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Abstract An overview of interactive methods for solving nonlinear multiobjective
optimization problems is given. In interactive methods, the decision
maker progressively provides preference information so that the most
satisfactory Pareto optimal solution can be found for her or his. The
basic features of several methods are introduced and some theoretical
results are provided. In addition, references to modifications and ap-
plications as well as to other methods are indicated. As the role of
the decision maker is very important in interactive methods, methods
presented are classified according to the type of preference information
that the decision maker is assumed to provide.
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1. Introduction

Nonlinear multiobjective optimization means multiple criteria decision
making involving nonlinear functions of (continuous) decision variables.
In these problems, the best possible compromise, that is, Pareto optimal
solution, is to be found from an (infinite) number of alternatives repre-
sented by decision variables restricted by constraint functions. Thus,
enumerating the solutions is impossible.

Solving multiobjective optimization problems usually requires the par-
ticipation of a human decision maker who is supposed to have insight
into the problem and who can express preference relations between alter-
native solutions or objective functions or some other type of preference
information. Multiobjective optimization methods can be divided into
four classes according to the role of the decision maker in the solution
process [79, 136]. If the decision maker is not involved, we use meth-
ods where no articulation of preference information is used, in other
words, no-preference methods. If the decision maker expresses prefer-
ence information after the solution process, we speak about a posteriori
methods whereas a priori methods require articulation of preference in-
formation before the solution process. The most extensive class is inter-
active methods, where the decision maker specifies preference informa-
tion progressively during the solution process. Here we concentrate on
this last-mentioned class and introduce several examples of interactive
methods.

In the literature, interactive methods have proven useful for various
reasons. They have been found efficient from both computational and
cognitive points of view. Because the decision maker directs the solution
process with one’s preferences, only those Pareto optimal solutions that
are interesting to her or him need to be calculated. This means savings
in computational cost when compared to a situation where a big set of
Pareto optimal solutions should be calculated. On the other hand, the
amount of new information generated per iteration is limited and, in this
way, the decision maker does not need to compare too many solutions
at a time. An important advantage of interactive methods is learning.
Once the decision maker has provided preferences, (s)he can see from
the Pareto optimal solutions generated, how attainable or feasible the
preferences were. In this way, the decision maker gains insight about the
problem. (S)he learns about the interdependencies between the objective
functions and also about one’s own preferences. The decision maker can
also change her or his mind after the learning, if so desired.

Many real-world phenomena behave in a nonlinear way. Besides, lin-
ear problems can always be solved using methods created for nonlinear
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problems but not vice versa. For these reasons, we here devote ourselves
to nonlinear problems. We assume that all the information involved is
deterministic and that we have a single decision maker.

In this presentation, we concentrate on general-purpose interactive
methods and, thus, methods tailored for some particular problem type
are not included. In recent years, interactive approaches have been de-
veloped in the field of evolutionary multiobjective optimization (see, for
example, [15]), but we do not consider them here. The literature survey
of years since 2000 has been limited to journal articles (in English). We
describe in more detail methods with published applications.

2. Concepts

Let us begin by introducing several concepts and definitions. We study
multiobjective optimization problems of the form

minimize {f1(x), f2(x), . . . , fk(x)}
subject to x ∈ S

(1.1)

involving k (≥ 2) objective functions or objectives fi : S → R that
we want to minimize simultaneously. The decision (variable) vectors x
belong to the (nonempty) feasible region S ⊆ Rn. The feasible region is
formed by constraint functions but we do not fix them here.

We denote the image of the feasible region by Z ⊂ Rk and call it
a feasible objective region. Objective (function) values form objective
vectors z = f(x) = (f1(x), f2(x), . . . , fk(x))

T . Note that if fi is to be
maximized, it is equivalent to minimize −fi.

We call a multiobjective optimization problem convex if all the objec-
tive functions and the feasible region are convex. On the other hand, the
problem is nondifferentiable if at least one of the objective or the con-
straint functions is nondifferentiable. (Here nondifferentiability means
that the function is not necessarily continuously differentiable but that
it is locally Lipschitz continuous.)

We assume that the objective functions are at least partly conflicting
and possibly incommensurable. This means that it is not possible to
find a single solution that would optimize all the objectives simultane-
ously. As the definition of optimality we employ Pareto optimality. An
objective vector is Pareto optimal (or noninferior or efficient or nondom-
inated) if none of its components can be improved without deterioration
to at least one of the other components. More formally, we have the
following definition.
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Definition 1 A decision vector x∗ ∈ S is (globally) Pareto optimal if
there does not exist another decision vector x ∈ S such that fi(x) ≤
fi(x

∗) for all i = 1, . . . , k and fj(x) < fj(x
∗) for at least one index j.

An objective vector z∗ ∈ Z is Pareto optimal if there does not exist
another vector z ∈ Z such that zi ≤ z∗i for all i = 1, . . . , k and zj < z∗j for
at least one index j; or equivalently, z∗ is Pareto optimal if the decision
vector corresponding to it is Pareto optimal.

Local Pareto optimality is defined in a small neighborhood of x∗ ∈
S. Naturally, any globally Pareto optimal solution is locally Pareto
optimal. The converse is valid, for example, for convex multiobjective
optimization problems; see [22, 136], among others.

For the sake of brevity, we usually speak about Pareto optimality in
the sequel. In practice, however, we only have locally Pareto optimal
solutions computationally available, unless some additional requirement,
such as convexity, is fulfilled or unless we have global solvers available.

A Pareto optimal set consists of (an infinite number of) Pareto op-
timal solutions. In interactive methods, we usually move around the
Pareto optimal set and forget the other solutions. However, one should
remember that this limitation may have weaknesses. Namely, the real
Pareto optimal set may remain unknown. This may be the case if an
objective function is only an approximation of an unknown function or
if not all the objective functions involved are explicitly expressed.

Moving from one Pareto optimal solution to another necessitates trad-
ing off. To be more specific, a trade-off reflects the ratio of change in
the values of the objective functions concerning the increment of one
objective function that occurs when the value of some other objective
function decreases (see, for example, [24, 136]).

For any two solutions equally preferable to the decision maker there
is a trade-off involving a certain increment in the value of one objective
function that the decision maker is willing to tolerate in exchange for
a certain amount of decrement in some other objective function while
the preferences of the two solutions remain the same. This is called the
marginal rate of substitution (see, for example, [136] for further details
and properties).

Usually, one of the objective functions is selected as a reference func-
tion when trade-offs and marginal rates of substitution are treated. The
pairwise trade-offs and the marginal rates of substitution are generated
with respect to it.

Sometimes Pareto optimal sets are not enough but we need wider
or smaller sets: weakly and properly Pareto optimal sets, respectively.
An objective vector is weakly Pareto optimal if there does not exist
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any other objective vector for which all the components are smaller.
Weakly Pareto optimal solutions are sometimes computationally easier
to generate than Pareto optimal solutions. Thus, they have relevance
from a technical point of view. On the other hand, a vector is properly
Pareto optimal if unbounded trade-offs are not allowed. For a collection
of different definitions of proper Pareto optimality, see, for example,
[136].

Multiobjective optimization problems are usually solved by scalar-
ization which means that the problem is converted into one or a fam-
ily of single (scalar) objective optimization problems. This produces a
new scalarized problem with a real-valued objective function, possibly
depending on some parameters. The resulting new problem must be
solved with a single objective optimization method which is appropriate
to the characteristics of the problem in question (taking into account,
for example, differentiability and convexity). When scalarization is done
properly, it can be guaranteed that the solution obtained is Pareto op-
timal to the original multiobjective optimization problems. For further
details see, for example, [136, 206].

Interactive methods differ from each other by the way the problem is
transformed into a single objective optimization problem, by the form
in which information is provided by the decision maker and by the form
in which information is given to the decision maker at each iteration of
the solution process.

One way of inquiring the decision maker’s opinions is to ask for satis-
factory or desirable objective function values. They are called aspiration
levels and denoted by z̄i, i = 1, . . . , k. They form a vector z̄ ∈ Rk to be
called a reference point .

The ranges of the objective functions in the set of Pareto optimal
solutions give valuable information to the decision maker about the pos-
sibilities and restrictions of the problem (assuming the objective func-
tions are bounded over S). The components of the ideal objective vector
z⋆ ∈ Rk are the individual optima of the objective functions. This vector
represents the lower bounds of the Pareto optimal set. (In nonconvex
problems, we need a global solver for minimizing the k functions.) Note
that we sometimes need a vector that its strictly better than the ideal
objective vector. This vector is called a utopian objective vector and
denoted by z⋆⋆.

The upper bounds of the Pareto optimal set, that is, the components
of a nadir objective vector znad, are much more difficult to obtain. Actu-
ally, there is no constructive method for calculating the nadir objective
vector for nonlinear problems. However, a rough estimate can be ob-
tained by keeping in mind the solutions where each objective function
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attains its lowest value and calculating the values of the other objectives.
The highest value obtained for each objective can be selected as the es-
timated component of znad. This approach was originally proposed in
[10] and later named as a pay-off table method. Some approaches for
estimating the nadir objective vector for nonlinear multiobjective opti-
mization are summarized in [136]. Examples of latest approaches include
[37, 38].

It is sometimes assumed that the decision maker makes decisions on
the basis of an underlying value function U : Rk → R representing
her or his preferences among the objective vectors [92]. Even though
value functions are seldom explicitly known, they have been important
in the development of multiobjective optimization methods and as a
theoretical background. Thus, the value function is sometimes presumed
to be known implicitly.

