Measurement of transverse energy at midrapidity in Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV

ALICE Collaboration; Chang, BeomSu; Kim, Dong Jo; Rak, Jan; Räsänen, Sami; Slupecki, Maciej; Snellman, Tomas; Trzaska, Wladyslaw; Vargyas, Márton; Viinikainen, Jussi

2016

2016
Measurement of transverse energy at midrapidity in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

J. Adam et al.*
(ALICE Collaboration)

(Received 16 March 2016; published 15 September 2016)

We report the transverse energy (E_T) measured with ALICE at midrapidity in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV as a function of centrality. The transverse energy was measured using identified single-particle tracks. The measurement was cross checked using the electromagnetic calorimeters and the transverse momentum distributions of identified particles previously reported by ALICE. The results are compared to theoretical models as well as to results from other experiments. The mean E_T per unit pseudorapidity (η), $\langle dE_T/d\eta \rangle$, in 0%–5% central collisions is 1737 ± 6 (stat) ± 97 (sys) GeV. We find a similar centrality dependence of the shape of $\langle dE_T/d\eta \rangle$ as a function of the number of participating nucleons to that seen at lower energies. The growth in $\langle dE_T/d\eta \rangle$ at the LHC energies exceeds extrapolations of low-energy data. We observe a nearly linear scaling of $\langle dE_T/d\eta \rangle$ with the number of quark participants. With the canonical assumption of a 1 fm/c formation time, we estimate that the energy density in 0%–5% central Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV is 12.3 ± 1.0 GeV/fm3 and that the energy density at the most central 80 fm2 of the collision is at least 21.5 ± 1.7 GeV/fm3. This is roughly 2.3 times that observed in 0%–5% central Au-Au collisions at $\sqrt{s_{NN}} = 200$ GeV.

DOI: 10.1103/PhysRevC.94.034903

I. INTRODUCTION

Quantum chromodynamics (QCD) predicts a phase transition of nuclear matter to a plasma of quarks and gluons at energy densities above about 0.2–1 GeV/fm3 [1,2]. This matter, called quark-gluon plasma (QGP), is produced in high-energy nuclear collisions [3–17] and its properties are being investigated at the Super Proton Synchrotron (SPS), the Relativistic Heavy Ion Collider (RHIC), and the Large Hadron Collider (LHC). The highest energy densities are achieved at the LHC in Pb-Pb collisions.

The mean transverse energy per unit pseudorapidity $\langle dE_T/d\eta \rangle$ conveys information about how much of the initial longitudinal energy carried by the incoming nuclei is converted into energy carried by the particles produced transverse to the beam axis. The transverse energy at midrapidity is therefore a measure of the stopping power of nuclear matter. By using simple geometric considerations [18] $\langle dE_T/d\eta \rangle$ can provide information on the energy densities attained. Studies of the centrality and $\sqrt{s_{NN}}$ dependence of $\langle dE_T/d\eta \rangle$ therefore provide insight into the conditions prior to thermal and chemical equilibrium.

The $\langle dE_T/d\eta \rangle$ has been measured at the BNL Alternating Gradient Synchrotron by E802 [19] and E814/E877 [20]; at the SPS by NA34 [21], NA35 [22], NA49 [23], and WA80/93/98 [24,25]; at RHIC by PHENIX [26–28] and STAR [29]; and at the LHC by CMS [30], covering nearly three orders of magnitude of $\sqrt{s_{NN}}$. The centrality dependence has also been studied extensively with $\langle dE_T/d\eta \rangle$ at midrapidity scaling nearly linearly with the collision volume, or equivalently, the number of participating nucleons at lower energies [24,31,32]. Further studies of heavy-ion collisions revealed deviations from this simple participant scaling law [25]. The causes of this deviation from linearity are still actively discussed and might be related to effects from minijets [33,34] or constituent quark scaling [28,35].

The ALICE detector [36] has precision tracking detectors and electromagnetic calorimeters, enabling several different methods for measuring E_T. In this paper we discuss measurements of $\langle dE_T/d\eta \rangle$ in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV using the tracking detectors alone and using the combined information from the tracking detectors and the electromagnetic calorimeters. In addition we compare to calculations of $\langle dE_T/d\eta \rangle$ from the measured identified particle transverse momentum distributions. Measurements from the tracking detectors alone provide the highest precision. We compare our results to theoretical calculations and measurements at lower energies.

II. EXPERIMENT

A comprehensive description of the ALICE detector can be found in Ref. [36]. This analysis uses the V0, zero-degree calorimeters (ZDCs), the inner tracking system (ITS), the time projection chamber (TPC), the electromagnetic calorimeter (EMCal), and the photon spectrometer (PHOS), all of which are located inside a 0.5-T solenoidal magnetic field. The V0 detector [37] consists of two scintillator hodoscopes covering the pseudorapidity ranges $-3.7 < \eta < -1.7$ and $2.8 < \eta < 5.1$. The ZDCs each consist of a neutron calorimeter between the beam pipes downstream of the dipole magnet and a proton calorimeter external to the outgoing beam pipe.

The TPC [38], the main tracking detector at midrapidity, is a cylindrical drift detector filled with a Ne–CO$_2$ gas mixture. The active volume is nearly 90 m3 and has inner and outer radii of 0.848 and 2.466 m, respectively. It provides particle
identification via the measurement of the specific ionization energy loss \(dE/dx\) with a resolution of 5.2% and 6.5% in peripheral and central collisions, respectively.

The ITS [36] consists of the silicon pixel detector with layers at radii of 3.9 and 7.6 cm, the silicon drift detector with layers at radii of 15.0 and 23.9 cm, and the silicon strip detector with layers at radii of 38.0 and 43.0 cm. The TPC and ITS are aligned to within a few hundred \(\mu\)m using cosmic ray and \(pp\) collision data [39].

The EMCal [40,41] is a lead/scintillator sampling calorimeter covering \(|\eta|<0.7\) in pseudorapidity and 100° in azimuth in 2011. The EMCal consists of 11 520 towers, each with transverse size 6 \(\times\) 6 cm, or approximately twice the effective Molière radius. The relative energy resolution is \(\sqrt{0.11^2/E + 0.017^2}\), where the energy \(E\) is measured in GeV [40]. Clusters are formed by combining signals from adjacent towers. Each cluster is required to have only one local energy maximum. Noise is suppressed by requiring a minimum tower energy of 0.05 GeV. For this analysis we use clusters within \(|\eta|<0.6\). The PHOS [42] is a lead tungstate calorimeter covering \(|\eta|<0.12\) in pseudorapidity and 60° in azimuth. The PHOS consists of three modules of 64 \(\times\) 56 towers each, with each tower having a transverse size of 2.2 \(\times\) 2.2 cm, comparable to the Molière radius. The relative energy resolution is \(\sqrt{0.013^2/E^2 + 0.036^2/E + 0.017^2}\), where the energy \(E\) is measured in GeV [43].

