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GENERALIZED HARNACK INEQUALITY FOR SEMILINEAR ELLIPTIC
EQUATIONS

VESA JULIN

ABSTRACT. This paper is concerned with semilinear equations in divergence form
div(A(z)Du) = f(u)

where f : R — [0,00) is nondecreasing. We introduce a sharp Harnack type inequality for

nonnegative solutions which is a quantified version of the condition for strong maximum

principle found by Vazquez and Pucci-Serrin in [30, 24] and is closely related to the classical
Keller-Osserman condition [15, 22] for the existence of entire solutions.

Dans cet article on s’intéresse a des équations semi-linéaires sous forme divergence du type:
div(A(2) Du) = f(u),

ot f: R [0,00) est une fonction croissante. On démontre une inégalité optimale de type

Harnack pour les solutions positives. Cette inégalité représente une version "quantifiée” de

la condition établie par Vazquez et Pucci-Serrin dans [30, 24] pour la validité du principe

du maximum fort et elle est étroitement liée & la condition de Keller-Osserman [15, 22] pour
Pexistence de solutions entieres.

1. INTRODUCTION

In this paper we study nonnegative solutions of the equation
(1.1) div(A(x)Du) = f(u).

The coefficient matrix A(z) is assumed to be symmetric, measurable and to satisfy the uniform
ellipticity condition

Al < (A(w)g, €) < Alef”
for every £ € R™, where 0 < A < A. The function f : R — [0, 00) is assumed to be nonnegative
and nondecreasing. Note that we allow f to have jump discontinuity. Throughout the paper
we denote the integral function of f by F) i.e.,

F(t):/o f(s)ds.

The goal of this paper is to prove a general Harnack inequality for (1.1). To be more precise
we seek to answer the following simple question in a quantitative way. If u is a nonnegative
solution of (1.1) in By, then does the value infp, u control supg, u? I would like to stress that
this paper does not concern regularity of solutions of (1.1). In fact, the regularity for (1.1) is
well understood. Indeed, since f is nonnegative, any solution of (1.1) is a weak subsolution of
the corresponding linear equation. Therefore by De Giorgi theorem [8] nonnegative solutions

2010 Mathematics Subject Classification. 35B65, 35G20, 35D30.
Key words and phrases. Harnack inequality, elliptic equations in divergence form, semilinear equations,
nonhomogeneous equations.
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2 VESA JULIN

are locally bounded and by the De Giorgi-Nash-Moser theorem they are Holder continuous.
However, the point is that both the L>-bound and the Hélder norm depend on the L2-norm
of the solution and it is not clear how one can bound the L?-norm by knowing the value of
the solution only at one point.

The main result reads as follows.

Theorem 1.1. Let u € WH%(By) be a nonnegative solution of (1.1). Denote M = supp, u
and m = infp, u. There is a constant C' which depends only on the ellipticity constants X, A
and the dimension n such that

M
(1.2) / — "<
m JE(t)+t
In particular, C is independent of the solution w and of the function f.

Theorem 1.1 is in the same spirit as [14] for nondivergence form equations with nonhomo-
geneous gradient drift term. The above result is stronger and more complete than the main
result in [14], because we do not need any regularity nor growth assumptions on f, and most
importantly, the constant in Theorem 1.1 is independent of f. In particular, the estimate is
stable under scaling.

Harnack inequality for linear elliptic equations by Moser [21] is one of the most important
results in the theory of elliptic partial differential equations. There are numerous general-
izations of this theorem from which the most relevant for us is by Di Benedetto-Trudinger
[10] who proved the Harnack inequality for quasiminimizers of integral functionals. Harnack
inequality for general quasilinear equations has been considered e.g. by Serrin [28] (see also
[18] for the Holder continuity). This result has the disadvantage that the constant will depend
on the solution itself. In Theorem 1.1 the inequality (1.2) is not in the classical form but its
structure depends on the scaling of the equation. This has the advantage that the constant
is then independent of the solution. Theorem 1.1 is more similar to Pucci-Serrin [25] who
introduced a Harnack inequality in R? for quasilinear equations similar to (1.1) where the
operator is allowed to be nonlinear but not to have dependence on z. Compared to [25] the
advantage of Theorem 1.1 is that the dependence on every parameter in (1.2) is explicit and
we do not need any further assumptions on f other than the monotonicity. This makes the
result more general and the esimate (1.2) more stable. Moreover, the result holds in any
dimension and the operator is allowed to have merely bounded coefficients. In particular, it
is not possible to prove Theorem 1.1 by a comparison argument.

The drawback of (1.2) is that it is in implicit form and it may be difficult to write excplicitly
the relation between the maximum and the minimum. On the other hand (1.2) is a natural
generalization of the classical Harnack inequality for equations of type (1.1). We illustrate
this by giving a complete answer to the following problems. In the following v € W12(By) is
a nonnegative solution of (1.1) with M = supg, v and m = infp, u.

(i) Strong minimum principle. If u is zero at one point in By, is it zero everywhere?
(ii) Boundedness. Is u bounded in B; by a constant which depends only on u(0)?
(iii) Local Boundedness. Is there a radius r > 0 such that w is bounded in B, by a
constant which depends only on u(0)?

The problem (i) has been considered by Vazquez [30] and by Pucci-Serrin and their collab-
orators [23, 24, 26, 27] and we know that the strong minimum principle holds if f is positive
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and
Yoat -
0o VF(t)

In fact, this condition is also necessary [3, 9]. Theorem 1.1 is in accordance with this and it
provides a quantification of the strong minimum principle. By this we mean that if

(1.3)

/1 dt
=,
o VE({) +t
then there is a continuous, increasing function ® : [0,1] — [0, 1] such that for M < 1 it holds
m > ®(M), (see also [25]). In order to quantify the strong minimum principle we need to
replace the function /F(t) in (1.3) by y/F(t) +t. This is natural since in the linear case
f =0 the estimate (1.2) then reduces to the classical Harnack inequality.

Similarly we find an answer to (ii). If

/ o dt
- =,
1 @)+t
then there is a continuous, increasing function ¥ : [1, 00) — [1, c0) such that for m > 1 it holds
M < W¥(m), (see also [25]). This condition is very similar to the Keller-Osserman condition

[15, 22] which states that if f is positive and w is a nonnegative and nontrivial solution of
(1.1) in the whole R™ then necessarily

OOL:OO
1 /F(t)

For the proof of this see [17] or Theorem 1.2 below. The above condition is sharp for the
uniform boundedness of the solutions. Indeed if f does not satisfy (1.4) then there exists a
sequence of nonnegative solutions (uy) of (1.1) such that ux(0) < 1 and supg, up, — oo as
k — co. We leave this to the reader.