The value function is usually assumed to be strongly decreasing . In
other words, the preferences of the decision maker are assumed to in-
crease if the value of one objective function decreases while all the other
objective values remain unchanged. In brief, we can say that less is
preferred to more. In that case, the maximal solution of U is assured
to be Pareto optimal. Note that regardless of the existence of a value
function, in what follows, we shall assume that lower objective function
values are preferred to higher, that is, less is preferred to more by the
decision maker.

An alternative to the idea of maximizing some value function is sat-
isficing decision making [206]. In this approach, the decision maker
tries to achieve certain aspirations. If the aspirations are achieved, the
solution is called a satisficing solution.

3. Introduction to Interactive Methods

A large variety of methods has been developed for solving multiobjec-
tive optimization problems. We can say that none of them is generally
superior to all the others. As mentioned earlier, we apply here the clas-
sification of the methods into four classes according to the participation
of the decision maker in the solution process. This classification was
originally suggested in [79] and it was followed later, for example, in
[136].

While we discuss interactive methods, we divide them into ad hoc
and non ad hoc methods (based on value functions) as suggested in
[224]. Even if one knew the decision maker’s value function, one would
not exactly know how to respond to the questions posed by an ad hoc
method. On the other hand, in non ad hoc methods, the responses
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can be determined or at least confidently simulated based on a value
function.

Before describing the methods, we mention several references for fur-
ther information. This presentation is mainly based on [136]. Con-
cepts and methods for multiobjective optimization are also treated in
[17, 24, 43, 44, 79, 129, 196, 206, 219, 223, 228, 242, 246, 271].

Interactive multiobjective optimization methods, in particular, are
collected in [153, 179, 207, 243, 255]. Furthermore, methods with ap-
plications to large-scale systems and industry are presented in [65, 216,
232].

We shall not discuss non-interactive methods here. However, we men-
tion some of such methods by name and give references for further infor-
mation. Examples of no-preference methods are the method of the global
criterion [270, 273] and the multiobjective proximal bundle method [145].
From among a posteriori methods we mention the weighting method
[56, 272], the ε-constraint method [64] and the hybrid method [32, 254]
as well as the method of weighted metrics [273] and the achievement
scalarizing function approach [257, 258, 259, 261]. Multiobjective evo-
lutionary algorithms are also a posteriori in nature, see, for example,
[15] and references therein. A priori methods include the value function
method [92], the lexicographic ordering [52] and the goal programming
[25, 26, 81, 194, 195].

In what follows, we concentrate on interactive methods. In interactive
methods, a solution pattern is formed and repeated several times. After
every iteration, some information is given to the decision maker and
(s)he is asked to answer some questions or to provide some other type
of information. In this way, only a part of the Pareto optimal solutions
has to be generated and evaluated, and the decision maker can specify
and correct her or his preferences and selections during the solution
process when (s)he gets to know the problem better. Thus, the decision
maker does not need to have any global preference structure. Further
information about the topics treated here can be found in [136, 153].

An interactive method typically contains the following main steps (as
outlined, for example, in [141]): (1) initialize (for example, calculate ideal
and nadir objective vectors and show them to the decision maker), (2)
generate a Pareto optimal starting point (some neutral compromise solu-
tion or solution given by the decision maker) and show it to the decision
maker, (3) ask for preference information from the decision maker (for
example, aspiration levels or number of new solutions to be generated,
depending on the method in question), (4) generate new Pareto optimal
solution(s) according to the preferences and show it/them and possi-
bly some other information about the problem to the decision maker,
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(5) if several solutions were generated, ask the decision maker to select
the best solution so far, and (6) stop, if the decision maker wants to.
Otherwise, go to step (3).

Three main stopping criteria can be identified in interactive methods.
In the best situation, the decision maker finds a desirable solution and
wants to stop. Alternatively, the decision maker gets tired and stops or
some algorithmic stopping rule is fulfilled. In the last-mentioned case,
one must check that the decision maker agrees to stop.

As a matter of fact, as stated in [153], solving a multiobjective op-
timization problem with an interactive method can be regarded as a
constructive process where, while learning, the decision maker builds a
conviction of what is possible (that is, what kind of solutions are avail-
able and attainable) and confronting this knowledge with her or his
preferences that also evolve. Based on this understanding, in interactive
methods we should pay attention to psychological convergence, rather
than to mathematical convergence (like, for example, optimizing some
value function).

Sometimes, two different phases can be identified in interactive solu-
tion processes: learning phase and decision phase [153]. In the learning
phase, the decision maker learns about the problem and gains under-
standing of what kind of solutions are attainable whereas the most pre-
ferred solution is found in the decision phase in the region identified in
the first phase. Naturally, the two phases can also be used iteratively.

In what follows, we present several interactive methods. The idea is
to describe a collection of methods based on different approaches. In
addition, plenty of references are included. Note that although all the
calculations take place in the decision variable space, we mostly speak
about the corresponding objective vectors and refer to both as solutions
since the space is apparent from the context.

When presenting the methods we apply the classification given in
[125, 201] according to the type of preference information that the meth-
ods utilize. This is an important aspect because a reliable and an un-
derstandable way of extracting preference information from the decision
maker is essential for the success of applying interactive methods. The
decision maker must feel being in control and must understand the ques-
tions posed. Otherwise, the answers cannot be relied on in the solution
process. It is also important to pay attention to the cognitive load set on
the decision maker, as discussed in [112]. Applying the method should
not set too much cognitive load on the decision maker.

In the first class, the decision maker specifies aspiration levels (in
other words, a reference point) representing desirable objective function
values. In the second class, the decision maker provides a classification
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indicating which of the objective function values should be improved,
maintained at the current value or allowed to impair. One should note
that providing aspiration levels and a classification are closely related
as justified in [148]. From classification information one can derive a
reference point but not vice versa. The third class is devoted to meth-
ods where the decision maker compares different solutions and chooses
a solution among several ones. The fourth class involves marginal rates
of substitution referring to the amount of decrement in the value of one
objective function that compensates to the decision maker an infinitesi-
mal increment in the value of another objective function while the values
of other objective functions remain unaltered. In addition to the four
classes given in [125, 201], we consider a fifth class devoted to naviga-
tion based methods where the decision maker moves around in the set
of Pareto optimal solutions in real time and controls the direction of
movement in different ways.

4. Methods Using Aspiration Levels

What is common to the methods in this section is a reference point
consisting of desirable aspiration levels. With a reference point, the de-
cision maker can conveniently express one’s desires without any cognitive
mapping as (s)he gives objective function values and obtains objective
function values generated by the method. Some of the methods in this
section utilize other types of preference information as well but the ref-
erence point is an integral element of each method.

4.1 Reference Point Method

The reference point method [256, 257, 259] is based on vectors formed of
reasonable or desirable aspiration levels. These reference points are used
to derive scalarizing functions having minimal values at weakly, properly
or Pareto optimal solutions.

No specific assumptions are set in this method. The idea is to direct
the search by changing the reference point z̄h in the spirit of satisficing
decision making rather than optimizing any value function. It is impor-
tant that reference points are intuitive and easy for the decision maker
to specify and their consistency is not an essential requirement.

Note that specifying a reference point can be considered as a way of
classifying the objective functions. If the aspiration level is lower than
the current objective value, that objective function is currently unaccept-
able, and if the aspiration level is equal to or higher than the current
objective value, that function is acceptable. The difference here is that
the reference point can be infeasible in every component. Naturally,
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trading off is unavoidable in moving from one Pareto optimal solution
to another and it is impossible to get a solution where all objective val-
ues are better than in the previous Pareto optimal solution but different
solutions can be obtained with different approaches.

Scalarizing functions used in the reference point method are so-called
achievement (scalarizing) functions and the method relies on their prop-
erties. We can define so-called order-representing and order-approximat-
ing achievement functions.

An example of a scalarized problem with an order-representing achieve-
ment function is

minimize max
i=1,...,k

[wi(fi(x)− z̄hi ) ]

subject to x ∈ S,
(1.2)

where w is some fixed weighting vector with positive components. An
example of a scalarized problem with an order-approximating achieve-
ment function is

minimize max
i=1,...,k

[wi(fi(x)− z̄hi ) ] + ρ
k∑

i=1

wi(fi(x)− z̄hi )

subject to x ∈ S,

(1.3)

where w is as above and ρ > 0 sets bounds for trade-offs.

Theorem 1 If the achievement function is order-representing, then its
solution is weakly Pareto optimal. If the function is order-approximating,
then its solution is Pareto optimal and the solution is properly Pareto
optimal if the function is also strongly increasing. Any (weakly) Pareto
optimal solution can be found if the achievement function is order-rep-
resenting. Finally, any properly Pareto optimal solution can be found if
the function is order-approximating.

The reference point method is very simple. Before the solution pro-
cess starts, some information is given to the decision maker about the
problem. If possible, the ideal objective vector and the (approximated)
nadir objective vector are presented. Another possibility is to minimize
and maximize the objective functions individually in the feasible region
(if it is bounded). Naturally, the maximized objective function values
do not typically represent components of the nadir objective vector but
they can give some information to the decision maker in any case.

The basic steps of the reference point algorithm are the following:

1 Select the achievement function. Present information about the
problem to the decision maker. Set h = 1.
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2 Ask the decision maker to specify a reference point z̄h ∈ Rk.

3 Minimize the achievement function and obtain a (weakly, properly
or) Pareto optimal solution zh. Present it to the decision maker.

4 Calculate a number of k other (weakly, properly or) Pareto optimal
solutions with perturbed reference points z̄(i) = z̄h + dhei, where
dh = ∥z̄h − zh∥ and ei is the ith unit vector for i = 1, . . . , k.

5 Present the alternatives to the decision maker. If (s)he finds one of
the k + 1 solutions satisfactory, stop. Otherwise, ask the decision
maker to specify a new reference point z̄h+1. Set h = h+1 and go
to step 3.

