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Abstract
Low-dimensional nanostructures are expected to have vast number of applications
in the future. Particularly large amount of research has been invested in the atom-
thick carbon membrane called graphene, which has become popular due to its unique
electronic and mechanical properties. This thesis presents studies of the mechanical
and electromechanical properties of several different types of graphene nanostructures.
In addition, short detours are performed in order to study the elasticity of gold nano-
structures and topology effects in graphene nanoribbons.

The research is performed by using several different simulation methods. In simu-
lations the system parameters and environment can be chosen at will, giving large
amount of control over the studied phenomena. This control, and the access to dif-
ferent system parameters, can give insight into system properties that are hard to
deduce from experiments alone. The reliability of the simulations depends on the
used methods that are thus chosen according to the level of desired accuracy.

Large-scale deformations of graphene nanostructures are studied by classical force
field methods. We present and explain edge rippling due to compression at graphene
nanospiral perimeters when the nanospiral is elongated above a certain threshold. Fur-
ther insight into the elastic behavior of these nanospirals is obtained by continuum
elasticity modeling. For graphene nanoribbons we explain two previous experimental
observations, an abrupt buckling under in-plane bending and the stability of curved
graphene nanoribbon geometry on a smooth substrate. Buckling is predicted by sim-
ple model and is found to be due to the compression at the inner edge of the curved
graphene nanoribbon. The stability of the curved geometry is shown to be due to reg-
istry effects between the graphene nanoribbon and the substrate. Moreover, intricate
interlayer sliding patterns under peeling of multilayer graphene stacks are discussed
and we show that such stacks are likely to recover after the peeling force is released.

Via electronic structure calculations we find a connection between the graphene nano-
spiral elongation and electronic structure and show that for graphene nanospirals the
interlayer interactions play major part in the electronic structure near the structural
equilibrium. Moreover, for graphene nanoribbons we study the effect of Möbius topol-
ogy by using the revised periodic boundary conditions in a novel way. By the intro-
duced method we are able to impose Möbius topology into flat graphene nanoribbons
enabling the study of the role of the topology alone. We conclude that the topology
affects only graphene nanoribbons with small length-to-width ratios. Finally we con-
sider the temperature dependence of the bending rigidity of a two-dimensional gold
nanostructure realizable in suitably sized graphene pores. The underlying motivation
for most of the performed studies is the connection between the mechanical defor-
mations and the electronic structure, which is discussed qualitatively even for large
systems, where explicit electronic structure calculations are not possible.
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1 Introduction

The downscaling of silicon based electronics is not expected to continue further than
the year 2026.[1] Considering the huge, and still increasing, importance of the in-
formation technology, it is clear that a material capable of replacing and outper-
forming silicon would be a great gift to the semiconductor industry. Graphene, the
two-dimensional allotrope of carbon discovered in 2004,[2] is a material interesting
even without technological considerations, but might also serve as a replacement for
silicon. Graphene exhibits very large carrier mobility and field effect,[2] properties
required from the silicon challenger, but it lacks an energy gap required by the con-
ventional logic circuits. Without the energy gap devices fabricated from graphene
always remain conductive and cannot be switched off effectively. An energy gap of
∼ 1 eV is considered sufficient for logic applications, but despite numerous attempts
such energy gap has not been achieved in graphene. However, one promising field at
introducing energy gap in graphene is strain engineering, where by applying desired
strain the electronic structure of graphene is modified opening interesting possibilities
even if large enough energy gap is not achieved.[3, 4]

Strain engineering requires the knowledge of the electronic structure response to strain
together with the understanding on how a given strain could be achieved by exter-
nal stress. In addition, when we understand the effects of strains on the electronic
structure, also the effects due to accidental strains in the graphene nanodevices can
be predicted and the limits for acceptable deformations in a given application de-
duced. The knowledge of the electronic response to given strain is, however, useless
without the knowledge how such strain can be achieved. This requires the study
of the mechanical properties of graphene. These mechanical properties include ex-
tremely high in-plane stiffness together with very low bending rigidity, which make
graphene sheets extremely flimsy and prone to ripple.[5, 6] The very existence of non-
zero bending rigidity in a single atom thick membrane is in contrast to the mechanism
suggested by the continuum sheet elasticity and thus the origin of the bending rigidity
in graphene becomes interesting question in itself.

In this thesis we present results on the elastic behavior of graphene nanostructures.
These results were obtained by various simulation methods including density-functional
tight-binding, classical force fields, and continuum sheet elasticity methods. These
studies were motivated by the possible control of the electronic properties via strain.
However, though effort was given to relate the observed elastic deformation to the pos-
sible electronic structure modification, explicit electronic structure calculations were
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2 Introduction

only performed when allowed by the system size. The obtained results explain some
experimentally observed phenomenon, as in our article [IV] for graphene buckling, or
suggest not yet realized nanostructures and study their properties, as in our article
[II] for graphene nanospirals. These results describe specific systems under specific
constraints, but broader implications of the elastic and electromechanical behavior is
considered by combining the results with other studies.

The thesis is constructed as follows. The methods are introduced in Chapter 2 where
also some technicalities related to the numerical simulations are considered. In Chapter
3 selected results are introduced and further reviewed together with general introduc-
tion to the elastic properties of graphene. Chapter 4 summarizes the results and gives
a brief outlook.



2 Simulation methods

2.1 Electronic structure simulations

In the description of the electronic conductance of a given solid the most common
concept is the energy band structure of the solid. The band structure, continuum set of
energy states in a given interval arises from the use of translational or other symmetries
in the solid. The abuse of the symmetries are enabled by the Bloch’s theorem which
states that for any periodic potential the knowledge of wave function in one unit cell
of the periodic system is sufficient in deducing the total wave function of the whole
system. The band structure is then obtained by using the Bloch’s theorem and solving
the Schrödinger equation with the periodic potential produced by the nuclei which
coordinates are given by the lattice structure. Particularly important feature of the
band structure is whether there exists energy gap, i.e., interval of energies that are not
solutions to the Shrödinger equation, separating the conduction and valence bands.
The size of the gap defines whether the material is metallic (no gap), semiconductor
(small gap), or insulator (large gap). Graphene does not have energy gap, which makes
its usage in conventional electronic circuits challenging. However, we can study the
electronic structure response of graphene to various stresses and see if band gap can
be created by such external manipulation.

According to quantum mechanics all available information of an interacting many-
electron system is given by the wave function Ψ(x1, . . . ,xN), where x = (r, σ) are
the position spin coordinates of the electrons. Using the Born-Oppenheimer approx-
imation we treat the nuclear contributions as an external potential V (x) for the
electrons.[7] The stationary Schrödinger equation for the many-electron system in
atomic units without external fields then becomes[

N∑
i=1

(
−∇

2
i

2
+ V (xi)

)
+
∑
i<j

U(xi,xj)

]
Ψa(x1, . . . ,xN) = EaΨa(x1, . . . ,xN), (2.1)

where U(xi,xj) corresponds to the electron-electron interaction. In practise, for sys-
tems with more than a few electrons, this Schrödinger equation is impossible to solve
even numerically since already the storage of the wave function in any decent space
grid becomes impossible. Alternative approaches that reduce the amount of variables
have thus been developed, including Green’s function methods and density-functional
theory. Our simulations, inaccessible with the more accurate methods, used density-
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4 Simulation methods

functional tight-binding and classical force field methods. Density-functional tight-
binding is a quantum-mechanical method with approximations to reduce its compu-
tational cost, whereas classical force fields abandon the quantum-mechanical descrip-
tion altogether and describe the particle interactions via so-called classical potentials,
which are a semi-empirical equations to describe the potential energy of a set of atoms
with parameters fit to experimental results or quantum-mechanical simulations.

In this thesis electronic structure calculations were performed by the density-functional
tight-binding method. Elasticity simulations with large amount of atoms under ex-
ternal stress were performed with classical force field simulations. Additionally some
studies of the elasticity were performed by continuum sheet elasticity. The basic con-
cepts of these methods are briefly introduced in the following.

2.2 Density-functional tight-binding method

Density-functional tight-binding (DFTB) is based on the density-functional theory
(DFT). The starting point for DFT is the Hohenberg-Kohn (HK) theorem,[8] which
states that for any two potentials V̂ 6= V̂ ′ + C also the ground state wave functions
Ψ 6= Ψ′. The HK theorem further shows that for non-degenerate ground states there
exists a one-to-one correspondence between the ground state electron density and
the external potential. This correspondence enables us to minimize the energy with
respect to the density (n(r) = 〈Ψ|n̂(r)|Ψ〉) rather than with respect to the full wave
function. All the observables in the ground state will be functionals of the density,
and especially for the ground state energy we have

Egr[n] = min
n
F [n] + Eext[n], (2.2)

where F [n] = 〈Ψ|T̂ + Ŵ |Ψ〉 = T + Eee includes the total kinetic energy (T) and the
electron-electron interaction energy (Eee) and Eext[n] = 〈Ψ|V̂ext|Ψ〉 = Vext includes
the contribution due to the external potential (Vext).

Usually also the Kohn-Sham system is introduced in order to separate the term F [n]
in Eq. (2.2) into pieces easier to approximate. The Kohn-Sham theorem [9] states that
the ground state energy of a system can be calculated by solving the corresponding
non-interacting Kohn-Sham system. The energy of the Kohn-Sham system is

E[n(r)] = Ts + Eext + EH + Exc, (2.3)

where we introduced Hartree energy term EH due to the electron-electron Coulomb re-
pulsion, kinetic energy of the non-interacting Kohn-Sham system Ts, and the exchange-
correlation energy Exc = T −Ts +Eee−EH which hides all complicated many particle
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effects. The Kohn-Sham orbitals ψa satisfy(
−1

2
∇2 + Vext(r) + Vxc[n](r) + VH[n](r)

)
ψa(r) = εaψa(r), (2.4)

n(r) =
∑
a

fa|ψa(r)|2, (2.5)

where fa’s are the occupation numbers, VH[n](r) =
∫
n(r′)/|r−r′|d3r′ is the mean field

Hartree term, and Vxc[n](r) = δExc[n](r)/δn is the exchange-correlation potential.
The total energy in Eq. (2.3) can be written with these Kohn-Sham orbitals as

E[n] =
∑
a

fa 〈ψa| −
1

2
∇2 + Vext + VH[n] |ψa〉

− 1

2

∫
VH[n(r)]n(r) d3r + Exc[n]. (2.6)

The task in DFT is to find proper approximations for the Exc[n] energy and then
iteratively solve the Kohn-Sham Eqs. (2.4-2.6); after convergence both the ground
state energy and density of the interacting system are known. This scheme has become
extremely popular in many fields of computational chemistry and material physics.

To introduce the DFTB method we consider system with density n0, which is a sum
of densities of isolated atoms.[10] We assume that the actual density n minimizing
Eq. (2.3) is close to n0, i.e., n = n0 +δn, where δn is some small variation. We expand
Eq. (2.6) to second order in δn, add ion-ion repulsion term EII, rearrange, and obtain

E[n] ≈
∑
a

fa 〈Ψa| −
1

2
∇2 + Vext + VH[n0] + Vxc[n0] |Ψa〉

− 1

2

∫
VH[n0](r)n0(r) d3r −

∫
Vxc[n0](r)n0(r) d3r + Exc[n0] + EII

+
1

2

∫ ∫ (
δ2Exc[n0](r)

δn0(r)δ(r′)
+

1

|r − r′|

)
δn0(r)δn(r′) d3r′d3r. (2.7)

The second line in Eq. (2.7) is called the repulsive energy and it is approximated to
depend only on the atomic distances

Erep =
∑
I<J

Vrep(RIJ). (2.8)

The pairwise repulsive functions Vrep(R) are obtained by fitting to higher level DFT
calculations.[10] The third line in Eq. (2.7) is due to charge fluctuations and it is here
set to zero since charge transfer is expected to be small in our carbon systems. The
first order terms in δn cancel out.