Finally to answer (iii) we find that if v and f are as in Theorem 1.1, then we may always
find a radius 7 > 0 such that supp_u is uniformly bounded by a constant which depends on
the value u(0). Indeed, since the constant in Theorem 1.1 does not depend on w and f, we
obtain by a simple scaling argument that for M, = supp_wu it holds

(1.4)

My dt
/ S
w(©0) "/ F(t)+1¢

Note that when » — 0 the above estimate converges to the classical Harnack inequality.
Therefore when r > 0 is small enough we have that M, < oo. This result can be seen as
a weak counterpart of the short time existence result for the one dimensional initial value
problem

y'=f), y0)=y and y'(0)=y
Note that if f satisfies (1.4) the above initial value problem has a solution in the whole R.
The statement of Theorem 1.1 is sharp which can be seen already in dimension one (see

[22, Remark 1]). The assumption f > 0 is also necessary, i.e., Theorem 1.1 is not true for
equations

—Au = f(u)
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where f is nonnegative and monotone. This can be seen by a simple example which we give
at the end of the paper. One reason for this is that the above equation is the Euler equation
of the nonconvex functional

1
/ ~|Du|? dx — F(u) dx
B, 2

and criticality alone is not enough to prove the optimal L°°- bound for minimizers (see [4]
and the references therein). On the other hand Theorem 1.1 could still hold without the
monotonicity assumption on f.

The proof of Theorem 1.1 is rather long and has several stages, and therefore we give its
outline here. In this paper we develop further the ideas from [14]. The main difficulty is to
overcome the lack of regularity and growth condition on f, and to avoid the constant C' to
depend on f. In order to do this we will revisit the proof of the classical Harnack inequality
by Di Benedetto-Trudinger [10] in order to have a more suitable and sharper version which
allows us to treat the nonhomogeneous case.

To overcome the lack of regularity and to have the constant independent of f, we use
the fact that the equation is in divergence form and integrate it locally over the level sets
of the solution (as in [20, 29]). This will give us precise information how fast the level sets
locally decay. Similar method has been used to study global regularity for solutions of elliptic
equations e.g. in [7]. Here we use it to prove local estimates.

The first observation is that we have a good local estimate on the decay rate of the level
set {u >t} when we are in a ball B(x,r) whose radius is small r ~ ¢/,/F(t) and the density
of the level set in the ball

oo() = {u >t} N B(x,r)|
| B(x,7)]

is not close to one or zero (Lemma 3.3). The second observation is a measure theoretical
lemma (Lemma 3.4) which states that the measure of the set where the density oy is between
1/5 and 4/5 (which can be thought to be the "boundary” of the level set {u > t}) is related to
the measure of the set where the density is larger than 4/5 (which corresponds to the "interior”
of the level set {u > t}). This is of course very much related to the isoperimetric inequality.
We combine these two lemmas and obtain the following sharp estimate (see Proposition (3.5))
for the decay rate of the level set p(t) = [{u >t} N By,

(L5) (1) > emin{ ()5 Tu(t) ),

for almost every ¢ > 0 for which u(t) < |Ba|/2. When pu(t) > |B2|/2 we have a similar
estimate for n(t) = |[{u < t} N By|. Note that (1.5) has two parts on the right hand side.
The first one is the nonhomogeneous estimate and the second is the homogeneous one. In the
sublinear case f(t) <t we may integrate (1.5) and conclude that the solution is L°-intergable.
In the nonhomogeneous case the inequality (1.5) may oscillate between the two estimates.
Another issue in the proof is to overcome the fact that we do not have any growth condition
on f. In [14] it was assumed that the nonhomogeneity is of type f(t) = g(t)t, where g is a
slowly increasing function. The proof was based on the idea that under this assumption any
unbounded supersolution blows up as the fundamental solution of the linear equation. This
is certainly not true in our case. To solve this problem we study more closely subsolutions of
(1.1) and prove an estimate (Lemma 4.3) which roughly speaking quantifies the fact that if f is
very large then solutions of (1.1) will grow fast compared to the solutions of the corresponding
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linear equation. We iterate Lemma 4.3 and obtain the following lower bound for subsolutions.
Similar result is obtained also in [17].

Theorem 1.2. Let u € WY2(B(z0,2R)) be a continuous and nonnegative subsolution of
div(A(xz)Du) > f(u)

and denote M = supp(,, gyu and m = inf gy gy u. If u(zg) >0 then it holds

M
/ At g
m/4 F(t)

for a constant ¢ > 0 which is independent of u and f.

In fact, we will not need this result in the proof of Theorem 1.1 but only Lemma 4.3.
However since Theorem 1.2 follows rather easily from Lemma 4.3 we choose to state it. At
the end of Section 4 in Corollary 4.4 we show that Theorem 1.2 implies the Keller-Osserman
condition for entire solutions of (1.1). This result has been proved in [17]. This result is also
known for wide class of nondivergence form operators [5, 6, 12].

Let us now briefly give a rough version of the proof of Theorem 1.1. We integrate (1.5)
(and its counterpart for ) and conclude that for every ¢ > 0 there exists t. > 0 such that
p(te) = {u > te} N By| < e and

te
/ L YOS
m VF(t)+t

For simplicity assume that for every ¢ > t. we have the nonhomogeneous (the first) estimate
n (1.5). Then integrating (1.5) gives

©dt 1y , 1 1 1
c — < - n () (t)dt = —pn(te) < —en.
| e s e o= e <

Finally we conclude that it has to hold M = maxp, u < 4¢.. Indeed, otherwise Theorem 1.2
would imply for M3/, = Maxp, , U that

/Ms/z dt S
te F(t) — 2

which is a contradiction when ¢ is small.

The paper is organized as follows. In the next section we recall basic results from measure
theory. In Section 3 we prove estimates for nonnegative supersolutions of (1.1). The main
result of that section is Proposition 3.5. In Section 4 we prove estimates for subsolutions of
(1.1) and prove Theorem 1.2 and show in Corollary 4.4 how it implies the Keller-Osserman
condition for entire solutions. Finally in Section 5 we give the proof of Theorem 1.1.