The idea in perturbing the reference point in step 4 is that the deci-
sion maker gets a better conception of the possible solutions around the
current solution. If the reference point is far from the Pareto optimal
set, the decision maker gets a wider description of the Pareto optimal
set and if the reference point is near the Pareto optimal set, then a finer
description of the Pareto optimal set is given.

In this method, the decision maker has to specify aspiration levels
and compare objective vectors. The decision maker is free to change
her or his mind during the solution process and can direct the solution
process without being forced to understand complicated concepts and
their meaning. On the other hand, the method does not necessarily help
the decision maker to find more satisfactory solutions.

The reference point method is an ad hoc method because a reference
point cannot directly be defined based on a value function. On the
other hand, alternatives are easy to compare whenever a value function
is known.

Let us mention that a software family called DIDAS (Dynamic Inter-
active Decision Analysis and Support) has been developed on the basis
of the reference point ideas. It is described, for example, in [263].

Applications and modifications of the reference point method are pro-
vided in [12, 62, 155, 182, 183, 211, 213, 215, 225, 241, 244, 245, 260, 262].

4.2 GUESS Method

The GUESS method is also called a näıve method [19]. The method is
related to the reference point method.

It is assumed that a global ideal objective vector z⋆ and a global nadir
objective vector znad are available. The structure of the method is very
simple: the decision maker specifies a reference point (or a guess) z̄h and
a Pareto optimal solution is generated which is somehow closest to the
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reference point. Then the decision maker specifies a new reference point
and so on.

The general idea is to maximize the minimum weighted deviation from
the nadir objective vector. The scalarized problem to be solved is

maximize min
i=1,...,k

[
znadi − fi(x)

znadi − z̄hi

]
subject to x ∈ S.

(1.4)

Notice that the aspiration levels have to be strictly lower than the com-
ponents of the nadir objective vector.

Theorem 2 The solution of (1.4) is weakly Pareto optimal and any
Pareto optimal solution can be found.

The GUESS algorithm has five basic steps.

1 Calculate z⋆ and znad and present them to the decision maker. Set
h = 1.

2 Let the decision maker specify upper or lower bounds to the objec-
tive functions if (s)he so desires. Update the problem, if necessary.

3 Ask the decision maker to specify a reference point z̄h between z⋆

and znad.

4 Solve (1.4) and present the solution to the decision maker.

5 If the decision maker is satisfied, stop. Otherwise, set h = h + 1
and go to step 2.

In step 2, upper or lower bounds mean adding constraints to problem
(1.4), but the ideal or the nadir objective vectors are not affected. The
only stopping rule is the satisfaction of the decision maker. No guidance
is given to the decision maker in setting new aspiration levels. This is
typical of many reference point based methods.

The GUESS method is simple to use and no consistency of the pref-
erence information provided is assumed. The only information required
from the decision maker is a reference point and possible upper and lower
bounds, which are optional. Note that inappropriate lower bounds may
lead into solutions that are not weakly Pareto optimal. Unfortunately,
the GUESS method relies heavily on the availability of the nadir objec-
tive vector, which is usually only an estimation.

The GUESS method is an ad hoc method. The existence of a value
function would not help in specifying reference points or bounds for the
objective functions. The method has been compared to several other
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interactive methods in [18, 21, 34] and it has performed surprisingly
well. The reasons may be its simplicity and flexibility. One can say
that decision makers seem to prefer solution methods where they can
feel that they are in control.

4.3 Light Beam Search

The light beam search [82, 83] employs tools of multiattribute decision
analysis (see, for example, [246]) together with reference point ideas. The
basic setting is identical to the reference point method. The scalarized
problem to be solved is

minimize max
i=1,...,k

[wi(fi(x)− z̄hi ) ] + ρ
k∑

i=1

(fi(x)− z̄hi )

subject to x ∈ S,

(1.5)

where w is a weighting vector, z̄h is the current reference point and
ρ > 0.

Theorem 3 The solution of (1.5) is properly Pareto optimal and any
properly Pareto optimal solution can be found.

The reference point is here assumed to be infeasible, that is, unattain-
able. It is also assumed that the objective and the constraint func-
tions are continuously differentiable and that the objective functions are
bounded over S. Furthermore, none of the objective functions is allowed
to be more important than all the others together.

In the light beam search, the decision maker directs the search by
specifying reference points. In addition, other solutions in the neigh-
bourhood of the current solution are displayed. Thus, the idea is iden-
tical to that of the reference point method. The main difference is in
the way the alternatives are generated. The motivation is to avoid com-
paring too similar alternatives or alternatives that are indifferent to the
decision maker. To achieve this goal, concepts of ELECTRE methods
(developed for handling with discrete problems in multiattribute decision
analysis) are utilized (see, for example, [200]).

It is not always possible for the decision maker to distinguish be-
tween different alternatives. This means that there is an interval where
indifference prevails. For this reason, the decision maker is asked to
provide indifference thresholds for each objective function. The line be-
tween indifference and preference does not have to be sharp, either. The
hesitation between indifference and preference can be expressed by pref-
erence thresholds. Finally, a veto threshold prevents a good performance
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in some objectives from compensating for poor values on some other
objectives.

In the light beam search, outranking relations are established between
alternatives. An objective vector z1 is said to outrank z2 if z1 is at least
as good as z2. The idea is to generate k new alternative objective vec-
tors such that they outrank the current solution. In particular, incom-
parable or indifferent alternatives are not shown to the decision maker.
The alternatives to be shown are called characteristic neighbours. The
neighbours are determined by projecting the gradient of one objective
function at a time onto the linear approximation of those constraints
that are active in the current solution.

We can now outline the light beam algorithm.

1 If the decision maker can specify the best and the worst values for
each objective function, denote them by z⋆ and znad, respectively.
Alternatively, calculate z⋆ and znad. Set h = 1 and z̄h = z⋆.
Initialize the set of saved solutions as B = ∅. Ask the decision
maker to specify an indifference threshold for each objective. If
desired, (s)he can also specify preference and veto thresholds.

2 Calculate current Pareto optimal solution zh by solving (1.5).

3 Present zh to the decision maker. Calculate k Pareto optimal
characteristic neighbours of zh and present them as well to the
decision maker. If the decision maker wants to see alternatives
between any two of the k + 1 alternatives displayed, set their dif-
ference as a search direction, take different steps in this direction
and project them onto the Pareto optimal set before showing them
to the decision maker. If the decision maker wants to save zh, set
B = B ∪ {zh}.

4 If the decision maker wants to revise the thresholds, save them,
set zh = zh+1, h = h + 1 and go then to step 3. If the decision
maker wants to give another reference point, denote it by z̄h+1, set
h = h+1 and go to step 2. If the decision maker wants to select one
of the alternatives or one solution in B as a current solution, set it
as zh+1, set h = h+ 1 and go to step 3. If one of the alternatives
is satisfactory, stop.

The option of saving desirable solutions in the set B increases the
flexibility of the method. A similar option could be added to many
other methods as well.

The name of the method comes from the idea of projecting a focused
beam of light from the reference point onto the Pareto optimal set. The
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lighted part of the Pareto optimal set changes if the location of the
spotlight, that is, the reference point or the point of interest in the
Pareto optimal set are changed.

In the light beam search, the decision maker specifies reference points,
compares alternatives and affects the set of alternatives in different ways.
Specifying different thresholds may be demanding for the decision maker.
Note, however, that the thresholds are not constant but can be altered at
any time. The developers of the method point out that it may be compu-
tationally rather demanding to find the exact characteristic neighbours
in a general case. It is, however, noteworthy that the neighbours can be
generated in parallel.

The light beam search is an ad hoc method because a value function
could not directly determine new reference points. It could, however,
be used in comparing alternatives. Remember that the thresholds are
important here and they must come from the decision maker.

A modification of the method is described in [260].

4.4 Other Methods Using Aspiration Levels

Many interactive methods of the class of methods using aspiration levels
originate from the goal programming approach because the interpreta-
tion of a goal and a reference point are closely related. Examples of
such methods include [130, 159, 181, 214, 233, 251]. Methods adopting
a fuzzy approach to setting aspiration levels have been proposed in [75,
77, 156, 157, 205]. Some other aspiration level based interactive methods
can be found in [14, 35, 61, 70, 96, 121, 180, 231, 234, 250, 252, 253].

5. Methods Using Classification

With a classification, the decision maker can express what kind of changes
should be made to the current Pareto optimal solution to get a more de-
sirable solution. Classification reminds the decision maker of the fact
that it is not possible to improve all objective values of a Pareto optimal
objective vector but impairment in some objective(s) must be allowed.
The methods presented in this section utilize different numbers of classes.
Some of the methods involve preference information other than classifi-
cation but classification is the core element in all of them.

5.1 Step Method

The step method (STEM) [10] is one of the first interactive methods
developed for multiobjective optimization problems. Here we describe
an extension for nonlinear problems according to [45] and [206], pp. 268–
269.
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STEM is based on the classification of the objective functions at the
current iteration at zh = f(xh). It is assumed that the decision maker
can indicate both functions that have acceptable values and those whose
values are too high, that is, functions that are unacceptable. Then
the decision maker is supposed to give up a little in the value(s) of
some acceptable objective function(s) fi (denoted by i ∈ I>) in order to
improve the values of some unacceptable objective functions fi (denoted
by i ∈ I<) (here I>∪I< = {1, . . . , k}). To be more specific, the decision
maker is asked to specify upper bounds εhi > fi(x

h) for the functions in
I>.

