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1. INTRODUCTION

The lock-in concept is widely used in engineering literature
(Gardner, 2005; Best, 2007). Notion of the lock-in range
can be formulated in the following way (see, e.g. (Gardner,
1966)): if the difference between reference and tunable
frequencies of the circuit belongs to the lock-in range,
then synchronization occurs without cycle slipping (loss
of cycles). In 1979 F. Gardner (Gardner, 1979) formulated
the following problem: “There is no natural way to define
exactly any unique lock-in frequency.” However, “despite
its vague reality, lock-in range is a useful concept” (Gard-
ner, 1979).
In the present work analytical and numerical approaches
for the lock-in range estimation are presented. The analyt-
ical approach is based on the integration of the phase plane
trajectories and analysis of their behaviour (Tricomi, 1933;
Andronov et al., 1937). The numerical approach also can
be applied for the study of PLL-based circuits. However,
one has to pay the special attention to results obtained
by numerical simulations. Particular examples on different
qualitative behaviour for two different ODE solver’s step
sizes can be found in (Bianchi et al., 2015; Leonov et al.,
2015a).
In the present work PLL-based circuits with sinusoidal
characteristics of phase detector are considered. In Section
2 model of PLL-based circuits in the signal’s phase space is
described. In Section 3 rigorous mathematical definitions
for lock-in range are given. Methods for verifying global
stability and methods of phase plane analysis are described
in Subsection 3.1. Effectiveness of obtained in Subsection
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3.1 lock-in range estimations is discussed in Subsections
3.2, 3.3.

2. MODEL OF PLL-BASED CIRCUITS IN THE
SIGNAL’S PHASE SPACE

For the description of PLL-based circuits, a physical model
in the signals space and a mathematical model in the
signal’s phase space are used. Models of the PLL-based
circuits in the signals space are difficult for the study
(Kudrewicz and Wasowicz, 2007) since the equations,
which describe these models, are nonautonomous. By
contrast, equations for the models in the signal’s phase
space are autonomous (Viterbi, 1966; Shakhgil’dyan and
Lyakhovkin, 1966; Gardner, 1966), what simplifies their
study.
From the numerical point of view, advantage of models
in the signal’s phase space is the nonexistence of high-
frequency components, thus simulation in the signal’s
phase space allows one to consider slow varying frequency
only. By contrast, the simulation of PLL-based circuits
in the signals space is complicated since one has to
observe simultaneously both high-frequency (fast changing
of phases) and low-frequency (relatively slow changing
of frequencies) oscillations. The physical models of PLL-
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Figure 1. Model of PLL-based circuit in the signal’s phase
space.

based circuits can be reduced to the models in the signal’s
phase space (Leonov et al., 2012; Best et al., 2014, 2015;
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Jyväskylä, Finland (email: nkuznetsov239@gmail.com)

∗∗∗ Institute of Problems of Mechanical Engineering RAS, Russia

Abstract In the present work the lock-in range of PLL-based circuits with proportionally-
integrating filter and sinusoidal phase-detector characteristics are studied. Considered circuits
have sinusoidal phase detector characteristics. Analytical approach based on the methods of
phase plane analysis is applied to estimate the lock-in ranges of the circuits under consideration.
Obtained analytical results are compared with simulation results.

Keywords: phase-locked loop, nonlinear analysis, PLL, Costas loop, lock-in range, pull-out
frequency, hidden oscillations

