.34,8.46) (2) (3.13,3.62) (2)
25.0 (1.20,1.17) (3) (1.62,1.61) (3) (1.00) (3) (1.22,1.23) (3) (1.68,1.69) (3) (1.01,1.09) (3)
30.0 (2.07,2.03) (3) (2.41,2.40) (3) (1.81) (3) (2.12) (3) (2.49,2.50) (3) (1.84,1.92) (3)
40.0 (4.39,4.32) (3) (4.88,4.86) (3) (3.91) (3) (4.47) (3) (5.01,5.03) (3) (4.00,4.09) (3)
50.0 (7.66,7.51) (3) (8.24,8.22) (3) (6.88,6.89) (3) (7.73) (3) (8.45,8.47) (3) (7.03,7.15) (3)
60.0 (1.19,1.16) (4) (1.26) (4) (1.08) (4) (1.19) (4) (1.29) (4) (1.10,1.11) (4)
70.0 (1.66,1.63) (4) (1.77,1.76) (4) (1.52) (4) (1.67) (4) (1.80) (4) (1.55,1.56) (4)
80.0 (2.18,2.14) (4) (1.20) (4) (2.00) (4) (1.19) (4) (1.35) (4) (2.03,2.05) (4)

Ek/MeV 208Pb

SkM∗ SkX SLy4
5.0 (2.3f2,2.85) (−5) (4.73,5.20) (−6) (0.92,1.01) (−5)
10.0 (1.49,1.54) (1) (1.64,1.75) (1) (1.20,1.23) (1)
15.0 (1.33,1.35) (2) (2.13,2.15) (2) (1.07,1.09) (2)
20.0 (3.97,4.04) (2) (8.05,8.11) (2) (3.07,3.12) (2)
25.0 (1.20,1.21) (3) (1.67,1.68) (3) (1.01,1.03) (3)
30.0 (2.11,2.12) (3) (2.49) (3) (1.87,1.88) (3)
40.0 (4.49,4.51) (3) (5.02,5.03) (3) (4.06,4.08) (3)
50.0 (7.80,7.83) (3) (8.50,8.52) (3) (7.16,7.18) (3)
60.0 (1.21) (4) (1.30) (4) (1.12) (4)
70.0 (1.69) (4) (1.82) (4) (1.57,1.58) (4)
80.0 (2.21) (4) (2.37) (4) (2.07) (4)
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TABLE VII. Same as Table VI for antineutrino scattering.

Ek/MeV 204Pb 206Pb

SkM∗ SkX SLy4 SkM∗ SkX SLy4

5.0 (1.44,0.83) (−2) (6.19,5.63) (−3) (6.44,6.05) (−3) (1.63,1.65) (−3) (1.76,1.81) (−3) (1.71,1.24) (−3)
10.0 (2.74,1.91) (−1) (2.86,2.39) (−1) (2.17,1.81) (−1) (9.03,6.70) (−2) (9.72,8.18) (−2) (7.42,4.94) (−2)
15.0 (1.30,1.04) (0) (1.46,1.30) (0) (1.19,1.06) (0) (6.42,5.48) (−1) (7.89,7.23) (−1) (5.99,4.31) (−1)
20.0 (3.93,3.43) (0) (4.15,3.84) (0) (3.77,3.49) (0) (2.43,2.22) (0) (2.65,2.51) (0) (2.35,1.92) (0)
25.0 (8.93,8.12) (0) (9.04,8.53) (0) (8.67,8.21) (0) (6.18,5.83) (0) (6.36,6.10) (0) (6.02,5.18) (0)
30.0 (1.70,1.58) (1) (1.67,1.60) (1) (1.66,1.59) (1) (1.27,1.21) (1) (1.26,1.22) (1) (1.23,1.09) (1)
40.0 (4.61,4.39) (1) (4.49,4.34) (1) (4.50,4.36) (1) (3.72,3.61) (1) (3.61,3.53) (1) (3.60,3.30) (1)
50.0 (1.25,1.20) (2) (1.24,1.21) (2) (1.24,1.20) (2) (1.01,0.98) (2) (1.01,1.99) (2) (9.89,8.98) (1)
60.0 (3.15,3.03) (2) (3.12,3.04) (2) (3.08,3.00) (2) (2.66,2.59) (2) (2.64,2.60) (2) (2.57,2.35) (2)
70.0 (6.61,6.42) (2) (6.56,6.43) (2) (6.48,6.34) (2) (5.85,5.73) (2) (5.80,5.72) (2) (5.66,5.27) (2)
80.0 (1.17,1.15) (3) (1.17,1.15) (3) (1.16,1.14) (3) (1.07,1.05) (3) (1.07,1.05) (3) (1.04,0.99) (3)

Ek/MeV 208Pb

SkM∗ SkX SLy4
5.0 (0.0) (−) (0.0) (−) (0.0) (−)
10.0 (8.93,9.42) (−4) (2.56,2.76) (−3) (2.07,2.23) (−3)
15.0 (2.26,2.32) (−1) (3.23,3.27) (−1) (3.18,3.25) (−1)
20.0 (1.35,1.37) (0) (1.48,1.49) (0) (1.60,1.61) (0)
25.0 (4.10,4.13) (0) (4.13,4.14) (0) (4.54,4.58) (0)
30.0 (9.27,9.33) (0) (8.96,8.99) (0) (9.92,9.98) (0)
40.0 (3.02,3.03) (1) (2.85,2.86) (1) (3.13,3.14) (1)
50.0 (8.20,8.25) (1) (8.00,8.02) (1) (8.68,8.73) (1)
60.0 (2.28,2.30) (2) (2.21,2.22) (2) (2.37,2.38) (2)
70.0 (5.26,5.28) (2) (5.10,5.11) (2) (5.40,5.42) (2)
80.0 (9.88,9.91) (2) (9.67,9.68) (2) (1.01,1.01) (3)