6 Simulation methods

We assume that the core electrons are tightly bound to the core and thus they con-
tribute mainly through the repulsive energy term in Eq. (2.8). We expand the ψa(r)
states with local minimal basis φµ(r). These are eigenstates of a pseudo atom with an
extra confining potential in order to mimic an atom in a solid. The expansion gives,

ψa(r) =
∑
µ

caµφµ(r −RI), (2.9)

where µ = (I, µ′) is double index running over all atoms I and their orbitals µ′. The
approximate energy from Eq. (2.7) now becomes,

E[n] =
∑
a

fa
∑
µν

ca∗µ c
a
ν 〈φµ| Ĥ |φν〉+

∑
I<J

Vrep(RIJ), (2.10)

where Ĥ = −1
2
∇2 + Vext + VH[n0] + Vxc[n0]

.
= −1

2
∇2 + Vs[n0]. Energy in Eq. (2.10)

is minimized by variation δ(E[n]−
∑

k εk〈ψk|ψk〉) = 0, where Lagrange multipliers εk
are used to constrain the norms of |ψk〉 states. Variation gives a set of equations,∑

ν

caν(Hµν − εaSµν) = 0, ∀ a, µ (2.11)

which can be viewed as a generalized eigenvalue equation with non-diagonal over-
lap matrix Sµν = 〈φµ|φν〉. The Hamiltonian matrix elements Hµν = 〈φµ| Ĥ |φµ〉 are
approximated as

Hµν =


εµ, for µ = ν

〈φµ| − 1
2
∇2 + Vs,I [n0,I ] + Vs,J [n0,J ] |φν〉 , for I 6= J

0, otherwise,
(2.12)

where Vs,I [n0,I ] is the potential produced by the density of the free neutral atom I and
similarly for J . Both the overlap and Hamiltonian matrix elements are calculated for a
set of orientations and the rest of the elements are then obtained by the Slater-Koster
transformation rules.[10] Solving Eq. (2.11) we obtain the eigenvectors caµ that define
the Kohn-Sham states ψa(r) through Eq. (2.9) and ground state energy through Eq.
(2.10).

For dynamics the forces on given atom can be calculated after Eq. (2.11) has been
solved. Forces are gradients of the energy in Eq. (2.10) with respect to atomic positions
RI ,[10]

F I = − ∂E

∂RI

=
∑
a

fa
∑
µν

ca∗µ c
a
µ

(
∂Hµν

∂RI

− εa
∂Sµν
∂RI

)
+
∑
I<J

∂Vrep(|RI −RJ |)
∂RI

. (2.13)

DFTB method is able to capture the interlayer interaction between graphene layers
without additional terms introduced. However, the interlayer separation and the ad-
hesion energy are not very accurately produced. Since the interlayer interaction given
by DFTB method only played part in our article [II] which was more of a qualitative
study we were satisfied with this description without the additional corrections.
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2.3 Classical force fields

For the study of large systems or long time scales, inaccessible by DFTB, we used
classical force fields. These methods omit the quantum-mechanical description by
introducing classical potentials between particles. This reduces the computational
cost significantly and enables simulations with several thousands or even millions of
atoms. These potentials have large number of parameters that are fitted to higher
level calculations and/or experiments to yield reasonable description of the desired
systems.

Reactive empirical bond order (REBO) potential by Brenner,[11] based on the work
of Abell [12] and Tersoff [13], is used to describe the interactions between carbon
atoms. REBO potential uses only two body interactions, but incorporates the local
environment of each atom into the description through terms depending on the number
of neighbors of the given atom. Atom pair interacts with potential energy,

EREBO
ij = V R

ij (rij) + b̄ijV
A
ij (rij), (2.14)

where V A is the attractive and V R is the repulsive potential. The empirical bond
order function b̄ij incorporates the local environment of both atoms

b̄ij =
1

2
(bij + bji) + F (Ni, Nj, Nconj), (2.15)

where Ni,j is the total number of carbon and hydrogen neighbors of atoms i and
j. The number Nconj depends on whether the bond between atoms i and j is part
of a conjugated system. Each of these terms consists of several functions combined
with hundreds of parameters that are fitted to known properties of hydrocarbons as
described in Ref.[11].

The REBO potential produces many properties of hydrocarbon systems with good
accuracy including the formation and breaking of covalent bonds. However, the range
of REBO interaction is short and it does not describe the non-bonding interactions
between the atoms. For multilayer graphene simulations we thus used separate in-
terlayer potentials to describe the long range van der Waals interaction between the
layers.

According to the level of description required two types of interlayer potentials were
used. The popular Lennard-Jones potential [14] gives good adhesion description but
considerably underestimates the energy differences related to the registry effects, i.e.,
the lateral energy corrugations or the corrugation energy. The registry-dependent
interlayer potential [15] gives reasonable description of both adhesion -and corrugation
energies, though with increased computational demand.
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Lennard-Jones interlayer potential

Lennard-Jones (LJ) potential [14] is widely used in computational chemistry due to
its simplicity, as it only depends on the distance between the particles consisting of
repulsive (r−12) and attractive (r−6) pieces. The attractive term represents the van der
Waals interaction between atoms and has a long range. The repulsive term represents
the Pauli repulsion due to the overlapping atomic orbitals when the atoms are brought
closer together. Between two atoms the LJ-potential energy is given by

VLJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (2.16)

where parameters ε and σ are given by best fit to higher level (DFT) calculations
or experiments. For multilayer graphene we used values ε = 2.844 meV and σ = 3.4
Å.[16] The potential is such that infinitely far apart the atoms have zero LJ-potential
energy. For atoms approaching each other from infinity the LJ-potential energy is
reduced until minimum is reached at distance rm = 21/6σ and energy VLJ(rm) = −ε.
Decreasing the distance further from this rapidly increases the energy due to the
repulsive term and the energy becomes zero again at r = σ.

The total LJ-potential energy for multilayer graphene is obtained by summing

EBT =
∑
i∈B
j∈T

VLJ(|ri − rj|), (2.17)

where B indicates the bottom and T the top layer. Further reduction of computational
cost can be achieved if we assume that the bottom layer has a constant particle density
n. Then an atom at height h above the bottom layer feels the LJ-potential that is
roughly equivalent to integrating Eq. (2.16) with r =

√
R2 + h2 over the bottom layer

R ∈ [0,∞[. The result gives for an atom at height h LJ-potential energy

VLJ(h) =
2

5
πnε

[
2
σ12

h10
− 5

σ6

h4

]
, (2.18)

where the particle density n for graphene is ngr = [3
√

3a2/4]−1, and a is the bond
distance between carbon atoms. However, the form in Eq. (2.18) can be used to
describe also other substrates after choosing proper n, ε and σ.

Registry-dependent interlayer potential

Some of our simulations required accurate description of the lateral energy corruga-
tions of the multilayer graphene. Due to the inability of the Lennard-Jones potential
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to describe these lateral energy corrugations we used the registry-dependent interlayer
potential by Kolmogorov and Crespi (KC).[15] The KC-potential gives fair descrip-
tion of the interlayer adhesion and lateral energy corrugations and was thus applied
especially to simulations where interlayer sliding was present. The KC-energy between
two atoms separated by rij is

V (rij,nnni,nnnj) = e−λ(rij−z0) [C + f(ρij) + f(ρji)]− A
(
rij
z0

)−6
, (2.19)

where functions f(ρ) are taken to decay rapidly with transverse distance ρ,

ρ2ij = r2ij − (nnni · rij)2, (2.20)

f(ρ) = e−(ρ/δ)
2

2∑
n=0

C2n(ρ/δ)2n, (2.21)

and the surface normal nnni is normal to the sp2 plane in the vicinity of atom i. The
surface normals are calculated by normalizing the sum of the three normalized cross
products between the displacements from atom i to its three nearest neighbors. We
used the original parameterization, obtained by fitting to training set of experimental
and theoretical results given in Ref. [15].

2.4 Revised periodic boundary conditions

For periodic lattices it is sufficient to apply the introduced DFTB description to the
minimal unit cell of the system. This reduces the amount of simulated atoms tremen-
dously. The ability to use periodicity of the lattice is due to the Bloch’s theorem,[17]
which states that for a translationally periodic system, V (x) = V (x + L), with non-
interacting electrons the knowledge of the wave function in one unit cell is sufficient
for deducing the wave function of the whole system. However, Bloch’s theorem can
be further generalized to include general commuting symmetry operations.

Consider periodic potentials V (r) = V (Snnnr), where Snnn = Sn1
1 . . .Snk

k is a set of
general commuting symmetry operations. It is possible to generalize Bloch’s theorem
to apply in systems with these potentials.[18, 19] Under general symmetry operation
Snnn wave function ψκ(r) attains merely a phase

D(Snnn)ψκκκ(r)
.
= ψκκκ(S−nnnr) = e−iκκκ·nnnψκκκ(r), (2.22)

where D(Snnn) is an operator defined by the first equal sign in Eq. (2.22) and κκκ =
(κ1, . . . , κk) has now replaced the usual reciprocal space vector k and gets values either
continuously or discretely depending on the boundary conditions of the corresponding
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symmetry operation. If the underlying symmetry is genuinely periodic, as for example
for the wedge symmetry, the κi sampling is discrete by the following consideration.
Let Ni be the number of symmetry operations Si after which the unit cell is mapped
back to itself, then e−iκiNi = 1 ⇒ κi = 2πmi/Ni, where mi = 0, . . . , Ni − 1. If the
periodicity is not a genuine property of the system but a mere mathematical trick,
as for example for translational symmetry, the corresponding κi can be divided into
arbitrarily small intervals leading to the usual energy band description.

The Eq. (2.22) also implies, similarly to Bloch’s theorem, that the wave functions in
the periodic potential are of the form

ψκκκ(r) = eiκκκ·n(r)uκκκ(r), (2.23)

where n(S−mr) = n(r) −m and uκκκ(S−mr) = uκκκ(r). The usage of general sym-
metry operations S gives in some cases substantial reduction in the computational
effort. Similarly as the Bloch’s theorem allows to consider the minimal translational
unit cell, the Eq. (2.22) allows us to use general minimal unit cell that can greatly
reduce the amount of atoms in the simulation cell, as for example in the case of chiral
carbon nanotubes. Moreover, one can use these revised periodic boundary conditions
at imposing non-trivial topologies to systems, as done in our article [I].

Chiral symmetry

In practise two symmetry operations, in addition to the translational symmetry, were
used in the work presented in this thesis. The chiral symmetry describes the symmetry
of a spiral curve, each section of angle ∆φ is image of the minimal unit-cell with
symmetry operation Sn = T na R(∆φ)n. Here, Ta is translation of length a along z-
axis and R(∆φ) is rotation of ∆φ around z-axis. The pitch of the spiral becomes
h = a2π/∆φ. If ∆φ = 2π, S reduces back to the translational symmetry operation.
Additionally without the translation part the chiral symmetry reduces to the wedge
symmetry, the second of the two used symmetry operations.

2.5 Structure optimization

Any configuration of atoms is associated with a potential energy due to the interac-
tions between the atoms and the possible external potential. To optimize the lattice
structure we want to find the configuration that minimizes the total energy of the
system. Each atom has three space coordinates (spin excluded) and the problem is
to minimize Ep(x1, y1, z1, . . . , xN , yN , zN) w.r.t. 3N

.
= M coordinates, where N is the

number of atoms in the system.
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Suppose function f : IRM → IR is approximated around xn+1 = xn + ∆x, where
xn = [x1n, y

1
n, z

1
n, . . . x

N
n , y

N
n , z

N
n ]T and n denotes the iteration step, by Taylor series

f(xn+1) ≈ f(xn) +
M∑
i=1

∂f

∂xi

∣∣∣
xn

∆xi +
1

2

M∑
i=1

M∑
j=1

∂2f

∂xi∂xj

∣∣∣
xn

∆xi∆xj,

.
= f(xn) + ∆xTgn +

1

2
∆xTBn∆x

.
= hn(∆x). (2.24)

Provided that the Hessian matrix Bn is positive definite, and we require it is, the
minimum of the quadratic approximation can be evaluated by differentiating w.r.t.
displacement ∆x,

∇hn(∆x) = gn + Bn∆x = 0⇒ ∆x = −B−1n gn, (2.25)

where the inverse B−1n
.
= Hn is guaranteed to exist since the Hessian Bn was

positive definite. The direction −Hngn is taken for the displacement and xn+1 =
xn−α(Hngn), where the value of α is chosen to satisfy the Wolfe conditions,[20, 21]
giving ’sufficient’ decrease in the function value.