1. INTRODUCTION

The lock-in concept is widely used in engineering literature
(Gardner, 2005; Best, 2007). Notion of the lock-in range
can be formulated in the following way (see, e.g. (Gardner,
1966)): if the difference between reference and tunable
frequencies of the circuit belongs to the lock-in range,
then synchronization occurs without cycle slipping (loss
of cycles). In 1979 F. Gardner (Gardner, 1979) formulated
the following problem: “There is no natural way to define
exactly any unique lock-in frequency.” However, “despite
its vague reality, lock-in range is a useful concept” (Gard-
ner, 1979).
In the present work analytical and numerical approaches
for the lock-in range estimation are presented. The analyt-
ical approach is based on the integration of the phase plane
trajectories and analysis of their behaviour (Tricomi, 1933;
Andronov et al., 1937). The numerical approach also can
be applied for the study of PLL-based circuits. However,
one has to pay the special attention to results obtained
by numerical simulations. Particular examples on different
qualitative behaviour for two different ODE solver’s step
sizes can be found in (Bianchi et al., 2015; Leonov et al.,
2015a).
In the present work PLL-based circuits with sinusoidal
characteristics of phase detector are considered. In Section
2 model of PLL-based circuits in the signal’s phase space is
described. In Section 3 rigorous mathematical definitions
for lock-in range are given. Methods for verifying global
stability and methods of phase plane analysis are described
in Subsection 3.1. Effectiveness of obtained in Subsection

� This work was supported by Russian Science Foundation (project
14-21-00041, s. 3) Saint-Petersburg State University (project
6.38.505.2014, s. 2.)

3.1 lock-in range estimations is discussed in Subsections
3.2, 3.3.

2. MODEL OF PLL-BASED CIRCUITS IN THE
SIGNAL’S PHASE SPACE

For the description of PLL-based circuits, a physical model
in the signals space and a mathematical model in the
signal’s phase space are used. Models of the PLL-based
circuits in the signals space are difficult for the study
(Kudrewicz and Wasowicz, 2007) since the equations,
which describe these models, are nonautonomous. By
contrast, equations for the models in the signal’s phase
space are autonomous (Viterbi, 1966; Shakhgil’dyan and
Lyakhovkin, 1966; Gardner, 1966), what simplifies their
study.
From the numerical point of view, advantage of models
in the signal’s phase space is the nonexistence of high-
frequency components, thus simulation in the signal’s
phase space allows one to consider slow varying frequency
only. By contrast, the simulation of PLL-based circuits
in the signals space is complicated since one has to
observe simultaneously both high-frequency (fast changing
of phases) and low-frequency (relatively slow changing
of frequencies) oscillations. The physical models of PLL-

θ
2
(t)

G(t)

VCO

PD
φ(θ

1
(t) - θ

2
(t))

Input
θ

1
(t)

Filter

Figure 1. Model of PLL-based circuit in the signal’s phase
space.

based circuits can be reduced to the models in the signal’s
phase space (Leonov et al., 2012; Best et al., 2014, 2015;

6th IFAC International Workshop on Periodic Control Systems
June 29 - July 1, 2016. Eindhoven, The Netherlands

Copyright © 2016 IFAC 1

Computation of the lock-in ranges of
phase-locked loops with PI filter

Konstantin D. Aleksandrov ∗,∗∗, Nikolay V. Kuznetsov ∗,∗∗,
Gennady A. Leonov ∗,∗∗∗, Pekka Neittaanmäki ∗∗,
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Kuznetsov et al., 2015a; Leonov and Kuznetsov, 2014;
Leonov et al., 2015b; Kuznetsov et al., 2015b) by the
averaging methods (see, e.g., (Mitropolsky and Bogolubov,
1961; Samoilenko and Petryshyn, 2004)). In order to study
models of PLL-based circuits in the signal’s phase space
(see Fig. 1) it is necessary to compute characteristic of a
phase detector – nonlinear element of PLL-based circuits
for matching tunable signals. The characteristic of phase
detector KPDϕ(θ1(t) − θ2(t)) (where KPD is the PD gain
coefficient) is a function with respect to the difference of
phases of reference and tunable oscillators (for the model
in the signals space the result of the work of phase detector
ϕ(t) depends on time t). Further phase difference θ1(t) −
θ2(t) will be denoted as θ∆(t).
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Let us describe a general model of PLL-based circuits in
the signal’s phase space (see Fig. 1). A reference oscillator
and a tunable oscillator generate phases θ1(t) and θ2(t),

PLL circuit
f1(θ1) = sin(θ1)

KPD = 1
2

f2(θ2) = sin(θ2)
f1(θ1) = sin(θ1)