The total GT strengths for the β− and β+ transitions are
presented in Table III. The total GT strengths for β+ are
very small as compared with β−. The Ikeda sum rule is
satisfied in our computations. In Fig. 1, panels (a) and (b), we
show the cumulative β− and β+ strengths for Gamow-Teller
transitions from 208Pb to 208Bi and 208Tl, respectively. For the
β− GT strength there are experimental data available [39] to
compare with. As seen in panel (a) the experimental cumulative
sum is qualitatively reproduced by the SkM∗ and SLy4
interactions, with the SkX interaction predicting excessive
strength at low energies due to too low an energy of the GTGR
(see Table I). Even the SkM∗ and SLy4 interactions cannot
reproduce quantitatively the β− strength below the GTGR.
None of the used interactions has been fitted to spin-isospin
properties of nuclei, so it is natural to expect deviations from
the experimental strength distribution. It should be noted
that the theoretical GTGR strengths in panel (a) have been
multiplied by the experimental quenching 0.56 [39] to allow
quantitative comparison. In the case of the β+ strength [panel
(b)] the three interactions predict a similar qualitative behavior
of the strength—the strength saturating quite high, around
16 MeV—for the three interactions. For all three interactions
the main contribution comes from around 12–13 MeV,
from a proton 0h11/2 to neutron 0h9/2 transition in the
calculations.

The computed positions of the isobaric analog states for the
discussed lead isotopes are shown in Table IV. The energies
in Table IV are computed relative to the ground state of lead

isotope as follows:

E′
exc =

{
Eexc + QEC − mec

2 for β− strength,

Eexc + Qβ− + mec
2 for β+ strength,

(16)

where E′
exc is the excitation energy relative to the ground state

of the lead isotopes and Eexc is the excitation energy relative
to the ground state of the daughter nucleus. The Q values,
Qβ− and QEC, are adopted from [40]. The computed positions
of the IAS in 208Bi are shifted down for the SkM∗ and SLy4
interactions while the IAS is shifted up for the SkX interaction
as compared with the experimental position [39]. For the three
nuclei the computed energy of the IAS varies by 3 MeV, with
SkX giving the highest and the SkM∗ giving the lowest values.
The energies predicted by SLy4 are roughly halfway between
the values given by the other two interactions. In general, the
impact of the adopted values of the pairing strength (Gn, Gp)
on the properties of the GTGR and IAS are very small.

The deviations of the computed locations of the IAS from
the experimental one are 4% for SLy4, 6% for SkX, and 11%
for SkM∗. The deviations are explained by the different ways
of fitting the parameters of the different Skyrme forces. The
SkX was effectively implemented by leaving out the Coulomb
exchange part of the Hamiltonian. This explains why the SkX
results deviate from the results of the other two interactions.
The results of the other two interactions, SkM∗ and SLy4,
deviate from each other by some 1.5 MeV. This deviation
can be compared with the corresponding one obtained in the

044614-6



THEORETICAL ESTIMATES OF SUPERNOVA-NEUTRINO . . . PHYSICAL REVIEW C 94, 044614 (2016)

0

10

20

30

σ
(E

k
)

[1
0−

4
2
cm

2
]

10 20 30 40
Ek(MeV)

Lazauskas 2007
SkM*
SkX
SLy4

(a)

0

100

200

300

400

500

600

700

800

900

1000

σ
(E

k
)

[1
0−

4
2
cm

2
]

10 20 30 40 50 60 70 80
Ek(MeV)

Lazauskas 2007
SkM*
SkX
SLy4

(b)

FIG. 3. Comparison of the computed total CC antineutrino cross
sections as functions of the energy of the incoming antineutrino for
208Pb. The upper panel (a) is a magnification of the low-energy region
of the lower panel (b). Lazauskas 2007: Ref. [25].

analysis of the location of the IAR (isobaric analog resonance)
for the Zr isotopes in [41]. The calculations of [41] and ours
are very comparable since in both calculations the IAR is just
one peak, without notable fragmentation. As can be seen in
Fig. 2 of [41], the locations of the IAR for the two interactions,
SkM∗ and SLy4, deviate by some 2 MeV throughout the Zr
chain A = 98–112. This is even more than for the presently
studied three stable Pb isotopes. A more recent study of
208Pb, using different SAMi-J Skyrme functionals, records
similar fluctuations in the location of the IAS depending on
the adopted symmetry energy of the functional at the saturation
density of nuclear matter [42]. The present study and the other
two, quoted above, show that the location of the IAS varies by
a few MeV depending on the adopted Skyrme parametrization.

For completeness we computed the average energies for
the isovector spin-dipole 0−, 1−, and 2− strengths with L = 1
and for the isovector spin-quadrupole 1+, 2+, and 3+ strengths
with L = 2 at the limit of zero momentum transfer. We present
our results in Table V. We compare our average excitation
energies for 208Pb with the ones of Ref. [43]. We achieve
a good agreement with the aforementioned reference. For
β− transition, the results obtained by the SLy4 interaction
have the best agreement with the results of Ref. [43]. The
SkX interaction predicts lower average energies than the other
interactions except for β+ transition to 1−, 2−, and 3+. Our
average energies for the β+ transitions to 1− and 2+ are slightly
shifted up compared to Ref. [43].

B. Total cross sections

The total cross sections for the charged-current
(anti)neutrino scattering off the even-even stable lead isotopes
have been computed using the formalism outlined in Sec. II B.

TABLE VIII. Average cross sections for the charged-current neutrino scattering in units of 10−42 cm2. The values on the left (right)
correspond to computations with pairing strength Gn (Gp). Only one value is present for which the difference between the two obtained values
is less than 0.05%. The values in the columns “Full range” run from the smallest to the largest value predicted by the three considered Skyrme
interactions. The numbers in parentheses refer to exponents.