The only requirement in the method is that the objective functions
are bounded over S because distances are measured to the (global) ideal
objective vector. The first scalarized problem to be solved is

minimize max
i=1,...,k

[
ei∑k
j=1 ej

(fi(x)− z⋆i )

]
subject to x ∈ S,

(1.6)

where ei = 1
z⋆i

znadi −z⋆i
znadi

as suggested in [45], or ei =
znadi −z⋆i

max [ |znadi |,|z⋆i | ]
as

suggested in [243].

Theorem 4 The solution of (1.6) is weakly Pareto optimal. The prob-
lem has at least one Pareto optimal solution.

After the decision maker has classified the objective functions, the
feasible region is restricted according to the information of the decision
maker. The weights of the relaxed objective functions are set equal to
zero, that is ei = 0 for i ∈ I>. Then a new distance minimization
problem

minimize max
i=1,...,k

[
ei∑k
j=1 ej

(fi(x)− z⋆i )

]
subject to fi(x) ≤ εhi for all i ∈ I>,

fi(x) ≤ fi(x
h) for all i ∈ I<,

x ∈ S

(1.7)

is solved.
The basic phases of the STEM algorithm are the following:

1 Calculate z⋆ and znad and the weighting coefficients ei for i =
1, . . . , k. Set h = 1. Solve (1.6). Denote the solution by zh ∈ Z.

2 Ask the decision maker to classify the objective functions at zh

into I> and I<. If the latter class is empty, stop. Otherwise, ask
the decision maker to specify relaxed upper bounds εhi for i ∈ I>.
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3 Solve (1.7) and denote the solution by zh+1 ∈ Z. Set h = h + 1
and go to step 2.

The solution process continues until the decision maker does not want
to change any component of the current objective vector. If the decision
maker is not satisfied with any of the components, then the procedure
must also be stopped.

In STEM, the decision maker is moving from one weakly Pareto opti-
mal solution to another. The idea of classification is quite simple for her
or him. However, it may be difficult to estimate appropriate amounts of
increment that would allow the desired amount of improvement in those
functions whose values should be decreased.

STEM is an ad hoc method because the existence of a value function
would not help in the classification process.

Applications and modifications of STEM are given in [7, 24, 36, 79,
85].

5.2 Satisficing Trade-Off Method

The satisficing trade-off method (STOM) [171, 175] utilizes classification
and reference points. As its name suggests, STOM is based on satisficing
decision making. The decision maker is asked to classify the objective
functions at the current solution zh = f(xh) into three classes: the unac-
ceptable objective functions whose values should be improved (I<), the
acceptable objective functions whose values may increase (I>) and the
acceptable objective functions whose values are acceptable as they are
(denoted by I=) (such that I< ∪ I> ∪ I= = {1, . . . , k}).

The decision maker only has to specify aspiration levels for the func-
tions in I<. The aspiration levels (that is, upper bounds) for the func-
tions in I> can be derived using so-called automatic trade-off. In addi-
tion, the aspiration levels for the functions in I= are set equal to fi(x

h).
All the three kinds of aspiration levels form a reference point z̄h.

Different scalarizing functions can be used in STOM. One alternative
is to solve the scalarized problem

minimize max
i=1,...,k

[
fi(x)− z⋆⋆i
z̄hi − z⋆⋆i

]
subject to x ∈ S,

(1.8)

where the reference point must be strictly worse in each component than
the utopian objective vector.

Theorem 5 The solution of (1.8) is weakly Pareto optimal and any
Pareto optimal solution can be found.
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If weakly Pareto optimal solutions are to be avoided, the scalarized
problem to be solved is

minimize max
i=1,...,k

[
fi(x)− z⋆⋆i
z̄hi − z⋆⋆i

]
+ ρ

k∑
i=1

fi(x)

z̄hi − z⋆⋆i
subject to x ∈ S,

(1.9)

where ρ > 0 is a sufficiently small scalar.

Theorem 6 The solution of (1.9) is properly Pareto optimal and any
properly Pareto optimal solution can be found.

Here the utopian objective vector must be known globally. However,
if some objective function fj is not bounded from below on S, then some
small scalar value can be used as z⋆⋆j .

Assuming all the functions involved are differentiable the scalarizing
functions can be written in a differentiable form by introducing a scalar
variable α to be optimized and setting it as an upper bound for each
function in the max-term. Under certain assumptions, trade-off rate
information can be obtained from the Karush-Kuhn-Tucker multipliers
connected to the solution of this formulation. In automatic trade-off,
upper bounds for the functions in I> are derived with the help of this
trade-off information.

Let us now describe the STOM algorithm.

1 Select the scalarizing function. Calculate z⋆⋆. Set h = 1.

2 Ask the decision maker to specify a reference point z̄h ∈ Rk such
that z̄hi > z⋆⋆i for every i = 1, . . . , k.

3 Minimize the scalarizing function used. Denote the solution by zh.
Present it to the decision maker.

4 Ask the decision maker to classify the objective functions. If
I< = ∅, stop. Otherwise, ask the decision maker to specify new
aspiration levels z̄h+1

i for I ∈ I<. Set z̄h+1
i = zhi for i ∈ I=.

5 Use automatic trade-off to obtain new levels (upper bounds) z̄h+1
i

for the functions in I>. Set h = h+ 1 and go to step 3.

The decision maker can modify the levels calculated based on trade-
off rate information if they are not agreeable. On the other hand, the
decision maker can specify those upper bounds herself or himself, if so
desired. If trade-off rate information is not available, for example, in a
case when the functions are nondifferentiable, STOM is almost the same
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as the GUESS method. The only difference is the scalarizing function
used.

There is no need to repeat comments mentioned in connection with
STEM and the GUESS method. In all of them, the role of the decision
maker is easy to understand. STOM requires even less input from the
decision maker if automatic trade-off is used.

As said before, in practice, classifying the objective functions into
three classes and specifying the amounts of increment and decrement
for their values is a subset of specifying a new reference point. A new
reference point is implicitly formed.

STOM is an ad hoc method like all the other classification based
methods. However, one must remember that the aim of the method is
particularly in satisficing rather than optimizing some value function.

Modifications and applications of STOM are described in [95, 154,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 185, 249].

5.3 Reference Direction Method

In the classification based reference direction (RD) method [177, 178], a
current objective vector zh is presented to the decision maker and (s)he
is asked to specify a reference point z̄h consisting of desired levels for the
objective functions. However, as the idea is to move around the weakly
Pareto optimal set, some objective functions must be allowed to increase
in order to attain lower values for some other objectives.

As mentioned earlier, specifying a reference point is equivalent to an
implicit classification indicating those objective functions whose values
should be decreased till they reach some acceptable aspiration level,
those whose values are satisfactory at the moment, and those whose
values are allowed to increase to some upper bound. We denote again
these three classes by I<, I= and I>, respectively. Furthermore, we
denote the components of the reference point corresponding to I> by εhi
(at iteration h) because they represent upper bounds.

Here, steps are taken in the reference direction z̄h−zh and the decision
maker specifies a priori the number of steps to be taken, that is, the
number of solutions to be generated. The idea is to move step by step
as long as the decision maker wants to. In this way, extra computation
is avoided when only those alternatives are calculated that the decision
maker wants to see.
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Alternatives are generated along the reference direction by solving the
scalarized problem

minimize max
i∈I<

[
fi(x)− zhi
zhi − z̄hi

]
subject to fi(x) ≤ εhi + α(zhi − εhi ) for all i ∈ I>,

fi(x) ≤ zhi for all i ∈ I=,
x ∈ S,

(1.10)

where 0 ≤ α < 1 is the step-size in the reference direction, z̄hi < zhi for
i ∈ I< and εhi > zhi for i ∈ I>.

Theorem 7 The solution of (1.10) is weakly Pareto optimal for every
0 ≤ α < 1 and any Pareto optimal solution can be found.

The steps of the RD algorithm are the following:

1 Find a starting solution z1 and show it to the decision maker. Set
h = 1.

2 If the decision maker does not want to decrease any component of
zh, stop. Otherwise, ask the decision maker to specify z̄h, where
some of the components are lower and some higher or equal when
compared to those of zh. If there are no higher values, set P = r =
1 and go to step 3. Otherwise, ask the decision maker to specify
the maximum number of alternatives P (s)he wants to see. Set
r = 1.

3 Set α = 1− r/P . Solve (1.10) and get zh(r). Set r = r + 1.

4 Show zh(r) to the decision maker. If (s)he is satisfied, stop. If
r ≤ P and the decision maker wants to see another solution, go to
step 3. Otherwise, if r > P or the decision maker wants to change
the reference point, set zh+1 = zh(r), h = h+ 1 and go to step 2.

The RD method does not require artificial or complicated informa-
tion from the decision maker; only reference points and the number of
intermediate solutions are used. Some decision makers may appreciate
the fact that they are not asked to compare several alternatives but only
to decide whether another alternative is to be generated or not.

The decision maker must a priori determine the number of steps to
be taken, and then intermediate solutions are calculated one by one
as long as the decision maker wants to. This has both positive and
negative sides. On one hand, it is computationally efficient since it may
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be unnecessary to calculate all the intermediate solutions. On the other
hand, the number of steps to be taken cannot be changed.

The RD method is an ad hoc method because a value function would
not help in specifying reference points or the numbers of steps to be
taken. It could not even help in selecting the most preferred alternative.
Here one must decide for one solution at a time whether to calculate
new alternative solutions or not. If the new alternative happens to be
less preferred than its predecessor, one cannot return to the previous
solution.

Applications and modifications of the RD method are described in
[60, 146].

5.4 NIMBUS Method

The NIMBUS method was originally presented in [136, 145, 146] but
here we describe the so-called synchronous version introduced in [149].
Originally, NIMBUS was particularly directed for nondifferentiable prob-
lems but nowadays it is a general interactive multiobjective optimization
method for nonlinear problems.