KPD = 2
π

f2(θ2) = sgn(sin(θ2))

f1(θ1) =
{ 2

π θ1 +1,θ1 ∈ [0;π] ,
1− 2

π θ1,θ1 ∈ [π;2π] KPD = 4
π2

f2(θ2) = sin(θ2)
Costas loop

f1(θ1) = cos(θ1)
KPD = 1

8
f2(θ2) = sin(θ2)

Two-phase PLL circuit
f1(θ1) = cos(θ1)

KPD = 1
f2(θ2) = cos(θ2)

Two-phase Costas loop
f1(θ1) = cos(θ1)

KPD = 1
f2(θ2) = cos(θ2)

Table 1. PD characteristics and gain coefficients of the
considered circuits.

respectively. The frequency of carrier signal is constant
and equals ω1:

dθ1(t)
dt

= ω1. (1)

The phases θ1(t) and θ2(t) enter the inputs of a phase
detector. A signal of phase detector output ϕ(θ∆(t))
is filtered by Filter. The proportionally-integrating filter
with the transfer function W (s) = 1+τ2s

τ1s , τ1 > 0, τ2 > 0
is described by the system{

ẋ(t) = ϕ(θ∆(t)),
G(t) = τ2

τ1
KPDϕ(θ∆(t))+ 1

τ1
KPDx(t), (2)

where x(t) is the filter state. In the current paper only
phase detectors with sinusoidal characteristic ϕ(θ∆) =
sinθ∆ are considered.
The output of Filter G(t) serves as a control signal for
VCO:

θ̇2(t) = ωfree
2 +KVCOG(t), (3)

where ωfree
∆ is the VCO free-running frequency and

KVCO > 0 is a VCO gain coefficient.
Equations (1), (3) and system (2) result in autonomous
system of differential equations (here and further difference
of phases ω1 −ωfree

2 is denoted by ωfree
∆ ){

ẋ = sin(θ∆),
θ̇∆ = ωfree

∆ − K0
τ1

(x+ τ2 sin(θ∆)) ,
(4)

where K0 = KVCO ·KPD is the loop gain coefficient.
Analytical results on the lock-in range estimation obtained
for system (4) can be applied to PLL-based circuits with
sinusoidal PD characteristic: classical PLL (see Fig. 2),
Costas loop (see Fig. 3), two-phase PLL (see Fig. 4), and
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two-phase Costas loop (see Fig. 5). Corresponding PD gain
coefficients for the considered PLL-based circuits are listed
in Table 1.

3. ANALYTICAL APPROACH TO THE LOCK-IN
RANGE ANALYSIS

In (Kuznetsov et al., 2015c; Leonov et al., 2015a) rigorous
lock-in range definition for classical PLL was suggested:
Definition 1. Set of all frequency deviations |ωfree

∆ | such
that the mathematical model of the loop in the signal’s
phase space is globally asymptotically stable is called a
pull-in set Ωpull−in. The largest interval [0,ωp) ⊂ Ωpull−in

is called a pull-in range.
Definition 2. The lock-in range [0,ωl) is a subset of the
pull-in range [0,ωp) such that for each corresponding
frequency deviation |ωfree

∆ | the lock-in domain (i.e., a
domain of the loop states, where fast acquisition without
cycle slipping is possible) contains both symmetric locked
states (i.e., locked states for the positive and negative value
of the difference between the reference frequency and the
VCO free-running frequency).
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Since the lock-in range is the subset of the pull-in range
[0,ωp), before studying the lock-in range it is necessary
to estimate the pull-in set. In (Viterbi, 1966), by the
methods of phase plane analysis, it is explained that
the pull-in range of the classical PLL with PI filter and
sinusoidal characteristic of the phase detector is infinite.
However to complete rigorously the explanations given in
(Viterbi, 1966), one has to prove the nonexistence of a
heteroclitic trajectory and limit cycles of the first kind
(see Fig. 6). In the general case, applying the phase plane
analysis for proving global stability of the system under
consideration (which is necessary for estimating lock-in
range) leads to lots of new cumbersome integrations for
any new type of PD characteristic. To overcome these
difficulties, global stability can be proved using another
method, based on the Lyapunov function construction
(Lyapunov, 1892). Required modifications of the classical
global stability criteria for the cylindrical phase space
have been developed in (Gelig et al., 1978; Leonov and
Kuznetsov, 2014) and allow one to prove global stability
for PLL-based systems with periodic PD characteristic
ϕ(θ∆). In (Bakaev, 1963) to prove global stability of PLL

with PI filter and sinusoidal PD characteristic ϕ(θ∆) =
sin(θ∆), Lyapunov function