(T ,α) 204Pb 206Pb

SkM∗ SkX SLy4 SkM∗ SkX SLy4

(4,0) (2.42,2.36) (2) (3.43,3.41) (2) (2.00) (2) (2.48,2.50) (2) (3.58,3.61) (2) (2.03,2.25) (2)
(6,0) (9.04,8.86) (2) (1.13) (3) (7.81,7.82) (2) (9.21,9.24) (2) (1.17,1.18) (3) (7.95,8.38) (2)
(8,0) (2.04,2.00) (3) (2.34,2.33) (3) (1.82,1.82) (3) (2.07,2.07) (3) (2.40,2.41) (3) (1.86,1.91) (3)
(10,0) (3.59,3.52) (3) (4.02,4.01) (3) (3.20) (3) (3.62,3.63) (3) (4.13,4.15) (3) (3.26,3.34) (3)
(3,3) (1.43,1.39) (2) (2.15,2.13) (2) (1.16,1.17) (2) (1.47,1.48) (2) (2.24,2.30) (2) (1.18,1.36) (2)
(4,3) (4.23,4.13) (2) (5.93,5.89) (2) (3.51,3.52) (2) (4.32,4.35) (2) (6.16,6.22) (2) (3.56,3.89) (2)
(6.26,3) (1.71,1.68) (3) (2.06,2.05) (3) (1.50) (3) (1.74,1.75) (3) (2.12,2.13) (3) (1.53,1.59) (3)

(T ,α) 208Pb Full range

SkM∗ SkX SLy4 204Pb 206Pb 208Pb
(4,0) (2.42,2.45) (2) (3.49,3.51) (2) (2.03,2.06) (2) (2.00–3.43) (2) (2.03–3.61) (2) (2.03–3.51) (2)
(6,0) (9.15,9.22) (2) (1.16) (3) (8.03,8.09) (2) (7.81–11.3) (2) (7.95–11.8) (2) (8.03–11.6) (3)
(8,0) (2.08,2.09) (3) (2.40) (3) (1.89,1.89) (3) (1.82–2.34) (3) (1.86–2.41) (3) (1.89–2.40) (3)
(10,0) (3.64,3.66) (3) (4.14,4.15) (3) (3.31,3.33) (3) (3.20–4.02) (3) (3.26–4.15) (3) (3.31–4.15) (3)
(3,3) (1.43,1.45) (2) (2.15,2.16) (2) (1.18,1.19) (2) (1.16–2.15) (2) (1.18–2.30) (2) (1.18–2.16) (2)
(4,3) (4.22,4.27) (2) (6.03,6.06) (2) (3.57,3.61) (2) (3.51–5.93) (2) (3.56–6.22) (2) (3.57–6.06) (2)
(6.26,3) (1.74,1.75) (3) (2.12) (3) (1.55,1.56) (3) (1.50–2.06) (3) (1.53–2.13) (3) (1.55–2.12) (3)

044614-7



ALMOSLY, CARLSSON, SUHONEN, TOIVANEN, AND YDREFORS PHYSICAL REVIEW C 94, 044614 (2016)

TABLE IX. Same as Table VIII for antineutrino scattering.

(T ,α) 204Pb 206Pb

SkM∗ SkX SLy4 SkM∗ SkX SLy4

(4,0) (2.26,2.02) (0) (2.30,2.16) (0) (2.15,2.02) (0) (1.52,1.42) (0) (1.58,1.51) (0) (1.46,1.25) (0)
(6,0) (1.10,1.03) (1) (1.10,1.05) (1) (1.07,1.03) (1) (8.55,8.23) (0) (8.56,8.34) (0) (8.30,7.46) (0)
(8,0) (3.71,3.55) (1) (3.68,3.58) (1) (3.64,3.54) (1) (3.10,3.02) (1) (3.09,3.03) (1) (3.02,2.77) (1)
(10,0) (9.52,9.22) (1) (9.48,9.27) (1) (9.39,9.18) (1) (8.31,8.13) (1) (8.28,8.16) (1) (8.11,7.57) (1)
(3,3) (1.33,1.14) (0) (1.40,1.28) (0) (1.25,1.15) (0) (7.99,7.28) (−1) (8.68,8.18) (−1) (7.64,6.27) (−1)
(4,3) (3.89,3.51) (0) (3.95,3.72) (0) (3.74,3.53) (0) (2.69,2.53) (0) (2.77,2.66) (0) (2.60,2.24) (0)
(6.26,3) (2.28,2.16) (1) (2.27,2.19) (1) (2.24,2.16) (1) (1.82,1.76) (1) (1.82,1.77) (1) (1.77,1.61) (1)

(T ,α) 208Pb Full range

SkM∗ SkX SLy4 204Pb 206Pb 208Pb
(4,0) (0.99,1.00) (0) (1.01,1.02) (0) (1.10,1.11) (0) (2.02–2.30) (0) (1.25–1.58) (0) (0.99–1.11) (0)
(6,0) (6.69,6.73) (0) (6.53,6.55) (0) (7.07,7.11) (0) (1.03–1.10) (1) (7.46–8.56) (0) (6.53–7.11) (0)
(8,0) (2.63,2.65) (1) (2.56,2.57) (1) (2.74,2.75) (1) (3.54–3.71) (1) (2.77–3.10) (1) (2.56–2.75) (1)
(10,0) (7.35,7.38) (1) (7.19,7.20) (1) (7.60,7.63) (1) (9.18–9.52) (1) (7.57–8.31) (1) (7.19–7.63) (1)
(3,3) (4.45,4.50) (−1) (4.81,4.84) (−1) (5.14,5.19) (−1) (1.14–1.40) (0) (6.27–8.68) (−1) (4.45–5.19) (−1)
(4,3) (1.82,1.83) (0) (1.83,1.84) (0) (1.99,2.01) (0) (3.51–3.95) (0) (2.24–2.77) (0) (1.82–2.01) (0)
(6.26,3) (1.47,1.48) (1) (1.43) (1) (1.54,1.55) (1) (2.16–2.28) (1) (1.61–1.82) (1) (1.43–1.55) (1)

The double differential cross section was first computed
for all final states, scattering angles and neutrino energies.
The total cross section was then calculated by summing up
the contribution coming from each nuclear final state and
integrating over the scattering angle.

We present in Tables VI and VII our computed total cross
sections for neutrino and antineutrino scattering, respectively.
The total cross sections increase strongly, as expected, with
increasing (anti)neutrino energy. The chosen value of the
pairing strength (Gn or Gp) has a very small impact on the
total cross section, in particular for the neutrino scattering.