NIMBUS offers flexible ways of performing interactive consideration
of the problem and determining the preferences of the decision maker
during the solution process. Classification is used as the means of inter-
action between the decision maker and the algorithm. In addition, the
decision maker can ask for intermediate Pareto optimal solutions to be
generated between any two Pareto optimal solutions.

In the classification, the decision maker can easily indicate what kind
of improvements are desirable and what kind of impairments are tol-
erable. Opposed to the classification based methods introduced so far,
NIMBUS has five classes available. The decision maker examines at ev-
ery iteration h the current objective vector zh and divides the objective
functions into up to five classes according to how the current solution
should be changed to get a more desirable solution. The classes are
functions fi whose values

should be decreased (i ∈ I<),

should be decreased till an aspiration level z̄hi < zhi (i ∈ I≤),

are satisfactory at the moment (i ∈ I=),

are allowed to increase till an upper bound εhi > zhi (i ∈ I>), and

are allowed to change freely (i ∈ I⋄),

where I< ∪ I≤ ̸= ∅ and I> ∪ I⋄ ̸= ∅.
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In addition to the classification, the decision maker is asked to specify
the aspiration levels and the upper bounds if the second and the fourth
class, respectively, are used. The difference between the classes I< and
I≤ is that the functions in I< are to be minimized as far as possible but
the functions in I≤ only as far as the aspiration level.

As mentioned, NIMBUS has more classes than STEM, STOM or the
RD method. This means that the decision maker has more freedom and
flexibility in specifying the desired changes in the objective values. Note
that not all of the classes have to be used. The availability of the class
I⋄ means that some functions can be left unclassified for a while to be
able to follow how their values change while the others are classified.

After the classification information has been obtained, a scalarized
problem is solved and the Pareto optimal solution obtained reflects the
desires of the decision maker as well as possible. In this way, the decision
maker can learn about the attainability of her or his preferences. In the
synchronous version of NIMBUS [149], the idea is to provide to the de-
cision maker up to four slightly different Pareto optimal solutions based
on the same preference information. The decision maker can decide how
many solutions (s)he wants to see and compare. In this way, the decision
maker can learn more about what kind of solutions are available in the
area of the Pareto optimal set that (s)he is interested in.

After the classification, up to four scalarized problems are solved. The
one that follows the classification information closest is

minimize max
i∈I<

j∈I≤

[
fi(x)− z⋆i
znadi − z⋆⋆i

,
fj(x)− ẑj

znadj − z⋆⋆j

]
+ ρ

k∑
i=1

fi(x)

znadi − z⋆⋆i

subject to fi(x) ≤ fi(x
h) for all i ∈ I< ∪ I≤ ∪ I=,

fi(x) ≤ εi for all i ∈ I≥,
x ∈ S,

(1.11)
where a so-called augmentation coefficient ρ > 0 is a relatively small
scalar and z⋆i for i ∈ I< are components of the ideal objective vector.
The weighting coefficients 1/(znadj − z⋆⋆j ) involving components of the
nadir and the utopian objective vectors, respectively, have proven to
facilitate capturing the preferences of the decision maker well. They
also increase computational efficiency [150].

The other three problems are based on a reference point. As men-
tioned in Section 3, one can derive a reference point from classification
information. If the decision maker has provided aspiration levels and
upper bounds, they are directly used as components of the reference
point. Similarly it is straightforward to use the current objective func-
tion value of the class I=. In the class I<, the component of the ideal
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objective vector is used in the reference point and in the class I⋄, the
component of the nadir objective vector is used. In this way, we can
get a k-dimensional reference point and can solve reference point based
scalarized problems. In the synchronous NIMBUS, the problems (1.4)
of GUESS, (1.3) of the reference point method and (1.8) of the STOM
method are used.

Theorem 8 The solution of (1.11) is Pareto optimal.

The decision maker can also ask for intermediate solutions between
any two Pareto optimal solutions xh and x̂h to be generated. This
means that we calculate a search direction dh = x̂h − xh and provide
more solutions by taking steps of different sizes in this direction. In other
words, we generate P − 1 new vectors f(xh + tjd

h), j = 2, . . . , P − 1,

where tj =
j−1
P−1 . Their Pareto optimal counterparts (by setting each of

the new vectors at a time as a reference point for (1.3)) are presented to
the decision maker, who then selects the most satisfying solution among
the alternatives.

The NIMBUS algorithm is given below. The solution process stops
if the decision maker does not want to improve any objective function
value or is not willing to impair any objective function value.

We denote the set of saved solutions by A. At the beginning, we
set A = ∅. The starting point of the solution process can come from
the decision maker or it can be some neutral compromise [261] between
the objectives. The nadir and and utopian objective vectors must be
calculated or estimated before starting the solution process.

The main steps of the synchronous NIMBUS algorithm are the fol-
lowing.

1 Generate a Pareto optimal starting point.

2 Ask the decision maker to classify the objective functions at the
current Pareto optimal solution and to specify the aspiration levels
and upper bounds if they are needed.

3 Ask the decision maker to select the maximum number of different
solutions to be generated (between one and four) and solve as many
problems (listed above).

4 Present the different new solutions obtained to the decision maker.

5 If the decision maker wants to save one or more of the new solutions
to A, include it/them to A.
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6 If the decision maker does not want to see intermediate solutions
between any two solutions, go to step 8. Otherwise, ask the deci-
sion maker to select the two solutions from among the new solu-
tions or the solutions in A. Ask the number of the intermediate
solutions from the decision maker.

7 Generate the desired number of intermediate solutions and project
them to the Pareto optimal set. Go to step 4.

8 Ask the decision maker to choose the most preferred one among
the new and/or the intermediate solutions or the solutions in A.
Denote it as the current Pareto optimal solution. If the decision
maker wants to continue, go to step 2. Otherwise, stop.

In NIMBUS, the decision maker is free to explore the Pareto optimal
set, to learn and also to change her or his mind if necessary. Further-
more, the selection of the most preferred alternative from a given set is
possible, but not necessary. The decision maker can also extract unde-
sirable solutions from further consideration. Unlike some other classifi-
cation based methods, NIMBUS does not depend entirely on how well
the decision maker manages in the classification. It is important that
the classification is not irreversible. If the solution obtained is not sat-
isfactory, the decision maker can go back to the previous solution or
explore intermediate solutions. The method aims at being flexible and
the decision maker can select to what extent (s)he exploits the versa-
tile possibilities available. The method does not introduce too massive
calculations, either.

Being a classification based method, NIMBUS is ad hoc in nature. A
value function could only be used to compare different alternatives.

An implementation of NIMBUS is available on the Internet. This
WWW-NIMBUS system is at the disposal of every academic Internet
user at http://nimbus.mit.jyu.fi/. Positive sides of a WWW implemen-
tation are that the latest version of the system is always available and the
user saves the trouble of installing the software. The operating system
used or compilers available set no restrictions because all that is needed
is a WWW browser. Furthermore, WWW provides a graphical user
interface with possibilities for visualizing the classification phase, alter-
native solutions etc. The system contains both a nondifferentiable local
solver and a global solver (genetic algorithm). For details, see [147, 149].
The first version of WWW-NIMBUS was implemented in 1995. Then,
it was a pioneering interactive optimization system on the Internet.

There is also an implementation of NIMBUS in the Windows/Linux
operating systems called IND-NIMBUS [1, 137]. It can be connected to
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different simulation and modelling tools like Matlab and GAMS. Sev-
eral local and global single objective optimization methods and their
hybrids are available. It is also possible to utilize, for example, the opti-
mization methods of GAMS. IND-NIMBUS has different tools for sup-
porting graphical comparison of selected solutions and it also contains
implementations of the Pareto Navigator method and the NAUTILUS
method (see Subsections 8.2 and 6.2, respectively).

Applications and modifications of the NIMBUS method can be found
in [47, 66, 67, 68, 71, 72, 114, 115, 138, 142, 145, 146, 148, 151, 152, 202,
209, 218].

5.5 Other Methods using Classification

Interactive physical programming is an interactive method developed for
trade-off analysis and decision making in multidisciplinary optimization
[236]. It is based on a physical programming approach to produce Pareto
optimal solutions [133]. A second order approximation of the Pareto op-
timal set at the current Pareto optimal solution is produced and the
decision maker is able to generate solutions in the approximation obey-
ing her or his classification. However, this necessitates differentiability
assumptions. A modification can be found in [76].

Some other classification based methods can be found in [8, 90, 135].

6. Methods where Solutions are Compared

In this section we present some methods where the decision maker is
assumed to compare Pareto optimal solutions and select one of them.
Thus, the decision maker is not assumed to provide much information
but the cognitive load related to the comparison naturally depends on
the number of alternatives to be considered.

6.1 Chebyshev Method

The Chebyshev method was originally called the Tchebycheff method.
It was proposed in [219], pp. 419–450 and [222], refined in [220] and it
is also known by the name interactive weighted Tchebycheff procedure.
The idea in this weighting vector set reduction method is to develop a
sequence of progressively smaller subsets of the Pareto optimal set until
a most preferred solution is located.

This method does not have too many assumptions. All that is as-
sumed is that the objective functions are bounded (from below) over
S. To start with, a (global) utopian objective vector z⋆⋆ is established.
Then the distance from the utopian objective vector to the feasible ob-
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jective region is minimized by solving the scalarized problem

lex minimize max
i=1,...,k

[wh
i (fi(x)− z⋆⋆i ) ],

k∑
i=1

(fi(x)− z⋆⋆i )

subject to x ∈ S.

(1.12)

The notation above means that if the min-max problem does not have
a unique solution, the sum term is minimized subject to the obtained
solutions.

Theorem 9 The solution of (1.12) is Pareto optimal and any Pareto
optimal solution can be found.