The minimum-bias trigger for Pb-Pb collisions in 2010 was defined by a combination of hits in the V0 detector and the two innermost (pixel) layers of the ITS [8]. In 2011 the minimum-bias trigger signals in both neutron ZDCs were also required [44]. The collision centrality is determined by comparing the multiplicity \(N_{\text{clust}}\) with the distribution of fluctuations in the number of participating nucleons, \((N_{\text{clus}})^{\text{stat}}\). We restrict our analysis to the 0%–80% central collisions for these centralities corrections owing to better detector performance and understanding of the calibrations in that run period. The EMCal has a larger acceptance, but the PHOS has a better energy resolution. There is also a lower material budget in front of the PHOS than the EMCal. This provides an additional check on the accuracy of the measurement.

The PHOS and EMCal are used to measure the electromagnetic energy component of the \(E_T\) and to demonstrate consistency between methods. Data from 2011 were used for the EMCal analysis owing to the larger EMCal acceptance in 2011. Data from one run in 2010 were used for the PHOS owing to better detector performance and understanding of the calibrations in that run period. The EMCal has a larger acceptance, but the PHOS has a better energy resolution. There is also a lower material budget in front of the PHOS than the EMCal. This provides an additional check on the accuracy of the measurement.

III. METHOD

Historically, most \(E_T\) measurements have been performed using calorimeters, and the commonly accepted operational definition of \(E_T\) is therefore based on the energy \(E_j\) measured in the calorimeter’s \(j\)th tower,

\[
E_T = \sum_{j=1}^{M} E_j \sin \theta_j, \tag{1}
\]

where \(j\) runs over all \(M\) towers in the calorimeter and \(\theta_j\) is the polar angle of the calorimeter tower. The transverse energy can also be calculated using single-particle tracks. In that case, the index \(j\) in Eq. (1) runs over \(M\) measured particles instead of calorimeter towers and \(\theta_j\) is the particle emission angle. To be compatible with the \(E_T\) of a calorimeter measurement, the energy \(E_j\) of Eq. (1) must be replaced with the single-particle
energies

\[E_j = \begin{cases}
E_{\text{kin}} & \text{for baryons,} \\
E_{\text{kin}} + 2mc^2 & \text{for antibaryons,} \\
E_{\text{kin}} + mc^2 & \text{for all other particles.}
\end{cases} \tag{2} \]

This definition of \(E_T \) was used in the measurements of the transverse energy by CMS [30] (based on calorimetry), PHENIX [26] (based on electromagnetic calorimetry), and STAR [29] (based on a combination of electromagnetic calorimetry and charged-particle tracking). To facilitate comparison between the various data sets the definition of \(E_T \) given by Eqs. (1) and (2) is used here.

It is useful to classify particles by how they interact with the detector. We define the following categories of final-state particles:

(A) \(\pi^\pm, K^\pm, p, \) and \(\bar{p} \): Charged particles measured with high efficiency by tracking detectors

(B) \(\pi^0, \omega, \eta, e^\pm, \) and \(\gamma \): particles measured with high efficiency by electromagnetic calorimeters;

(C) \(\Lambda, \bar{\Lambda}, K^0, \Sigma^+, \Sigma^0, \) and \(\Xi^0 \): particles measured with low efficiency in tracking detectors and electromagnetic calorimeters;

(D) \(K^0_L, n, \) and \(\bar{\pi} \): neutral particles not measured well by either tracking detectors or electromagnetic calorimeters.

The total \(E_T \) is the sum of the \(E_T \) observed in final-state particles in categories A–D. Contributions from all other particles are negligible. In HIJING 1.383 [46] simulations of Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV the next-largest contributions come from the \(\Xi(\Xi) \) and \(\Omega(\Omega) \) baryons with a total contribution of about 0.4% of the total \(E_T \), much less than the systematic uncertainty on the final value of \(E_T \). The \(E_T \) from unstable particles with \(c\tau < 1 \) cm is taken into account through the \(E_T \) from their decay particles.

When measuring \(E_T \) using tracking detectors, the primary measurement is of particles in category A and corrections must be applied to take into account the \(E_T \) which is not observed from particles in categories B–D. In the hybrid method the \(E_T \) from particles in category A is measured using tracking detectors and the \(E_T \) from particles in category B is measured by the electromagnetic calorimeter. An electromagnetic calorimeter has the highest efficiency for measuring particles in category B, although there is a substantial background from particles in category A. The \(E_T \) from categories C and D, which is not well measured by an electromagnetic calorimeter, must be corrected for on average. Following the convention used by STAR, we define \(E_T^{\text{had}} \) to be the \(E_T \) measured from particles in category A and scaled up to include particles in categories C and D and \(E_T^{\text{em}} \) to be the \(E_T \) measured in category B. The total \(E_T \) is given by

\[E_T = E_T^{\text{had}} + E_T^{\text{em}}. \tag{3} \]

We refer to \(E_T^{\text{had}} \) as the hadronic \(E_T \) and \(E_T^{\text{em}} \) as the electromagnetic \(E_T \). We note that \(E_T^{\text{had}} \) and \(E_T^{\text{em}} \) are operational definitions based on the best way to observe the energy deposited in various detectors and that the distinction is not theoretically meaningful.

Several corrections are calculated using HIJING [46] simulations. The propagation of final-state particles in these simulations through the ALICE detector material is described using GEANT3 [47]. Throughout the paper these are described as HIJING + GEANT simulations.

A. Tracking detector measurements of \(E_T \)

The measurements of the total \(E_T \) using the tracking detectors and of the hadronic \(E_T \) are closely correlated because the direct measurement in both cases is \(E_T^{\pi, K, p} \), the \(E_T \) from \(\pi^\pm, K^\pm, p, \) and \(\bar{p} \) from the primary vertex. All contributions from other categories are treated as background. For \(E_T^{\text{had}} \) the \(E_T \) from categories C and D is corrected for on average and for the total \(E_T \) the contribution from categories B, C, and D is corrected for on average. Each of these contributions is taken into account with a correction factor.

The relationship between the measured track momenta and \(E_T^{\pi, K, p} \) is given by

\[\frac{dE_T^{\pi, K, p}}{d\eta} = \frac{1}{\Delta\eta} \frac{1}{f_{\text{py}} \epsilon(\eta)} \sum_{i=1}^{n} f_{\text{bg}}(p_T^i) E_T \sin \theta_i \tag{4} \]

where \(i \) runs over the \(n \) reconstructed tracks and \(\Delta\eta \) is the pseudorapidity range used in the analysis; \(\epsilon(\eta) \) corrects for the finite track reconstruction efficiency and acceptance; \(f_{\text{bg}}(p_T) \) corrects for the \(\Delta, \Lambda, \Xi \), and \(K_S^0 \) daughters and electrons that pass the primary track quality cuts; \(f_{\text{notID}} \) corrects for particles that could not be identified unambiguously through their specific energy loss \(dE/dx \) in the TPC; and \(f_{\text{prv}} \) corrects for the finite detector acceptance at low momentum. Hadronic \(E_T \) is given by \(E_T^{\text{had}} = E_T^{\pi, K, p}/f_{\text{neutral}} \), where \(f_{\text{neutral}} \) is the fraction of \(E_T^{\text{had}} \) from \(\pi^\pm, K^\pm, p, \) and \(\bar{p} \) and total \(E_T \) is given by \(E_T = E_T^{\pi, K, p}/f_{\text{total}} \) where \(f_{\text{total}} \) is the fraction of \(E_T \) from \(\pi^\pm, K^\pm, p, \) and \(\bar{p} \). The determination of each of these corrections is given below and the systematic uncertainties are summarized in Table I. Systematic uncertainties are correlated point to point.

