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Abstract—We apply high-quality discretizations to simulate
electromagnetic microwaves. Instead of the vector field presen-
tations, we focus on differential forms and discretize the model
in the spatial domain using the discrete exterior calculus. At the
discrete level, both the Hodge operators and the time discretiza-
tion are optimized for time-harmonic simulations. Non-uniform
spatial and temporal discretization are applied in problems in
which the wavelength is highly-variable and geometry contains
sub-wavelength structures.

I. INTRODUCTION

Microwaves are high-frequency electromagnetic waves that
can propagate in any spatial direction. Thus, it is important to
maintain uniform physical properties in all directions, which
is not the case when the cubic grid is applied in the finite-
difference time-domain (FDTD) method, originally proposed
by Yee [1]. The quality of the discrete model, based on the
structure of the computational grid, has a significant impact on
the efficiency of the method. We use non-uniform grids and
associate the degrees of freedom of the electric and magnetic
fields with primal and dual grids, respectively. The physical
characterization of the discretization is presented by the dis-
crete Hodge operators defining the connection between the
primal and dual forms [2]. The discretization is independent of
the coordinate systems, and by the orthogonality (with respect
to metric) of the primal and dual mesh elements, we ensure the
diagonal construction of Hodge operators providing significant
savings in computing time [3].

II. ELECTROMAGNETICS IN THE TIME DOMAIN

The work needed to move a particle with electric charge
q, along an oriented curve C, in an electric field E =
(E1, E2, E3)T is

W = −q
∫
C
E · dl = −q

∫
C
E, (1)

where dl is the differential unit tangent vector of the curve,
dxi, i = 1, 2, 3, are differentials and E = E1dx1 + E2dx2 +
E3dx3 is a differential 1-form. Respectively, we can consider
a magnetic charge and obtain a differential 1-form H =
H1dx1 +H2dx2 +H3dx3 (instead of the magnetic field H).

The current flowing through a surface S

I =

∫
S
J · dA =

∫
S
J, (2)

where dA = n · dS is the differential vector element of
surface area A normal to surface S, ∧ is the exterior product
(wedge product), and electric current density J = J1dx2 ∧
dx3 + J2dx3 ∧ dx1 + J3dx1 ∧ dx2 is a differential 2-form.
Respectively, we can define the magnetic current density J∗.
The electric charge in volume V is

q =

∫
V
% dV =

∫
V
Q, (3)

where % is the electric charge density and Q = %dx1 ∧ dx2 ∧
dx3 is a differential 3-form presenting the electric charge.
Respectively, Q∗ = %∗dx1 ∧ dx2 ∧ dx3 the magnetic charge.

The generalized Stokes theorem, applied to a differential
form A over the boundary of an oriented manifold Ω, is∮

∂Ω

A =

∫
Ω

dA, (4)

where d is the exterior derivative. The Hodge star ?, defining
the coordinate system and metric properties, maps a differen-
tial k-form to a differential n − k form (n = 3 is the spatial
dimension). The constitutive relations are written as D = ?εE
and B = ?µH , where D and B are differential 2-forms and ε
is the electric permittivity and µ is the magnetic permeability.
The electromagnetic waves are presented by

?ε
∂E

∂t
− dH = −J, (5)

?µ
∂H

∂t
+ dE = −J∗, (6)

dD = Q, dB = Q∗, (7)

where the exterior derivative d on 1-forms corresponds to
the curl operator on vector fields whereas on 2-forms it
corresponds to the div operator on vector fields. By taking
the exterior derivative of Equations (5) and (6), we get the
continuity of the charges,

∂Q

∂t
= −dJ, ∂Q∗

∂t
= −dJ∗, (8)

and the information given by Equations (7) can be covered by
the initial conditions.



III. DISCRETIZATION

The computational domain Ω is discretized by a mesh,
in which we have vertices, edges, surfaces, and volumes.
In particular, we are interested in the edge elements Ej ,
j = 1, . . . , NE and face elements Fi, i = 1, . . . , NF , where
NE and NF are the number of the edge and face elements,
respectively. We also construct a dual mesh with edge elements
E∗i , which are duals to the primal face elements, and face
elements F∗j , which are duals to the primal edge elements.