Due to the large computational demand in obtaining and inverting the Hessian matrix
for systems with large number of coordinates approximations for the Hessian are used.
The quasi-Newton methods approximate the Hessian at each step updating it based on
the recent information of the objective function.[22] We already know that the Hessian
is required to be symmetric B = BT , however, we introduce another condition for
the Hessian: the gradient of the approximation ∇hn+1 is required to be equal to the
gradient of the function at the two latest iteration points, i.e., ∇hn+1(∆x)|xn = gn =
∇f(xn) and ∇hn+1(∆x)|xn+1 = gn+1 = ∇f(xn+1). This requirement is called as the
secant condition. The latter equation is readily fulfilled by Eq. (2.25) since∇hn+1(0) =
gn+1. The former gives, again using Eq. (2.25), Bn+1(xn−xn+1) = gn− gn+1 and we
obtain for the inverse Hessian Hn+1 a condition

Hn+1yn = sn, (2.26)

where yn = gn+1 − gn is the difference in the gradients and sn = xn+1 − xn is the
difference in the coordinates. The Wolfe conditions for α guarantee the fulfilment of
the curvature condition sTnyn > 0 and consequently the existence of a solution for the
secant equation Eq. (2.26).

BFGS-method

The quasi-Newton Broyden-Fletcher-Goldfarb-Shanno method (BFGS)[22] uses the
secant condition together with the symmetry of the Hessian and approximates the
evolution of the inverse of the Hessian matrix as a function of the differences yn and
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sn. However, infinite number of matrices satisfy the secant equation even with the
requirement of symmetry, so to achieve unique Hn+1 additional concept of closeness
is introduced. The updated inverse Hessian Hn+1 has to be close to the previous
inverse Hessian Hn in terms of the weighted Frobenius norm,

Hn+1 = arg min
H
||H −Hn||W , (2.27)

where the weighting matrix W is the average Hessian.[22] The minimization is per-
formed under symmetry- and secant conditions for the inverse Hessian. The result for
the updated inverse Hessian matrix is

Hn+1 =

(
1− sny

T
n

yTnsn

)
Hn

(
1− yns

T
n

yTnsn

)
+

sns
T
n

yTsn
. (2.28)

This construction ensures that for positive definite Hn also the Hn+1 will be positive
definite. Then if the initial H0 is positive definite all successive Hessians shall also
remain positive definite and Eq. (2.25) gives correct direction for the descent. The
BFGS-method is effective in tackling large optimization problems if the initial guess is
close to the actual solution. This is manifested by its popularity. BFGS was exclusively
used for structure optimization in the studies presented. The convergence criteria was
given by the maximum force an atom experiences in its position. If this force was
smaller than 0.05 eV/Å for all atoms in the system the structure was considered to
be relaxed.

2.6 Molecular dynamics

Molecular dynamics consists of numerically integrating equations of motion of the
atoms in the system. The forces acting on each atom arise from the interactions be-
tween other atoms in the system and due to possible external potential. The equations
for each atom are

m
dv

dt
= −∇U(x), (2.29)

v =
dx

dt
, (2.30)

where x is the position, v is the velocity, and m is the mass of the atom. Moreover,
U(x) is the potential due to other atoms and the possible contributions due to environ-
ment. The equations can be integrated for example by velocity verlet algorithm.[23]
In practice the time step for integration is important; too large time step leads to
inaccurate description while too small time step consumes unnecessary amount of
computer time. We used time step of 2 fs for most of the simulations, however, for
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cases where hydrogen atoms were compressed close to each other time step of 1 fs was
required in order to achieve realistic dynamics.

When including the the effects of an environment on the system the simulation of the
whole environment is often not feasible. For the description of a heat bath connected
to the system we used Langevin dynamics.[24] This enables the thermalization of the
studied system without a need for additional atoms in the simulation. The Langevin
equation for each atom in the system reads

m
d2x

dt2
= F − Γm

dx

dt
+ ηηη(t), (2.31)

where −Γmdx
dt

is the friction due to the solution (environment), F = −∇U(x) is
the force due to other atoms in the system and Γ is the damping parameter. The
stochastic force ηηη(t) is a Gaussian random force, due to kicks by environment particles,
with probability distribution p(η) = 1/

√
2πσ×exp(−η2/(2σ2)), where σ2 = 2mΓkBT ,

where T is the temperature of the heat bath and kB is the Boltzmann constant.
The connection of the random kicks η and the friction via the damping parameter
Γ guarantees that the system fulfills canonical ensemble statistics. The random kicks
satisfy [24] 〈

ηαi (t)ηβj (t′)
〉

= 2miΓkBTδαβδijδ(t− t′), (2.32)

where α, β ∈ {x, y, z} and i, j refer to different atoms in the system. There are no
correlations of the random force neither in time nor in space.

The canonical ensemble averages can be approximated by time averaging [24]

〈X〉 =

〈
1

N

N∑
l=1

Xl

〉
≈ 1

τch

∫ τch

0

(
1

N

N∑
l=1

Xl(t)

)
dt. (2.33)

Here the the damping time 1/Γ = τ , sets timescale for the dynamics. The character-
istic times of the intrinsic dynamics τc, the times of molecular vibrations etc., need to
be much smaller compared to the damping time τc << τ in order to avoid overdamp-
ing. Moreover, the averaging time in Eq. (2.33) τch needs to be much larger than τ in
order to reach proper time averages. Usual value used for τ , in our classical force field
(REBO) simulations was τ = 5 ps.

2.7 Continuum linear elasticity

Let us now turn attention to the classical description of the continuum elasticity. Con-
tinuum implies that all considered length scales are large compared to the distances
between atoms. Even the infinitesimal volume elements are expected to contain a large
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number of atoms and the mathematical description of matter relies on continuous
functions rather than discrete atomic positions. Even if the underlying assumptions
are not fulfilled at nanoscale, the theory can be applied to graphene after introducing
some minor modifications.

Whenever force is applied to a solid body a deformation occurs. The deformation is
said to be elastic if the body recovers its initial shape and volume after the force
is released. Elastic deformations are abundant in nature and for large systems well
explained by the classical elasticity theory. Under the assumption of linear stress-
strain relation the theory is called linear elasticity. Linear elasticity describes well
deformations where the strains are small, although this does not necessarily imply
that the deformation itself is small. The theory is rather complex even at the limit of
small strains, but the derived equations for certain special cases, like uniform strain
and uniaxial bending, are simple.

Solid bodies deform under external forces, i.e., their shape, volume or both change.
A position for a piece of material in the body is given by r. Under deformation
r → r′ = r + a the distance between two nearby points (dl) change according to

dl′2 = dl2 + 2uijdxidxj, (2.34)

where the strain tensor u is [25]

uij =
1

2

(
∂ai
∂xj

+
∂aj
∂xi

+
∂ak
∂xi

∂ak
∂xj

)
, (2.35)

and summation over repeated indices is implied.

The forces responsible for opposing the deformation and restoring the initial configura-
tion are called internal stresses. Internal stresses arise from the molecular interactions
and are short-ranged, extending only to the neighboring particles. The short-range of
the molecular interactions lets us treat them as surface forces, provided each small
volume dV contains sufficiently large number of atoms.[25] Force acting on a small
surface dS inside the body due to internal stresses is given by

dFi = σijdSj, (2.36)

where σσσ is the stress tensor. Using the conservation of the angular momentum, the
stress tensor can be shown to be symmetric.[25] Without body forces each volume
element inside the body experiences zero net force and the boundary conditions can
be written

∂σik
∂xk

= 0, (2.37)

inside the body and
σiknk = Pi, (2.38)
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on the surface, where P is force per unit area and n̂nn is the surface normal.

Assuming isotropic and homogeneous body we may expand the free energy density
of the body in the strain tensor u. In the equilibrium there should not be linear
terms in u. Moreover, there are only two independent scalars that can be formed
from symmetric tensor of rank two. The expansion becomes [25]

F = F0 +
1

2
λTr(u)2 + µTr(u2)

=
1

2
σijuij, (2.39)

where λ and µ are the Lamé coefficients. On the second equality we used σij = ∂F/∂uij
and Euler’s theorem uij∂F/∂uij = 2F .[25] Separating the strain tensor in components
of pure shear and hydrostatic compression it can be shown that the stress and strain
tensors are connected by

σij =
Y

1 + ν

(
uij +

ν

1− 2ν
δijTr(u)

)
, (2.40)

uij =
1

Y
[(1 + ν)σij − νδijTr(σσσ)], (2.41)

where the coefficients

Y =
µ(3λ+ 2µ)

2(λ+ µ)
,

ν =
λ

2(λ+ µ)
, (2.42)

are called Young’s modulus (Y ) and Poisson’s ratio (ν).

Let us then calculate the effect of a longitudinal force acting on a rod parallel to
ẑ-axis. External forces are applied to the ends of the rod while the sides of the rod
are free and Eq. (2.38) gives σijnj = 0 on the sides. Then, at the end of the rod, we
must have all but σzz

.
= p equal to zero. From Eq. (2.41) we obtain

uxx = uyy = −ν p
Y
, uzz =

p

Y
. (2.43)

The meaning of coefficients Y and ν becomes clear. Young’s modulus is the relation
of the stress to the strain in the body. Poisson’s ratio is the relation of the transverse
compression to the longitudinal extension. The elastic energy density in Eq. (2.39)
becomes

F =
p2

2Y
=

1

2
Y ε2, (2.44)

where in the last equality we denoted uzz
.
= ε to recover the familiar form of the elastic

energy density of uniform stretching. The free energy density in terms of Poisson ratio
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and Young’s modulus is

F =
Y

2(1 + ν)

{
Tr(u2) +

ν

1− 2ν
Tr(u)2

}
. (2.45)

Thin sheet elasticity

For thin sheets under small strains the forces required to bend the sheet are always
much smaller than the internal stresses due to compression and extension of the parts
of the sheet.[25] This lets us to set P = 0 in Eq. (2.38), giving σijnj = 0. For a sheet
in ẑ-plane we may conclude σiz ≈ 0 for i = x, y, z. Since the sheet is thin and these
components are small on both surfaces, we expect them to be small also between and
thus negligible everywhere in the sheet. Then using Eq. (2.40) we obtain

σxz =
Y

1 + ν
uxz, σyz =

Y

1 + ν
uyz

σzz =
Y

(1 + ν)(1− 2ν)
[(1− ν)uzz + ν(uxx + uyy)] . (2.46)

Setting stresses in Eqs. (2.46) to zero and using the definition of strain tensor together
with boundary condition ux(z = 0) = uy(z = 0) = 0, we obtain all the strain tensor
components. The free energy density in Eq. (2.45) related to the small bending of a
thin sheet becomes

Fb = κb

{
1

2
Tr(C)2 + (1− ν)

[
Tr(C2)− Tr(C)2

]}
, (2.47)

where κb = h3Y/[12(1 + ν2)] is the bending rigidity. We use the curvature tensor by
do Carmo [26]

Cij = n̂nn · ∂2r

∂xi∂xj
, (2.48)

where n̂nn is the surface normal and xi are the orthonormal coordinates of the tangent
plane of the deformed sheet. The eigenvalues k1 and k2 of the curvature tensor Cij
form two invariants, the mean curvature K = (k1 + k2)/2 and the Gaussian curvature
KG = k1k2.