1. Single-track efficiency \(\times \) acceptance \(\epsilon(\eta) \)

The single-track efficiency \(\times \) acceptance \(\epsilon(\eta) \) is determined by comparing the primary yields to the reconstructed yields using

<table>
<thead>
<tr>
<th>Correction</th>
<th>Value</th>
<th>Relative uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{\text{prv}})</td>
<td>0.9710 ± 0.0058</td>
<td>0.6</td>
</tr>
<tr>
<td>(f_{\text{notID}})</td>
<td>0.728 ± 0.017</td>
<td>2.3</td>
</tr>
<tr>
<td>(f_{\text{total}})</td>
<td>0.553 ± 0.010</td>
<td>3.0</td>
</tr>
<tr>
<td>(f_{\text{bg}}(p_T))</td>
<td>0.982 ± 0.002</td>
<td>0.2</td>
</tr>
<tr>
<td>(\epsilon(\eta))</td>
<td>1.8%</td>
<td>0.8</td>
</tr>
<tr>
<td>(\epsilon(p_T))</td>
<td>50%</td>
<td>5</td>
</tr>
</tbody>
</table>

TABLE I. Summary of corrections and systematic uncertainties for \(E_T^{\pi, K, p} \) and \(E_T \) from tracking detectors. For centrality- and \(p_T \)-dependent corrections the correction is listed. For centrality- and \(p_T \)-dependent corrections, the approximate percentage of the correction is listed. In addition, the anchor-point uncertainty in the Glauber calculations leads to an uncertainty of 0%–4%, increasing with centrality.
HIJING + GEANT simulations, as described in Ref. [48]. When a particle can be identified as a π^\pm, K^\pm, p, or \bar{p} using the algorithm described above, the efficiency for that particle is used. Otherwise the particle-averaged efficiency is used. The 5% systematic uncertainty is determined by the difference between the fraction of TPC stand-alone tracks matched with a hit in the ITS in simulations and data.

2. Background $f_{\text{ud}}(p_T)$

The background comes from photons which convert to e^+e^- in the detector and decay daughters from Λ, $\bar{\Lambda}$, and K^0_S, which are observed in the tracking detectors but do not originate from primary π^\pm, K^\pm, p, and \bar{p}. This is determined from HIJING + GEANT simulations. The systematic uncertainty on the background owing to conversion electrons is determined by varying the material budget in the HIJING + GEANT simulations by ±10% and found to be negligible compared to other systematic uncertainties. The systematic uncertainty owing to Λ, $\bar{\Lambda}$, and K^0_S daughters is sensitive to both the yield and the shape of the Λ, $\bar{\Lambda}$, and K^0_S spectra. To determine the contribution from Λ, $\bar{\Lambda}$, and K^0_S decay daughters and its systematic uncertainty, the spectra in simulation are reweighted to match the data and the yields are varied within their uncertainties [49]. Because the centrality dependence is less than the uncertainty owing to other corrections, a constant correction of 0.982 ± 0.008 is applied across all centralities.

3. Particle identification f_{notID}

The E_T of particles with 0.15 < p_T < 0.45 GeV/c with a dE/dx within two standard deviations of the expected dE/dx for kaons is calculated using the kaon mass and the E_T of particles with 0.15 < p_T < 0.9 GeV/c with a dE/dx within two standard deviations of the expected dE/dx for (anti)protons is calculated using the (anti)proton mass. The E_T of all other particles is calculated using the pion mass. Because the average transverse momentum is $\langle p_T \rangle = 0.678 \pm 0.007$ GeV/c for charged particles [50] and over 80% of the particles created in the collision are pions [45], most particles can be identified correctly using this algorithm. At high momentum, the difference between the true E_T and the E_T calculated using the pion mass hypothesis for kaons and protons is less than at low p_T. This is therefore a small correction. Assuming that all kaons with 0.15 < p_T < 0.45 GeV/c and (anti)protons with 0.15 < p_T < 0.9 GeV/c are identified correctly and using the identified π^\pm, K^\pm, p, and \bar{p} spectra [45] gives $f_{\text{notID}} = 0.992 \pm 0.002$. The systematic uncertainty is determined from the uncertainties on the yields.

Assuming that 5% of kaons and protons identified using the particle-identification algorithm described above are misidentified as pions only decreases f_{notID} by 0.0002, less than the systematic uncertainty on f_{notID}. This indicates that this correction is robust to changes in the mean dE/dx expected for a given particle and its standard deviation. We note that either assuming no particle identification or doubling the number of kaons and protons only decreases f_{notID} by 0.005.

4. Low p_T acceptance f_{Pflow}

The lower momentum acceptance of the tracking detectors is primarily driven by the magnetic field and the inner radius of the active volume of the detector. Tracks can be reliably reconstructed in the TPC for particles with $p_T > 150$ MeV/c. The fraction of E_T carried by particles below this momentum cutoff is determined by HIJING + GEANT simulations. To calculate the systematic uncertainty, we follow the prescription given by STAR [29]. The fraction of E_T contained in particles below 150 MeV/c is calculated assuming that all particles below this cutoff have a momentum of exactly 150 MeV/c to determine an upper bound, assuming that they have a momentum of 0 MeV/c to determine a lower bound, and using the average as the nominal value. Using this prescription, $f_{\text{Pflow}} = 0.9710 \pm 0.0058$. We note that f_{Pflow} is the same within systematic uncertainties when calculated from PYTHIA simulations [51] for pp collisions with $\sqrt{s} = 0.9$ and 8 TeV, indicating that this is a robust quantity.