A. Discrete Exterior Calculus
The spatial discretization is applied using the discrete ex-

terior calculus (DEC) [4]. The discrete 1-form E and the
discrete 2-forms B and J∗ are presented as column vectors
of components

Ej =

∫
Ej
E, Bi =

∫
Fi

B, J∗i =

∫
Fi

J∗. (9)

The discrete exterior derivative d (boundary operator) is a
NF × NE matrix presenting the incidence number of each
Ej to each face Fi. The incidence number is 0 if Ej is not
a boundary of Fi. If Ej is a boundary of Fi, the value at
the ith row and the jth column of the incidence matrix is
±1, depending on the relative orientation between the face
and the edge element. The spatially discretized formulation of
Equation (6) is

∂

∂t
B + dE = −J∗. (10)

On the dual mesh, we have discrete dual forms. The discrete
dual 1-form H and the discrete dual 2-forms D and J are
presented as column vectors of components

Hi =

∫
E∗i
H, Dj =

∫
F∗j
D, Jj =

∫
F∗j
J, (11)

The elements of the dual mesh have a similar orientation to
the corresponding primal elements if the incidence number of
each Ej to each face Fi equals to the incidence number of each
E∗i to each face F∗j . Then, the dual discrete exterior derivative
is dT and the spatially discretized formulation of Equation (5)
is presented as

∂

∂t
D− dTH = −J. (12)

The discrete Hodge stars are needed to present the consti-
tutive relations D = ?εE and B = ?µH. The ε-related discrete
Hodge ?ε is a NE ×NE diagonal matrix, presenting the linear
map from the discrete primal 1-form E to the discrete dual
2-form D. The diagonal terms are

?εjj = ε
|F∗j |
|Ej |

κj , (13)

where the curvature correction κj is set to compensate for the
systematic wave speed error of harmonic wave. As derived
in [3],

κj =

(
1− κF

5 +
κ2
F

56

1− κF
10 −

κE
120 +

κ2
F

280 + κFκE
1680 +

κ2
E

22400

)
, (14)

where κE = ω2εµ|Ej |2 and κF = ω2εµ(2r2 + R2)/3, and
r and R are the inner and outer radii of dual face F∗j . The
µ-related discrete Hodge operator ?µ is a NF ×NF diagonal
matrix mapping the discrete dual 1-form H to the discrete
primal 2-form B presented as an NF ×NF diagonal matrix

?µii = µ
|Fi|
|E∗i |

κ∗i , (15)

where the curvature correction κ∗i is derived in a similar
manner with respect to the elements Fi and E∗i .

Applying DEC on a regular grid without curvature cor-
rection results in FDTD discretization as a special case. The
curvature correction and high-quality meshing can increase the
method efficiency by orders of magnitude [3].

B. Time Discretization

The time evolution begins with the initial conditions E0 =
E(−∆t

2 ) and H0 = H(0), after which it proceeds, as a
staggered procedure, by computing Ek = E(k∆t − ∆t

2 ) and
Hk = H(k∆t), where k = 0, 1, 2, . . . and ∆t is the length
of the time step. Since we are considering time-harmonic
simulations, we optimize the time discretization for a single
wave frequency. That is, instead of the conventional leapfrog
time-discretization, we apply the formulas

E(tk) =
Ek + Ek+1

2 cos ω∆t
2s

, H(tk + ∆t
2 ) =

Hk + Hk+1

2 cos ω∆t
2s

, (16)

∂E

∂t

(
tk
)

=
Ek+1 − Ek

2
ω sin ω∆t

2s

,
∂H

∂t

(
tk + ∆t

2

)
=

Hk+1 − Hk

2
ω sin ω∆t

2s

, (17)

where s is the time step size factor [3]. For uniform grids,
we can choose s = 1 and apply the CFL condition to get the
upper bound for ∆t.

Since we use non-uniform space discretization, and the time
step size needs to be adjusted to the wavelength, we allow
smaller time steps for the finer parts of the grid. The local
time steps are obtained from the localized CFL-type condi-
tion, which take only a small neighborhood of elements into
account [3]. The time step is adjusted by the integer-valued
factors sEj

and sHi
, such that, for updating the values of Ekj ,

we use s = sEj and for updating the values of Hki , we use
s = sHi

. To guarantee the energy conservation, we synchro-
nize the time stepping by setting sEj

, sHi
∈ {1, 3, 9, 27, . . . }.

Using the time stepping approach, we obtain an explicit and
causal simulation method, which can be efficiently applied to
solve time-harmonic problems [3].