When bending a flat sheet into a cylinder of radius R we get k1 = 1/R and k2 = 0.
The energy density becomes

Fb =
1

2
κb

(
1

R

)2

. (2.49)

Assuming small in-plane stretching and again setting Eqs. (2.46) to zero we obtain
relations between components of the strain tensor u. Using these relations and Eqs.
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(2.40, 2.45) we obtain for the stretching energy density

Fs =
κs

1− ν2

{
1

2
(uxx + uyy)

2 + (1− ν)
[
uxxuyy − u2xy

]}
, (2.50)

where κs = Y h is the in-plane stiffness for the sheet. Under uniform stretch uxx
.
= ε

the stretching energy in Eq. (2.50) becomes 1/2κsε
2. We used the similar reasoning

for the strain tensor components as before in Eq. (2.43). However, note that in the
case of sheet the energy density is per surface area, not per volume as in Eq. (2.44).

The total energy density, stretching and bending, is obtained by integrating over the
surface of the sheet

F =

∫
S

(Fs + Fb) dS. (2.51)

As mentioned, the continuum elasticity theory deals with systems of macroscopic
length scales. It is particularly important to note how the bending rigidity and in-
plane stiffness of thin sheets are connected via the Young’s modulus and the thickness
of the sheet. This is because the bending energy in Eq. (2.47) arises due to in-plane
stresses around the neutral surface of the sheet. Being only single atom thick mem-
brane graphene does not become under such in-plane stresses due to pure bending and
the mechanism responsible for non-zero bending rigidity has to arise from different
contributions. The modifications required are discussed in Ch. 3.2.



3 Mechanics and electromechanics of
graphene nanostructures

3.1 Basic structure of graphene and graphene nanorib-
bons

Graphene is a single atom thick membrane of carbon atoms in a hexagonal arrange-
ment with a bond distance of b =1.42 Å, Fig. 3.1.[27] The lattice structure is due to
the hybridization of one s orbital with two p orbitals leading to a formation of strong
σ bond. The remaining p orbitals perpendicular to the graphene plane bind covalently
to the neighboring carbon atoms and form a half-filled π band that is responsible for
the interesting electronic properties of graphene. The unit cell of graphene contains

Figure 3.1: Graphene lattice and the two atoms in the unit cell A and B. The lattice vectors v1,2
together with one of the nearest neighbor vectors δ1,2,3 define the hexagonal lattice. The arrows on
the left denote the width convention for armchair (ac) graphene nanoribbons and the ones on the
bottom denote the width convention for zigzag (zz) graphene nanoribbons.

18
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two atoms, labeled A and B in Fig. 3.1. Energy bands derived from tight-binding
Hamiltonian with only nearest neighbor hoppings included are [28]

E±(k) = ±t

√√√√3 + 2 cos
(√

3kyb
)

+ 4 cos

(√
3

2
kyb

)
cos

(
3

2
kxb

)
, (3.1)

where kx,y are the components of the crystal momentum vector and t(≈ 2.8 eV [27])
is the nearest neighbor hopping energy. Near the Dirac points K and K ′ (k = K +
q, q � K), at the corners of the first Brillouin zone, the energy bands in Eq. (3.1)
reduce to

E±(q) ≈ ±3ta

2
|q| .= ±vf |q|, (3.2)

giving the famous linear dispersion relation between energy and momentum, resem-
bling the energy spectrum of ultra-relativistic particles. Infinite graphene does not
have an energy gap in this tight-binding description, and the zero energy gap of
graphene is also supported by experiments.[2, 29, 30] If graphene is to replace silicon
in electronic devices the introduction of an energy gap is crucial. Suggested methods
for creating an energy gap include hydrogen absorption,[31] confining electrons by
some external means,[32, 33] and strain.[4, 34–36] In this thesis the study of elas-
tic properties of graphene systems is motivated by the possibility of controlling the
electronic structure of graphene via strain.

For infinite graphene the zero gap feature is very robust against uniaxial strain. The
gap opening is expected only for strains exceeding ∼ 20%.[34] It has even been shown
that, in the tight-binding level, graphene should have zero gap at all reasonable uni-
axial strains.[37] However, combined shear and uniaxial-strain could open energy gap
of 0.9 eV at reasonable strains of ∼ 12%, highlighting the possibilities of complex
strain patterns in graphene. [35] Indeed there are indications that non-uniform strains
will lead to energy gap even in infinite graphene.[4, 38]

Graphene nanoribbons

In practise graphene samples come in various sizes and shapes. The size can vary
tremendously, with dimensions ranging from very small, only few Angstroms wide
ribbons, to very large industrial scale sheets. Small (< 100 nm) pieces with rectangular
shape and high aspect ratio are called graphene nanoribbons (GNRs) and they are
usually classified by the construction of their longer edge. GNRs with longer edge
parallel to the ac-direction are labeled ac-GNRs and the GNRs with longer edge
parallel to the zz-direction are labeled zz-GNRs (Fig. 3.1). The edges of these ribbons
are typically hydrogen passivated, although other elements or functional groups are
used as well. The edges can also be reconstructed with carbon rings of five or seven
atoms.[39–41]
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In ac-GNRs the lateral confinement of electrons creates energy gaps inversely pro-
portional to ribbon widths,[32, 33] making them suitable candidates for electronics.
Additionally, unlike in the infinite graphene, even small strain may affect ac-GNR’s
energy gap considerably.[42–45] The study of the elastic properties of the GNRs is
thus motivated also from the electromechanical viewpoint.

3.2 Elastic properties of graphene and graphene nano-
ribbons

Being only single atomic layer thick, graphene is the thinnest possible membrane.
Therefore the description of the elastic behavior of graphene using classical sheet
elasticity is not straightforward, although possible, after the equations are modified
in a proper manner. We introduce new elastic moduli and abandon the concept of
thickness of the graphene monolayer. The modifications are due to the continuum
assumption used in classical theory of thin sheet bending,[25] which in the case of
monolayer graphene is illegitimate as there is neither compression nor stretching when
bending a monolayer graphene with a zero Gaussian curvature.[46] However, with mi-
nor modifications the classical equations agree nicely with the simulations of graphene
deformations.[47–50]

A general result states that hexagonal lattices are isotropic under in-plane stresses,[25]
enabling the usage of single in-plane stiffness for graphene. The elastic moduli are ob-
tained by fitting corresponding equations to simulations or, as in Ref. [5], by direct
measurement. The bending rigidity κb becomes a module of its own, as there is no
reason for it to be related to in-plane stiffness κs in the way derivation of Eq. (2.47)
implies. The in-plane stiffness of graphene has been measured experimentally to be
κs = Y h = 340 ± 50 Nm−1, which yields Young’s modulus Y = 1.0 ± 0.1 TPa with
’effective thickness’ of 3.4 Å.[5] However, as already mentioned, there is no reason
to consider thickness of graphene as it is used only to enable the usage of common
classical elastic moduli like Young’s modulus instead of in-plane stiffness. Moreover,
the concept of effective thickness quickly leads to difficulties, if one tries to relate the
bending rigidity to in-plane stiffness via the effective thickness.[51] The origin of these
difficulties is the fact that graphene does not fulfill the assumptions used in the deriva-
tion of the classical sheet elasticity equations.[48, 52] Due to high in-plane stiffness
and intrinsic strength, graphene is not only interesting due to its electronic properties,
but it could also be used in futuristic applications requiring extreme strength, such
as space elevators.[53]
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Bending rigidity of graphene

Even when considering thin sheets, classical elasticity theory considers distances much
larger than those between atoms. The bending rigidity follows from the in-plane ex-
tensions and compressions of the medium around the neutral surface.[25] This leads
also to connection between the bending rigidity and Young’s modulus. However, for
graphene monolayer there is no need for the layer to neither compress nor stretch due
to uniaxial bending since the graphene layer is its own neutral surface. The connec-
tion between bending rigidity and in-plane stiffness is then lost. The non-zero bending
rigidity has to have a different origin compared to the classical sheets. Bond-order
models have identified the origins of the bending rigidity to bond angle effects and to
the bond-order term including dihedral angles,[51, 54] while considering bond orbital
models the bending rigidity arises from a π-orbital misalignment between adjacent
pairs of carbon atoms.[46] While the bending rigidity of a single atom thick mem-
brane is interesting, in our simulations the bending rigidity showed only as an energy
cost when graphene was bent; the mechanism responsible for this bending energy was
not considered. The classical derivation of Eq. (2.47) also leads to relation between
bending rigidity (κb) and Gaussian bending rigidity (κ̄b) which not necessarily applies
for graphene. It is more safe to write Eq. (2.47) as [52]

Fb =
1

2
κb(k1 + k2)

2 − κ̄bk1k2, (3.3)

where ki = 1/Ri are the principal curvatures at given point and we have used the
diagonal form of the curvature tensor C from Eq. (2.48).

We have now an equation for bending energy that was motivated from the classical
description but has been modified to discard the consequences due to the continuum
assumptions used in the derivation. For graphene we could have used the two invariants
of the curvature tensor (Tr(C) and Tr(C2)) and defined the bending energy density
to be exactly the above Eq. (3.3) just by introducing the moduli κb and κ̄b in a manner
similar to the one used to introduce the original free energy in Eq. (2.39). After fitting
the moduli κb and κ̄b to simulations, Eq. (3.3) describes graphene bending with decent
accuracy.[52]

Obtaining the bending rigidity for graphene is, by conventional simulations, a difficult
task. Bending deformation breaks the translational symmetry, on which most of the
programs implementing accurate (DFT) methods rely on.[46] Proper simulation thus
requires relaxation of very large structures possible only by empirical potentials [55]
or the consideration of graphene nanotubes and fullerenes.[6] However, the study of
the bending rigidity and even the Gaussian bending rigidity become possible using the
revised periodic boundary conditions and rotational symmetry.[56, 57] From DFTB
method the obtained values are κ̄b = −0.70 eV and κb = 1.61 eV, which agrees
roughly with the experimental value 1.2 eV determined from the phonon spectrum of
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graphite.[58]

Graphene is, from inspection of the elastic moduli, extremely flimsy. Comparison with
bilayer graphene shows tremendous difference in bending rigidity, κb = 1.61 eV for
monolayer and κb = 160 eV for bilayer graphene, though there is large variation in the
results for bending rigidity of bilayer graphene.[46] The large bending rigidity of the
bilayer graphene is due to the inevitable stretching and compression in the graphene
layers, regaining the sheet description, when bending with the layers clamped together
from both ends. If not clamped, the layers in bilayer graphene may slide relative to
each other and the bending rigidity is greatly reduced compared to the case that
contains external clamps or sufficiently long tails that restrict the interlayer sliding.
Due to the small bending rigidity single layer graphene easily ripples out-of-plane, as is
manifested in a large number of results showing graphene rippling.[59–61] The rippling
of graphene layer enhances its bending rigidity and is suggested to be responsible
for the existence of free standing graphene in the first place.[62, 63] Understanding
the elasticity of graphene is thus essential already in understanding graphene’s very
existence.

Temperature effects on bending rigidity

The temperature dependence of bending rigidity of graphene has been investigated
finding both decreasing [64] and increasing [63, 65] bending rigidities when tempera-
ture is increased. For single layer graphene the increase in bending rigidity is attributed
to the out-of-plane ripples due to thermal fluctuations.[63] These ripples are expected
to increase the bending rigidity considerably, and indeed the measurements obtain
much larger bending rigidities than the numerical predictions, for example Ref. [51]
reported κb ≈ 7.1 eV, several times larger than most of the computational estimates.

In addition to the carbon structures, the elasticity and bending rigidity of other types
of materials was also studied. In our article [V] we used RPBCs to study the tem-
perature dependence of the bending rigidity of two-dimensional gold membrane. Such
membranes could possibly be realized in suitably sized pores made in graphene. Wedge
unit cell containing 8×8 gold atoms was used together with rotational symmetry (Fig.
3.2a). While the article presented simulations predicting two-dimensional gold liquid
at high temperatures in graphene pores, the bending simulation considered the bend-
ing rigidity of a two-dimensional gold in a solid phase. The RPBCs enabled such small
unit cell that the DFTB method could be used in the simulation.