5. Correction factors f_{neutral} and f_{total}

Under the assumption that the different states within an isospin multiplet and particles and antiparticles have the same E_T, f_{neutral} can be written as

$$ f_{\text{neutral}} = \frac{2E_T^2 + 2E_K^2 + 2E_p^2}{3E_T^2 + 4E_K^2 + 4E_p^2 + 2E_L^2 + 6E_T^2} $$

(5)

and f_{total} can be written as

$$ f_{\text{total}} = \frac{2E_T^2 + 2E_K^2 + 2E_p^2}{3E_T^2 + 4E_K^2 + 4E_p^2 + 2E_L^2 + 6E_T^2 + E_{\text{not},\pi,e^{+,-},\gamma}} $$

(6)

where E_T^2, E_K^2, and E_p^2 are the E_T from one kaon species, E_T^2 is the E_T from one pion species, E_T^2 is the average of the E_T from protons and antiprotons, E_T^2 is the average E_T from Λ and $\bar{\Lambda}$, and E_T^2 is the average E_T from Σ^+, Σ^-, and Σ^0 and their antiparticles. The contributions E_T^2, E_T^2, E_T^2, and E_T^2 are calculated from the particle spectra measured by ALICE [45,49] as for the calculation of E_T from the particle spectra. The systematic uncertainties are also propagated assuming that the systematic uncertainties from different charges of the same particle species (e.g., π^+ and π^-) are 100% correlated and from different species (e.g., π^+ and K^+) are uncorrelated. The contribution from the Σ^+, Σ^-, and Σ^0 and their antiparticles is determined from the measured Λ spectra. The total contribution from Σ species and their antiparticles should be approximately equal to that of the Λ and $\bar{\Lambda}$, but because there are three isospin states for the Σ, each species carries roughly 1/3 of the E_T that the Λ carries. Because the Σ^0 decays dominantly through a Λ and has a short lifetime, the measured Λ spectra include Λ from the Σ^0 decay. The ratio of $F = (E_T^2 + E_T^2) / E_T^2$ is therefore expected to be 0.5. HIJING simulations indicate that $F = 0.67$ and if the E_T scales with the yield, THERMUS [52] indicates that $F = 0.532$. We therefore use $F = 0.585 \pm 0.085$.

The contribution $E_T^{\text{not},\pi,e^{+,-},\gamma}$ is calculated using transverse mass scaling for the η meson and PYTHIA simulations for the
To determine the relative contribution from the ω, e^\pm, and γ, as described earlier. Because most of the E_T is carried by π^\pm, K^\pm, p, \bar{p}, n, and \overline{n}, whose contributions appear in both the numerator and the denominator, f_{total} and f_{neutral} can be determined to high precision, and the uncertainty in f_{total} and f_{neutral} is driven by E_T^ω and $E_T^{\omega,e^\pm,\gamma}$. It is worth considering two special cases. If all E_T were carried by pions, as is the case at low energy where almost exclusively pions are produced, Eq. (6) would simplify to $f_{\text{total}} = 2/3$. If all E_T were only carried by kaons, (anti)protons, and (anti)neutrons, Eq. (6) would simplify to $f_{\text{total}} = 1/2$.

To calculate the contribution from the η meson and its uncertainties, we assume that the shapes of its spectra for all centrality bins as a function of transverse mass are the same as the pion spectra, using the transverse mass scaling [53], and that the η/π ratio is independent of the collision system, as observed by PHENIX [54]. We also consider a scenario where the η spectrum is assumed to have the same shape as the kaon spectrum, as would be expected if the shape of the η spectrum was determined by hydrodynamical flow. In this case we use the ALICE measurements of η/π in pp collisions [55] to determine the relative yields. We use the η/π ratio at the lowest momentum point available, $p_T = 0.5$ GeV/c, because the E_T measurement is dominated by low-momentum particles. Because no ω measurement exists, PYTHIA [51] simulations of pp collisions were used to determine the relative contribution from the ω and from all other particles which interact electromagnetically (mainly γ and e^\pm). These contributions were approximately 2% and 1% of E_T^η, respectively. With these assumptions, $E_T^{\omega,\eta,e^\pm,\gamma}/E_T^\eta = 0.17 \pm 0.11$. The systematic uncertainty on this fraction is dominated by the uncertainty in the η/π ratio. We propagate the uncertainties assuming that the E_T from the same particle species are 100% correlated and that the uncertainties from different particle species are uncorrelated.

The f_{neutral}, f_{total}, and $f_{\text{em}} = 1 - f_{\text{total}}/f_{\text{neutral}}$ are shown in Fig. 1 along with the fractions of E_T carried by all pions f_{π}, all kaons f_K, protons and antiprotons f_p, and Λ baryons f_Λ versus $\langle N_{\text{part}} \rangle$. While there is a slight dependence of the central value on $\langle N_{\text{part}} \rangle$, this variation is less than the systematic uncertainty. Because there is little centrality dependence, we use $f_{\text{em}} = 0.240 \pm 0.027$, $f_{\text{neutral}} = 0.728 \pm 0.017$, and $f_{\text{total}} = 0.553 \pm 0.010$, which encompass the entire range for all centralities. The systematic uncertainty is largely driven by the contribution from $\Lambda, \omega, \eta, e^\pm$, and γ because these particles only appear in the denominator of Eqs. (5) and (6). The systematic uncertainty on f_{total} is smaller than that on f_{neutral} because f_{neutral} only has E_T^Λ in the denominator.

These results are independently interesting. There is little change in the fraction of energy carried by different species with centrality and the changes are included in the f_{total} used for the measurement of E_T. Additionally, only about 1/4 of the energy is in E_T^π, much less than the roughly 1/3 of energy in $E_T^{\pi,\eta}$ at lower energies, where most particles produced are pions with the π^0 carrying approximately 1/3 of the energy in the collision. Furthermore, only about 3.5% of the E_T is carried by ω, η, e^\pm, and γ. Because charged and neutral pions have comparable spectra, this means that the tracking detectors are highly effective for measuring the transverse energy distribution in nuclear collisions.

FIG. 1. Fraction of the total E_T in pions (f_{π}), kaons (f_K), p and \bar{p} (f_p), and Λ (f_Λ) and the correction factors f_{total}, f_{neutral}, and f_{em} as functions of $\langle N_{\text{part}} \rangle$. The fraction f_{em} is scaled by a factor of two so that the data do not overlap with those from protons. Note that f_{neutral} is the fraction of E_T measured in the tracking detectors, while f_{total} and f_{em} are the fractions of the total E_T measured in the tracking detectors and the calorimeters, respectively. The vertical error bars give the uncertainty on the fraction of E_T from the particle yields.

6. E_T^{had} distributions

Figure 2 shows the distributions of the reconstructed E_T^{had} measured from π^\pm, K^\pm, p, and \bar{p} tracks using the method described above for several centralities. No correction was done for the resolution, leaving these distributions dominated by resolution effects. The mean E_T^{had} is determined from the average of the distribution of E_T^{had} in each centrality class.

B. Calculation of E_T and E_T^{had} from measured spectra

We use the transverse momentum distributions (spectra) measured by ALICE [45,49] to calculate E_T and E_T^{had} as a cross-check. We assume that all charge signs and isospin states

FIG. 2. Distribution of E_T^{had} measured from π^\pm, K^\pm, p, and \bar{p} tracks at midrapidity for several centrality classes. Not corrected for resolution effects. Only statistical error bars are shown.
of each particle carry the same E_T, e.g., $E_T^{\pi^+} = E_T^{\pi^-} = E_T^{\pi^0}$, and that the E_T carried by (anti)neutrons equals the E_T carried by (anti)protons. These assumptions are consistent with the data at high energies where positively and negatively charged hadrons are produced at similar rates and the antibaryon to baryon ratio is close to one [56,57]. Because the Λ spectra [49] are only measured for five centrality bins, the Λ contribution is interpolated from the neighboring centrality bins. The same assumptions about the contributions of the η, ω, γ, and e^\pm described in the section on f_{total} and $f_{central}$ are used for these calculations. The dominant systematic uncertainty on these measurements is attributable to the single track reconstruction efficiency and is correlated point to point. The systematic uncertainty on these calculations is not correlated with the calculations of E_T using the tracking detectors because these measurements are from data collected in different years. The mean E_T^{had} per (N_{part}/2) obtained from the tracking results of Fig. 2 are shown as a function of (N_{part}) in Fig. 3, where they are compared with results calculated using the particle spectra measured by ALICE. The two methods give consistent results. Data are plotted in 2.5% wide bins in centrality for 0%–40% central collisions, where the uncertainty on the centrality is <1% [58]. Data for 40%–80% central collisions are plotted in 5% wide bins.