IV. NUMERICAL EXPERIMENTS

The DEC discretization can be applied for arbitrary poly-
hedral meshing with orthogonal duality. The dual mesh is
obtained as a Voronoi diagram generated for a given vertex set
and given metric induced by the material. The primal mesh is
determined by the topology. The numerical experiments of this
section exploit the body-centered cubic (BCC) structure [5],
[6] defining the primal grid with congruent tetrahedra and
the dual grid with truncated octahedra [7]. A uniform grid is
rarely optimal discretization for numerical simulations. Thus,



we apply structured grid refining, where vertex structures
are applied in different scales. In such a manner, one can
efficiently obtain non-uniform grids, where element properties
are guaranteed. We apply grid refinement due to the highly
variable material parameters and for the discretization of sub-
wavelength structures.

A. Highly variable material parameters

We consider a microwave oven, of which the dimensions
are 28.0×28.0×21.0 centimeters representing depth x, width
y, and height z, respectively. Placed in the middle of the wall
facing in the positive y-direction, a square-shaped magnetron
with an edge length of 12.2 cm produces a harmonic wave
of frequency f = 2.45 GHz, implying that the wavelength is
λ = 12.2 cm. Inside the microwave oven, centered at height
of 3 cm above the bottom of the computational domain, is
a bowl, having the shape of a conical frustum. The bowl is
filled with liquid with a depth of 6 cm; the bottom radius is
3 cm and the top radius is 6 cm. We approximate the liquid
by permittivity ε = 70ε0, where ε0 is the air (or vacuum)
permittivity. The absorption term of the liquid is determined
by the right-hand side source term J = 0.58ωε0E.

y
x

z

Fig. 1. Cross section of the applied mesh. The interior is filled with structured
BCC grid, and the structured grid refinement strategy is applied near the bowl.

The structured grid refining was applied involving at least
11,000 unknowns per λ3 and a total of 2,005,708 unknowns
in the domain (see Fig. 1). The perfectly reflecting walls are
defined by the Dirichlet boundary condition. The magnetron
is modeled by the absorbing boundary condition with source
terms E0 = (cosωt, 0, sinωt)T , H0 = (sinωt, 0,− cosωt)T ,
where ω = 2πf is the angular frequency.

The numerical experiment was initialized by E0 = 0 and
H0 = 0, and was continued until time t = 501T was reached,
where T = 1/f is the wave period. During the first period,
the source terms were increased from zero to full terms by the
transitions suggested in [8]. For the last 500 iterations, the full
source terms were applied. The time step size factor s varied
between 1 and 27 and a total of 205,557,312 value updates
were executed per iteration. The simulation was carried out in
around 4 minutes on 32 Intel Xeon cores at 2.67 GHz. The
results, presenting the cross sections of electric and magnetic
fields, are illustrated in Fig. 2.

In comparison, an FDTD simulation with ten elements
per wavelength means 6000 unknowns per λ3. The liquid

Fig. 2. Cross sections of electric and magnetic fields are illustrated on three
different planes. The color components red, green, and blue represent the
values of x, y, and z components of the resulting vector. Grey denotes the
zero field.

wavelength is 1.46 cm designating 1940 unknowns per cm3.
That makes about 31.9 million unknowns in the whole domain.
Such a grid has 83.7 elements per vacuum wavelength, and
therefore the CFL condition requires 145 time steps per period.
In total, the FDTD simulation would take 4.62 billion value
updates per period, which is more than 20 times the number
of value updates in our numerical simulation.

B. Sub-wavelength structure

In x-direction, the domain is a three-layer structure with
thickness 1 truncated by the absorbing boundary condition.
The back and front layers are discretized by y- and z-periodic
mesh, as illustrated in Fig. 3, and the source term for a
circularly polarized plane wave of wavelength λ = 1 is set
at the back wall. The middle layer is a plane of a periodic
sub-wavelength grille structure with circular holes surrounded
by perfectly conducting material (E = 0). For the numerical
tests, we apply six different grilles, where the periodic pattern
is repeated 1, 2, 4, 8, 16, or 40 times per unit length.

structures on      -planey-z

y

z

x

Fig. 3. The y-z-periodic mesh for discretization level 10 and the sub-
wavelength grilles are illustrated on the left and right, respectively.

We apply four discretization levels, which are called 5, 10,
20 and 40. Each discretization has a base grid of the BCC
structure, where the maximum edge lengths are 1

5 , 1
10 , 1

20 ,
and 1

40 , respectively. Structured grid refinement is applied near
the plane x = 0 by inserting vertices of the regular structure
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Fig. 4. Cross sections of electric fields for different discretization levels. Red,
green, and blue represent x-, y-, and z-components of the field, respectively.

of step size h = 2n

160 , n = 0, 1, . . . . Each regular group of
vertices is limited by x ∈ [−h, h]. The reference solution is
computed using an ultra-fine Cartesian discretization, where
the edge lengths throughout the domain are 1

160 . The numbers
of unknowns are 899,150, 927,600, 1,174,400, 3,225,600, and
24,652,800 for the different discretization levels, respectively.