It is possible to compare our computed total cross sections
for neutrino scattering off 208Pb with two previous calculations
[24,25]. The nuclear structure in [24] has been dealt with by
the RPA where the single-particle energies were obtained from
a Woods-Saxon potential, and for the two-body interaction
the zero-range Landau-Migdal force was used. The QRPA
used in [25] is based on a self-consistent mean field and for
the interaction the Skyrme force SIII was adopted. In our
computations we use, as described in Sec. II A, the pnQRPA
to construct the participant nuclear wave functions. A self-
consistent mean field and two-body interactions of the Skyrme
type were used. This comparison of the different approaches
is displayed in Fig 2. In Fig. 2 we display the total cross
sections as functions of the neutrino energy. It can be noticed
in the lower panel of the figure that our obtained cross sections
are smaller than the ones predicted in [24,25] for neutrino
energies Eν > 30 MeV. Our total cross sections are in very
good agreement with those of [24] for the SkM∗ force and
Eν = 10–25 MeV, and for the SkX force for neutrino energies
around 30 MeV. The difference between our computed cross
sections and those predicted in Refs. [24,25] increases with
increasing neutrino energy.

It not easy to track down the reason for the deviations in
the three calculations. Reference [24] uses a different type of
interaction and possibly a different approach for the final-state

Coulomb effects. For large values of the energy of the incoming
neutrino also the energy of the final-state lepton is high, on
average, and treatment of these high final-state energies by the
bare Fermi function [24] or the MEMA discussed in Sec. II B
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FIG. 4. Cumulative sums of the averaged cross section for the
neutrino (a) and antineutrino (b) scattering off 208Pb computed
using the three considerd Skyrme interactions. The (anti)neutrino
parameters are (T ,α) = (4,3). The pairing strength is Gn.
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FIG. 5. Comparison between our averaged cross sections and
those of Kolbe 2001, i.e., Ref. [24], for the charged-current neutrino
(a) and antineutrino (b) scattering off 208Pb.

makes a difference. In the case of Ref. [25] the difference
with the present results is harder to explain, although there the
SIII Skyrme force was employed instead of those used in the
present work. In [25], as also in the present work, the MEMA
was used to take into account the final-state Coulomb effects.
In particular, the large bump in the interval 20–40 MeV (see
Fig. 2) in the calculation of [25] deviates conspicuously from
our result and the one of [24]. This deviation is even more
mysterious when contrasted with similar Skyrme SIII calcu-
lations reported in [44,45], where the obtained cross sections
were very close to the results of [24] for all neutrino energies.
In Fig. 3 we compare our computed antineutrino cross sections
with the one of Ref. [25] for 208Pb. Here the difference between

the present results and those of [25] is striking. The reason for
this conspicuous difference is unknown.

C. Averaged cross sections

The flux-averaged cross section, which is of interest from
the experimental point of view, is computed in this work by
folding the obtained total cross sections with the appropriate
energy profile for the incoming (anti)neutrinos. We have used
in the present work the two-parameter Fermi-Dirac distribution
which describes usually reasonably the energy spectra of
supernova neutrinos. It is given by

FFD(Ek) = 1

F2(αν)Tν

(Ek/Tν)2

1 + exp(Ek/Tν − αν)
, (17)

where Tν is the effective neutrino temperature and αν repre-
sents the so-called pinching parameter. The constant F2(αν) is
chosen in such a way that it normalizes the total flux to unity.

The adopted values of the parameters Tν and αν , and the
resulting averaged cross sections for neutrino and antineutrino
scattering off the considered lead isotopes are tabulated in
Tables VIII and IX. In the “Full range” column we summarize
all the Skyrme results for each nucleus by giving a range of
cross sections running from the smallest to the largest predicted
cross section. It is clear from the tables that the SkX interaction
predicts the largest averaged neutrino cross sections while
the SLy4 predicts the smallest ones. The results presented
under column “Full range” are practically independent of
the nucleus. For the antineutrino scattering, the relative
magnitudes of the averaged cross sections, computed by using
the different interactions, depend on both the nucleus and
the supernova model (T ,α). The largest (smallest) averaged
antineutrino cross sections are obtained for 204Pb (208Pb).

An intriguing question concerning the total averaged cross
sections is which final states contribute to them the most. The
relevant final-state energy intervals can be studied by plotting
the cumulative cross sections as functions of the excitation
energy of the final nucleus. This has been done in Fig. 4
for the neutrino and antineutrino scattering off 208Pb. The
plots have been done for (T ,α) = (4,3) and for the pairing
strength Gn.

In Fig. 4(a) one can see that SkX (SLy4) has the largest
(smallest) total cross section, as inferred already from Ta-
ble VIII. The major contribution for each interaction comes
from the GTGR in the range 13–17 MeV (see Table I). Beyond
the GTGR contribution the total cross section is practically

TABLE X. Contributions of the dominant multipole channels to the averaged cross sections, with parameters T = 2.88 and α = 3, for the
charged-current neutrino scattering in units of 10−42 cm2. The values on the left (right) correspond to pairing strength Gn (Gp).

J π 204Pb 206Pb 208Pb

SkM∗ SkX SLy4 SkM∗ SkX SLy4 SkM∗ SkX SLy4

0+ (V) 7.96,7.76 2.77,2.76 4.75,4.83 7.66,7.81 2.61,2.69 4.57,6.28 6.72,6.86 2.11,2.14 4.26,4.35
1− (AV) 2.25,2.14 3.31,3.23 1.56,1.52 2.27,2.26 3.36,3.38 1.55,1.67 2.16,2.12 3.02,3.05 1.51,1.53
1+ (AV) 78.33,75.81 133.44,132.49 63.40,63.78 81.27,82.03 139.97,141.91 65.04,76.49 79.17,80.32 134.52,135.47 65.08,65.99
2− (AV) 12.34,12.06 17.16,17.12 10.8,10.89 12.17,12.32 17.65,17.94 10.83,11.47 11.36,11.50 16.44,16.55 10.56,10.68
2+ (AV) 1.29,1.22 1.19,1.18 1.19,1.18 1.40,1.41 1.31,1.33 1.29,1.39 1.51,1.52 1.37,1.38 1.39,1.41
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TABLE XI. Same as Table X for the charged-current antineutrino scattering in units of 10−43 cm2. The antineutrino temperature here is
T = 3.41 and the pinching parameter is α = 3.