3=

2. PRELIMINARIES

Throughout the paper we denote by B(z,r) the open ball centred at x with radius r. In
the case = 0 we simply write B(0,r) = B,.
Let U C R™ be an open set. A set & C R™ has finite perimeter in U if

P(E,U) = sup{/ divpdr : ¢ € CHU,R"), ||¢]loo < 1} < 0.
E
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Here P(E,U) is the perimeter of E in U. Sometimes we call E a set of finite perimeter if it is
clear from the context which is the reference domain U. Let E be a set of finite perimeter in
U. The reduced boundary of F is denoted by 0*E. It is smaller than the topological boundary
which we denote by OF. For any open set V' C U it holds P(E, V) = fa*EmV dH" !, where

H" ! is the standard (n — 1)-dimensional Hausdorff measure. Moreover the Gauss-Green

formula holds
/ div X dx = / (X,v)dH" !
E O*E

for every X € WO1 °°(U,R™). Here v is the outer unit normal of F which exists on 8* E. For an
introduction to the theory of sets of finite perimeter we refer to [2] and [19]. All the following
results can be found in these books.

The most important result from geometric measure theory for us is the relative isoperimetric
inequality. It states that for every set of finite perimeter E in the ball B the following
inequality holds

P(E, B) > cmin { |E N Byl =, | B \ B|7 |

for a constant ¢ which depends on the dimension. The proof of the main result is mostly
based on this inequality.

We recall the coarea formula for Lipschitz functions. Let g be Lipschitz continuous in an
open set U and let h € L'(U) be nonnegative. Then it holds

/Uh(:c)|Dg(x)| dx = /O; (/{g:t}mU h(x)d?—l"_l(a:)> dt.

The formula still holds if g is locally Lipschitz continuous and h|Dg| € L'(U). From the coarea
formula one deduces immediately that almost every level set {g > t} of a Lipschitz function
is a set of finite perimeter. In the case ¢ € C*°(U) the level sets are even more regular,
since by the Morse-Sard Lemma the image of the critical set K = {x € U : |Dg(x)| = 0}
has measure zero |g(K)| = 0. In particular, almost every level set of a smooth function has
smooth boundary.

Throughout the paper we denote the sublevel sets of a measurable function u : Bs — R by

E,:={zx € By :u(zx) <t}

and the superlevel sets by
Ay = A{x € By : u(x) > t}.

Moreover we denote u(t) = | 4| and n(t) = |E|. In Section 3 we estimate the differential of
w(t) (and n(t)) when w is nonnegative supersolution of the equation (1.1). The differential of
p(+) is a measure and we denote its absolutely continuous part by p/. To avoid pathological
situations (see [1]) we regularize the equation in order to work with smooth functions. Then
by the result from [1] we may write u as

/ 1 n—1
w(t) = —/ ——dH
2 {u=tynB, |Dul

for almost every t.
Let us turn our attention to elliptic equations in divergence form. As an introduction to
the topic we refer to [13].
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Definition 2.1. A function u € W2(U) is a supersolution of (1.1) in an open set U if
/U<A(x)Du, Dy)dx > — /U f(u)pdx for all nonnegative ¢ € W01’2(U).
A function u € W2(U) is a subsolution of (1.1) in § if
/(J(A(x)Du, Dy)dr < — /U f(u)pdx for all nonnegative ¢ € Wol’Q(U).

Finally u € W12(U) is a solution of (1.1) in U if it is both super- and subsolution.

As we already mentioned we will regularize the equation (1.1) and work with solutions of
(2.1) div(A.(x)Dv) = f-(v)
where A. is smooth, symmetric and elliptic, and f. is positive, increasing and smooth. More-
over we choose A, and f. such that A, — Ain L' and f. — fin L}OC(R) such that f., > f;, for
g9 > ¢1. Let u € W12(By) be a nonnegative solution of (1.1) in By. For every ¢ > 0 we define
ue to be the solution of (2.1) having the same boundary values as u, i.e., us —u € W01’2(B2).
Since (ue) are locally uniformly Hélder continuous we have that u. — w uniformly in By and

(denote F.(t) = fg fe(s)ds, M. = suppg, u. and m. = infp, u.)
(Mt
lim — =

/M dt
=0 i, F(t) +t m VE(@)+t
by monotone convergence. Hence, we may assume that the solution u in Theorem 1.1 is
smooth, i.e., u € C*°(By).

Finally for De Giorgi iteration we recall the following lemma which can be found e.g. in
[13, Lemma 7.1].
Lemma 2.2. Let (x;) be a sequence of positive numbers such that

. 1
Tip1 < C'OBZQCZH”
with Cy > 0 and B > 1. If 2o < C;"B~™" then

lim x; = 0.
i—»00

3. ESTIMATES FOR SUPERSOLUTIONS

In this section we study nonnegative supersolutions of (1.1). We begin by proving a stan-
dard Caccioppoli inequality and its variant, which involves a boundary term. As we mentioned
in the previous section we prefer to work with smooth functions. Recall that E; = {u < t}NBs.
Proposition 3.1. Assume that u € C*°(BR) is a nonnegative supersolution of
(3.1) div(A(x)Du) < f(u).

Then for r < R it holds
2
|Duf* dz < C (— + F(t)) |E; N By
/;thr (R - T)Z

for a constant depending on A and A. Moreover for almost every t > 0 we have

t F(t
/{t}ﬂB |Du|dH”1§C<(RT)2+ £)>|EtﬂBR|.
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Proof. Let us fix t > 0 and choose a testfunction ¢(x) = (¢t — u(x ))+C2( ), where ¢ € C3(Bg)
is a standard cut-off function such that ((z) =1 in B, and . We get after using
the ellipticity and Young’s inequality that

C
Am&mmegﬁiﬂjéJFWﬁmﬁ'%fM@—MMm

The standard Caccioppoli inequality follows from

BRf(u)(tu)+dx—/ f(u>/0tX(t u>sd3d1'*/ fu )/tX(u<l)dldx

(3.2) / WXy dads < / / F(9)x (s da ds
<</0 f(s)ds> {u <t} N Bg|
(t)

t)|E: N Bpg|.

Here x g denotes the characteristic function of a set E.

