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Abstract: The paper is devoted to studying and prevention of a special kind of oscillations —
the Pilot Involved Oscillations (PIOs) which may appear in man-machine closed-loop dynamical
systems. The PIO of categories I and III are defined as essentially non-linear unintended steady
fluctuations of the piloted aircraft, generated due to pilot efforts to control the aircraft with a
high precision. The main non-linear factor leading to the PIO is, generally, rate limitations of the
aircraft control surfaces, resulting in a delay in the response of the aircraft to pilot commands. In
many cases, these oscillations indicate presence of hidden, rather than self-excited attractors in
the aircraft-pilot state space model. Detection of such a kind of attractors is a difficult problem
since basin of attraction is not connected with unstable equilibrium. In the paper existence of the
hidden attractor in pitch motion of the piloted aircraft is demonstrated and the nonlinear phase
shift compensator is designed. The results obtained demonstrate that the proposed method
in several times increases the admissible gain of the “airplane-pilot” loop as compared with
non-corrected system.
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1. INTRODUCTION

The oscillation phenomena in dynamical systems play
a very significant part in nature, science, technology,
medicine, biology, etc. An essential part of the investi-
gations in this field consists in studying so-called self-
excited and hidden oscillations see (Leonov and Kuznetsov,
2013b; Kuznetsov and Leonov, 2014; Leonov et al., 2015b;
Kuznetsov, 2016) for surveys and the bibliography. During
the initial period of the development of the theory of non-
linear oscillations a main attention was paid to studying
self-excited oscillating systems, for which the existence
of oscillations is “almost obvious” since the oscillation is
excited from an unstable equilibrium. Later, the examples
of periodic and chaotic oscillations of another type have
been found, called hidden oscillations and corresponding
hidden attractors, i.e. attractors, which basin of attraction
does not intersect with small neighborhoods of equilibria.
Numerical localization, computation, and analytical inves-
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tigation of hidden attractors are much more difficult prob-
lems than for self-excited ones, since there is no possibility
here to use information about equilibria for organization of
similar transient processes in the standard computational
procedure. For nonautonomous systems, depending on the
physical problem statement, the notion of self-excited and
hidden attractors can be introduced with respect to the
stationary states of the system at the fixed initial time
or the corresponding system. For a numerical localization
of hidden oscillations, an effective analytical-numerical
approach is based on the small parameter method for the
harmonic linearization has been developed, justified and
demonstrated by the several application examples (Leonov
and Kuznetsov, 2013a; Andrievsky et al., 2015b; Leonov
et al., 2015a). Application of the harmonic linearization
method to performance analysis of harmonically forced
nonlinear systems is deeply studied in (Pavlov et al.,
2007; Pogromsky et al., 2007; van den Berg et al., 2007;
Pogromsky and Van Den Berg, 2014).

Among the other phenomena, when hidden oscillations
appear, the co-called Pilot-Involved Oscillations (PIO)
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may be mentioned. The PIO is denoted as unintended
steady fluctuation of the piloted aircraft generated due to
the efforts of the pilot to control the aircraft. While P1Os
can be easily determined from the analysis of the post-
flight data, the pilots often do not recognize that PIO
occurs: from their point of view, the plane seems faulty,
having “a breakage” (Ashkenas et al., 1964; Klyde and
Mitchell, 2004; Acosta et al., 2014). The PIO is one the
topical problems from the very beginning of aviation, and
the efforts of many scientists and designers for many years
were aimed to their elimination, see (Ashkenas et al., 1964;
McRuer, 1995) for mentioning a few.

As is noted in (Ashkenas et al., 1964), the following
two types of manual control system behavior should be
considered:

— before the PIO occurs, the pilot produces the con-
trol by more-or-less random input signals and quasi-
stationary set of feedbacks, which are compatible
with “good” control with small error, stability, low
effort, etc. Only one or two control loops are usually
dominant.

— when the PIO happens, the airframe motions are
changed from a random-like form to a nearly sinu-
soidal one.

Therefore one of the widespread tools for studying this
phenomenon is the numerical-analytical harmonic lin-
earization method (also known as the describing functions
method) (Garber and Rozenvasser, 1965; Gelb and Vander
Velde, 1968; Leonov and Kuznetsov, 2013a). This method
is used in the present work for examination of nonlinear
phase predicting filter, which is intended to be used in the
“pilot-airplane” loop for PIO prevention.