J π 204Pb 206Pb 208Pb

SkM∗ SkX SLy4 SkM∗ SkX SLy4 SkM∗ SkX SLy4

0− (AV) 1.42,1.39 1.74,1.72 1.38,1.36 1.21,1.19 1.55,1.54 1.20,1.12 1.04,1.05 1.32,1.33 1.18,1.19
1− (V) 2.38,2.21 2.44,2.33 2.93,2.81 1.23,1.17 1.24,1.19 1.49,1.17 0.31,0.32 0.27,0.27 0.45,0.46
1− (AV) 8.90,8.59 8.55,8.32 8.75,8.56 6.26,6.12 6.41,6.3 6.26,5.63 4.06,4.1 4.44,4.46 4.94,4.99
1+ (AV) 4.80,3.11 5.25,4.24 3.09,2.26 2.19,1.53 2.48,2.04 1.41,0.74 0.89,0.9 0.85,0.85 0.63,0.64
2− (AV) 4.82,4.43 4.76,4.57 4.97,4.75 3.17,3.03 3.16,3.07 3.21,2.75 1.88,1.9 1.81,1.82 2.17,2.19
2+ (AV) 0.97,0.91 0.97,0.94 0.81,0.78 0.85,0.82 0.86,0.85 0.71,0.63 0.8,0.80 0.76,0.77 0.77,0.78
3+ (AV) 0.86,0.80 0.72,0.69 0.75,0.71 0.68,0.64 0.58,0.56 0.58,0.5 0.59,0.59 0.48,0.48 0.57,0.57

saturated. In all cases a tiny contribution comes from the IAS,
showing up as a small step at the location of the IAS. A lot
of other notable contributions (mostly GT) are visible within
the range 1–14 MeV. Overall, the cumulative sum for neutrino
scattering off 208Pb in panel (a) of Fig. 4 resembles closely the
corresponding cumulative β− strength in Fig 1. Similar results
can be found for 204Pb and 206Pb.

In the case of the antineutrino scattering the cumulative
sums for the three interactions and three Pb nuclei saturate at
around 5–9 MeV, much earlier than for the neutrino scattering.
In contrast to the neutrino scattering, the relative magnitudes of
the cumulative sums for the antineutrino scattering vary from
nucleus to nucleus. In particular, for 208Pb the largest cross
section is obtained by the SLy4 interaction instead of the SkX
interaction. Also, the relevant contributions to antineutrino
scattering off 208Pb come from much lower energies than in
the case of 204,206Pb.

For the sake of comparison with the averaged cross sections
in Ref. [24], we have recomputed our averaged cross sections
for the neutrino and antineutrino scatterings off 208Pb with their
quenching factor (0.7)2. The value (1/1.267)2 was used before
in our computations. The new averaged cross sections are
presented in Fig. 5 together with the numbers from Ref. [24].
As can be seen in Fig. 5, quite a good agreement with Ref. [24]
has been achieved for neutrino scattering, in particular for the
SkX interaction. Our averaged antineutrino cross sections are
slightly larger than those in Ref. [24], particularly for Tν =
10, but overall the correspondence is good. The results of
Fig. 5(a) reflect directly the situation in Fig. 2(a), where SkX
gives larger cross sections than SkM∗ and SLy4 (in that order).
The order of the folded cross sections of the Skyrme results
in Fig. 5(a) is independent of the temperature since for all
energies of the incoming neutrino the cross sections are in
descending order from SkX to SkM∗ to SLy4. The relative
magnitudes of the SkX and Ref. [24] results in Fig. 5(a) depend
on the temperature T : For T � 8 MeV the energy profile (17)
picks contributions of the cross sections of Fig. 2(a) in the
energy range Ek � 30 MeV and the SkX cross section is larger
than the one of Ref. [24], as seen in Fig. 5(a). For T ≈ 10
MeV the cross-section contributions come mainly from the
energy range Ek � 40 MeV and the two folded results are
practically the same since beyond Ek = 30 MeV the cross
sections of [24] are larger than the SkX cross sections. From
Fig. 5(b) it is then easy to infer that the antineutrino cross

sections of [24] lie below those of SkX for neutrino energies
Ek � 20 MeV.

We have investigated the contributions coming from the
leading multipole channels to the averaged cross sections. The
results for neutrino and antineutrino reactions are presented
in Tables X and XI, respectively. Related to this, we show in
Fig. 6 representative plots for the neutrino and antineutrino
scatterings off 208Pb. In this Fig. we display the vector,
axial-vector, and interference contributions to each multipole
Jπ . It can be concluded from Table X that the neutrino
scattering is dominated by the 1+ multipole of axial-vector
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FIG. 6. Contributions of the various multipole channels to the
averaged cross sections of the antineutrino (a) and neutrino (b)
scattering off 208Pb. The folding parameters in these plots are
(T ,α) = (4,3) and the pairing strength is Gn.
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TABLE XII. Dominant transitions for the averaged charged-current (anti)neutrino scattering off 208Pb. The (anti)neutrino parameters are
(T ,α) = (4,3). The triplet of numbers in the parentheses are first the spin-parity and ordinal (J π

k ), second the excitation energy in units of MeV,
and third the cross section in units of 10−41 cm2.