The simulations were initialized by E0 = 0 and H0 = 0
and processed by 10 periods with increasing source terms and
by 10 periods with full source terms. The solutions for each
discretization level and for the largest grille size are illustrated
in Fig. 4. The energy penetration is computed for each grille
and each discretization level and the results are illustrated in
Fig. 5. The larger the holes are, the more energy penetrates,
and for the largest hole size the penetration is approximately
50 %. This is surprising, as holes cover only π

8 ≈ 39 % of
the whole surface.

The solutions for each discretization level are close to each
other, but upon closer examination, there is up to 25 %
relative difference between the results. The conclusion is that
the refinement should cover a wider volume. We increase
the depth of the refinement such that each regular group of
nodes is limited by x ∈ [−kh, kh], where k = 1, 2, 3, 4 is
called the refinement thickness. Figure 6 shows that wider
refinement improves the accuracy. With the largest refinement
width, one has less than 1 % error. The number of unknowns
are 1,174,400, 1,466,400, 1,854,400, and 2,146,400 for these
cases, respectively, which are less than one tenth compared to
the reference discretization.

Fig. 5. Penetration of the wave energy by grille size. The normalized
penetration illustrates the discretization error compared to the reference
solution.

Fig. 6. Discretization error by refinement thickness.

C. Combined problem
We repeat the microwave simulation by applying a grille

with circular holes with diameter 0.22 cm on the wall facing
in positive x-direction. The elements size at the grille is 0.11
cm and the discretization is illustrated in Fig. 7. The number
of unknowns is 3,729,426 and the time step size factor s
vary between 1 and 27. The total number of value updates
per period is 751,607,208. The simulation through 501T took
about 14 minutes on 32 Intel Xeon cores at 2.67 GHz. As a
result, 0.063 % of the power produced by the magnetron is
penetrated through the grille. The rest is absorbed as heat in
the liquid. The energy loss is so small that the grille does not
have a remarkable effect on the progress of electromagnetic
energy inside the liquid, as illustrated in Fig. 7.
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Structure:

Fig. 7. Cross section of the mesh with the refined layer on one side. The
progress of electromagnetic energy inside the liquid area is illustrated on the
right.

V. CONCLUSIONS

We applied polyhedral structures and grid-refining methods
with DEC. The grid refinement is useful in modeling tasks
with highly variable material parameters and sub-wavelength
structures. Further research should consider how the error esti-
mation methods can be applied to find the optimal refinement.

ACKNOWLEDGMENT

This research is supported by the Academy of Finland
contract 259925.

REFERENCES

[1] K. S. Yee, “Numerical solution of initial boundary value problems
involving Maxwell’s equations in isotropic media,” IEEE Transactions
on antennas and propagation, vol. 14, no. 3, pp. 302–307, 1966.

[2] A. Bossavit and L. Kettunen, “Yee-like schemes on staggered cellular
grids: A synthesis between FIT and FEM approaches,” IEEE Transactions
on Magnetics, vol. 36, no. 4, pp. 861–867, 2000.

[3] J. Rabina, S. Monkola, and T. Rossi, “Efficient time integration of
Maxwell’s equations with generalized finite differences,” SIAM Journal
on Scientific Computing, vol. 37, no. 6, pp. B834–B854, 2015.

[4] M. Desbrun, A. N. Hirani, M. Leok, and J. E. Marsden, “Discrete exterior
calculus,” 2005, preprint, arXiv:math/0508341v2 [math.DG].

[5] D. M. Y. Sommerville, “Space-filling tetrahedra in Euclidean space,”
Proceedings of the Edinburgh Mathematical Society, vol. 41, pp. 49–57,
2 1922.

[6] J. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups,
3rd ed., ser. A series of comprehensive studies in mathematics. Springer,
1999.

[7] W. Thomson, “On the division of space with minimum partitional area,”
Acta Mathematica, vol. 11, no. 1–4, pp. 121–134, 1887.

[8] G. Mur, “The finite-element modeling of three-dimensional electromag-
netic fields using edge and nodal elements,” IEEE Transactions on
Antennas and Propagation, vol. 41, no. 7, pp. 948–953, 1993.