C. Electromagnetic calorimeter measurements of E_T^{em}

The E_T^{em} is defined as the transverse energy of the particles of category B discussed above, which are the particles measured well by an electromagnetic calorimeter. While the definition of E_T^{em} includes π^0, ω, η, ϵ^\pm, and γ, the majority of the E_T comes from $\pi^0 \rightarrow \gamma \gamma$ (85%) and $\eta \rightarrow \gamma \gamma$ (12%) decays, meaning that the vast majority of E_T^{em} arises from photons reaching the active area of the electromagnetic calorimeters. Reconstructed clusters are used for the analysis, with most clusters arising from a single γ. Clusters reduce contributions from detector noise to a negligible level, as compared to using tower energies as done by STAR [29]. However, clusters also require additional corrections for the reconstruction efficiency, nonlinearity, and minimum energy reconstructed. In addition, both the EMCal and the PHOS have limited nominal acceptances so an acceptance correction must be applied. Backgrounds come from charged hadrons in category A (π^\pm, K^\pm, p, and \bar{p}), kaon decays into π^0 from both category A (K^\pm) and category C (K^0_S), neutrons from category D, and particles produced by secondary interactions with the detector material. The correction factor f_{acc} corrects for the finite nominal azimuthal detector acceptance, $f_{E_{\text{raw}}}$ is a correction for the minimum cluster energy used in the analysis, δ_m is zero when a cluster is matched to a track and one otherwise, ϵ_γ is the product of the active acceptance and the reconstruction efficiency in the nominal acceptance of the detector, $f_{E_{\text{cal}}}$ is the correction for the nonlinear response of the calorimeter, and $E_{T^{\text{bkgd}}}$ is the sum of the contributions from charged hadrons, kaons, neutrons, and particles created by secondary interactions. These correction factors are discussed below and their systematic uncertainties are summarized in Table II. All of the systematic uncertainties except for that owing to the background subtraction are correlated point to point. Systematic uncertainties on measurements of E_T^{em} from the EMCal and the PHOS and calculations of E_T^{em} from the spectra are not correlated. Systematic uncertainties on hybrid measurements are dominated by systematic uncertainties on E_T^{had} and are therefore dominantly correlated point to point and with the tracking detector measurements.

1. Acceptance correction f_{acc} and cluster reconstruction efficiency ϵ_γ

The correction for the acceptance is divided into two parts, the correction owing to the nominal acceptance of the detector...
and the correction owing to limited acceptance within the nominal acceptance of the detector owing to dead regions and edge effects. To reduce edge effects, clusters in the PHOS are restricted to $|\eta| < 0.1$ and in the EMCal to $|\eta| < 0.6$. The correction f_{acc} accounts for the limited nominal acceptance in azimuth and is therefore 5/18 for the EMCal, which has a nominal acceptance of 100\(^0\), and 1/6 for the PHOS, which has a nominal acceptance of 60\(^0\). It does not correct for acceptance effects owing to dead regions in the detector or for noisy towers omitted from the analysis. This is accounted for by the cluster reconstruction efficiency \times acceptance within the nominal detector acceptance, ε_p, calculated from HIJING + GEANT simulations using photons from the decay of the π^0 meson. The efficiency is calculated as a function of the energy of the cluster.

2. Minimum cluster energy f_{Emax}

There is a minimum energy for usable clusters analogous to the minimum p_T in the acceptance of the tracking detectors. Thresholds of 250 MeV for PHOS and 300 MeV for the EMCal are applied. These energies are above the peak energy for minimum ionizing particles (MIPs), reducing the background correction owing to charged hadrons. We apply the threshold in E_T rather than energy because it simplifies the calculation of the correction for this threshold and its systematic uncertainty. We use the charged pion spectra to calculate the fraction of E_T^{em} below these thresholds. PYTHIA is used to simulate the decay kinematics and the measured charged pion spectra are used to determine the fraction of E_T from pions within the acceptance. As for the calculation of f_{total} for the measurement of E_T^{had} described above, we assume transverse mass scaling to determine the shape of the η spectrum and the η/π ratio measured by ALICE [55] to estimate the contribution of the η meson to f_{Emax}. The uncertainty on the shape of the charged pion spectrum and on the η/π ratio is used to determine the uncertainty on f_{Emax}. This correction is centrality dependent and ranges from 0.735 to 0.740 for the PHOS and from 0.640 to 0.673 for the EMCal with a systematic uncertainty of 3.5\%–5\%.

3. Nonlinearity correction f_{NL} and energy scale uncertainty

For an ideal calorimeter the signal observed is proportional to the energy. In practice, however, there is a slight deviation from linearity in the signal observed, particularly at low energies. A nonlinearity correction is applied to take this into account. For the EMCal this deviation from linearity reaches a maximum of about 15\% for the lowest energy clusters used in this analysis. The systematic uncertainty for the EMCal is determined by comparing the nonlinearity observed in test beam and the nonlinearity predicted by HIJING + GEANT simulations and reaches a maximum of about 5\% for the lowest energy clusters. The PHOS nonlinearity is determined by comparing the location of the π^0 mass peak to HIJING + GEANT simulations and cross checked using the energy divided by the momentum for identified electrons. The systematic uncertainty is derived from the accuracy of the location of the π^0 mass peak. The nominal correction is about 1\% with a maximum systematic uncertainty of around 3\% for the lowest energy clusters. The raw E_T^{em} is calculated with the maxima and minima of the nonlinearities and the difference from the nominal value is assigned as a systematic uncertainty. The final systematic uncertainty on the measurement with the EMCal owing to nonlinearity is about 0.8\% and 1.3\% for the PHOS. For both the PHOS and the EMCal, the energy scale uncertainty was determined by comparing the location of the π^0 mass peak and the ratio of energy over momentum for electrons. This systematic uncertainty is 2\% for the EMCal [59] and 0.5\% for the PHOS [60].

4. Background E_T^{had}

Charged particles (category A) are the largest source of background in E_T^{em}. Clusters matched to tracks are omitted from the analysis. The track matching efficiency determined from HIJING + GEANT simulations combined with information from clusters matched to tracks to calculate the number and mean energy of remaining deposits from charged particles. The systematic uncertainty on this contribution comes from the uncertainty on the track matching efficiency and the uncertainty in the mean energy. The former is dominated by the uncertainty on the single-track reconstruction efficiency and the latter is determined by comparing central and peripheral collisions, assuming that the energy of clusters matched to tracks in central collisions may be skewed by overlapping clusters owing to the high occupancy.