We simulated gold cylinders with radii 20, 30, 40, 50, 100 and 200 Å and fitted
1/R2 behavior, as suggested by Eq. (2.49), to the averaged (0.5 ns) energy differences
(∆E(R, T ) = κAu

b (T )/(2R2) = E(R, T ) − Es − E(R = ∞, T )) to obtain bending
rigidity at different temperatures. The in-plane strain contribution (Es) due to the
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Figure 3.2: Simulations of the bending rigidity of two-dimensional gold. Left: Wedge unit cell and
the 64 gold atoms. RPBCs with rotational symmetry was used in the simulations. Right: The bending
rigidity of the two-dimensional gold surface increases slightly when temperature is increased.

radial wandering of the gold surface had to be subtracted from the averaged energy
in order to obtain the energy due to the bending alone. We found a slight 0.3 meV/K
rise in the bending rigidity as temperature was increased from 0 K to 600 K, though
the standard deviation error bars arising from the fitting of the bending rigidity at
each temperature are larger for higher temperatures (Fig. 3.2b). The results showed
that for such gold membrane the bending rigidity was one third of the bending rigidity
of graphene. The smaller bending rigidity of gold sheet may be due to the nature of
the chemical bonding differences in gold and carbon. In graphene the carbon atoms
bind covalently and these bonds are better at resisting bending compared to the less
direction dependent metallic bonds in gold.

Edge stress in graphene nanoribbons

Description of the effects due to the graphene edges in GNRs requires an additional
elastic energy term added to the classical sheet elasticity. This time we consider the in-
plane stretching energy in Eq. (2.44). The construction of the GNR edges, where the
uniform lattice ends, gives rise to an intrinsic edge stress. The edge stress magnitude
and direction depend on the edge construction and can even lead to ripple formation
at the edges if the edge stress is enhanced by functional groups.[66]

We model the edge stress by force τ ([τ ] = eV/Å) applied at the edges of the GNR.
Except for the edges, where an edge in-plane stiffness is introduced, the ribbon main-
tains the in-plane stiffness of infinite graphene. The edge in-plane stiffness can be
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included into effective in-plane stiffness κs(w) and its effect especially in wider rib-
bons is small. The stretching energy density in Eq. (2.44) may be written for GNR
with this additional edge stress as [67]

Fs = 2τε/w +
1

2
κs(w)ε2, (3.4)

where w is the width of the nanoribbon. Edge stress τ can be evaluated once the
reciprocal strain εc = −2τ/(wκs(w)) in the relaxed ribbon is known. This can be
obtained from simulations by relaxing ribbons of length l0 with given width and
measuring the relaxed length lc from which εc = lc/l0 − 1.

We have now reviewed the general properties of graphene elasticity, discussed how
and why the sheet elasticity is needed to be revised, and introduced the necessary
concepts. We also discussed the motivation for the study of graphene elasticity through
the strain engineering, as deformations in graphene could open possibilities to either
enhance or modify the electronic properties of graphene in a controlled manner. Let
us now focus on the articles presented in this thesis and give some additional details
not emphasized in the article texts.

3.3 Topological Möbius graphene nanoribbons

Our article [I] introduced a peculiar way of imposing a Möbius topology on flat GNRs
using non-trivial symmetries and boundary conditions. We called such ribbons topo-
logical Möbius GNRs (TMGNRs). Möbius ribbons, formed from strips by connecting
the ends after giving one end a half-twist, are interesting objects in many aspects. For
example, Möbius strips have only a single edge and a single surface so that traversing
the ribbon length along the ribbon is equivalent to a π-rotation around the ribbon
axis, i.e., traversing the length of the ribbon twice is required in order to return to the
starting point. The implications of this type of periodicity are interesting in contrast to
the usual translational periodicity, where the Born-von Karman boundary conditions
[68] connect the opposing sides of a bulk material. However, for a three-dimensional
object in three-dimensional space this becomes impossible. For two-dimensional ob-
ject the resulting topology is a torus and for one-dimensional object a ring. It is thus
relevant to ask how much does the boundary conditions alone affect the system prop-
erties, since the actual systems in nature, apart from some special molecules, are rarely
periodic in the fashion suggested by the Born-von Karman boundary conditions.

Recently Möbius topology was realized in experiments,[69, 70] and simulations of
Möbius GNRs have been performed in Ref. [71]. However, our goal was not to consider
genuine Möbius structures but to theoretically probe the effect of the Möbius topology
alone. The structure of TMGNRs remained planar without any large deformations,
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but the electronic wave functions satisfied the Möbius condition defined by

D(TLx)Mφmöb
κa = D(Rx)φ

möb
κa , (3.5)

where TLx is a translation of Lx in x̂−direction and Rx is a π rotation around x
axis. The length of the ribbon becomes L = MLx. We consider Hamiltonian invariant
under translations TLx and π-rotations Rx, this implies that there should not be any
direction-dependent terms in the Hamiltonian, i.e., spin is excluded together with all
vector fields not parallel with x̂−direction. Provided these assumptions are satisfied,
the Hamiltonian is also invariant under S = TLxRx

.
= TR. We take this as the

symmetry operation of our system. We can now show that the effect of the Möbius
topology on the energy band structure of a GNR vanishes for long GNRs. Only ac-
GNRs were considered due to possible spin polarization effects in zz-GNRs. Now for
the symmetry operation S the periodic boundary conditions suggest

D(TR)Mφκ = φκ (3.6)

or

D(T )Mφκ = D(R)Mφκ =

{
D(R)φκ, M = odd
φκ, M = even,

(3.7)

where we used R2 = 1. We obtain Möbius topology for oddM and a ring topology for
even M . Considering now the identical system with the usual Bloch’s theorem, i.e.,
with symmetry operation T , we get states

D(T n)ψk(r) = e−iknuk(r), (3.8)
⇒ ψk(r) = eik·x/Lxuk(r), (3.9)

where uk(Tr) = uk(r) and k = 2πm/M with m ∈ {0, . . . ,M − 1}.

Returning to the description with symmetry operation S we then separate the states
into two classes, φ+

κ that are even (D(R)φ+
κ = φ+

κ ) and φ−κ that are odd (D(R)φ−κ =
−φ−κ ) under rotations R. For the odd states we have

D(TR)nφ−κ (r) =

{
+D(T )nφ−κ (r), n = even
−D(T )nφ−κ (r), n = odd

= e−iπnD(T )nφ−κ (r)

= e−iκnφ−κ (r),

⇒ D(T n)φ−κ (r) = e−i(κ−π)nφ−κ (r), (3.10)

where on the second line we used Eq. (2.22). Comparing Eq. (3.10) with Eq. (3.8) and
using boundary conditions κ = 2πm/M with m ∈ {0, . . . ,M − 1}, we deduce

φ−k (r) = ei(k−π)·x/Lxuk−π(r), (3.11)



26 Mechanics and electromechanics of graphene nanostructures

a)

0.0

0.5

1.0

1.5

2.0

i-C

CK

i-C

K

K

K

C

C

C

i-C

i-C

L = 38Å
L = 90Å
L = 141Å
L = 141Å

5       10      15     20     25      30      35-π 0 -π      /2 π
κ

-4
-3

-2

-1
0

1

2

3

4

E
−

E f
(e

V)

π/2
0.0

0.5

1.0

1.5

2.0
W=8.6Å (K)

W=11.1Å (C)

W=6.1Å (i-C)

E
ne

rg
y 

ga
p 

(e
V

)
20     40       60     80      100    120

Length (Å)

E
ne

rg
y 

ga
p 

(e
V

)

Width (Å)

b) c)
TMGNR

GNR

TMGNR

GNR

TMGNR,
TMGNR,
TMGNR,
GNR,

Figure 3.3: Energy band structure comparison between TMGNRs and GNRs and consequences
in the energy gaps. a) Showcase of the band shift and the consequent energy gap change. The
TMGNR’s band (dashed line) is translated by −π while the k-sampling remains identical. Only the
highest occupied and lowest unoccupied bands are shown. b) Energy gap variation w.r.t. length for
GNRs (solid lines) and TMGNRs (dashed lines) with three different widths. c) Energy gap variation
w.r.t. width for GNR and TMGNRs with several lengths.

i.e., the odd states of the symmetry operation S are identical to the corresponding
states of the symmetry operation T but they are translated in the k-space by −π.
Similarly, the even states (φ+

κ ) of symmetry operation S become

φ+
k (r) = eik·x/Lxuk(r), (3.12)

being identical to the even states of symmetry operation T . As suggested by Eq. (3.7)
The Möbius topology was introduced by choosing M =odd.

For TMGNRs the energy bands corresponding to the odd states are translated by
−π, but the k-sampling in both Möbius and ring topologies are identical, given by
k = 2πm/M with m ∈ {0, . . . ,M −1}. We now calculate the effect on the energy sum
of occupied states in the odd bands due to the −π translation of the odd bands. The
energy of the odd states in Möbius ribbon is Emöb(k) = Estraight(k− π), see Fig. 3.3a,
then summing the energy of all the occupied odd states gives

Emöb
tot =

M−1∑
m=0

fmET

(
2πm

M
− π

)
=

{∑M−1
m=0 fmET

(
2πm
M

)
= Estraight

tot , M = even,∑M−1
m=0 fmET

(
2πm
M

+ π
M

)
6= Estraight

tot , M = odd,
(3.13)

where fm is the occupation number. To obtain the result we reordered the sums and
used E(k + 2π) = E(k). The band translation affects the total energy only for the
TMGNRs (odd M). From Eq. (3.13) we observe that the energy difference between
TMGNRs and GNRs vanishes as M → ∞. In practise the energy difference became
negligible already at small M corresponding to ribbon aspect ratios smaller than the
smallest possible (∼ 4 from Ref. [72]) for Möbius ribbons.

The band shift due to the topology had a subtle effect also on the energy gaps. If the
bands responsible for the energy gap were both odd, they shifted due to the change in
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the topology, whereas the k-sampling remained invariant. This gave raise to a possible
change in the energy gap (Fig. 3.3a). This effect, which depended on the number of k-
points, i.e., on length of the ribbon, vanished quickly as M increased (Fig. 3.3b). The
energy gaps of ac-GNRs and corresponding TMGNRs oscillated with width (Figs.
3.3c). For certain widths (i-C) the energy gap was due to even bands and remained
almost unchanged upon changing topology. The minor energy gap change at short
ribbons was due the relaxation of the TMGNRs to a slightly different geometries
compared to GNRs.

The observed effects due to the topology were negligible for ribbons long enough to
be twisted into Möbius configuration. Considering the energy contributions due to
the topology alone (∼ 0.05 meV/Å2 for aspect ratios ∼ 4) and comparing them with
energy density even due to a small 1% strain gives immediately that the extra energy
due the topology is negligible compared to the additional energy density anticipated
from the strain effects. Simulations of the Möbius GNRs, with low aspect ratios,
showed that these ribbons had large areas under considerable stress.[71] The stress
patterns resembled those given by the classical sheet elasticity theory [72] and showed,
as expected, that the elastic energy due to the strain is much larger than the energy
increase due to the topology. In our setup we did not describe the finite Möbius ribbon
structure and the strain contributions related to such structures were obviously lost.
However, recalling the goal of the study, to examine the effects of the topology alone,
we considered these restrictions of the method rather as an advantage. We concluded
that the term ’k-point convergence’ is not only with respect to the system size, but
also with respect to the overall topology, i.e., after certain size the system loses its
perception of the topology and the boundary conditions lose their relevance.