By Morse-Sard Lemma it holds |Du| > 0 on {u = t} for almost every ¢ > 0. Let us prove
that the second statement holds for every such t. We integrate the equation (3.1) over the
set By N B, and get

/ (A(2)Du, 2%y ayn1 < — / <A(:):)Du,i>d7{”’1+/ f(u) dz.
{u=t}nB, | Dul OB,NE, || ENB,
For a rigorous argument see [29] and note that (see [11])

d

— (A(x) Du, Du) da::/ (A(x)Du, Du

>dHn 1
{u<t}nB, {(u=t}NB, " | Dul

By the ellipticity we have

/ |Du|dH"™! < C |Du|dH" 4+ C f(u) da.
{u t}ﬂB OB,NE; EtﬂBp

and integrate the previous inequality with respect to p over (r, ) and get

Choose p = "L

33) (R—1) / \DuldH" ' < C \Dulde + C(R — 1) / Fu)do
{u t}ﬂBr Bp*ﬁEt E:NBr

By the previous Caccioppoli inequality we have

/ |Du| dz < |E; N B;|2 / |Dul? da
Ethﬁ EtﬂBﬁ

<0 (e + V@) 150 Bl

[V

Arguing as in (3.2) we get

/ flu)de < 1/ Fa(t =), de < 2915, A Bl
E,NBg t JEnBR t
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Therefore from (3.3) we get by Young’s inequality

t F(t F(t
/{t}mB |Du|dHn—1§C<(R_T)2+ Q+ E)) \E, "\ Byl

t F(t
§C<(RT)2+ E))|EmBR|.

]

Next we observe that if the measure of the sublevel set |E; N Bs| is very small compared
to the ratio t/y/F(t), then we may apply the estimates from the linear theory. The next
result follows from the previous Caccioppoli inequality together with the standard De Giorgi
iteration. The argument is almost exactly the same as [13, Lemma 7.4] and therefore we write
only the outline of the proof.

Lemma 3.2. Assume that u € C°°(Bs) is a nonnegative supersolution of
div(A(z)Du) < f(u).
There is o9 > 0 such that if for some t > 0 it holds
t n
|Et M Bg| < (50 —\
VEM) +t

then one has

iglfu > E
Proof. Let t > 0 satisfy the assumption of the lemma. For 0 < h < k <t we define
0, ifu>k
v=<gk—u, ifh<u<k
k—nh, ifu<h.

By possibly decreasing the value of dy we may assume that |E; N Ba| < %|Bg|. Using the
Caccioppoli inequality (Proposition 3.1) and arguing as in [13, Lemma 7.4] we conclude that
forevery 1 < p < R<2and 0 < h < k <tit holds

. k
(k—h)|EynB,|"" <C (R—_p + \/F(k)> |E N Bl

Define 7; = (14 27%) and k; = %(1 +27%) and apply the above inequality for R = 7,
p ="rit1, h = kiz1 and k = k;. We set x; = |E), N By,| and obtain

VED 141
ziv1 < Cy (1 + %) 411‘}4_”.

We choose dy > 0 such that
2
0 < Co_n47n .
By the assumption on t we have

t n
To = |Et ﬂBg| < (50 (—)
VE() +t

and we conclude from Lemma 2.2 that lim; . 2; = 0. In other words infp, u > ¢/2. O
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We turn our attention to Proposition 3.5 which is the main result of this section. To that
aim we will need two lemmas. In the first lemma we use the Caccioppoli inequality to study
the local decay rate of the level sets E;. Due to the nonhomogeneity of the equation we do
this only in small balls B(x,r) with radius » < ¢/4/F(t). Due to the relative isoperimetric
inequality the estimate depends whether the density |E; N B(z,r)|/|B;] is close to one or close
to zero.

Lemma 3.3. Assume that u € C°°(By) is a nonnegative supersolution of
div(A(z)Du) < f(u).
Then for almost every t > 0 it holds

1
/ S 1 > S min By 0 B(wo, )|, [ Bleo, )\ Bl |
{u=t}NB(a0,2r) | Dl t
whenever B(xo,2r) C By is such that
t
r < .
F(t)

Proof. Without loss of generality we may assume that g = 0. We may also assume that
|E; N B(xo,7)| < |B(xo,7) \ Ey| since in the other case the proof is similar. Moreover by
Morse-Sard Lemma we may assume that |Du| > 0 on {u =t} N Bs.

Let us first assume that

(3.4) |E; N B,| < 27" 2|B,|.
Let us fix x; € Ey N B,.. For x; we define a radius R; such that
R :==1inf{p>0:|B(z;,p) NE| < (1—27""1B(s,p)|}.
Since x; € Ey and E; is an open set we have that R; > 0. Since the point x; is in B,., a simple
argument gives
|B(wi,r) \ Br| < |Br| = [Byjal = (1 = 27")[B,|.
Therefore we deduce from the assumption (3.4) that
|B(z,7) N Ey| < |B(xi,r) \ Br| + |E N By

< (1=27")[B(xi,r)| + 27" 2| B(ai, )|

< (1 =27""YB(xy, 7).
Thus we conclude that R; < r. Hence we obtain a family of balls B (x4, R;) which cover
E; N B, and satisfy 0 < R; < r. By the Besikovitch covering theorem [19, Corollary 5.2] we

may choose a countable disjoint subfamily, say F, such that {(n) Y, » [B(x:, Ri)| > |E;NBy|.
Moreover by the definition of R; it holds

|Ey 0 B(xi, Ri)| = (1 —27""Y)|B(i, R;)| = R}

In particular, the density |E; N B(z;, R;)|/|Bg,| is bounded away from zero and one.
Let us fix a ball B(x;, R;) in the Besikovitch cover. We use Proposition 3.1 in B(z;, R;)
and obtain

F(t
/ |Du|dH™ ' < C (% - L) |Ey 0 B(xi, 2R;)|
{u=t}NB(z;,R;) T t

< CtR!'?,

(3.5)
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where the last inequality follows from R; < r < ¢/4/F(t). On the other hand the relative
isoperimetric inequality yields

—1
1
/ |Du|dH" ™! > ¢ / ——dH" | P(E;, B(xi, Ry))?
{u=t}NB(xi,R;) {u=t}nB(a,Ry) 1Dl

—1
(3.6) =y ——dH ) BN Blas B
{u=t}nB(ai,Rry) 1 DUl
—1
1 _ _
>c ——dH" | R
{u=t}nB(z:,Ry) 1D
Therefore (3.5) and (3.6) give
1 c c
: ——dH" !> -R? > — |B(z;, R;
(3.1) {u=t}nB(z:,R;) | DUl M2 R 2 7 1Bl Ry

for every ball B(z;, R;) C Ba, in the cover. Summing (3.7) gives

/ L dH™ ! > Z/ L dH" !
{ PR

w=t}nBs, DUl w=t}nB(z:, Bs) | D]

c
>~ Z | B(w;, Ri)|
3
c
—— |E;N B
= g O
and the claim follows.
Let us assume next
(3.8) |E;N B,| > 27"72|B,|.