The rest of the paper is organized as follows. THe aircraft-
pilot model in the pitch control loop is presented in Sec. 2.
Existence of hidden oscillations in the aircraft-pilot closed-
loop contour in abcense of correction is demonstrated
in Sec. 3. Nonlinear correction for PIO prevention is
considered in Sec. 4. Concluding remarks are given in
Sec. 5.

2. AIRCRAFT-PILOT MODEL
2.1 Aircraft-pilot model

Aireraft model. The following transfer function of the
X-15 research aircraft longitudinal dynamics from the
elevator deflection to pitch angle 6 is taken (Mehra and
Prasanth, 1998; Alcald et al., 2004)
0 0 86.9(s + 0.883)
Ws (8)=9+¢=
e (s+25)(s +0.3516)(s + 0.02845)
5+ 0.0292
X ; (1)
s2 +1.68s + 5.29
where 6.(t) denotes the elevator deflection with respect
to the trimmed value, 6(t) stands for the pitch angle (all
variables are given in the SI units), s € C is the Laplace
transform variable.

Rate-limited actuator model. The actuator is modeled
as a first-order low-pass filter with rate limitation:

de(t) = sate (T (u(t) — de(t))) (2)

where satg(-) denotes the following saturation function

z, if |z| <o,
satp(z) = ¢ . .

wsign z, otherwise
function. (To simplify the exposition we assume that the
servo has a unit static gain).

, sign(-) is a signum

Pilot models. The pilot is often modeled as a serial
element in the closed-loop system, which, having enough
flight skills, develops a stable relationship between his
control action and a specific set of flight sensors signals
(McRuer and Jex, 1967).

Below, two kinds of the pilot model are considered.

1. Pilot model in the form of a static gain. Following
(Rundgwist and Stahl-Gunnarsson, 1996; Mehra and Pras-
anth, 1998; Alcald et al., 2004; Andrievsky et al., 2015a),
a pilot may be modeled in the form of a static gain K,
applied to the pitch tracking error, so that

u(t) = K, (6°(t) - 0(0)). (3)

2. Pilot model in the form of a lead-lag-delay unit.
Based on (McRuer and Jex, 1967; Barbu et al., 1999; Lone
and Cooke, 2014; Efremov et al., 2015) the pilot behavior
may be modeled by the following describing function,
which corresponds to the open-loop crossover model:

U Trs+1 _
G S Tes 4
Wp(s) {AH} PTs+1° 7 4)

where A6 is the displayed error between desired 6*(t) and
actual 0(t) pitch angles; u(t) denotes the pilot’s control
action, applied to the elevator servo; K, is the pilot
static gain; T, is the lead time constant (relative rate-
to-displacement sensitivity); 77 stands for the lag time
constant; 7. denotes the effective time delay, including
transport delays and high frequency neuromuscular lags.
As stated in the (McRuer and Krendel, 1959; MeRuer
et al., 1965; McRuer and Jex, 1967), the pilot attempts to
adjust the lead or lag value, that the sensitivity of the low
frequency response of the closed-loop system to variations
in Ty, or Ty is small and leaving an effective time delay as
his primary means to control the stability of the closed-
loop and the dominant modes.

3. HIDDEN OSCILLATIONS IN THE
AIRCRAFT-PILOT CLOSED-LOOP CONTOUR

Let us study behavior of the closed-loop system (1), (2),
(3), (4) numerically, assuming that the pilot’s control
action u(t) is obtained by a feedback between desired
0*(t) and actual 6(¢) pitch angles, i.e. that the pilot
input is displayed signal Af(t) = 0*(t) — 0(t). Following
(Mehra and Prasanth, 1998; Alcala et al., 2004) let w =
15/57.3 deg/s be given. Actuator (2) time constant be
taken as T' = 0.02 s. The following parameters of pilot (4)
describing function (4) are taken (McRuer and Jex, 1967;
Barbu et al., 1999; Andrievsky et al., 2015a): 7. = 0.4 s,
Tr, = 0.625s, Ty = 0.250 s, gain K, is a varying parameter.