3.4 Elasticity and electromechanics of graphene nano-
spirals

Nanodevices do not need to be flat, but they can also have complex three-dimensional
structures or they can even be able to change form in a controlled manner.[62] One
such structure could be graphene nanospiral, which can be viewed as a nano spring,
at least if the interlayer interactions are excluded (Fig. 3.4b). In our article [II]
we used DFTB and RPBCs to simulate the electromechanics and elastic properties
of such graphene nanospirals as they were elongated. In addition, the elasticity of
these nanospirals was considered by continuum sheet elasticity model. The suggested
nanospirals could be surprisingly close to fabrication, as in Ref. [62] the authors al-
ready presented an experimental realization of one sort of a graphene nanospiral. The
structure was still somewhat different from the ones we suggested, the radius of the
nanospiral changed monotonically rather than stayed constant, but this was the first



28 Mechanics and electromechanics of graphene nanostructures

experimental graphene nanospiral to our knowledge. Like Möbius GNRs, the nanospi-
rals have a fascinating topology: partly one-dimensional (along the spiral axis), partly
two-dimensional (radial and azimuthal dimension), and partly three-dimensional (in-
terlayer interaction).

Figure 3.4: Graphene nanospiral simulations with DFTB and continuum sheet elasticity. a) Simu-
lation setup, the atoms within the minimal unit cell are marked green. A wedge unit cell and chiral
symmetry was used. b) The periodic images were obtained by rotating and translating the unit cell
according to the picture. The pitch was fixed by the unit cell height. c) The density of states for two
separate nanospirals under elongation with interlayer interactions turned on (left) and off (right).
The changes near equilibrium pitch highlight the importance of the interlayer interactions. When
the elongations were large the density of states were roughly equal as the interlayer interactions had
lost their relevance.

The electronic structure simulations were performed by the DFTB method combined
with the RPBCs in order to use the minimal unit cell (wedge with angle π/3) with the
chiral symmetry (Fig. 3.4a,b). The elongation was controlled by the height of the unit
cell which was varied slowly enough for the nanospiral to relax at each step. RPBCs
allowed us to constrain the range of interactions to M nearest neighbor images of the
unit cell. For M < 7 the interlayer interactions were effectively turned off, since the
unit cell images on top of each other did not interact. This rangeM was independent of
the κ sampling and gave only a limit for the interaction range in terms of symmetry
operations rather than actual distance between the atoms. This setup was used to
study the role of the interlayer interactions in the spiral.

We probed the changes in the electronic structure by considering the density of states
near the Fermi level and showed that the electronic properties near the equilibrium
pitch h = 3.4 Å are dominated by the interlayer interactions (Fig. 3.4c). When the
interlayer interactions were included, elongating the nanospiral from the equilibrium
pitch affected the density of states considerably. In contrast, when the interlayer in-
teractions were not included the changes in the density of states only occurred at
very large elongations when the in-plane strain became large. The relation between
elongation and strain depends on the spiral geometry. In spirals with small inner
radii elongations quickly start to stretch the bonds at the inner edge, making large
elongations impossible. In contrast, spirals with large inner radii can withstand very
large elongations, for some nanospirals elongations up to 2300% were simulated, cor-
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responding to pitch of ∼78 Å(Fig. 3.4b).

The used symmetries and boundary conditions enabled the use of accurate DFTB
method, but also introduced artificial constraints. The interlayer separation was forced
to a constant of six times the unit cell height. Thus the periodicity made the elongation
process take place uniformly throughout the nanospiral, whereas later, when consider-
ing finite-size nanospirals, we observed a local peeling process during the elongation.
The structure of the nanospirals at small elongations was thus not likely well described
by the simulations since constant interlayer spacing was not expected throughout the
whole nanospiral. However, for large interlayer spacing, exceeding the effective range
of the interlayer interaction, we expected the nanospiral structure to be well described
by the periodic structure. Moreover, assuming a material with small van der Waals
interlayer interaction compared to the bending rigidity, the layers could separate ac-
cording to the periodic description as was seen in the case of the macroscopic spirals.

Elasticity of nanospirals

Under large elongations the deformations of the nanospirals showed unanticipated
phenomena; after a threshold elongation a ripple quickly developed at the perimeter
of the nanospiral (Fig. 3.5c and d). This rippling was only observed for a class of
nanospirals with favorable geometry. In DFTB simulations the wavelength of this
ripple was determined by the unit cell wedge angle and in order to understand the
rippling more we developed a model based on the continuum sheet elasticity where
also the wavelength of the ripple could vary. Our model neglected the edge stress
contributions, but the constantly varying edge construction and the large deformations
due to the elongation should justify this approximation.

The elastic model used continuum sheet elasticity combined with the chiral symmetry.
Initially an annulus was cut in the radial direction into a wedge with an angle ∆φ
(Fig. 3.4a,b). The initial spiral structure was achieved with one end fixed and the
other lifted to the desired height hi resulting in a spiral with pitch h = 2πhi/∆φ.
The elastic energy was then minimized by varying the nanospiral geometry while
keeping the pitch constant. The geometry was controlled by five parameters that also
allowed the ripple formation. Two boundary conditions were used to ensure uniform
stretching along lines in azimuthal and radial directions within the spiral. We assumed
the Gaussian bending rigidity in the bending energy term to be unimportant since
changes in the Gaussian curvature always lead to stretching according to Gauss’s
Theorema Egregium;[73] this is extremely expensive due to the graphene’s high in-
plane stiffness.

The numerics were performed by calculating the components of the strain, in Eq.
(2.35), and the curvature, in Eq. (2.48), tensors and minimizing the elastic energy in
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Eq. (2.51) by varying the structure through the given parameters. We used the elastic
moduli given by the DFTB method in order to be consistent with the atomistic sim-
ulations. The large amount of local minima in the parameter space led us to perform
the energy minimization by the global optimization routine of basin hopping.[74]
The elastic model captured the ripple formation in qualitative agreement with the
DFTB simulations, i.e., ripple formed in certain nanospirals after a threshold pitch
was reached. With the insights given by the elastic model we were able to give quali-
tative reasoning behind the ripple formation.

ΔroutΔrin

Δrin

Δrin

a) b) c) d)

under compression
rippling releases
compression

no in-plane strain

Figure 3.5: Rippling is a way to release excess compression from the spiral perimeter. a) Under
elongation the spiral tends towards its axis. The required optimal shift depends on the radius and
the inner and the outer edges prefer different shifts. b) The spiral shifts towards its axis avoiding
stretch at the inner edge, but then the perimeter of the spiral becomes under compression. c) This
compression can be relieved by rippling at the perimeter. d) Bending energy density shown on a
nanospiral. Darker color corresponds to larger energy density and tighter bending.

The mechanism responsible for the rippling at the spiral perimeter is described in
Figs. 3.5a, b, and c. Assuming no stretch for line arcs running in azimuthal direction
along the annulus, we show that upon elongation into spiral the lines tend towards
spiral axis as

ri(h) =

√
r2i −

(
h

2π

)2

, (3.14)

where ri is the initial radius of the line arc and ri(h) is the radius of the spiral line with
pitch h. The limit h = 2πri corresponds to elongating an arc into a vertical line thus
giving the ultimate limit for the no-stretch condition. Eq. (3.14) gives the required
shift ∆r(ri) = ri − ri(h) as function of the initial radius of the arc, being larger for
smaller radii, see Fig. 3.5a for ∆rin and ∆rout. Elongation of an annulus into a spiral
thus leads to stretch either in radial direction (widening of the annulus) or along the
spiral curves (∆r is constant and spiral curves stretch and compress).

The high in-plane stiffness of graphene makes stretching and compressing suppressed
whenever possible. Especially compression is in some cases easily relaxed if the graphene
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can ripple out-of-plane. Due to the flimsiness of graphene, this rippling most often re-
duces the elastic energy since the reduction in the in-plane contribution is larger than
the increase in the bending contribution of the total elastic energy. For the graphene
nanospirals we found the structure with ripples to give minimal elastic energy. The
formation of the ripples could be reasoned as follows. Consider a given annulus elon-
gated into a nanospiral as described earlier. The nanospiral shifts according to the
inner radius, i.e., the line running at the inner edge remains at constant length during
the elongation (Fig. 3.5a), whereas all the other lines in the nanospiral need to shorten
(Fig. 3.5b). The shortened lines relieve the compression by rippling (Fig. 3.5c). The
amount of compression, and consequently the amplitude of the ripple, increase with
radius. In practice the processes were not this straightforward, the nanospiral did not
shift only according to the inner radius, the widths of the nanospirals were small and
there was only minor need for rippling. However, the underlying mechanism remained
identical for all of the observed spirals that rippled during elongation.

Nanospirals with certain properties were more prone to ripple. The inner radius needed
to be large enough to enable large elongations without considerable in-plane stretch.
The nanospirals also needed to be wide enough (w ∼ ri) to ensure that the difference
between the optimal shifts given by Eq. (3.14) at the inner and outer edges of the
nanospiral were large enough for the compression to become considerable. To sum-
marize, if the nanospiral was such that under elongation the perimeter came under
sufficient compression, this compression was relieved by rippling. A formula for the
compression at the perimeter, assuming above described process, of no-stretch at the
inner edge, becomes

εri,w(h) =

√
r2i + 2wri(h) + w2

ri + w
− 1, (3.15)

where w is the nanospiral width. Eq. (3.15) has minimum, i.e., maximum compression,
at w = ri making spirals with width equal to the inner radius most prone to ripple.

Graphene rippling under compression was discussed already in the context of the edge
stress in Ch. 3.2. However, here the rippling was caused by external elongation of the
nanospiral, leading to compression at the perimeter in contrast to intrinsic edge stress
of Ch. 3.2. Rippling due to excess compression is encountered again when discussing
bending of GNRs on a substrate in Ch. 3.5. These types of rippling and buckling
phenomena in graphene nanostructures can be expected in many forms due to the
flimsiness of graphene. However, the predictions given by the classical sheet model
encouraged us to perform a very crude experiment using spirals made out of plastic
sheet and indeed the rippling was also observed in these macroscopic systems.
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Classical force field modeling of the nanospiral elongation

Up to now we have only considered simulations performed for infinite nanospirals un-
der specific symmetry operations and periodicities. This is due to the computational
cost related to simulating large structures by the more accurate DFTB method. How-
ever, when studying the elasticity there was not as strong need for accurate quantum-
mechanical methods as already apparent from the validity of the continuum sheet
elasticity model. Classical molecular dynamics methods were thus used in the study
of the elastic properties of finite sized nanospirals. These methods enabled good de-
scription of the elongation process while still allowing sufficient amount of carbon
atoms to be simulated in order to study finite sized nanospirals.

We performed several simulations where graphene nanospirals with four full turns
were elongated from the initial configuration with equilibrium layer spacing to a de-
sired pitch. In contrast to the DFTB and the elastic simulations, where equidistant
interlayer separation followed from the symmetry setups, in these finite systems the
topmost layer of graphene peeled off locally. This local peeling was attributed to the
strong van der Waals interaction between the graphene layers. Indeed, for large mul-
tilayered nanospirals it is not feasible to assume that the nanospiral should unfold
with equidistant interlayer separations, since this would give very large energy cost
due to the adhesion between the layers. The bending rigidity together with strength
of the interlayer interaction define the mode of elongation of the nanospiral. With
negligible interlayer adhesion and considerable bending rigidity the layers would peel
with equidistant interlayer spacing. However, for the flimsy graphene with the suffi-
ciently strong van der Waals interaction, the bending rigidity is not large enough to
suppress the local peeling. The simulations showed how the peeling proceeded in local
fashion as the nanospiral unfolded layer by layer. The local peeling was visible not
only qualitatively in the simulations but also in the elongation force curve. The force
remained roughly constant during the initial period of peeling when the force worked
mainly against the adhesion between the layers. After the nanospiral had completely
peeled, the force suddenly increased as in-plane deformations started to occur.