V (x,θ∆) = 1
2

(
x−
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)2

+ 2τ1
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(

θ∆
2

)

was suggested (see, also discussion in (Leonov et al.,
2015a)).
To prove the global stability of PLL-based systems with
proportionally-integrating filter with periodic PD charac-
teristic ϕ(θ∆) in general form, one may use the following
Lyapunov function (Alexandrov et al., 2015):

V (x,θ∆) = K0
2τ1

(
x−

τ1ωfree
∆

K0

)2

+
θ∆∫
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ϕ(s)ds,

V̇ (x,θ∆) = −K0τ2
τ1

ϕ2(θ∆).

Despite of the global stability property of system (4) phase
trajectories may have cycle slips. To determine if cycle slips
occur, it is necessary to study behaviour of separatrices on
the phase plane (see Fig. 7).

3.1 Phase plane analysis for the lock-in range estimation

Let us consider the analytical approach for the lock-in
range estimation of system (4), based on the phase plane
analysis. Equilibria points of system (4) can be found from
the following system of equations{

sin(θ∆) = 0,
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τ1
x = 0.

One can show that equilibria points
(

θeq
2k,xeq

2k(ωfree
∆ )

)
=

(
2πk,

ωfree
∆ τ1
K0

)

are stable equilibria points and
(

θeq
2k+1,xeq

2k+1(ωfree
∆ )

)
=

(
2πk +π,

ωfree
∆ τ1
K0

)

are unstable saddle points for ∀k ∈ Z. To estimate the
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two-phase Costas loop (see Fig. 5). Corresponding PD gain
coefficients for the considered PLL-based circuits are listed
in Table 1.
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Definition 2. The lock-in range [0,ωl) is a subset of the
pull-in range [0,ωp) such that for each corresponding
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∆ | the lock-in domain (i.e., a
domain of the loop states, where fast acquisition without
cycle slipping is possible) contains both symmetric locked
states (i.e., locked states for the positive and negative value
of the difference between the reference frequency and the
VCO free-running frequency).
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of the lower separatrix Q(θ∆,ωfree
∆ ) (see Fig. 7), which

tends to the saddle point
(
θeq

1 ,xeq
1 (ωfree

∆ )
)

=
(

π,
ωfree

∆ τ1
K0

)

as t → +∞ (due to symmetry of the lower and the upper
half-planes, the study of the the upper separatrix is also
acceptable). Since system (4) is 2π-periodic, corresponding
separatrix of any saddle point on the phase plane has the
same behaviour.
The parameter ωfree

∆ shifts the phase plane vertically. To

verify this, one can perform linear change x → x+ ωfree
∆ τ1
K0

.
Thus, to compute the lock-in range of system (4), one
needs to find ωfree

∆ = ωl (where ωl is called a lock-in
frequency) such that

xeq
0 (−ωl) = Q(θeq

0 ,ωl). (5)

Using relation (5), one can obtain precise formula for the
ωl:

− ωl

K0/τ1
= ωl

K0/τ1
+Q(θeq

0 ,0).