The background contributions from both charged kaons (category A) through their $K^\pm \rightarrow \pi^0 \pi^\pm$ decays and K_S^0 (category C) through its $K_S^0 \rightarrow \pi^0 \pi^0$ decay are non-negligible. The amount of energy deposited by a kaon as a function of p_T is determined using HIJING + GEANT simulations. This is combined with the kaon spectra measured by ALICE [45] to calculate the energy deposited in the calorimeters by kaons. The systematic uncertainty on the background from kaons is determined by varying the yields within the uncertainties of the spectra. Contributions from both neutrons and particles from secondary interactions are determined using HIJING + GEANT simulations. The systematic uncertainty on these contributions is determined by assuming that they scale with either the number of tracks (as a proxy for the number of charged particles) or with the number of calorimeter clusters (as a proxy for the number of neutral particles).

The background contribution is centrality dependent and ranges from 61\% to 73\% with both the background and its systematic uncertainty dominated by contributions from charged hadrons. This correction is so large because E_T^{em} comprises only about 25\% of the E_T in an event while π^\pm, K^\pm, p, and \overline{p} carry roughly 57\% of the E_T in an event.

5. Acceptance effects

The limited calorimeter acceptance distorts the distribution of E_T^{em} for events with very low E_T^{em} because it is difficult to measure the mean E_T when the mean number of clusters observed is small (about 1–10). While it is possible to correct for acceptance, this was not done because the measurement of E_T from the tracking method has the highest precision. The hybrid method using both the calorimeters and the tracking...
detectors is therefore restricted to the most central collisions where distortions of the E^em_T distribution are negligible.

6. E^em_T distributions

Figure 4 shows the distributions of the reconstructed E^em_T measured using the EMCal and Fig. 5 shows the distributions of the reconstructed E^em_T measured using the PHOS. No resolution correction was applied for the resolution leaving the distributions in Figs. 4 and 5 dominated by resolution effects. The resolution is primarily determined by the finite acceptance of the detectors in azimuth, limiting the fraction of E^em_T sampled by the calorimeter. The distributions are broader for PHOS than EMCal because of the smaller azimuthal acceptance of the PHOS. The mean E^em_T is determined from the average of the distribution of E^em_T in each centrality bin. The E^em_T per $\langle N_{\text{part}} \rangle$ pair measured using the electromagnetic calorimeters is compared to that calculated using the measured pion spectra in Fig. 6, demonstrating that these methods lead to comparable results. The E^em_T calculated from the spectra is determined using the same ratio of $E^\omega,\eta,e^{+},\gamma / E_T^\text{em} = 0.171 \pm 0.110$ for all centralities.

IV. RESULTS

The $\langle dE_T/d\eta \rangle / \langle N_{\text{part}}/2 \rangle$ versus $\langle N_{\text{part}} \rangle$ is shown in Fig. 7 using tracking detectors, using EMCal + tracking, using PHOS + tracking, and as calculated from the measured particle spectra. All methods lead to comparable results, although the systematic errors are largely correlated owing to the dominant correction from the tracking inefficiency. The determination of $\langle N_{\text{part}} \rangle$ and its uncertainties are calculated using a Glauber model as in Refs. [58,61] and the uncertainties on $\langle N_{\text{part}} \rangle$ are added in quadrature to the uncertainties on E_T.

As discussed above, the small number of clusters observed in the calorimeters in peripheral collisions make acceptance corrections difficult. Because the measurements with the tracking detectors alone have higher precision, only these measurements are used in the following.
The shapes observed by ALICE and PHENIX are comparable to that at RHIC [62,63]. The shapes observed by ALICE and PHENIX are comparable to that at RHIC [62,63]. The shapes observed by ALICE and PHENIX are comparable to that at RHIC [62,63].

Figure 8 compares \(\langle dE_T/d\eta \rangle / \langle N_{\text{part}}/2 \rangle \) versus \(\langle N_{\text{part}} \rangle \) in Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV from CMS [30] and ALICE, and in Au-Au collisions at \(\sqrt{s_{NN}} = 200 \) GeV from STAR [29] and PHENIX [26,27]. Data from RHIC were scaled by a factor of 2.7 for comparison of the shapes. The factor of 2.7 is approximately the ratio of \(\langle p_t \rangle / \langle N_{ch}/d\eta \rangle \) at the LHC [45] to that at RHIC [62,63]. The shapes observed by ALICE and PHENIX are comparable for all \(\langle N_{\text{part}} \rangle \). STAR measurements are consistent with PHENIX measurements for the most central collisions and above the PHENIX measurements, although consistent within systematic uncertainties, for more peripheral collisions. CMS measurements are consistent with ALICE measurements for peripheral collisions but deviate beyond the systematic uncertainties for more central collisions. The \(E_T \) in 0%-5% Pb-Pb collisions is \(1737 \pm 6 \) (stat.) \(\pm 97 \) (sys.) GeV and the \(E_T \) per participant is \(9.02 \pm 0.03 \) (stat.) \(\pm 0.50 \) (sys.) GeV, two standard deviations below the value observed by CMS [30]. All methods resulted in a lower \(E_T \) than that reported by CMS, although the systematic errors on the measurements are significantly correlated. One possible explanation of the differences is that the corrections for the CMS calorimeter measurement are determined by Monte Carlo [30], while the corrections for the ALICE measurement are mainly data driven.

PHENIX [28] reported that while \(\langle dE_T/d\eta \rangle / \langle N_{\text{part}} \rangle \) has a pronounced centrality dependence, as seen in Fig. 8, \(\langle dE_T/d\eta \rangle / \langle N_{\text{part}} \rangle \) scaled by the number of constituent quarks, \(\langle N_{\text{quark}} \rangle \), \(\langle dE_T/d\eta \rangle / \langle N_{\text{quark}}/2 \rangle \) shows little centrality dependence within the systematic uncertainties for collisions at \(\sqrt{s_{NN}} = 62.4-200 \) GeV. This indicates that \(E_T \) might scale linearly with the number of quarks participating in the collision rather than the number of participating nucleons. Figure 9 shows \(\langle dE_T/d\eta \rangle / \langle N_{\text{quark}}/2 \rangle \) as a function of \(\langle N_{\text{part}} \rangle \). To calculate \(\langle N_{\text{quark}} \rangle \) the standard Monte Carlo Glauber technique [32] has been used with the following Woods-Saxon nuclear density parameters: radius parameter \(R_0 = 6.62 \pm 0.06 \) fm, diffuseness \(a = 0.546 \pm 0.010 \) fm, and hard core

\[d_{\text{min}} = 0.4 \pm 0.4 \text{ fm} \]

The three constituent quarks in each nucleon have been sampled from the nucleon density distribution \(\rho_{\text{nucleon}} = \rho_0 e^{-r/a} \) with \(a = 4.28 \) fm\(^{-1}\) using the method developed by PHENIX [64]. The inelastic quark-quark cross section at \(\sqrt{s_{NN}} = 2.76 \) TeV was found to be \(\sigma_{\text{inel}} = 15.5 \pm 2.0 \) mb, corresponding to \(\sigma_{\text{inel}} \approx 64 \pm 5 \) mb [58]. The systematic uncertainties on the \(\langle N_{\text{quark}} \rangle \) calculations were determined following the procedure described in Refs. [58,61]. Unlike at RHIC, we observe an increase in \(\langle dE_T/d\eta \rangle / \langle N_{\text{part}}/2 \rangle \) with centrality below \(\langle N_{\text{part}} \rangle \approx 200 \).