Scattering Pairing strength SkM∗ SkX SLy4

Neutrino Gn (1+
1 ,2.23,2.18) (2−

16,3.18,2.7) (1+
1 ,2.83,1.53)

(2−
32,6.63,1.74) (1+

2 ,3.6,2.57) (2−
12,2.89,1.65)

(1+
23,7.06,2.3) (1+

25,7.12,2.99) (1+
24,7.66,1.38)

(1+
29,8.72,7.31) (1+

30,8.19,8.77) (1+
29,9.33,6.13)

(0+
24,13.12,3.73) (1+

42,9.42,4.86) (0+
26,14.42,2.63)

(1+
86,16.43,11.01) (1+

77,13.74,20.02) (1+
82,16.9,10.42)

Gp (1+
1 ,2.16,2.19) (2−

16,3.14,2.71) (1+
1 ,2.78,1.54)

(2−
31,6.57,1.75) (1+

2 ,3.56,2.58) (2−
12,2.83,1.66)

(1+
23,7.0,2.32) (1+

25,7.09,3.0) (1+
24,7.6,1.39)

(1+
28,8.66,7.37) (1+

30,8.15,8.81) (1+
29,9.27,6.19)

(0+
24,13.06,3.8) (1+

41,9.38,4.89) (0+
26,14.36,2.67)

(1+
86,16.37,11.17) (1+

77,13.71,20.14) (1+
82,16.84,10.57)

Antineutrino Gn (2−
23,4.58,1.3) (2−

14,2.94,1.69) (2−
16,3.45,1.76)

(1−
17,5.17,6.27) (1−

14,3.58,6.79) (1−
15,4.07,7.5)

(2−
26,5.52,1.51) (0−

6 ,4.28,2.19) (0−
6 ,5.08,2.02)

(2+
26,5.53,1.01) (2−

24,4.81,1.11) (2−
24,5.08,1.42)

(0−
7 ,6.11,1.85)

Gp (2−
23,4.52,1.31) (2−

14,2.9,1.7) (2−
15,3.39,1.77)

(1−
17,5.11,6.32) (1−

14,3.55,6.82) (1−
15,4.01,7.56)

(1+
17,5.26,0.57) (0−

6 ,4.25,2.2) (0−
6 ,5.02,2.03)

(2−
26,5.46,1.52) (2−

24,4.77,1.12) (2−
23,5.02,1.43)

(2+
26,5.46,1.01)

(0−
7 ,6.05,1.86)

type. The antineutrino scattering (see Table XI) is dominated
by the spin-dipole 1− multipole and it is mainly of axial-vector
type. The spin-dipole 0− and 2− multipoles have notable
contributions of axial-vector type. The 1+ multipole of axial-
vector type contributes notably for the antineutrino scattering
off 204,206Pb.

In Table XII we show the normalized averaged differential
cross sections and the excitation energy of the dominating
final states for neutrino and antineutrino scattering off 208Pb.
The normalization was done by dividing the differential cross
sections by the total averaged cross section; i.e., the sum of
all contributions of the excited states is 1. The excitation
energies in the aforementioned table are measured relative
to the ground state of 208Bi for neutrino scattering and 208Tl
for antineutrino scattering. However, the excitation energies
relative to the ground state of 208Pb can be computed using
Eq. (16). We display in Fig. 7 the prominent final states for
the neutrino and antineutrino scattering off the lead isotopes
with the SkX interactions. It can be concluded that the
supernova neutrino scattering off the stable even-even isotopes
is dominated by transition to various 1+ states with excitation
energy in the range 0.8–16.9 MeV. The most prominent final
states for the antineutrino scattering are the low-lying 1−
states. Significant transitions to 0− and 2− states can also
be noticed. The transitions to 1+ states are also important for
antineutrino scattering off 204Pb. The bulk of the cross sections
for antineutrino scattering are coming from several states with
excitation energies 0–10 MeV.

D. Effects of the neutrino oscillations

Only the electron neutrino and electron antineutrino can be
detected in the CC supernova-neutrino detection experiments
because the large muon and tau rest masses cannot be created
in the low-energy supernova-neutrino processes. However,
neutrinos undergo flavor conversions when they propagate
through the dense matter of the star. Collective neutrino
oscillations, caused by neutrino-neutrino interactions, have
significant effects on the energy profiles of supernova neutrinos
[46]. It is usually assumed that the energy spectra of muon and
tau neutrinos are the same. It can then be shown that the three-
neutrino mixing problem can be reduced to a two-neutrino
problem of the form νx → νe, where νx is a linear combination
of νμ and ντ [47,48]. Consequently, the energy profile for the
electron neutrinos which reach an Earth-bound detector can
then by written in the form

Fνe
(Ek) = p(Ek)F 0

νe
(Ek) + [1 − p(Ek)]F 0

νx
(Ek), (18)

where p(Ek) represents the survival probability of the electron
neutrinos and F 0

νe
(Ek) [F 0

νx
(Ek)] is the initial energy profile of

the electron neutrinos [nonelectron neutrinos].
For the electron antineutrinos one has an analogous expres-

sion

Fν̄e
(Ek) = p̄(Ek)F 0

ν̄e
(Ek) + [1 − p̄(Ek)]F 0

ν̄x
(Ek), (19)

with corresponding quantities of (18) where neutrino is
replaced by antineutrino.
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FIG. 7. Contributions from the final nuclear states to the normalized averaged differential cross sections for the neutrino [panels (a)–(c)]
and antineutrino [panels (d)–(f)] scattering off lead isotopes for the SkX interaction. The (anti)neutrino parameters are T = 4 and α = 3, and
the pairing strength is Gn.

We adopted the prescription of [49,50] for the survival
probabilities p(Ek) and p̄(Ek) of the electron neutrinos and
electron antineutrinos. In the case of the normal mass hierarchy
we have

p(Ek) = 0, (20)

and

p̄(Ek) =
{

cos θ12, Ek < Ēs,
0, Ek > Ēs,

(21)

where Ēs = 18.0 MeV [50]. For the inverted mass hierarchy
we adopt the survival probabilities

p(Ek) =
{

sin2 θ12, Ek < Es,
0, Ek > Es,

(22)

and

p̄(Ek) = cos2 θ12, (23)

for the electron neutrinos and electron antineutrinos, respec-
tively. Here we choose the value Es = 7 MeV [47]. In the
present computations we employ for the mixing angle the
values of [51], i.e., sin2 θ12 = 0.306 for the normal hierarchy
and sin2 θ12 = 0.312 for the inverted hierarchy.