3.1 Pilot model in the form of a static gain (3)

Consider the aircraft-pilot system model (1), (2), (3).
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Autonomous system dynamics. Let K, = 2.8 be taken
in (3). Linearization of (1), (2), (3), in the vicinity of
equilibrium shows that the closed-loop system is asymp-
totically stable is a certain region of the point of ori-
gin. The eigenvalues A; of the linearized system are as
A; = {—50,—-26,—0.36 + 3.74,—0.72, —0.03}. However the
method by Leonov and Kuznetsov (2013a) shows existence
of the hidden attractor in the closed-loop system behavior.
This is illustrated in Figs. 1, 3 where the phase trajectories
in the space [0, q,0.] (¢ denotes the pitch angular rate)
and time histories of system (1), (2), (3) for various initial
conditions J.(0) are taken (initial values of the rest space
variables are zero). 6.(0) = 12 deg may be considered as
a certain bound corresponding the hidden attractor. The
trajectories starting from the smaller values of §.(0) tend
to the stable equilibrium.

0.2

q [rad/s] 0

-0.2 -0.1 O [rad]
-04 0.2

Fig. 1. Phase trajectories of system (1), (2), (3) free
motion in the space [0, q,d.]; §.(0) € {8,12,14} deg.
K, =28.

-0.1 -0.05 0 0.05 0.1 0.15

Fig. 2. Phase trajectories of system (1), (2), (3) free motion
on the plane [0, ¢; J.(0) € {8,12,14} deg. K, = 2.8.

The Nyquist plots pictured in Fig. 4 show that K, = 2.09
is a certain bound, below which the hidden oscillations do
not exist and all the system trajectories tend to the origin.
This conclusion is confirmed by the numerical procedure

t [s]

t [s]

Fig. 3. Time histories of pitch angle #(¢t) and pitch an-
gular rate ¢(t) for system (1), (2), (3); 0.(0) €
{8,12,14} deg. K, = 2.8.

of (Leonov and Kuznetsov, 2013a) and the simulations.
The Nyquist plot of Fig. 4 also shows that, based on
the describing functions method, for K, > 2.09 two limit
cycles — the stable cycle and the unstable one may exist.

Nyquist plot
20 T T

—_ K =2.09
P

— K =2.80
P H

_40 i i i i i i
-60 -50 -40 -30 -20 -10 0
U()

Fig. 4. Nyquist plots of the open-loop linear system for
K, =2.09, 2.80.

Non-autonomous system motion. In the non-autonomous
case the closed-loop system behavior is much more com-
plex than in the autonomous one, since it depends on
the initial conditions and on the exogenous action as
well. However, existence of the hidden attractor may be
observed there in some conditions.

Figs. 5, 6 demonstrate responses of system (1), (2), (3) to
step-wise reference signal 8*(¢) and zero initial conditions
for K, = 2.80 and K, = 2.09. It is seen that if 0 is
sufficiently large, output oscillations are born in the case
of K, =2.80. If K}, =2.09 then no oscillations appear.
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0,0 [deg]

0 5 10 15 20 25 30 35 40
t [s]
q[deg/s]

i
5 10 15 20 25 30 35 40
t[s]

Fig. 5. Step response of closed-loop system (1), (2), (3);
K, = 2.80.

0,0 [deg]
15 ‘

101 : : : f =

0 5 10 15 20 25 30 35 40
t[s]
q [deg/s]

i
5 10 15 20 25 30 35 40
t[s]

Fig. 6. Step response of closed-loop system (1), (2), (3);
K, = 2.09.

3.2 Pilot model in the form of a lead-lag-delay unit (4)

Let us consider the case of more complex aircraft-pilot
system model (1), (2), (4).

Autonomous system dynamics. The frequency-domain
analisys makes possible to reveal existence of the hidden
attractor in the closed-loop system for a very narrow area
of the pilot gain. The copputations show that the hiddn
attractor exists if K, € [0.842,0.930]. If 0 < K, < 0.842
then the origin is globally asymptotically stable. In the
case of K, > 0.930, the origin is unstable and the self-
excited oscillations arise. The corresponding Nyquist plots
for the boundary values K, = 0.842, 0.930 are shown in
Fig. 7. Free motion of closed-loop system (1), (2), (4) for
K, = 0.87 is illustrated by Fig. 8 where two trajectories
in the space [0, q,d.] are shown. Initial values §.(0) €
{2,10} degrees are taken; the other initial conditions are
Zero.

Nyquist plot
T

5 T

Fig. 7. Nyquist plots of the open-loop linear system (1),
(2), (4) for K, = 0.842, 0.930.

-02 005 e

Fig. 8. Phase trajectories of system (1), (2), (4) free motion
in the space [0, ¢, d.]; 6.(0) € {2,10} deg. K, = 0.87.