In this case we do not need any covering argument. Since we assumed that |E;NB,| < |B,\ E|

we have
B
|Et n Br| < |2—T|

We use Proposition 3.1 in B, and argue as above to conclude that

F
/ |Du|dH™ < © (:—2 + #) i1 Bay| < Ct 172,
{u=t}NB;

where we used the fact that r < ¢/1/F(t). We use the relative isoperimetric inequality and
(3.8), argue as in (3.6) and get

—1
/ |DuldH"™! > ¢ / L dH" ! P2,
{u=t}nB, {u=tynB, |Dul

Hence the claim follows. O

Next we prove a measure theoretical lemma which is related to the relative isoperimetric
inequality. To this aim we denote for every 6 € (0, 1] the truncated distance function to the
boundary 0Bs by

(3.9) ds(z) := cmin{(2 — |z|),d},
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where ¢ € (0,1] is a number which we choose later. For every measurerable set A C By we
define a density function o4 : B — R by

(3.10) a(a) i AN B ds())

|Bd5(x)|

Although it is not apparent from the notation, the function o4 depends on §. The point of
the following lemma is to study the size of the set where the density function of a given set A
takes values between 1/5 and 4/5, i.e., away from zero and one. Heuristically one may think
that the set {o4 = 1/2} corresponds to the boundary of A and that {1/5 < o4 < 4/5} forms
a layer around it. The thickness of this layer depends on the Lipschitz constant of o4 which
can be estimated by a simple geometrical argument as follows.

Fix x € By and a unit vector e. When h > 0 is small we may estimate

|B(x,ds(z) + h) \ B(z,ds(x))] - Ch

|B(z,ds(z)/2)| ~ ds(z)
where C' depends on the dimension. Therefore o4 is locally Lipschitz continuous and its
gradient can be estimated by

oAz + he) — oa(z)| <

C
ds(z)

(3.11) Doa(a)| <

for almost every z € Bs.

Lemma 3.4. Suppose A C By is a measurable set such that |A| < §|Ba| and let § € (0,1].
Let ds(-) be the truncated distance (3.9) and let o4 be the density function (3.10). There is a
constant ¢, which depends on the dimension such that

{1/5 < 04 < 4/5}| > e min {8 [{oa > 4/5} 7,

{GA > 4/5}|}

It is not difficult to see that if A is a smooth set then by letting § — 0 the previous lemma
reduces to the relative isoperimetric inequality.

Proof. Let us fix § € (0,1]. Throughout the proof we denote for every s € [0, 1] the superlevel
sets of o4 by
A :={x € By : 04 > s}.
We may write 04 as a convolution
1

oalz) = ———
=) |Bas ()| JBs

XAW)XBy, 0y (T — y) dy.
Therefore by Fubini’s theorem we have

1
[ oarae= [ ([ by (2 =) ) dy = A
Bz B2 BQ |Bd5(3?)|

Hence it holds 3
A= [ oawidoz [ oaw)ds = 34
Bs A3/5 5
Since |A| < £|Bs| we have
)
(3.12) |[4°] < 1B

for every 3/5 < s <4/5.
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Let us define

(3.13) 0 >

Op 1= o — 1 and R, ::2—?71.
We divide the proof in two cases. Let us first assume that there exists § € (7/10,4/5) such
that

R 1 .
(3.14) 4% B, | = (|4

This means that part of the level set A° = {04 > 3} is away from the boundary 9By. We
observe that for every # € Bp, it holds ds(z) > ¢d for a dimensional constant ¢ > 0. By
possibly decreasing § we deduce from (3.12) that |A*NBg, | < &|Bg, | for every 3/5 < s < 4/5.
Then it follows from (3.11), from the coarea formula and from the relative isoperimetric
inequality that

\{1/5<0A§4/5}|20/ ds(z)| Do a(x)| dx
(A1) B,

> 05/ / dH" L (z) ds
3/5 J{oa=s}NBg,,

=co P(A?, Bg,)ds
3/5

> cé/ |A® ﬂBRn[nTil ds
3/5

> c6|A° N Bp, | .

Hence the claim follows from (3.14) since
[4° 1 B, > 1A% 2 1A% = Llfoa > 4/5)].
Let us next assume that for every s € (7/10,4/5) it holds
(3.15) |4° N Bp, | < é|As|.

This means that large part of the level set A® is close to the boundary 0Bs.
We denote the reduced boundary of A% by 9*A®. Let us first show that for almost every
s € (7/10,4/5) it holds

(3.16) / ds(x) dH™ > o A%,
0*ASNBsy

To this aim fix s € (7/10,4/5) such that A° has locally finite perimeter in Bs. We deduce
from the definition of R,, (3.13), from (3.15) and from the coarea formula that there is p,, €
(2 — 6p, Ry,) such that

1
g4l 2 1A4° N Br,| 2 |A4° N (Br, \ Bz-s,)]
_on
(3.17) - / S 1Y 0B, N A%)dp
O

= 37{"4(03,)” N A%).



14 VESA JULIN

Choose a vector field X (z) = (Jz| — 2)“;—‘ and observe that by the definition of J,, (3.13) it

holds

2(n—1)
]

(divX)(z) =n— >

| =

for every |z| > 2 — 6,,. Therefore the Gauss-Green formula and (3.17) yield
1., .
§|A \ By, g/ div(X) dx
AS\BPn
=

VY H +/ (2 — |z )H" !
|z 9B, NAs

(I = 2)(

/a*ASm(BQ\BPn)

<C ds(x) H" 1 + 6, H" 1 (0B, N A%)
9*A*N(B2\B,,)

1
<C ds(z) H™ ™t 4 =] A%).
9+ ASNBa 4

The inequality (3.16) then follows from (3.15) as follows
S S 7 S
A7\ By, | > 147\ Br,| > LA

Finally we use (3.11), the coarea formula and (3.16) to conclude

{l/5<0,4§4/5}|20/ ds(x)|Voa(x)|dx
A7/10\A4/5

4/5

. / ( / ds (x) d’}-l"_l(:z:)) ds
7/10 {oa=s}NB2
4/5

—c / < / ds(z) d?—l”l(x)) ds
7/10 0*AsNBy

4/5
> c/ |A®| ds
7/10

> c|AY?).