In the Chebyshev method, different Pareto optimal solutions are gen-
erated by altering the weighting vector wh. At each iteration h, the
weighting vector set W h = {wh ∈ Rk | lhi < wh

i < uhi ,
∑k

i=1w
h
i = 1} is

reduced to W h+1, where W h+1 ⊂ W h. At the first iteration, a sample
of the whole Pareto optimal set is generated by solving (1.12) with well
dispersed weighting vectors from W = W 1 (with l1i = 0 and u1i = 1).
The space W h is reduced by tightening the upper and the lower bounds
for the weights.

Let zh be the objective vector that the decision maker chooses from
the sample at the iteration h and let wh be the corresponding weighting
vector in the problem. Now a concentrated group of weighting vectors
centred around wh is formed. In this way, a sample of Pareto optimal
solutions centred about zh is obtained.

Before the solution process starts, the decision maker must set the
number of alternative solutions P to be compared at each iteration and
the number of iterations to be taken itn. We can now present the main
features of the Chebyshev algorithm.

1 Set the set size P and a tentative number of iterations itn. Set
l1i = 0 and u1i = 1 for all i = 1, . . . , k. Construct z⋆⋆. Set h = 1.

2 Form the weighting vector set W h and generate 2P dispersed
weighting vectors wh ∈ W h.

3 Solve (1.12) for each of the 2P weighting vectors.

4 Present the P most different of the resulting objective vectors to
the decision maker and let her or him choose the most preferred
among them.

5 If h = itn, stop.

6 Reduce W h to get for W h+1, set h = h+ 1 and go to step 2.
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Problem (1.12) is solved more that P times so that solutions very close
to each other do not have to be presented to the decision maker. On the
other hand, the predetermined number of iterations is not necessarily
conclusive. The decision maker can stop iterating when (s)he obtains a
satisfactory solution or continue the solution process longer if necessary.

In this method, the decision maker is only asked to compare Pareto
optimal objective vectors. The number of these alternatives and the
number of objective functions affect the easiness of the comparison. The
personal capabilities of the decision maker are also important. Note
that some consistency is required from the decision maker because the
discarded parts of the weighting vector space cannot be restored.

It must be mentioned that a great deal of calculation is needed in the
method. That is why it may not be applicable for large and complex
problems. However, parallel computing can be utilized when generating
the alternatives.

The Chebyshev method is a non ad hoc method. It is easy to compare
the alternative solutions with the help of a value function.

Applications and modifications of the Chebyshev method are given in
[2, 87, 93, 126, 185, 192, 208, 221, 230, 265].

6.2 NAUTILUS Method

The NAUTILUS method, introduced in [140], has a different philosophy
from many other interactive methods. It is based on the assumptions
that past experiences affect the hopes of decision makers and that people
do not react symmetrically to gains and losses. This is derived from the
prospect theory of [86]. Typically, interactive multiobjective optimiza-
tion methods move around the set of Pareto optimal solutions according
to the preference of the decision maker and (s)he must trade-off, that
is, give up in some objective functions in order to enable improvement
in some others to get from one Pareto optimal solution to another. But
according to the prospect theory, decision makers may have difficulties
in allowing impairment, the decision maker may get anchored in the
vicinity of the starting point and the solution process may even be pre-
maturely terminated.

The NAUTILUS method is different from most interactive methods
because it does not generate Pareto optimal solutions at every iteration.
Instead, the solution process starts from the nadir objective vector rep-
resenting bad values for all objective functions. In this way, the decision
maker can attain improvement in each objective function without any
trading-off and can simply indicate how much each of the objectives
should be improved. It has also been observed that the decision maker
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may be more satisfied with a given solution if the previous one was very
undesirable and this lays the foundation of the NAUTILUS method.

The method utilizes the scalarized problem (1.3) of the reference point
method but unlike other methods utilizing this problem where weights
are kept unaltered during the whole solution process while their purpose
is mainly to normalize different ranges of objectives, in NAUTILUS the
weights have a different role as proposed in [124]. In NAUTILUS, the
weights are varied to get different Pareto optimal solutions and some
preference information is included in the weights. As mentioned earlier,
the optimal solution of problem (1.3) is assured to be Pareto optimal for
any reference point (see, for example, [136]).

As said, the NAUTILUS method starts from the nadir objective vec-
tor and at every iteration the decision maker gets a solution where all
objective function values improve from the previous iteration. Thus,
only the solution of the last iteration is Pareto optimal. To get started,
the decision maker is asked to give the number of iterations (s)he plans
to carry out, denoted by itn. This is an initial estimate and can be
changed at any time.

As before, we denote by zh the objective vector corresponding to
the iteration h. We set z0 = znad. Therefore, z0 (except in trivial
problems) is not Pareto optimal. Furthermore, we denote by ith the
number of iterations left (including iteration h). Thus, it1 = itn. At
each iteration, the range of reachable values that each objective function
can have without impairment in any other objective function (in this
and further iterations) will shrink. Lower and upper bounds on these
reachable values will be calculated when possible. For iteration h, we

denote by zh,lo = (zh,lo1 , . . . , zh,lok )T and zh,up = (zh,up1 , . . . , zh,upk )T these
lower and upper bounds, respectively. Initially, z1,lo = z⋆ and z1,up =
znad. This information can be regarded as an actualization of the pay-
off table (see, for example, [136]) indicating new ideal and nadir values
at each iteration, thus informing the decision maker of what values are
achievable for each objective function.

For iteration h − 1, the objective vector zh−1 = (zh−1
1 , . . . , zh−1

k )T is
shown to the decision maker, who has two possibilities to provide her or
his preference information:

1 Ranking the objective functions according to the relative impor-
tance of improving current objective function values. Here the
decision maker is not asked to give any global preference ranking
of the objectives, but the local importance of improving each of
the current objective function values. (S)he is asked to assign ob-
jective functions to classes in an increasing order of importance
for improving the corresponding objective value zh−1

i . With this
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information the k objective functions can be allocated into index
sets Jr which represent the importance levels r = 1, . . . , s, where
1 ≤ s ≤ k. If r < t, then improving objective function values in
Jr is less important than improving objective function values in
Jt. Each objective function can belong to only one index set, but
several objectives can be in the same index set Jr. We then set

wh
i =

1

r(znadi − z⋆⋆i )
for all i ∈ Jr, r = 1, . . . , s. (1.13)

2 Answering the question: Assuming you have one hundred points
available, how would you distribute them among the current objec-
tive values so that the more points you allocate, the more improve-
ment on the corresponding current objective value is desired? If
the decision maker gives phi points to the objective function fi, we
set ∆qhi = phi /100 and

wh
i =

1

∆qhi (z
nad
i − z⋆⋆i )

for all i = 1, . . . , k. (1.14)

We set z̄h = zh−1, and wi = wh
i (i = 1, . . . , k), as defined in (1.13) or

(1.14), depending on the way the decision maker specifies the preference
information and solve the scalarized problem (1.3). Let us denote by xh

the Pareto optimal decision vector obtained and set fh = f(xh). Then,
at the next iteration we take a step from the current solution towards
fh and show to the decision maker

zh =
ith − 1

ith
zh−1 +

1

ith
fh. (1.15)

As mentioned, if h is the last iteration, then ith = 1 and zh = fh is the
most preferred Pareto optimal objective vector and xh is the correspond-
ing solution in the decision space. But if h is not the last iteration, then
zh can even be an infeasible vector in the objective space. Nevertheless,
it has the following properties:

Theorem 10 At any iteration h, components of zh are all better than
the corresponding components of zh−1.

It is important to point out that although zh is not a Pareto optimal
objective vector of problem (1.1) (if h is not the last iteration), and it
may even be infeasible for this problem, it is assured to either be in the
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feasible objective set Z for problem (1.1) or there is some Pareto optimal
objective vector where each objective function has a better value. On
the other hand, each objective vector zh produced has better objective
function values than the corresponding values in all previous iterations.
In addition, at each iteration, a part of the Pareto optimal set is elim-
inated from consideration in the sense that it is not reachable unless a
step backwards is taken.

Vectors zh,lo providing bounds for the objective values that can be
attained at the next iteration can be calculated by solving k problems of
the ε-constraint method so that each objective function is optimized in
turn and the upper bounds for the other objective functions are taken
from the corresponding components of zh−1.

Thus, the attainable values of zh are bound in the following way:

zhi ∈ [zh,loi , zh−1
i ] (i = 1, . . . , k).

By denoting zh,up = zh−1, we have

zhi ∈ [zh,loi , zh,upi ] (i = 1, . . . , k). (1.16)

Depending on the computational cost of solving the k problems of
the ε-constraint method, it must be evaluated whether these bounds are
worth to be calculated at each iteration. If this is regarded to be too
time-consuming, calculating the bounds can be skipped.

In addition, a measure of the closeness of the current vector to the
Pareto optimal set can be shown to the decision maker. This allows the
decision maker to determine whether the approach rhythm to the Pareto
optimal set is appropriate or whether it is too fast or too slow. The
decision maker can affect this by adjusting the number of iterations still
to be taken. Given the information available, the decision maker may
take a step backwards if (s)he does not like the new solution generated
or the bounds and/or change the number of remaining iterations. In the
latter case, we assign a new value to ith. In the former case, the decision
maker can either:

continue with old preference information. A new solution is ob-
tained by considering a smaller step-size starting from the previous
solution (for example, a half of the former step-size), or

provide new preference information. Then a new iteration step is
taken, starting from zh−1.

To get started, the ideal and the nadir objective vectors must be
calculated or estimated. Then, an overview of the NAUTILUS algorithm
can be summarized as follows.
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1 Ask the decision maker to give the number of iterations, itn. Set
h = 1, z0 = f1,up = znad, f1,lo = z⋆ and it1 = itn.