ωl = −K0Q(θeq
0 ,0)

2τ1
. (6)

For system (4) with varying parameter 0 < τ2/τ1 � 1
and one can expand the separatrix Q(θ∆,0, τ2/τ1) in a
Taylor series in variable τ2/τ1. The consideration of a
filter with small parameter (Alexandrov et al., 2014) allows
one to integrate separatrices and to estimate the lock-in
range. For this purpose approximations of the separatrix
Q(θ∆,0, τ2/τ1) on interval 0 ≤ θ∆ < π are used.
Approximations obtained below are computed by consid-
eration of the system, which is equivalent system (4):

{
θ̇∆(t) = y(t),
ẏ(t) = −K0τ2

τ1
ϕ̇(θ∆(t))y(t)− K0

τ1
ϕ(θ∆(t)), (7)

where y(t) = ωfree
∆ − K0

τ1
(x(t)+ τ2ϕ(θ∆(t))). The first ap-

proximation of the lower separatrix Q(θ∆,0, τ2/τ1) has the
form

Q̂1(θ∆,0, τ2/τ1) = −2
√

K0/τ1 cos θ∆
2 −

− τ2
τ1

K0
(

2
3 − sin θ∆

2 − 1
3 sin 3θ∆

2

)

cos θ∆
2

. (8)

The second approximation of the Q(θ∆,0, τ2/τ1) has the
form

Q̂2(θ∆,0, τ2/τ1) = −2
√

K0/τ1 cos θ∆
2 −

− τ2
τ1

K0
(

2
3 − sin θ∆

2 − 1
3 sin 3θ∆

2

)

cos θ∆
2

−

−
(

τ2
τ1

)2 K2
0 (61

2 −4ln2)
6
√

K0/τ1 cos θ∆
2

+

+
K2

0

(
2
3 − sin θ∆

2 − 1
3 sin 3θ∆

2

)2

4
√

K0/τ1 cos3 θ∆
2

+

+
(

τ2
τ1

)2 K2
0

(
8sin(θ∆

2 )−4ln
∣∣∣sin θ∆

2 +1
∣∣∣
)

6
√

K0/τ1 cos θ∆
2

+

+
(

τ2
τ1

)2 K2
0

(1
2 cos2θ∆ +2cosθ∆

)

6
√

K0/τ1 cos θ∆
2

. (9)

For approximations Q̂1(θ∆,0, τ2/τ1) and Q̂2(θ∆,0, τ2/τ1),
which are finite sums of Taylor series terms, the following
relations are valid:

Q(θ∆,0, τ2/τ1) = Q̂1(θ∆,0, τ2/τ1)+O
(

(τ2/τ1)2
)

,

Q(θ∆,0, τ2/τ1) = Q̂2(θ∆,0, τ2/τ1)+O
(

(τ2/τ1)3
)

.

The first and the second approximations of the
Q(θ∆,0, τ2/τ1) in θ∆ = θeq

0 are equal to the following
values:

Q̂1(θeq
0 ,0, τ2/τ1) = −2

√
K0/τ1 − 2K0τ2

3τ1
,

Q̂2(θeq
0 ,0, τ2/τ1) = −2

√
K0/τ1 − 2K0τ2

3τ1
−

− K0τ2
2 (5−6ln2)

9τ1

√
K0/τ1.

Using formula (6) approximations for the lock-in frequency
ωl can be found:

ωl =
K0

√
K0/τ1
τ1

+ K2
0 τ2

3τ2
1

+O
(

(τ2/τ1)2
)

, (10)

ωl =
K0

√
K0/τ1
τ1

+ K2
0 τ2

3τ2
1

+

+ K2
0 τ2

2 (5−6ln2)
18τ2

1

√
K0/τ1 +O

(
(τ2/τ1)3

)
. (11)

3.2 Verification of obtained results

To verify obtained analytical results, numerical simula-
tions are performed. In Fig. 10 dependency of ωlτ1

K0
on

parameter K0
τ1

is presented. The dependency is obtained
numerically using relation (6). To compute the value of ωl

for fixed values of K0, τ1, τ2, one has to follow the steps
described below. First, choose the curve in Fig. 10, which
corresponds to the value of τ2. On that curve choose point
for which X-axis value is equal to the value K0/τ1, and get
the Y-axis value of the chosen point. Multiply this value
by K0/τ1. The result is the desired value of ωl.
In Fig. 8 three curves are shown for the fixed τ2 = 0.1.
Values of ωl, obtained numerically using relation (6) (blue
curve), are estimated from below by values of (10) (red
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curve) and from above by values of (11) (green curve).
Axis in Fig. 8 are chosen in such a way that obtained plot
is universal, i.e. for fixed value of τ2 one is able to get the
value of ωl for any values of K0, τ1.
Remark 1. Approximations of Q(θ∆,0, τ2/τ1) are obtained
under the condition that parameter τ2/τ1 is small, thus for
the large values of K0/τ1 obtained estimations give less
precise result.