We use the two previous lemmas to estimate the decay rate of the level sets.
Proposition 3.5. Assume that u € C*°(Bz2) is a nonnegative supersolution of
div(A(xz)Du) < f(u).
Denote p(t) = |Ay N Ba| and n(t) = |E; N By| where By = {u <t} and Ay = {u > t}. Then

) p—
for almost every t > 0 with p(t) < % it holds
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Here 1/ is the absolutely continuous part of the differential of p.

Proof. We will only prove the first inequality since the second follows from a similar argument.
By Morse-Sard Lemma for almost every ¢ > 0 it holds that |Du| > 0 on {u = ¢t} N By and by
[1] we may write
1
/ n—1
—u'(t) = / —— dH"".
{u=t}NBs | Dul
Let us fix ¢t > 0 for which this holds. Let us choose
t

F(t)

define the truncated distance by

1 .
ds(z) == mmm (2 —|z|), 0},

and denote the density function by
_ AN B(z,ds(x))|
| Bs ()]

oa,(x):
Let us divide the proof in two cases and assume first that
{04, > 4/5}| < %|At|.
This means that there is a large set where the density of A; is low. In particular, it holds
A {oa, < 4/5)] > %|At|

For every xz; € Ay N{o4,(x) < 4/5} we choose a ball B(z;,ds(x;)) and thus obtain a covering
of AyN{oa, <4/5}. By the Besicovitch covering theorem [19, Corollary 5.2] we may choose
a countable disjoint subfamily, say F, such that

1
(318) &) Y| (AN {oa, < 4/5)) 1 Bl dy(x)| > |40 (o, < 4/5)] > S|A
i€F
We observe that if B(x;,ds(x;)) and B(xj,ds(x;)) are two balls from F such that the enlarged
balls B(x;,2ds(x;)) and B(xj,2ds(x;)) overlap each other, then their radii are comparable,

D) < ds(ay) < 3ds(a)

Therefore since the balls in F are disjoint it follows that the enlarged balls B(x;, 2ds(x;))
intersect every point in By only finitely many times, say, n(n) times. In particular, we have

1 1
3.19 n(n / ——dH" > / ——dH" L
(3.19) ) {u=t}nB, | Dul ; {u=t}B(z:,2ds(z;)) | D]

Let B(z;,ds(x;)) € F. Since x; € {04, < 4/5} we have

|B(zi, ds(2:)) \ Et| = |A¢ 0 B(wi, ds(23))| < <| B, ds(x))]-

| >

Therefore

|EtﬂB(‘Ti,d5({L‘i))‘ 2 ‘B(xz,d(;(x,))\Et|

Ll



16 VESA JULIN

and Lemma 3.3 gives

1 e
S > By dafai)) \ B
/{u—t}mB<mi,2da(zi>> D 1 2 g Bl ds(@i) \ By

- % | Ay N Bz, ds ()]

Summing the above inequality and using (3.18) and (3.19) yield

1 n—1 1 n—1
n(n / gl > / D WM
" {u=t}nB, |Dul F =B @:.2ds(20)) [Pl
C
> 5 20 A0 B ds()|
i€F
C
> —— | Ay
= g

In other words —p/(t) > $pu(t) and the claim follows in this case.
Let us next assume that

(3.20) [{oa, >4/5}] > %|At|.

This means that there is a large set where the density of A; is close to one. In this case we
do not cover the set {04, < 4/5} but only the part where the density o4, is between 1/5 and
4/5. Then we estimate the measure of this set using Lemma 3.4 .

For every z; € {1/5 < 04, < 4/5} we choose a ball B(x;, ds(x;)) and thus obtain a covering
of {1/5 < 04, < 4/5}. By the Besicovitch covering theorem we may choose a countable
disjoint subfamily F such that

(3.21) {1/5 < o4, <4/5} <&(n) D |B(wi,ds(x:)))-
ieF
Moreover as in (3.19) we have
1 1
3.22 n(n / ——dH" > / ——dH" L
(3.22) ) {u=t}nB, DUl = Ju=0nB(a; 2d5(2:)) [P
Let B(z;,ds(z;)) € F. Since x; € {1/5 < 04, <4/5} we have

1 | B(xi, ds(x:)) \ Et| _ |A¢ N B4, ds(;))]

57 ‘Bdé(lz')
Therefore Lemma 3.3 gives

1 c
Hnil Z n B xivd ZT; .
/{ut}ﬂB(:rizda(xi)) | Du| t‘ (wis ds ()]

4
< -
-5

’Bds(%‘)

Summing the above inequality and using (3.21) and (3.22) yield

1
n(n) / ——dH" > / —— dH" !
{u=t}nB, | Dul Zezf {u=t}"B(z:,2ds(z;)) D]

=Y [Blai, i)
ieF
@]{1/5 < o4, <4/5}].

Y



GENERALIZED HARNACK INEQUALITY FOR SEMILINEAR EQUATIONS 17

Finally we use Lemma 3.4 to conclude that

n—1
[{1/5 < o4, <4/5}| > cmin {6 [{oa, > 4/5}| ™ ,|{oa, > 4/5}|}.
Therefore by the two previous inequalities and by (3.20) we get

—i(t) = / ! dH™ ! > %min {ou(t)
{

u=t}NBy |D’LL|

n—

Tl?/j‘(t)}'

The result follows from

F(t)

4. ESTIMATES FOR SUBSOLUTIONS

In this section we prove estimates for subsolutions of the equation (1.1). The most impor-
tant result of this section for Theorem 1.1 is Lemma 4.3. Similar but slightly different result
is proved in [16]. The proof is fairly standard. Instead of using a capacity argument [16]
we give a short proof based on De Giorgi iteration. After Lemma 4.3 we give the proof of
Theorem 1.2 and Corollary 4.4.

We begin by recalling the following standard result for subsolutions of the linear equation

(4.1) div(A(z)Du) = 0.
Lemma 4.1. Letu € WY2(B(x,2r)) be a subsolution of (4.1) and denote M, := supp(
There is g > 0 such that if

|{u > u(xp)/2} N B(xo,r)| < &o|Brl,

x0,T) u.

then M, > 4u(xg).

Proof. Let us recall that by De Giorgi theorem any subsolution v of (4.1) is locally bounded
and satisfies

sup v < CT_%HUHL?(B(:ro,T))'
B(xo,r/2)

The result follows by applying this to v = (u — u(xzg)/2)+ which is a subsolution of (4.1). O

We recall the notation A; = {u > t}. We have the following Caccioppoli inequality for
subsolutions of (1.1).