For the present study of neutrino-oscillation effects we have
adopted the neutrino and antineutrino parameters from [52].
The values of these parameters are shown in Table XIII. We
present in Table XIV the resulting averaged cross sections
for the nonoscillating and oscillating electron (anti)neutrinos.
In this table, the labels νe and ν̄e stand for the nonoscillat-
ing electron neutrino and electron antineutrino, respectively.
The results for the oscillating electron neutrino (electron
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TABLE XIII. Values of the parameters α, T and the average neutrino energies for three different supernova scenarios adopted from [52].
In this table x denotes the nonelectron flavors, i.e., x = μ,τ .

(ανe ,Tνe ,〈Eνe 〉) (αν̄e ,Tν̄e ,〈Eν̄e 〉) (ανx ,Tνx ,〈Eνx 〉) (αν̄x ,Tν̄x ,〈Eν̄x 〉)
(I) (3.0, 2.88, 11.5) (3.0, 3.41, 13.6) (3.0, 4.08, 16.3) (3.0, 4.08, 16.3)
(II) (0.0, 3.65, 11.5) (0.0, 4.32, 13.6) (0.0, 5.17, 16.3) (0.0, 5.17, 16.3)
(III) (3.0, 2.88, 11.5) (3.0, 3.41, 13.6) (0.0, 5.17, 16.3) (0.0, 5.17, 16.3)

antineutrino) are denoted by νNH
ex (ν̄NH

ex ) for the normal mass
hierarchy and by νIH

ex (ν̄IH
ex ) for the inverted mass hierarchy.

Furthermore, in the rows labeled “Full” we summarize the
results of the considered Skyrme interactions by giving ranges
which run from the smallest to the largest predicted value.
It is seen in Table XIV that the flux-averaged cross sections

are enhanced significantly when the flavor transformations are
included. The effect of the chosen pairing strength on the
averaged cross sections is very weak. It can also be concluded
from Table XIV that the averaged cross sections for the
oscillating electron neutrino are almost the same for the normal
and inverted mass hierarchies. For the electron antineutrino,

TABLE XIV. Averaged cross sections for the charged-current (anti)neutrino-nucleus scatterings in units of 10−41 cm2 as calculated for the
sets of neutrino parameters quoted in Table XIII. Here the columns νe and ν̄e are computed without taking into account the neutrino oscillations,
while νNH

ex (normal hierarchy) and νIH
ex (inverted hierarchy) correspond to results with the oscillations included. The values in the rows “Full”

run from the smallest to the largest value predicted by the three considered Skyrme interactions. The values on the left (right) correspond to
the pairing strength Gn (Gp)

Nucleus Model Int. νe νNH
ex νIH

ex ν̄e ν̄NH
ex ν̄IH

ex

204Pb (I) SkM∗ 12.18,11.78 45.60,44.52 45.44,44.40 0.214,0.188 0.42,0.380 0.278,0.248
SkX 18.63,18.49 63.15,62.79 62.40,62.00 0.222,0.206 0.427,0.402 0.285,0.267
SLy4 9.74,9.80 38.00,38.06 38.09,38.13 0.203,0.189 0.405,0.382 0.266,0.250
Full 9.74–18.63 38.00–63.15 38.09–62.40 0.188–0.222 0.380–0.427 0.248–0.285

(II) SkM∗ 17.00,16.52 56.83,55.70 57.54,56.37 0.301,0.272 0.604,0.559 0.395,0.361
SkX 25.36,25.20 74.55,74.16 74.98,74.60 0.305,0.287 0.605,0.576 0.398,0.377
SLy4 13.88,13.93 49.14,49.11 49.72,49.72 0.289,0.273 0.586,0.560 0.381,0.362
Full 13.88–25.36 49.11–74.55 49.72–74.98 0.272–0.305 0.559–0.605 0.361–0.398

(III) SkM∗ 12.18,11.78 56.83,55.70 57.54,56.37 0.214,0.188 0.612,0.564 0.335,0.303
SkX 18.63,18.49 74.55,74.16 74.98,74.60 0.222,0.206 0.613,0.583 0.341,0.321
SLy4 9.74,9.80 49.14,49.11 49.72,49.72 0.203,0.189 0.593,0.565 0.322,0.305
Full 9.74–18.63 49.11–74.55 49.72–74.98 0.188–0.222 0.564–0.613 0.303–0.341

206Pb (I) SkM∗ 12.50,12.62 46.59,46.85 46.44,46.69 0.137,0.127 0.292,0.275 0.186,0.173
SkX 19.43,19.70 65.63,66.24 64.71,65.61 0.146,0.139 0.301,0.289 0.194,0.186
SLy4 9.94,11.55 38.59,42.06 38.69,42.06 0.132,0.111 0.283,0.245 0.179,0.153
Full 9.94–19.70 38.59–66.24 38.69–65.61 0.111–0.146 0.245–0.301 0.153–0.194

(II) SkM∗ 17.41,17.55 57.93,58.08 58.70,58.88 0.209,0.197 0.449,0.428 0.283,0.269
SkX 26.49,26.82 77.25,77.87 77.76,78.39 0.215,0.206 0.452,0.438 0.289,0.278
SLy4 14.12,15.81 50.00,52.90 50.65,53.71 0.202,0.175 0.435,0.385 0.274,0.240
Full 14.12–26.82 50.00–77.87 50.65–78.39 0.175–0.215 0.385–0.452 0.240–0.289

(III) SkM∗ 12.50,12.62 57.93,58.08 58.70,58.88 0.137,0.127 0.452,0.431 0.234,0.221
SkX 19.43,19.70 77.25,77.87 77.76,78.39 0.146,0.139 0.456,0.442 0.241,0.232
SLy4 9.94,11.55 50.00,52.90 50.65,53.71 0.132,0.111 0.438,0.387 0.226,0.196
Full 9.94–19.70 50.00–77.87 50.65–78.39 0.111–0.146 0.387–0.456 0.196–0.241