2 Ask the decision maker to provide preference information in either
of the two ways and calculate weights wh

i (i = 1, . . . , k).

3 Set the reference point and the weights and solve problem (1.3) to
get xh and the corresponding fh.

4 Calculate zh according to (1.15).

5 Given zh, find fh+1,lo by solving k ε-constraint problems. Fur-
thermore, set fh+1,up = zh. Calculate the distance to the Pareto
optimal set.

6 Show the current objective values zhi (i = 1, . . . , k), together with

the additional information [fh+1,lo
i , fh+1,up

i ] (i = 1, . . . , k) and the
distance to the decision maker.

7 Set a new value for ith if the decision maker wants to change the
number of remaining iterations.

8 Ask the decision maker whether (s)he wants to take a step back-
wards. If so, go to step 10. Otherwise, continue.

9 If ith = 1, stop with the last solution xh and fh. Otherwise, set
ith+1 = ith − 1 and h = h + 1. If the decision maker wants to
give new preference information, go to step 1. Alternatively, the
decision maker can take a new step in the same direction (using
the preference information of the previous iteration). Then, set
fh = fh−1, and go to step 4.

10 Ask the decision maker whether (s)he would like to provide new
preference information starting from zh−1. If so, go to step 2.
Alternatively, the decision maker can take a shorter step with the
same preference information given in step 2. Then, set zh = 1

2z
h+

1
2z

h−1 and go to step 5.

The algorithm looks more complicated than it actually is. There are
many steps to provide to the decision maker different options of how to
continue the solution process. A good user interface plays an important
role in making the options available intuitive.

The NAUTILUS method has been located in this class of methods
because the decision maker must compare at each iteration the solution
generated to the solution of the previous iteration and decide whether to
proceed or to go backwards. Naturally, preference information indicating
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how important it is to improve each of the objective functions from their
current levels is also needed.

NAUTILUS is ad hoc in nature because all preference information
needed cannot be obtained from a value function.

A modification of the NAUTILUS method is presented in [210].

6.3 Other Methods where Solutions are
Compared

Methods where the decision maker is asked to compare different solutions
have been developed rather recently. Such methods targeted at nonlinear
problems can be found in [27, 88, 91, 102, 118, 127, 128].

7. Methods Using Marginal Rates of
Substitution

In this section, we present methods that utilize preference information in
the form of marginal rates of substitution or desirability of trade-off in-
formation provided. These methods are included here because they have
played a role in the history of developing interactive methods. They aim
at some sort of mathematical convergence in optimizing an estimated
value function rather than psychological convergence. It is important
that the decision maker understands well the concepts used in these
methods to be able to apply them.

7.1 Interactive Surrogate Worth Trade-Off
Method

The interactive surrogate worth trade-off (ISWT) method is introduced
in [23] and [24], pp. 371–379. The ISWT method utilizes the scalarized
ε-constraint problem where one of the objective functions is minimized
subject to upper bounds on all the other objectives:

minimize fℓ(x)
subject to fj(x) ≤ εj for all j = 1, . . . , k, j ̸= ℓ,

x ∈ S,
(1.17)

where ℓ ∈ {1, . . . , k} and εj are upper bounds for the other objectives.

Theorem 11 The solution of (1.17) is weakly Pareto optimal. The de-
cision vector x∗ ∈ S is Pareto optimal if and only if it solves (1.17) for
every ℓ = 1, . . . , k, where εj = fj(x

∗) for j = 1, . . . , k, j ̸= ℓ. A unique
solution is Pareto optimal for any upper bounds.

The idea of the ISWT method is to maximize an approximation of an
underlying value function. A search direction is determined based on the
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opinions of the decision maker concerning trade-off rates at the current
solution. The step-size to be taken in the search direction is determined
by solving several ε-constraint problems and asking the decision maker
to select the most satisfactory solution.

It is assumed that the underlying value function exists and is implicitly
known to the decision maker. In addition, it must be continuously dif-
ferentiable and strongly decreasing. Furthermore, the objective and the
constraint functions must be twice continuously differentiable and the
feasible region has to be compact. Finally, it is assumed that the Pareto
optimality of the solutions of the ε-constraint problem is guaranteed and
that trade-off rate information is available in the Karush-Kuhn-Tucker
(KKT) multipliers related to the ε-constraint problem.

Changes in objective function values between a reference function fℓ
and all the other objectives are compared. For each i = 1, . . . , k, i ̸= ℓ,
the decision maker must answer the following question: Let an objective
vector zh be given. If the value of fℓ is decreased by λh

i units, then the
value of fi is increased by one unit (or vice versa) and the other objective
values remain unaltered. How desirable do you find this trade-off?

The response of the decision maker indicating the degree of preference
is called a surrogate worth value. According to [23, 24] the response must
be an integer between 10 and −10 whereas it is suggested in [238] to use
integers from 2 to −2.

The gradient of the underlying value function is then estimated with
the help of the surrogate worth values. This gives a search direction
with a steepest ascent for the value function. Several different steps
are taken in the search direction and the decision maker must select
the most satisfactory of them. In practice, the upper bounds of the
ε-constraint problem are revised based on surrogate worth values with
different step-sizes.

The main features of the ISWT algorithm can be presented with four
steps.

1 Select fℓ to be minimized and give upper bounds to the other
objective functions. Set h = 1.

2 Solve (1.17) to get a solution zh. Trade-off rate information is
obtained from the KKT multipliers.

3 Ask the decision maker for the surrogate worth values at zh.

4 If some stopping criterion is satisfied, stop. Otherwise, update the
upper bounds with the help of the answers obtained in step 3 and
solve several ε-constraint problems. Let the decision maker choose
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the most preferred alternative zh+1 and set h = h+ 1. Go to step
3.

As far as stopping criteria are concerned, one can always stop when
the decision maker wants to do so. A common stopping criterion is the
situation where all the surrogate worth values equal zero. One more
criterion is the case when the decision maker wants to proceed only in
an infeasible direction.

In the ISWT method, the decision maker is asked to specify surrogate
worth values and compare Pareto optimal alternatives. It may be diffi-
cult for the decision maker to provide consistent surrogate worth values
throughout the solution process. In addition, if there is a large number
of objective functions, the decision maker has to specify a lot of surro-
gate worth values at each iteration. On the other hand, the easiness of
the comparison of alternatives depends on the number of objectives and
on the personal abilities of the decision maker.

The ISWT method can be regarded as a non ad hoc method. The sign
of the surrogate worth values can be judged by comparing trade-off rates
with marginal rates of substitution (obtainable from the value function).
Furthermore, when comparing alternatives, it is easy to select the one
with the highest value function value.

Modification of the ISWT method are presented in [24, 28, 49, 63, 69].

7.2 Geoffrion-Dyer-Feinberg Method

In the Geoffrion-Dyer-Feinberg (GDF) method proposed in [57], the ba-
sic idea is related to that of the ISWT method. In both the methods, the
underlying (implicitly known) value function is approximated and max-
imized. In the GDF method, the approximation is based on marginal
rates of substitution.

It is assumed that an underlying value function exists, is implicitly
known to the decision maker and is strongly decreasing with respect to
the reference function fℓ. In addition, the corresponding value function
with decision variables as variables (i.e., arguments) must be continu-
ously differentiable and concave on S. Furthermore, the objective func-
tions have to be continuously differentiable and the feasible region S
must be compact and convex.

Let xh be the current solution. We can obtain a local linear approxi-
mation for the gradient of the value function with the help of marginal
rates of substitution mh

i involving a reference function fℓ and the other
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functions fi. Based on this information we solve the problem

maximize

( k∑
i=1

−mh
i ∇xfi(x

h)

)T

y

subject to y ∈ S,

(1.18)

where y ∈ Rn is the variable. Let us denote the solution by yh. Then,
the search direction is dh = yh − xh.

The following problem is to find a step-size. The decision maker can
be offered objective vectors where steps of different sizes are taken in
the search direction starting from the current solution. Unfortunately,
these alternatives are not necessarily Pareto optimal.

Now we can present the GDF algorithm.

1 Ask the decision maker to select fℓ. Set h = 1.

2 Ask the decision maker to specify marginal rates of substitution
between fℓ and the other objectives at the current solution zh.

3 Solve (1.18). Set the search direction dh. If dh = 0, stop.

4 Determine with the help of the decision maker the appropriate
step-size th to be taken in dh. Denote the corresponding solution
by zh+1 = f(xh + thdh).

5 Set h = h+ 1. If the decision maker wants to continue, go to step
2. Otherwise, stop.

In the GDF method, the decision maker has to specify marginal rates
of substitution and select the most preferred solution from a set of alter-
natives. The theoretical foundation of the method is convincing but the
practical side is not as promising. At each iteration the decision maker
has to determine k−1 marginal rates of substitution in a consistent and
correct way. On the other hand, it is obvious that in practice the task
of selection becomes more difficult for the decision maker as the number
of objective functions increases. Another drawback is that not all the
solutions presented to the decision maker are necessarily Pareto optimal.
They can naturally be projected onto the Pareto optimal set but this
necessitates extra effort.

The GDF method is a non ad hoc method. The marginal rates of
substitution and selections can be done with the help of value function
information. Note that if the underlying value function is linear, the
marginal rates of substitution are constant and only one iteration is
needed.

Applications and modifications of the GDF method are described in
[4, 40, 42, 51, 53, 73, 79, 84, 143, 144, 164, 186, 197, 203, 219, 264].
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7.3 Other Methods Using Marginal Rates of
Substitution

Although preference information about relative importance of different
objectives in one form or another is utilized in many interactive methods,
there are very few methods where the desirable marginal rates of substi-
tute are the main preference information. Such methods are presented
in [120, 131, 268].