Lemma 4.2. Let u € WH2(B(x0,2r)) be a subsolution of
div(A(z)Du) > f(u)
and denote M, := suppy, ) u. Then for every p <r and t < M, it holds

M,
/ (“_t)idmg%ﬁ‘ltﬁf?r\% — / (u—t)2 dz.
B(zo,p) (r—p) F(t) B(zo,r)

Proof. Without loss of generality we may assume that o = 0. We use testfunction ¢ =
(u—t)1¢% in (1.1) where ¢ € C§°(B,) is a standard cut-off function such that ¢ = 1 in B,
and |D¢| < r%p This gives

[t opar<c [ w-ntincar- [ e -o. i
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Since f is nondecreasing we have for every z € A; N B, that
F(t F(t
flu@) 2 10 2 T 2 FO i) ),
E

Therefore we have

/ )= 1)y > ﬁ}? | w-vica

We denote w = (u — )4+ € VVO1 (B,) and obtain by Young’s and Sobolev inequalities

[ 1= 0.0P a5 [ =i s

v F(t
> c% |wDw| dx

T T

_ c—Vﬁf“ /B %\D(wQ)\dm

F(t % =
D (f 0T

The result follows from Jensen’s inequality

n—1

2n n
(/B (u—t)" dx) > |AtﬁBp|_%/B (u—t)2 da.

P P

By the standard De Giorgi iteration we obtain the estimate we need.
Lemma 4.3. Let u € Wh2(B(x,2r)) be a subsolution of
div(A(xz)Du) > f(u)
and denote M; 1= Supp(y, .y u. If 0 < M, < 2u(zo), then

u(zo)

()
Proof. By rescaling and translating we may assume that u is a subsolution of
div(A(z)Du) > 72 f (u)
in By and 0 < M; < 2u(0). We need to show that
u(0)

Let 7, p be such that 1/2 < p < 7 < 1 and h, k such that u(0)/2 < h < k < u(0). Then it
follows from the assumption M; < 2u(0) and Lemma 4.2 that

1
/ (u—k)idxgc/\omkm&\%ﬁ/ (u— h)2 da.
AkﬁBp (T p) ApNB-

> cr.

Ao = >c>0.
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Since
1
AmBTgi/ u—h)? dz
e T

one gets

u— k)2 de ! ! u—h)% de e
02 [ e s O g ([ )

Define r; = 1(1+27%) and k; = w(0) (3 —4717%). Write (4.2) for h = ki, k = kiy1, 7 =1
and p = r;y1 and set

;= M1_2/ (u— kl)i dx.
AkimBTi
Since M; < 2u(0) we obtain
‘ 1
Tit1 < C()CiAo .I’;Jr"
for Cy > 1 and Cq > 1. Let us show that it holds
(4.3) Ao > |Bi["Cyte™
Indeed, we argue by contradiction and assume that (4.3) does not hold. This implies
2o < MfQ/ w?dz < |By| < Cy"C A
By
It follows from Lemma 2.2 that lim; o, z; = 0. This means that

sup u < §u(O)
By

which is a contradiction. Therefore we have (4.3) and the claim follows. O

Proof of Theorem 1.2. Without loss of generality we may assume that zop = 0. Let us
denote My = u(0) and Ry = 0. We define radii Ry € (0, R], where k = 1,..., K, such that
the corresponding maxima Mj, := sup Bp, U satisfy

My, = 2My,_4
for every k = 1,..., K — 1 and Rx = R and SUPB(z0,R) U = Mg < 2Mg_1. Denote also
ry = R — Rg_1 for i = 1,..., K. For notational reasons we also define M_y = My/2 and
M_y = My/4.

Let us fix k € 1,..., K. Let x;_; € 0Bp,_, be a point such that u(xy_;) = Mj;_;. Note
that because of the maximum principle the maximum is attained on the boundary. Since
SUPB(z), 1) U < My = 2Mj—1 Lemma 4.3 yields

My,

——F(Mkfl/Z) > Cr.

Note that My_1 = 4Mj_3 and My_1/2 = My_o. Therefore by the monotonicity of F' it holds

/Mk2 ! > My s > l My > corg
Moy VF®) ~ VF(My—2) ~ AVF(My/2) —
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Summing the above inequality over £k =1,..., K yields

M

Mg 2

/—2 \/— k=1

Since M_9 = u(0)/4 > m/4 and Mg_o < M one has
Mg 2

fo. = L

The result follows from the previous two 1nequahtles. O

Let us briefly discuss about the previous theorem. At the first glance the statement of
Theorem 1.2 might seem unsatisfactory. First, one could think that the assumption u(xy) > 0
in Theorem 1.2 is unnecessary. However, it is easy to see that it can not be removed. Second,
one can not reduce the interval of integration from [m/4, M] to [m, M], i.e., the estimate

M dt
is not true. To see this choose f such that f(t) =0 fort € [0,1] and f(t) = 1 for t > 1.

Construct a one dimensional solution of v’ = f(u) in (0,1) by u(z) =1 for 0 < z < 1—¢ and
u(z) =1(z —1+¢)2+1for 1 —e < 2 < 1. This solution does not satisfy the estimate (4.4).

(4.4)

Corollary 4.4. Suppose that there exists a continuous subsolution u € VVZ}JC2 (R™) of
div(A(x)Du) > f(u)

i R™ which is not constant. Then necessarily

/_O; ;l:(t) -

Proof. Since u is not constant there exists a point xg such that u(xg) > inf gy, 1) u. Without
loss of generality we may assume that o = 0. Let us fix a large radius R > 1 and denote
maog = infp,, uand Mg = supp, u. We define v = u—mgg which is a nonnegative subsolution
of

div(A(z)Dv) > f(v)

in Byg where f(t) = f(t 4 mgg). Denote also M = supp, v = Mg —mag and m = infp, v =
mp — map. Since v(0) = u(0) — maor > 0 we deduce from Theorem 1.2 that

M
df >cR
m/4 F(t)
Since i
/M dt Mr gy
<
m/4 F(t) maR F(t)

the result follows by letting R — oc. ]
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5. PROOF OF THE MAIN THEOREM
This section is devoted to the proof of Theorem 1.1.