3.5 Bending of supported graphene nanoribbons

In our article [IV] we considered experiments by van der Lit et al. in Ref. [75], where
7-ac-GNRs were bent in-plane on an Au(111) substrate by an atomic force microscope
tip at low temperature. The GNRs remained completely adhered to the substrate until
a threshold curvature of ∼ 4 deg/nm was reached and a part of the GNR buckled
abruptly out of the substrate plane (Fig. 3.6a). Buckling relieved compression at the
inner edges of the GNRs and allowed the GNR to attain new geometry with two
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relaxed GNR pieces connected by the buckled region. The buckling curvature was
denoted as a stability limit for bent GNRs on a substrate since before the buckling
curvature the bending advanced smoothly in a uniform fashion whereas at the buckling
curvature the whole geometry of the GNR suddenly changed. The experimental group
also studied the maximum curvatures that could be maintained by the lateral energy
corrugations, phenomenon called as pinning. We denoted also the maximal pinning
curvature as a stability limit since under this curvature the GNRs could remain in
pinned configuration, but above this curvature pinning was not observed.

We used classical force fields in a set of molecular dynamics simulations mimicking the
experiments in Ref. [75] with the exception that, rather than pushing the outer edge
of the GNR with a AFM tip, we twisted one end of the GNR while keeping the other
end fixed. This way the deformation was better controlled and enabled simulation
of shorter GNRs because the whole GNRs bent uniformly. In simulations twisting
constraint was achieved by attaching an imaginary stick with heavy springs to the
edge atoms at the free end of the GNR. This stick was then turned by a slow constant
angular velocity while allowing it to move freely in the xy-plane (Fig. 3.6a).

The experiments were performed for GNRs on an Au(111) substrate.[75] In terms of
simulation the gold substrate was not feasible due to the lack of a proper interlayer
potential between graphene and gold. However, it turned out that the effect of the
lateral energy corrugations should be negligible in the buckling simulations due to the
bend geometry of the GNR and the high sensitivity of the corrugation energy to the
GNR orientation.[76–78] When the GNRs were bent, large parts of them became out of
registry with respect to the substrate below. Since registry effects in such situations
are minor we chose interlayer potential describing only the adhesion between the
GNR and the substrate, without any lateral structure. Therefore, in the buckling
simulations, we used adhesion energy with the form suggested by the Lennard-Jones
potential, given in Eq. (2.18).

The corrugation energy was not important for the description of the buckling process,
but it was essential for the description of the pinning process. Pinning is due to a
small piece of the GNR being in registry so that the bending moment due to the
bend GNR is not sufficient in bringing this piece out of the registry due to the lateral
energy corrugation barrier. Obviously for such a phenomenon the description of the
corrugation energy was essential. Again, since no classical force field for graphene on
a gold substrate was available, we departed from the experiment and made our simu-
lations for GNRs on graphene. The KC-potential (Ch. 2.3,[15]) gives good description
of the corrugation energy between graphene layers and was used in these simulations.
We expected that in the end the precise form of the corrugation energy averages out
and leaves only one effective parameter describing the strength of the lateral energy
corrugations thus making the exact form of the substrate unimportant. The effective
averaged parameter could then be fitted to describe also the experiments performed
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on a gold substrate.

Bending-induced buckling

Figure 3.6: Buckling simulation setup and buckling curvatures for ac -and zz-GNRs. a) The sim-
ulation was carried out by twisting one end of a GNR by constant angular velocity while allowing
it to move freely in the xy-plane. Buckling was observed as an abrupt out-of-plane deformation.
After buckling the twisting direction was reversed and the simulation ended with the initial GNR
geometry. b) Buckling curvatures given by the simulations. The larger curvature values (diamonds)
correspond to the curvature for the formation of the buckle while lower values (circles) correspond to
the curvature for the return to the flat configuration. Increased temperature reduced the hysteresis
of the buckle formation and disappearance. Each of the simulations were repeated several times with
different twisting rates.

Although the experiment used 7-ac-GNRs we considered several different ac-GNRs
with widths 5, 7, 9, 11, and 13 as well as zz-GNRs with widths 4, 6, 8, and 10 (Fig.
3.1). The lengths of these GNRs were chosen such that the finite length effects due
to the GNR ends were insignificant leading to width-to-length ratios of roughly 1/10.
The simulations started by thermalizing the given GNR to 10 K and then twisting
it until a major out-of-plane buckle was formed. The twisting was slow enough for
the ribbon to deform uniformly. After the buckle formation the GNR was allowed to
relax before the twisting direction was reversed. During the relaxation the two curved
ends quickly recovered resulting two straight GNR sections connected by a buckled
region (Fig. 3.6a). The GNRs remained buckled for some time even after the twisting
direction was reversed, which resulted in a hysteresis loop for the buckling curvature.
This hysteresis almost disappeared when temperature was increased to 300 K.

For ac-GNRs we observed rippling due to the compression at the inner edge as single
ac-units started to point out of the GNR plane already at small curvatures well below
the buckling curvature. Interestingly the wavelength (two ac-units) of this initial ripple
remained constant until a large part of the GNR buckled (Fig. 3.6a). For zz-GNRs
such rippling did not take place and the GNRs remained planar all the way to the
buckling curvature.
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Under uniaxial compression graphene is expected to buckle already at compressions
of 0.5 − 1.5% [79–83] However, in the described bending setup the compression at
the inner edge was in many cases over 3% when the buckling finally occurred. In
the bending setup buckling was suppressed by two factors: (i) out-of-plane buckling
on a substrate decreased the adhesion energy [50] (ii) buckling would stretch the
already stretched outer edge which increases the elastic stretching energy. Buckling
only the inner edge, up to the neutral line of the GNR, is also suppressed due to the
consequent change of the Gaussian curvature which implies stretching according to
Gauss’s Theorema Egregium.[73] Each of the possible ways of buckling thus lead to
additional energy cost and hence the required compression for buckling was increased
beyond the uniaxial compression limit. Fitting a simple model to buckling curvatures
of ac-GNRs at 10 K temperature gave width dependent buckling curvature of

κb =
360◦

π

(
0.0138nm + 0.023w

w2

)
, (3.16)

which increases rapidly as w → 0 (Fig. 3.6b). The model was fitted to the curva-
tures at which the buckles disappeared due to the random energy perturbations that
help the experimental GNRs overcome any small energy barriers. This choice was
further justified by the fact that the temperature decreased the buckling hysteresis
and brought the buckle formation and disappearance curvatures close together. Un-
fortunately there are no experiments with varying GNR widths, so the prediction of
buckling curvatures given by the simulations could not be verified yet. However, the
value∼ 6 deg/Å for 7-ac-GNR agreed roughly with the experimental value∼ 4 deg/Å.

Pinning-enabled bending

Figure 3.7: a) The lateral energy corrugation as given by the KC-potential between two aligned
graphene layers. The dashed lines are the optimal sliding paths. b) The maximal curvatures possible
with only the intrinsic tails of the bent GNRs. The dashed line gives prediction for the pinning
curvature from the simple model.
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In our simulations of the pinning process we considered GNRs on a graphene substrate
since this enabled us to describe the interlayer interactions by the KC-potential. Even
if our choice of substrate departed from the experiment, we expected it to give insight
into the GNR pinning phenomenon in general. The corrugation energy for oriented
graphene layers given by the KC-potential is shown in Fig. 3.7a. If the layers are ro-
tated the energy differences between different lateral positions reduce and the potential
soon loses its lateral dependence as was already assumed in the buckling simulations
and as is also shown by experiments.[76–78] However, for us the discussion of the
corrugation energy between non-oriented layers is rather unimportant as in practise
smaller flakes tend to slide into registry [84] and larger flakes may get distorted in
order to obtain the registry.

Experiment in Ref. [75] presented phenomena where 7-ac-GNRs remained in bent con-
figurations (∼ 2 deg/nm) even without any visible constraints. These stable curves
were attributed to the lateral energy corrugations between the GNR and the gold
substrate. Our simulations showed that GNRs could be held in such curved configu-
rations if even a small piece of GNR was set in registry with the substrate. When the
force keeping the pinned piece in registry was larger than the force due to the bend
GNR the whole GNR remained pinned into the curved geometry.

In our simulations a bent GNR (optimized circular arc of angle π/3) was set on a
graphene substrate with one end in-registry and the other end fixed by an external
constraint. Additional tail of in-registry straight GNR was added to the free end and
the resulting GNR was let to thermalize and relax. Usual time scale for sliding off from
the registry was few ps at temperature of 10 K, leaving plenty of relaxation time for
the pinned GNRs that were required to remain in initial registry for 20 ps. However,
when the temperature was increased the GNRs could be brought out of registry even
after considerable simulation times (∼15 ps). We expected the increase to be due to
the temperature fluctuations, but proper understanding of the dynamics would have
required simulation times beyond our computational reach.

Longer added tails were able to maintain curves with smaller radii. However, even
without the additional tail there was always a short piece of GNR close to registry
at the free end of the GNR. This piece, the ’intrinsic tail’, was also sufficient in
maintaining the GNR in the bent configuration, provided the curvature radius was
large enough, see Fig. 3.7b. The intrinsic tail was sufficient at pinning GNRs with edge
compression from ∼ 0.9 % for N = 5 to ∼ 1.5 % for N = 13. The width dependence
might be due to thermal fluctuations, which affect narrow GNRs more due to fewer
amount of pinned atoms.

In experiments the GNRs were bent into the pinned configurations intentionally, but
similar deformations of the GNRs can, to some extent, be expected even without
deliberate modifications. The electronic properties of the GNRs can be modified by
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in-plane bending [85] and it is thus important to understand the amount of curvature
that could, in principle even accidentally, be realized on a smooth surface because
of the pinning. Here, we probed some limits for such deformations. Although, it is
unlikely that GNRs would attain the tightest of the curvatures maintained by pinning
without intentional modifications, even smaller curvatures can change the electronic
properties of the GNRs and modify the system properties.

3.6 Peeling of multilayer graphene stacks

In our article [III] we simulated peeling of multilayer graphene stacks by external force
at 10 K temperature (Fig. 3.8). The simulation mimicked the experimental setup of
Ref. [86], where molybdenum disulphide stacks of selected thicknesses were peeled
by an AFM tip. The results indicated preferred angles where the required peeling
force suddenly decreased. In addition, thick enough stacks were found to remain in
the kinked geometry at certain preferred angles, even after the external peeling force
was released. These experimental results motivated the study of similar peeling phe-
nomenon in multilayer graphene stacks.

As mentioned the bending rigidity of multilayer graphene is greatly enhanced when
increasing the layer number. This is due to the connection between bending and in-
plane stress if these layers are clamped together at the ends. However, in our simulation
setup the graphene layers were not clamped together and due to the small interlayer
shear resistance they slid relative to each other rather than deformed in-plane. The
behavior of the multilayer graphene stack under peeling and the concomitant bending
was largely dominated by the interlayer interaction. We studied the resulting sliding
patterns and observed that the layers slid along staggered paths avoiding the low
adhesion energy of the AA-stacking. These relative paths followed the optimal paths
presented in Fig. 3.7a. Indeed, the resulting microscopic dynamics, interlayer shear
patterns perpendicular to the peeling direction, were not explained by linear sheet
elasticity, but required considering the lateral energy corrugations before they could
be understood. We further showed that due to the rather low barriers in the cor-
rugation energy, these multilayer graphene stacks are always likely to recover after a
peeling force is released. This differs from the molybdenum disulphide stacks that were
observed to remain in the kinked configurations most likely due to the corrugation
energy effects.[86]

Detailed discussion of the simulation procedure is given in our article [III]. Here the
sliding patterns and kinking mechanism are discussed in more detail. KC-potential
(Ch. 2.3, [15]) was used and the resulting corrugation energy (Fig. 3.7a) was important
in explaining both the sliding patterns and the kinking mechanism. In the following
discussion I shall use the coordinates given in Fig. 3.8, the peeling direction is −x̂
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Figure 3.8: Peeling setup used in the simulations. The rightmost atoms of the topmost layer of the
peeled stack were pulled down with a small constant velocity resulting in quasistatic dynamics. The
pulled atoms were allowed to move freely in the xy plane. Layer curves in xz-plane were approximated
by two lines connected by circular arcs, in total three fitting parameters were used for all of the layers.
The radii of the arcs were defined from the constant interlayer distance and from the radius of the
topmost layer. The system was periodic in the ŷ-direction and long enough for the fix at the left end
to be irrelevant.

which is also, when discussing interlayer sliding, taken as the sliding direction of the
layers even though the real layer sliding direction is in the xz-plane.