208Pb (I) SkM∗ 12.07,12.25 45.64,46.13 45.55,46.01 0.084,0.085 0.199,0.201 0.120,0.121
SkX 18.62,18.75 64.34,64.65 63.49,63.79 0.088,0.088 0.200,0.201 0.123,0.124
SLy4 9.89,10.02 38.67,39.07 38.82,39.18 0.095,0.096 0.218,0.220 0.134,0.135
Full 9.89–18.75 38.67–64.65 38.82–63.79 0.084–0.096 0.199–0.220 0.120–0.135

(II) SkM∗ 16.91,17.12 57.48,57.89 58.23,58.66 0.143,0.144 0.332,0.334 0.202,0.203
SkX 25.63,25.80 76.03,96.36 76.56,76.90 0.143,0.144 0.327,0.328 0.200,0.201
SLy4 14.11,14.27 50.44,50.77 51.10,51.45 0.156,0.157 0.356,0.358 0.218,0.220
Full 14.11–25.80 50.44–96.36 51.10–76.90 0.143–0.157 0.327–0.358 0.200–0.220

(III) SkM∗ 12.07,12.25 57.48,57.89 58.23,58.66 0.084,0.085 0.333,0.336 0.161,0.163
SkX 18.62,18.75 76.03,76.36 76.56,76.90 0.087,0.088 0.328,0.329 0.162,0.163
SLy4 9.89,10.02 50.44,50.77 51.10,51.45 0.095,0.096 0.357,0.359 0.176,0.178
Full 9.89–18.75 50.44–76.36 51.10–76.90 0.084–0.096 0.328–0.359 0.161–0.178
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the results for the normal mass hierarchy are larger than those
for the inverted mass hierarchy. These effects of the oscillations
on the averaged cross sections are visible in Figs. 8 and 9. In
these figures we display the computed averaged cross sections
for the supernova model (I) of Table XIII for the discussed lead
isotopes. Similar pattern can be seen for the other considered
flavor-transformation scenarios (II) and (III). It is clear from
Fig. 8 that the neutrino scattering results for the normal
hierarchy do not deviate from the results for the inverted
hierarchy. Furthermore, the predicted cross sections do not
vary notably from one lead isotope to the other. The SkX force
gives the largest average cross section for the neutrino-nucleus
scattering and the SLy4 gives the smallest. In Fig. 9 the
different effects of the two hierarchies on the antineutrino
oscillation show up clearly. The averaged cross section for
the antineutrino is A dependent and decreases with increasing
mass number. It is also evident that the averaged cross sections
for the antineutrino-nucleus scattering predicted by the three
Skyrme calculations are very close to each other. The most
interesting feature is the notable difference between the results
obtained for the normal and inverted mass hierarchies. This
difference is characteristic for all considered lead isotopes.

IV. CONCLUSIONS

In this work we have performed calculations for the
charged-current (anti)neutrino scattering off the stable even-
even lead isotopes 204,206,208Pb. The cross sections have
been calculated for neutrino energies that are appropriate for
supernova neutrinos. We have estimated the nuclear responses

of the studied lead isotopes by folding the cross sections with a
two-parameter Fermi-Dirac distribution describing the energy
profile of the incoming (anti)neutrinos. We have compared
our obtained total and averaged cross sections with two other
calculations in the case of 208Pb. We have also estimated
the effect of the flavor conversions of (anti)neutrinos in an
exploding supernova on the flux-averaged cross sections.

The nuclear wave functions have been computed within
the pnQRPA framework. Our computations were based on the
Skyrme interaction variants SkM∗, SkX, and SLy4 as two-body
interactions. We have compared our computed β− Gamow-
Teller strength distribution and the position of the isobaric
analog state with the available experimental data for 208Pb.

Our computed results show that the dominant final states
for the supernova-neutrino scattering are of the multipole 1+.
The 1− final states play a prominent role for the antineutrino
scattering. The 2−, 0−, and 1+ channels are also important for
the antineutrino scattering.

For the considered scenarios for the (anti)neutrino-flavour
transformations we have found that the (anti)neutrino oscilla-
tions enhance the (anti)neutrino flux-averaged cross sections.
Our results indicate that averaged cross sections for the
antineutrinos are quite different for the normal and inverted
mass hierarchy. This opens the intriguing possibility to use
the future (megaton) neutrino detectors to determine the mass
hierarchy (normal or inverted) of the neutrinos.
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[30] P. Veselý, J. Toivanen, B. G. Carlsson, J. Dobaczewski, N.
Michel, and A. Pastore, Phys. Rev. C 86, 024303 (2012).

[31] B. G. Carlsson and J. Toivanen, Phys. Rev. C 89, 054324
(2014).

[32] J. D. Walecka, Theoretical Nuclear and Subnuclear Physics
(Imperial College Press, London, 2004).

[33] J. Suhonen, From Nucleons to Nucleus: Concepts of Microscopic
Nuclear Theory (Springer, Berlin, 2007).

[34] A. Bohr and B. R. Mottelson, Phys. Lett. B 100, 10 (1981).
[35] B. H. Wildenthal, M. S. Curtin, and B. A. Brown, Phys. Rev. C

28, 1343 (1983).
[36] G. Martı́nez-Pinedo, A. Poves, E. Caurier, and A. P. Zuker, Phys.

Rev. C 53, R2602 (1996).
[37] J. Engel, Phys. Rev. C 57, 2004 (1998).
[38] B. G. Carlsson, J. Toivanen, and A. Pastore, Phys. Rev. C 86,

014307 (2012).
[39] B. S. Flanders, R. Madey, B. D. Anderson, A. R. Baldwin, J. W.

Watson, C. C. Foster, H. V. Klapdor, and K. Grotz, Phys. Rev.
C 40, 1985 (1989).

[40] National Nuclear Data Center, http://www.nndc.bnl.gov
[41] K. Yoshida, Prog. Theor. Exp. Phys. (2013) 113D02.
[42] Li-Gang Cao, X. Roca-Maza, G. Coló, and H. Sagawa, Phys.
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