Proof of Theorem 1.1. Let u be a nonnegative solution of
div(A(z)Du) = f(u)

in By. As we discussed in Section 2 we may assume that u € C°°(B3). Let us once more

recall our notation E; = {u < t}, Ay = {u > t}, n(t) = |E; N Ba| and u(t) = |A; N Ba|. Let

to > 0 be such that n(tg) = @ or, if such number does not exist, the supremum over the

: |Ba|
numbers ¢ for which n(t) < =2

Let 99 > 0 be from Lemma 3.2. Let us first show that there exists C', which depends on
do, such that either the integral is bounded

to ds c
- <
o VF(s)+s

or there exists t5 € (0,ty) such that
t

(5.1) n(ts) < o ( s <C.

i n and v kds
VF(ts) +ts ts VF(s -
Indeed, it follows from Proposition 3.5 that for every t < ¢y for which the first inequality in
(5.1) does not hold, i.e.,

t n
t)> 6| —
7]( ) o O< F(t)-i—t)
we have )
1—-1
n(t
7t > ! (t)
F(t)+t
for a constant which depends on dg. In other words

i( (b)) > - c
a" T VF) +t
We integrate the above inequality over (t,tp) and get
to ds

Nzel TReas

to ds > 2|B2|

0 VF(s)+s ¢
we conclude that there exists ts € (0,%p) for which (5.1) holds. Since ts satisfies (5.1) we
deduce from Lemma 3.2 that

1 1
| Ba| > nw (to) —nn (

Therefore if

t
m = inf u > -
B 2

Therefore we have

to ds s s to ds
5.2 / — < / — 4+ — < C
> m \/F(s)+s ts/2 9 ts VF(s)+s

for a constant C which is independent of u and f.
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We need yet to show that
M ds

o VF(s)+s =¢

where M = supp, u. To that aim let ¢ > 0 be a small number which we choose later. Let
t. > to be the first value of u such that

Hu >t} N By <e,

or, to be more precise,
te :=sup{t > 0: u(t) > }.
Proposition 3.5 implies that for every t € (¢g, t.) it holds

: a0
—w(t) = CW

for a constant ¢ which depends on €. In other words

d(;
art

() = W

te ds

>c _—.
— Jiw VF(s)+s

We will show that when € > 0 is chosen small enough it holds M < 2t.. This will imply

M te 2te
ds - ds n / @ <c
t

to VF(s)+s  Jiw VE(s)+s s

The result then follows from the previous estimate and from (5.2).

To prove M < 2t. we argue by contradiction and assume that M > 2t.. Recall that by the
assumption on ¢, it holds [{u > M/2} N Bs| < e. We note that by the maximum principle
the maximum of u in any ball By, is obtained on the boundary. Therefore when ¢ is small we
conclude from Lemma 4.1 that

(5.3) supu > 4M and supu > 4sup u.
K. 1 "y

Therefore we have

1 1
| Ba| > pn (to) — pr (te)

€

To prove (5.3) choose zg € By such that u(zg) = M and yo € 8B% such that u(yo) = supg, u
2

and apply Lemma 4.1 in B(x,1/4) and in B(yg,1/4).
We choose radii 1 = Ry < R; < Ry < ... such that the corresponding maxima

My, == supu
satisfy
My, = 2Mj,_4.

Here we use notation My for M = supg, u. We continue to do this until the first time we
find Rg such that Rx > 3/2. It follows from (5.3) that K > 3 and that Rg < 7/4 < 2.
In particular, Ry is well defined. Denote ry = Ry — Rx_1. We also deduce from (5.3) that
Ry < 5/4 and therefore

1

(5.4) r1+1r2=Ry— Ry < T
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Let us fix k= 3,..., K. I claim that for small ¢ it holds
(5.5) u%(t) > cry,

for every ¢t € (My_3, Mj_s]. Note that it is enough to show (5.5) for t = Mj,_s. We argue by
contradiction and assume that /ﬁ (Mjy_s) < crg. This can be written as

1(My—2) < 1| By, |
for small €1 > 0. Since M}_1 = 2M}_5 this can be again written as
H{u > My_1/2} N By| < e1| By, |.
Let xz_1 € OBR,_, be such that u(zy_1) = Mj_;. When ¢; is small it follows from Lemma

4.1 that

sup  u > 4My_q.
B(zg—1,7k)

However since My, > supp,, , ) v this contradicts the fact that My was chosen such that
My, = 2Mj,_1. Hence we have (5.5). Note also that it follows from
0< sup u<My=2M;_1=2u(rg_1)
B(wk—1,7%)

and from Lemma 4.3 that
M1

—— > 1.

EF(M_1/2)
For every t € (My_3, My_5] it holds My, 1 = 4Mj,_3 < 4t and My,_1/2 = Mjy,_o > t. Therefore
by the monotonicity of F' we have

t
F(t)

(5.6) > crg

for every t € (]\4}€,37 Mkfg].
Let us fix k = 3,..., K. We deduce from Proposition 3.5 and from (5.5) and (5.6) that for
every t € (My_3, My_o] we have the estimate
Cc 1_1
—(0) = ' (O
In other words

d, 1 c
——(un(t)) > -rg.
S (1) 2 S
We integrate this over (My_3, Mj_5) and use the fact that My_o = 2M},_3 to conclude
1 1
pr (My—3) — pn (My—2) > cry.
Recall that My = M = supp, u. Summing the previous inequality over k = 3,..., K gives

K

K
(M) > ZN%(MI@—S) — i (My_z) > ¢y
k=3 k=3

3=

(5.7) f

Recall that ry, = R — Ri_1, Rop = 1 and Rg > 3/2. Therefore Zle r, = Rk — Ry > %
Thus we deduce from (5.4) that

| =

K
Z T 2>
k=3
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Therefore (5.7) yields

However, by the choice of t. we have
p(M)=[{u>M}NB| <[{u>t}NBy <e
which is a contradiction when & > 0 is small. O

At the end let us show why Theorem 1.1 does not hold for equation
(5.8) —Au= f(u)

when n > 2. If Thereom 1.1 would be true for nonnegative solutions of (5.8) then there would
be Cy such that

M 1
(5.9) | ==
m JE(t)+t
Let ¢ > 0 be the fundamental solution of the Laplace equation with infp, ¢ = 1 and singu-
larity at the origin. Since ¢ is unbounded we find a radius r > 0 such that for the value of ¢
on 0B,, denote it by T', it holds

(5.10) / > 2C%.

1

t
We define u € C11(By) such that u(x) = ¢(z) for # € By \ B, and u(x) = a(r? — |z|?) + T
for € B,. Here a > 0 is chosen such that u € C*!(By). Then u is a solution of (5.8) for
some f which satisfies f(t) = 0 for ¢ € (0,T"). Therefore (5.9) can not hold because of (5.10).
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