Figure 10 shows \(\langle dE_T/d\eta \rangle / \langle N_{\text{ch}}/d\eta \rangle \), a measure of the average transverse energy per particle, versus \(\langle N_{\text{part}} \rangle \) in Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV from ALICE and in Au-Au collisions at \(\sqrt{s_{NN}} = 200 \) GeV from STAR [29] and PHENIX [26,27]. No centrality dependence is observed within uncertainties at either RHIC or LHC energies. The \(\langle dE_T/d\eta \rangle / \langle N_{\text{ch}}/d\eta \rangle \) increases by a factor of approximately 1.25 from \(\sqrt{s_{NN}} = 200 \) GeV [26,27,29] to \(\sqrt{s_{NN}} = 2.76 \) TeV. This is comparable to the increase in \(\langle p_t \rangle \) from \(\sqrt{s_{NN}} = 200 \) GeV to \(\sqrt{s_{NN}} = 2.76 \) TeV, which also shows little dependence
on the charged-particle multiplicity except in peripheral collisions [50]. The absence of a strong centrality dependence is consistent with the development of radial flow seen in the spectra of identified particles [50], where the kinetic energy is conserved during the hydrodynamic expansion instead of producing a higher \(p_T \).

Figure 11 shows a comparison of \(\langle dE_T/d\eta \rangle/(N_{\text{part}}/2) \) versus \(\sqrt{s_{NN}} \) in 0%–5% central Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \) from ALICE and CMS [30] and central collisions at other energies [26, 29, 64] at midrapidity. The data are compared to an extrapolation from lower energy data [26], which substantially underestimates the \(\langle dE_T/d\eta \rangle/(N_{\text{part}}/2) \) at the LHC. The data are also compared to the EKRT model [65, 66]. The EKRT model combines perturbative QCD minijet production with gluon saturation and hydrodynamics. The EKRT calculation qualitatively describes the \(\sqrt{s_{NN}} \) dependence at RHIC and SPS energies [29]. However, at LHC energies EKRT overestimates \(E_T \) substantially, indicating that it is unable to describe the collision energy dependence.

Figure 12 shows a comparison of \(\langle dE_T/d\eta \rangle/(N_{\text{ch}}/d\eta) \) versus \(\sqrt{s_{NN}} \) in 0%–5% central Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \) from ALICE and in central collisions at other energies. Previous measurements indicated that \(\langle dE_T/d\eta \rangle/(N_{\text{ch}}/d\eta) \) had either saturated at RHIC energies or showed only a weak dependence on \(\sqrt{s_{NN}} \) [26, 29, 64]. An empirical extrapolation of the data to LHC energies assuming that both \(E_T \) and \(\langle N_{\text{ch}} \rangle \) have a linear dependence on \(\sqrt{s_{NN}} \) predicted that \(\langle dE_T/d\eta \rangle/(N_{\text{ch}}/d\eta) \) would be \(0.92 \pm 0.06 \) [26] and we observe \(1.06 \pm 0.05 \). Increasing the incident energy increases both the particle production and the mean energy per particle at LHC energies, in contrast to lower energies (\(\sqrt{s_{NN}} = 19.6–200 \text{ GeV} \)) where increasing the incident energy only led to increased particle production [26].

Figure 13 shows a comparison of \(\langle dE_T/d\eta \rangle/(N_{\text{part}}/2) \) versus \(\langle N_{\text{part}} \rangle \) to various models. AMPT [68] is a Monte Carlo event generator that builds on HIJING [46], adding explicit interactions between initial minijet partons and final-state hadronic interactions. HYDJET 1.8 [69] is a Monte Carlo event generator that introduces jet quenching via gluon bremsstrahlung to PYTHIA [51] events. The HYDJET values use the \(E_T \) from HYDJET and the \(\langle N_{\text{part}} \rangle \) from ALICE, similar to comparisons to HYDJET by CMS [30]. The curves labeled UDG are calculations from a color glass condensate model [70] with different normalization \(K \) factors. None of the available models is able to describe the data very well, but we find that AMPT does best in describing the shape and level of \(\langle dE_T/d\eta \rangle/(N_{\text{part}}/2) \). HYDJET describes the relative shape changes as a function of centrality as well as AMPT, but overestimates \(\langle dE_T/d\eta \rangle/(N_{\text{part}}/2) \). Both CGC calculations overestimate \(\langle dE_T/d\eta \rangle/(N_{\text{part}}/2) \) and predict a larger increase as a function of centrality than is observed in the data.

The volume-averaged energy density \(\varepsilon \) can be estimated from \(\langle dE_T/d\eta \rangle \) using the expression [18]

\[
\varepsilon = -\frac{1}{A c_0} \ln \left(\frac{\langle dE_T/d\eta \rangle}{\langle dN_{\text{ch}}/d\eta \rangle} \right).
\]
where \(A \) is the effective transverse collision area, \(c \) is the speed of light, \(J \) is the Jacobian for the transformation between \(\langle dE_T/d\eta \rangle \) and \(\langle dE_T/d\eta \rangle \), and \(\tau_0 \) is the formation time. The Jacobian is calculated from the measured particle spectra [45,49]. While \(J \) has a slight centrality dependence, it is smaller than the systematic uncertainty so a constant Jacobian of \(J = 1.12 \pm 0.06 \) is used. The formation time of the system \(\tau_0 \) is highly model dependent and we therefore report \(\varepsilon \tau_0 \).