3.3 Pull-out frequency and lock-in range

While lock-in range is useful for phase acquisition, there
exist another concept of pull-out frequency, which is used
for frequency tracking (Gardner, 2005). In (Gardner, 2005)
pull-out frequency ωpo is defined as frequency-step limit,
below which the loop does not skip cycles but remains
in lock. However, in contrast to Definition 2 of the lock-
in range, notion of the pull-out frequency has not been
generalized (Huque and Stensby, 2013) (in the general
case ωpo depends on ωfree

∆ , see (Leonov et al., 2015a,
Fig. 10)). In case of PI filter both Definition 2 and
notion (Gardner, 2005) of the pull-out frequency needs
separatrices of system (4) to be computed. Results for pull-
out frequency estimation (approximations of the upper
separatrix S(θ∆,0, τ2/τ1)) obtained in (Gardner, 2005;
Huque and Stensby, 2013) are compared with results
obtained in this paper (see Fig. 3.1).
Values of the S(θeq

0 ,0, τ2/τ1), obtained numerically are
drawn in blue color. The black curve is the estimation of
S(θeq

0 ,0, τ2/τ1) from (Huque and Stensby, 2013). Values of
Ŝ1(θeq

0 ,0, τ2/τ1) = −Q̂1(θeq
0 ,0, τ2/τ1)

are drawn in red color. Values of
Ŝ2(θeq

0 ,0, τ2/τ1) = −Q̂2(θeq
0 ,0, τ2/τ1)

are drawn in green color. Dashed curve corresponds to the
empirical estimation (Gardner, 1979; Stensby, 1997) :

S(θeq
0 ,0, τ2/τ1) = 1.85

(
1
2 + τ1

K0τ2
2

)
, (12)

In practice, for K0/τ1 not large Ŝ2(θeq
0 ,0, τ2/τ1) gives the

most precise result compared to presented estimations.
However, for K0/τ1 large relation (12) is the most precise
estimation.

4. CONCLUSION

Combination of different analytical approaches to the lock-
in range estimation is discussed. Considered methods are
based on the integration of trajectories and on Lyapunov
functions construction. Validity of obtained analytical
estimations is verified by numerical simulations.
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3.3 Pull-out frequency and lock-in range

While lock-in range is useful for phase acquisition, there
exist another concept of pull-out frequency, which is used
for frequency tracking (Gardner, 2005). In (Gardner, 2005)
pull-out frequency ωpo is defined as frequency-step limit,
below which the loop does not skip cycles but remains
in lock. However, in contrast to Definition 2 of the lock-
in range, notion of the pull-out frequency has not been
generalized (Huque and Stensby, 2013) (in the general
case ωpo depends on ωfree
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Fig. 10)). In case of PI filter both Definition 2 and
notion (Gardner, 2005) of the pull-out frequency needs
separatrices of system (4) to be computed. Results for pull-
out frequency estimation (approximations of the upper
separatrix S(θ∆,0, τ2/τ1)) obtained in (Gardner, 2005;
Huque and Stensby, 2013) are compared with results
obtained in this paper (see Fig. 3.1).
Values of the S(θeq
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In practice, for K0/τ1 not large Ŝ2(θeq
0 ,0, τ2/τ1) gives the

most precise result compared to presented estimations.
However, for K0/τ1 large relation (12) is the most precise
estimation.
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Combination of different analytical approaches to the lock-
in range estimation is discussed. Considered methods are
based on the integration of trajectories and on Lyapunov
functions construction. Validity of obtained analytical
estimations is verified by numerical simulations.
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