Pinning multilayer graphene to kinked configuration is unlikely

After the peeling and concomitant bending started the graphene layers began to slide
relative to each other (Fig. 3.8). The stacking of multilayer graphene is unaffected
by shift of any individual layer by integer multiple of the graphene lattice vectors
(Fig. 3.1). Since the layers slid relative to each other there was a possibility to bend
the multilayer stack in a manner where the areas around the bend were in registry,
i.e., the registry was lost only at the bend region. The simple idea presented already
in Ref. [86] assumes that the layers neither stretch nor compress but only bend and
slide. Consider N -layer graphene stack peeled as in Fig. 3.8, the layers atop slide
in −x-direction w.r.t. layers below. Given a simplistic description of the system, we
approximate each layer as two straight lines connected by a circular arc of angle φ
and radius Ri = R − h · i, where i = 0, . . . , N − 1. In this model neighboring layers
get a relative shift

∆l = hφ, (3.17)

where h is the interlayer separation. Relation between the period of the corrugation
potential (a) and the interlayer separation define the optimal angle φr for which the
layer shifts ∆l = a and the stacks around the bend region are in registry. The period
of the corrugation potential depends on the peeling direction being aac = 3b (b is
the bond distance) in ac-direction and azz =

√
3b in zz-direction. These give optimal

angles of φac
r ≈ 72◦ and φzz

r ≈ 41◦. In the simulations only the optimal angle φzz
r for
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Figure 3.9: KC-energy when peeling in zz-direction. a) KC-energy as a function of the pulling
distance ∆z (Fig. 3.8). A minimum was observed roughly at the position of the optimal bend angle
φr. Inset: The required pulling distance for optimal bend angle ∆zN (φr). b) Snapshots of the structure
under peeling with KC-energy difference between initial and peeled configurations shown by color
(dark blue = no change, light = some change, red = major change). Close to optimal angle φzz

r (right
up corner) the bulk part after the bend region attained good registry and minimized the KC-energy
as visible by the dark blue color.

peeling in zz-direction was reached. However, when peeling in the ac-direction it was
possible to obtain optimal stackings, even if the shift did not match the full period
of the corrugation potential. The required shifts depended on the initial stacking, but
with shifts of aac = b or aac = 2b transitions from AB- to BA-stacking or vice versa
were achieved (Fig. 3.7a) and registry in the corresponding cases obtained.

In Fig. 3.9a we plot the recorded KC-energy for peeling in the zz-direction. The
KC-energy has local minimum roughly at pulling distances ∆z corresponding to the
optimal φzz

r = 41◦ angle. This minimum, should it have been deeper, could have locked
the stack in the kinked geometry as was observed in the experiments for molybdenium
disulphide. However, the stack always recovered the initial flat geometry after the
peeling force was released and the registry effects seemed unable to lock the multilayer
graphene stack into a kinked geometry. In order to highlight the registry change in
the peeled part when approaching the optimal angle we show the difference in the
KC-energy of individual atoms w.r.t. the peeling angle in Fig. 3.9b. The peeled part
obtains almost perfect registry near the optimal angle as visible from the color change
from bright to dark.

Bending by an angle φr and the concomitant interlayer slides as presented here gives
possibility to modify the stacking of a multilayer graphene. Consider initially ABC
stacked graphene. Now bend it along zz-direction by ∼ 25◦ which corresponds to
sliding in the corrugation potential from AB -to BA-stacking (Fig. 3.7a). The stack-
ing after the bend changes into CBA. Making another bend returns the stacking
back to ABC. Multilayer graphene constructed by alternating the bend direction, and
consequently stacking (Fig. 3.10), could posses interesting electronic properties since
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Figure 3.10: Alternating stacking in multilayer graphene achieved by staggered bending in zz-
direction. The dots represent carbon atoms of single ac-line.

stacking can change the electronic properties considerably along the structure.[27]
However, our simulations implied that to remain in the staggered configuration exter-
nal forces need to be applied on the graphene layers, making the system difficult to
realize in practice.

Interlayer sliding patterns under bending

2-
1

a) ac ABC1 b) ac ABC2 c) ac ABA

3-
2

4-
3

5-
4

Figure 3.11: Relative sliding paths of individual graphene layers within the multilayer graphene
stack. The numbers on the left are the layer numbers and they start from the top of the peeled stack.
The followed atoms (red) are chosen close to the end of the peeled part of the stack and the atoms to
the right from the followed ones are not shown for clarity. Interlayer slides in the ac-direction require
shifts perpendicular to the ac-direction in order to avoid AA-stacking. The initial stacking affects
how far the layer slides before the perpendicular shift in order to avoid AA-stacking is required. a)
The ABC1 stacking allows long slide from AB -to BA-stacking before the AA-stacking is encountered
and the layers need to shift in the ŷ-direction. b) ABC2 is initially BA-stacked and the AA-stacking
barrier follows almost immediately after the sliding begins. Shifts in ŷ-direction are thus required
already at early stages. c) For ABA-stacking every other layer pair encounters AA-stacking already
at the beginning of the bending while every other pair only slides from AB -to BA stacking over the
low saddle point in the corrugation potential. This gives layer shift patterns where layer pairs shift
together.

In previous section we only considered bends with the optimal deflection angles φr
where registry was obtained on both sides of the bend. For other bend angles the layers
could not obtain good registry unless they also slid perpendicular (ŷ-direction, see
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Figure 3.12: Average shift in perpendicular direction (ŷ) of each layer during the simulation. At
pulling distance of ∆z = 30 Å to the bend angle φr = 48◦, corresponding to slide from BA -to
AB-stacking, is reached and the perpendicular shifts have vanished. The insets at right edge show
snapshots of the layer shifts as viewed from the peeled end. The points of the layer shifts in the inset
are marked by dashed lines in the main figure.

Fig. 3.8) to the peeling direction. The slides in the peeling direction, described in the
previous section, were due to the layers avoiding in-plane deformations whereas sliding
in the ŷ-direction at the peeled part, while remaining fixed at the bulk part, required
shear in the bend region and thus increased the in-plane elastic energy. However,
due to these ŷ-direction slides better registry was achieved for the peeled part which
consequently decreased corrugation energy. The interplay between shear and registry
effects was complex and only qualitative description of their relation could be given
in the example cases.

We called the ŷ-direction layer movements at the peeled end as sliding patterns.
These sliding patterns were studied by considering the projected paths of chosen
atoms relative to the layers below (Fig. 3.11). For peeling in ac-direction all of the
studied sliding paths implied avoidance of the AA-stacking by slides in ŷ-direction
(Fig. 3.11). By other methods we showed that these ŷ-slides were enabled, as expected,
by in-plane shear at the bend region. These sliding patterns were not as pronounced
when the peeling was in the zz-direction since the optimal layer sliding path in the
zz-direction does not require large shifts perpendicular to the sliding direction (Fig.
3.7a). Similar staggered sliding paths with stick and slip behavior have been observed
in simulations pulling graphene flakes on graphene,[87] here we showed that these
paths were also present in more constrained environment where these staggered paths
required additional in-plane shear.

The sliding patterns were also studied by recording the average shift of each layer in
the ŷ-direction as a function of the pulling distance ∆z. The resulting curves showed
the sliding patterns with individual fingerprint for each initial stacking and peeling
direction. For example, when peeling ABC-stacked system initially BA-stacked in ac-
direction, reaching AB-stacking required 2b slide in −x̂-direction passing over low
adhesion energy of the AA-stacking. The AA-stacking could be avoided only by shear
in ŷ-direction, which was observed almost immediately after the peeling begun. How-
ever, after reaching optimal bend angle φr ≈ 48◦, corresponding to slide of 2b, at
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pulling distance of ∆z = 30 Å, the ŷ-shifts had almost completely vanished (Fig.
3.12) suggesting good registry without any ŷ-shift. The behavior was understood by
the corrugation potential in picture (Fig. 3.7a) which suggests exactly this type of
behavior for the layer slides in −x̂-direction due to AA-stacking barrier between BA-
and AB-stackings.

Here we only considered situations where the peeling was in some high symmetry
direction of the graphene layers and the initial stacking of the systems were well-
defined. In practice such well-defined structures and well controlled peeling is probably
difficult to achieve. However, our finding that multilayer graphene should not remain
in kinked configuration just by to the registry effects should be feasible to confirm by
experiments. Already the lack of observations of kinked multilayer graphene should
serve as a sanity check for of the simulation.



4 Summary & Outlook

In this thesis, studies on the mechanical and electromechanical properties of graphene
systems have been presented. The elastic properties were studied by molecular dynam-
ics simulations using classical force fields, density-functional tight-binding, and con-
tinuum sheet elasticity. In selected cases the density-functional tight-binding method
was used to study the elastic deformations and relate the observed deformations with
the changes in the electronic properties.

Revision of the Bloch’s theorem, the revised periodic boundary conditions, enabled
some novel approaches used in this thesis. Using the wedge symmetry we studied the
temperature dependence on the bending rigidity of two-dimensional gold surface em-
bedded in graphene, suggested in our article [V], and showed that it increases slightly
with the temperature. The study of topological effects, namely Möbius topology, with-
out deforming the graphene nanoribbon was made in our article [I]. We presented not
only a unique method of studying topology, but also showed that the topological ef-
fects were short-ranged for the topological Möbius graphene nanoribbons. Using the
revised periodic boundary conditions also the description of large graphene spirals
became feasible in our article [II]. Using the minimal unit cell and chiral symmetry
we probed the density of states changes near the equilibrium pitch and showed that
the interlayer interactions are responsible for the electronic property changes in small
elongations and the strain effects start to contribute only at very large elongations.
Using classical force fields the spirals were shown to unfold by local peeling when
external force was used to elongate the spiral. Recently, graphene spiral structures,
with variable radius, have been fabricated experimentally.[62]

Classical force field simulations were used to describe large systems. Implementation
of the registry dependent interlayer potential [15] enabled accurate simulations of
two interesting setups. In our article [IV] we explained experimentally observed pin-
ning phenomena, where graphene nanoribbons could be kept in bent configurations
even without any visible impurities, only by lateral energy corrugations related to
the registry. Additionally in our article [III] we showed that the lateral energy cor-
rugations are not likely to be sufficient to maintain multilayer graphene stacks in a
kinked configuration after external forces are released. We also observed intricate layer
sliding patterns when bending multilayer graphene stacks. Again these patterns were
explained by the registry effects between graphene layers.

In our article [IV] we studied the stability limits when graphene nanoribbons were by
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external means bent on a substrate. During this bending, the inner edge of the ribbon
became under compression. When a width dependent critical curvature was reached
a large part of the ribbon buckled abruptly out of the substrate plane and the ribbon
relaxed into a configuration with two straight parts connected by a buckled region.

Despite its very recent discovery graphene has already attracted huge amount of
interest and it will probably continue to do so for several years. The amount of possible
applications is vast and most likely not yet even fully understood. Graphene might
be used in future electronics as well as in applications requiring extreme strength.
However, particularly interesting applications can arise when the interplay between
the electronic and mechanical properties is exploited via strain engineering. This thesis
gives glimpses to the mechanical response of graphene under various stresses. In some
cases the results explain experimentally observed behavior, as in article [IV], and
in others present novel structures for experimental study, as in article [II]. Already
today, the elastic behavior is important when considering the fabrication of graphene
nanostructures but in future its importance might increase because of the possible
control over the electronic structure. Even if our studies focused less on the electronic
structure the mechanics results can be combined with other studies to obtain limits
for the changes in the electronic structure, for example in a manner similar to our
article [IV].
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