4. PIO PREVENTION BY NONLINEAR
CORRECTION IN AIRCRAFT-PILOT LOOP

4.1 Nonlinear Dynamic Corrective Devices

In the case if a linear correction is used, a positive phase
shift inevitably leads to growing the magnitude gain in the
nearby frequency region, which may lead to undesirable
effects (decreasing of stability margin, noise amplifica-
tion, actuator saturation, etc.). As is shown in the con-
trol theoretic literature, see e.g. (Khlypalo, 1963; Popov,
1971; Sharov and Sharov, 1974; Filatov and Sharov, 1977;
Zel’chenko and Sharov, 1981), nonlinear corrective devices
(NCD) make it possible to change the phase-frequency
and amplitude-frequency responses independently on each
other.

At present, a wide variety of the nonlinear corrective
devices is known, see (Popov, 1971; Zel’chenko and Sharov,
1981; Taylor, 1983; Taylor and O’Donnell, 1990; Nassirha-
rand and Firdeh, 2008) for mentioning a few. For the
aims of the present study, the emphasis is on the so-called
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pseudo-linear corrective devices (PLCD), which frequency
characteristics do not depend on the input signal magni-
tude (but its frequency only). As an example of the PLCD
consider the following Nonlinear Phase Predicting Filter
(NPPF):

y = kl|u|sign(x), (5)

A(p)z = B(p)u, (6)

where p = d/dt is the time differentiation operator, A(p),
B

B(p) are operator polynomials such that W(s) = Ag is

the transfer function of a properly chosen linear predicting
filter. In (Andrievsky et al., 2015a) application of W (s)
in the form of the first-order lead-lag unit is considered.
Preliminary study gives that for system (1), (2), (3) or
(4) the phase prediction procuced by this filter is not
sufficiently large, and below the following second order
lead-lag unit is taken:

_ 'ZE . (Trs +1)2 1)

T3 (Tvs+1)%

where 0 < T7 < T3 are chosen time constants (the design

parameters). The phase shift, introduced by filter (7) is as
p(w) = 2arctanwTy — 2arctanwTi >0 Yw >0. (8)

W(s)

Calculation of the harmonic linearization gains

a(A,w) = 271-% /OTr P(Asin @) sin 0d0, (9)
b(A,w) = 271-% /OTr P(Asin @) cos 0do. (10)

for (5)—(11) gives the following expressions:

k
a = —(m — 2p + sin 2¢p), (11)
71'

b= %(1 — cos2¢p). (12)

4.2 Nonlinear Corrective Device in the “Pilot-Airplane”
Contour

0,0 [deg] K =28
15 T T T
—_0
‘‘‘‘‘ o i —————— ]
10 ! ~
!
1
5 ———————————————————— v . 4
0 5 10 15 20 25 30 35 40
t [s]
0,0 [de K =15
15 1 ©_ldeg] i
10 : ! : 1
!
1
5»—\ - - 4
0 5 10 15 20 25 30 35 40

t [s]

Fig. 9. Step responses of closed-loop system (1), (2), (3)
with non-linear correction; K, = 2.80,15.0.

Results of application of NPPF (5)—(7) correction for
K, = 2.8 and K, = 15 are demonstrated in Fig. 9. Filter

(5)—(7) parameters are taken as k = 1, T3 = 0.7 s, Tp =
0.014 s. Comparing the plots of Figs. 2, 3 one may see that
introducing the NPPF correction significantly improves
the system performance and make possible for a pilot to
control aircraft in more aggressive manner, ensuring higher
precision and faster tracking the desired aircraft direction
without appearance of unfavorable oscillations.

It is worth mentioning that in studying the nonlinear
systems, various forms and parameters of the input (refer-
ence) signals should be taken into account, cf. (Pogromsky
and Van Den Berg, 2014; Andrievsky et al., 2012). For the
practical use a deep study, including real-world flight tests,
is needed.

5. CONCLUSIONS

In the paper existence of the hidden attractor in pitch
motion of the piloted aircraft is demonstrated and a
nonlinear phase shift compensation in the aircraft-pilot
loop is examined. The results obtained show that the
proposed method allows to increase the admissible “pilot
gain” in several times and, therefore, to make possible for
a pilot to act with a more aggressive manner, from one
hand, and to prevent the PIO, ensuring the flight safety,
from another one.
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