The transverse overlap area corresponding to the measured \(\langle dE_T/d\eta \rangle \) was determined by a calculation using a Glauber Monte Carlo method. Using the Glauber parameters from Ref. [58] and assuming each participating nucleon has an effective transverse radius of \(R = (\sigma_{NN}^{\text{kin}}/4\pi)^{1/2} = 0.71 \) fm results in \(A = 162.5 \) fm\(^2\) for central collisions (\(b = 0 \) fm). This is equivalent to a transverse overlap radius of \(R = 7.19 \) fm, which is close to the value of 7.17 fm often used in estimates of energy densities using a Woods-Saxon distribution to determine the effective area [28,64]. The centrality dependence of \(A \) is obtained by assuming it scales as \((\sigma_r^2 + \sigma_y^2)^{1/2} \) [71], where \(\sigma_r^2 \) and \(\sigma_y^2 \) are the variances of the spatial distribution of the participating nucleons in the transverse plane in the Glauber Monte Carlo calculation. For 0\%–5\% central collisions this leads to a reduction of \(A \) by 3\%, resulting in \(\varepsilon \tau_0 = 12.5 \pm 1.0 \) GeV/fm\(^2\)/c. For comparison, using \(R = 7.17 \) fm gives \(\varepsilon \tau_0 = 12.3 \pm 1.0 \) GeV/fm\(^2\)/c, roughly 2.3 times that observed in 0\%–5\% central Au-Au collisions at \(\sqrt{s_{NN}} = 200 \) GeV. Some of this increase comes from the higher \(\langle N_{\text{part}} \rangle \) in central Pb-Pb collisions relative to central Au-Au collisions. The energy density times the formation time \(\varepsilon \tau_0 \) is shown in Fig. 14 for \(R = 7.17 \) fm, the same value of \(R \) used by PHENIX at RHIC energies [28,64].

In addition to estimating the volume-averaged energy density, it is also interesting to estimate the energy density attained at the core of the collision area. This can be done by rewriting the Bjorken Eq. (8) as

\[
\varepsilon \tau_0 = \frac{J \langle dE_T \rangle_c}{c A_c} = \frac{J \langle dE_T \rangle}{c \langle N_{\text{part}} \rangle} \sigma_c, \tag{9}
\]

where \(A_c \) is the area of the transverse core, \(\langle dE_T \rangle_c \) is \(\langle dE_T \rangle \) produced in the core, and \(\sigma_c = \langle N_{\text{part}} \rangle_c/A_c \) is the transverse area density of nucleon participants at the core. The area \(A_c \) was chosen arbitrarily to be a circle with a radius of 1 fm at the center of the collision. Equation (9) assumes that the local energy density scales with the participant density in the transverse plane and that the measured value of \(\langle dE_T \rangle_c/\langle N_{\text{part}} \rangle \), which is averaged over the total transverse collision area, is also representative of the transverse energy production at the core, \(\langle dE_T \rangle_c/\langle N_{\text{part}} \rangle \). The increase of this quantity with increasing centrality indicates that this is a conservative estimate. From a Glauber Monte Carlo calculation we find for 0\%–5\% centrality \(\sigma_c = 4.2 \pm 0.1 \) nucleon/fm\(^2\), resulting in a core energy density of \(\varepsilon_c \tau_0 = 21 \pm 2 \) GeV/fm\(^2\)/c. For the most central 80\% (half the total overlap area) the energy density is still above 80\% of the core energy density, emphasizing that the core energy density may be more relevant for judging the initial conditions of the QGP than the volume-averaged energy density.

V. CONCLUSIONS

We have measured \(\langle dE_T/d\eta \rangle \) at midrapidity in Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV using four different methods. All methods lead to comparable results, although the systematic uncertainties are largely correlated. Our results are consistent with results from CMS [30] for 10\%–80\% central collisions; however, we observe a lower \(\langle dE_T/d\eta \rangle \) in 0\%–10\% central collisions. The \(\langle dE_T/d\eta \rangle \) observed at \(\sqrt{s_{NN}} = 2.76 \) TeV in 0\%–5\% central collisions is \(1737 \pm 6 \) (stat.) \pm 97 (sys.) GeV. The shape of the centrality dependence of \(\langle dE_T/d\eta \rangle \langle N_{\text{part}}/2 \rangle \) is similar for RHIC and the LHC. No centrality dependence of \(\langle dE_T/d\eta \rangle / (dN_{ch}/d\eta) \) is observed within uncertainties, as was observed at RHIC. Unlike at RHIC, we observe an increase in \(\langle dE_T/d\eta \rangle / (dN_{ch}/d\eta) \) with centrality below \((N_{\text{part}}) \approx 200 \). Both \(\langle dE_T/d\eta \rangle / (N_{\text{part}}/2) \) and \(\langle dE_T/d\eta \rangle / (dN_{ch}/d\eta) \) in central collisions exceed the value expected from naive extrapolations from data at lower collision energies. Assuming that the formation time \(\tau_0 = 1 \) fm/c the energy density is estimated to be at least \(12 \pm 1.0 \) GeV/fm\(^3\) in 0\%–5\% central Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV and the energy density at the core of the collision exceeds \(21 \pm 2 \) GeV/fm\(^3\).

ACKNOWLEDGMENTS

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centers and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan.
J. ADAM et al.

PHYSICAL REVIEW C 94, 034903 (2016)

Armenia; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Brazil; National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community’s Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; “Region Pays de Loire,” “Region Alsace,” “Region Auvergne,” and CEA, France; German Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; National Research, Development and Innovation Office (NKFIH), Hungary; Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi,” Italy; Japan Society for the Promotion of Science (JSPS) KAKENHI and MEXT, Japan; Joint Institute for Nuclear Research, Dubna, Russia; National Research Foundation of Korea (NRF); Consejo Nacional de Cienca and Tecnología (CONACYT), Direcccion General de Asuntos del Personal Academico (DGAPA), México, Amerique Latine y Tecnologia (CONACYT), Direccion General de Asuntos del Personal Academico (DGAPA), M´exico, Amerique Latine and CEA, France; German Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; National Research, Development and Innovation Office (NKFIH), Hungary; Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi,” Italy; Japan Society for the Promotion of Science (JSPS) KAKENHI and MEXT, Japan; Joint Institute for Nuclear Research, Dubna, Russia; National Research Foundation of Korea (NRF); Consejo Nacional de Cienca and Tecnología (CONACYT), Direcccion General de Asuntos del Personal Academico (DGAPA), México, Amerique Latine y Tecnologia (CONACYT), Direccion General de Asuntos del Personal Academico (DGAPA), M´exico, Amerique Latine

[26] S. Adler et al. (PHENIX Collaboration), Systematic studies of the centrality and $\sqrt{s_{NN}}$ dependence of the $dE_t/d\eta$ and $dN_A/d\eta$ in heavy ion collisions at midrapidity, Phys. Rev. C 71, 034905 (2005).

[55] B. Abelev et al. (ALICE Collaboration), Neutral pion and η meson production in proton-proton collisions at $\sqrt{s} = 0.9$ TeV and $\sqrt{s} = 7$ TeV, Phys. Lett. B 717, 162 (2012).

[56] K. Aamodt et al. (ALICE Collaboration), Midrapidity Antiproton-to-Proton Ratio in pp Collisions at $\sqrt{s} = 0.9$ and

[57] E. Abbas et al. (ALICE Collaboration), Mid-rapidity baryon to baryon ratios in pp collisions at $\sqrt{s} = 0.9, 2.76$, and 7 TeV measured by ALICE, Eur. Phys. J. C 73, 2496 (2013).

[64] A. Adare et al. (PHENIX Collaboration), Transverse energy production and charged-particle multiplicity at midrapidity in various systems from $\sqrt{s_{NN}} = 7.7$ to 200 GeV, Phys. Rev. C 93, 024901 (2016).