8. Navigation Methods

By navigation we refer to methods where new Pareto optimal solution al-
ternatives are generated in a real-time imitating fashion along directions
that are derived from the information the decision maker has specified.
In this way, the decision maker can learn about the interdependencies
among the objective functions. The decision maker can either continue
the movement along the current direction or change the direction, that
is, one’s preferences. Increased interest has been devoted to navigation
based methods in the literature in recent years. In these methods, the
user interface plays a very important role in enabling the navigation.

8.1 Reference Direction Approach

The reference direction approach [103, 108] is also known by the name
visual interactive approach. It contains ideas from, for example, the GDF
method and the reference point method. However, more information is
provided to the decision maker.

In reference point based methods, a reference point is projected onto
the Pareto optimal set by optimizing an achievement function. Here,
instead, a so-called reference direction as a whole is projected onto the
Pareto optimal set. It is a vector from the current solution zh to the
reference point z̄h. In practice, steps of different sizes are taken along
the reference direction and projected. The idea is to plot the objective
function values on a computer screen as value paths. The decision maker
can move the cursor back and forth and see the corresponding numerical
values at each solution.

Solutions along the reference direction are generated by solving the
scalarized problem

minimize max
i∈I

[
fi(x)− z̄hi

wi

]
subject to z̄h = zh + tdh+1,

x ∈ S,

(1.19)
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where I = {i | wi > 0} ⊂ {1, . . . , k} and t has different discrete nonneg-
ative values. The weighting vector can be, for example, the reference
point specified by the decision maker.

Theorem 12 The solution of (1.19) is weakly Pareto optimal.

The algorithm of the reference direction approach is as follows.

1 Find an arbitrary objective vector z1. Set h = 1.

2 Ask the decision maker to specify a reference point z̄h ∈ Rk and
set dh+1 = z̄h − zh.

3 Find the set Zh+1 of weakly Pareto optimal solutions with different
values of t in (1.19).

4 Ask the decision maker to select the most preferred solution zh+1

in Zh+1.

5 If zh ̸= zh+1, set h = h + 1 and go to step 2. Otherwise, check
the optimality conditions. If the conditions are satisfied, stop.
Otherwise, set h = h + 1 and set dh+1 to be a search direction
identified by the optimality checking procedure. Go to step 3.

Checking the optimality conditions in step 5 is the most complicated
part of the algorithm. Thus far, no specific assumptions have been set
on the value function. However, we can check the optimality of zh+1

if the cone containing all the feasible directions has a finite number of
generators. We must then assume that an underlying value function
exists and is pseudoconcave on Z. In addition, S must be convex and
compact and the constraint functions must be differentiable.

The role of the decision maker is similar in the reference point method
and in the reference direction approach: specifying reference points and
selecting the most preferred alternative. But by providing similar refer-
ence point information, in the reference direction approach, the decision
maker can explore a wider part of the weakly Pareto optimal set. This
possibility brings the task of comparing the alternatives.

The performance of the method depends greatly on how well the deci-
sion maker manages to specify the reference directions that lead to more
satisfactory solutions. The consistency of the decision maker’s answers
is not important and it is not checked in the algorithm.

The reference direction approach can be characterized as an ad hoc
method like the other reference point based methods. The aim is to
support the decision maker in getting to know the problem better.

A dynamic user interface to the reference direction approach and its
adaptation to generalized goal programming is introduced in [110]. This
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method for linear multiobjective optimization problems is called the
Pareto race.

Applications and modifications of the reference direction approach are
described in [11, 101, 103, 104, 105, 106, 107, 109].

8.2 Pareto Navigator Method

Pareto Navigator is an interactive method utilizing a polyhedral ap-
proximation of the Pareto optimal set for convex problems [48]. Pareto
Navigator consists of two phases, namely an initialization phase, where
the decision maker is not involved, and a navigation phase. In the initial-
ization phase, a relatively small set of Pareto optimal objective vectors
is assumed to be available to form a polyhedral approximation of the
Pareto optimal set in the objective space. These objective vectors can
be computed, for example, by using some a posteriori approach.

Pareto Navigator has been developed especially for the learning phase
of interactive solution processes introduced in Section 3 and for computa-
tionally expensive problems where objective function and/or constraint
function value evaluations may be time-consuming because the problem
is, for example, simulation-based. In these problems, computing Pareto
optimal solutions can take a lot of time. For this reason, besides the
original (computationally expensive) problem, an approximation is used
to enable fast computations so that the decision maker does not need to
wait for new solutions being generated based on her or his preferences.

In Pareto Navigator, the decision maker is not involved in the part
of the solution process where the set of objective vectors representing
the Pareto optimal set is generated. Once the approximation has been
created based on the objective vectors available, the original problem is
not solved (in the navigation phase). When the navigation phase starts,
the decision maker can navigate dynamically in the approximated Pareto
optimal set in real time since approximated Pareto optimal solutions can
be produced by solving linear programming problems that are compu-
tationally inexpensive.

Whenever the decision maker has found an interesting approximated
Pareto optimal solution, the corresponding solution to the original prob-
lem can be generated by solving problem (1.3) with the approximated
solution as a reference point. This can be seen as projecting the ap-
proximated solution to the Pareto optimal set of the original problem.
However, this step may take time if the original problem is computa-
tionally expensive.
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As mentioned, the multiobjective optimization problem is assumed to
be convex, that is, the objective functions and the feasible region must
be convex. The algorithm of Pareto Navigator is as follows.

1 Compute first a polyhedral approximation of the Pareto optimal
set in the objective space based on a small set of Pareto optimal
objective vectors. Use the extreme values present in this set to ap-
proximate the ideal and nadir objective vectors. Ask the decision
maker to select a starting point for navigation (for example, one
of the Pareto optimal objective vectors available).

2 Show the current objective vector to the decision maker and ask
her or him whether a preferred solution has been found. If yes, go
to step 6. Otherwise, continue.

3 Ask the decision maker whether (s)he would like to proceed to some
other direction. If the decision maker does not want to change the
direction, go to step 5.

4 Ask the decision maker to specify how the current objective vector
should be improved by giving aspiration levels for the objectives.
To aid her or him, show the ideal and the nadir objective vectors.
Based on the resulting reference point z̄ and the current objective
vector zc, set a search direction.

5 Ask the decision maker to indicate a speed of movement, that is, a
step-size α > 0 to the direction specified. Generate approximated
Pareto optimal solutions in the direction specified by using a ref-
erence point based approach for each step in the direction starting
from the current objective vector zc. Once an approximated so-
lution is produced, it is instantly shown to the decision maker.
New approximated solutions are produced to the direction speci-
fied until the decision maker stops the movement. Then go to step
2.

6 Once the decision maker has found a satisfactory solution, stop.
Project the approximated Pareto optimal solution to the actual
Pareto optimal set and show the resulting solution to the decision
maker.

The search direction is based on decision maker’s preferences and
there are different ways of defining a direction where to move on the
approximation. In Pareto Navigator, the direction is specified by d =
z̄ − zc. The approximated Pareto optimal solutions are then computed
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by solving scalarized problems of the form

minimize max
i=1,...,k

wi (zi − z̄i(α))

subject to Az ≤ b,
(1.20)

where z̄(α) = zc + αd is the reference point depending on the step pa-
rameter α > 0 (being varied) to the direction d and wi, i = 1, . . . , k,
are the scaling coefficients. The scaling coefficient can be set as one di-
vided by the difference of the estimated nadir and ideal objective values.
The linear constraints of problem (1.20) form a convex hull for a set of
Pareto optimal solutions used to form the polyhedral approximation and,
in practice, the reference point z̄(α) is projected to the nondominated
facets of the convex hull.

The objective function of problem (1.20) is nonlinear with respect to
z but can be linearized by adding a new real variable ξ ∈ R replacing
the max term. The resulting problem is then linear with respect to a
new variable z′ = (ξ, z)T . Due to linearity, approximated Pareto optimal
solutions can be produced and shown to the decision maker in real time
by moving the reference point along the direction d. This is done by
increasing the value of α. At any point, the decision maker is able to find
the closest actual Pareto optimal solution for any approximated Pareto
optimal solution. However, as said, this can be time consuming.

Because the decision maker must specify desirable objective function
values, this method is ad hoc by nature.

During the navigation, the approximated solutions are shown to the
decision maker by presenting the approximated values as a continuous
path (value path) for each objective function separately (bar charts can
be used as well). Pareto navigator is implemented in the IND-NIMBUS
system [1, 137] and the graphical user interface development is described
in [237].

8.3 Pareto Navigation Method

The Pareto Navigation method developed in [160] assumes the convexity
of all objective functions and a convex feasible region. Similar to the
Pareto Navigator method, the idea is to enable a fast generation of
new solutions in the navigation phase. Thus, the method starts with
formulating a surrogate problem based on a set of pre-computed Pareto
optimal decision vectors {x(1), . . . ,x(m)}. The most preferred solution
is sought among their convex hull

X =


m∑
j=1

vjx
(j) :

m∑
j=1

vj = 1, vj ≥ 0 for all j = 1, . . . ,m

 .
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This allows replacing the feasible region of the original problem with the
set of convex combination coefficients v1, . . . , vm in the definition of X .

The current state of the navigation process is represented by the cur-
rent Pareto optimal solution xh and the vector of current upper bounds
b ∈ Rk on objective function values. Using the surrogate problem with
these bounds as additional constraints, the ideal objective vector is cal-
culated and the nadir objective vector is estimated via a pay-off table.
They define ranges of objective function values for Pareto optimal solu-
tions. These ranges together with the current solution are displayed in
a radar chart also known as a spider-web chart.

By moving sliders on the radar chart with the mouse, the decision
maker can provide two types of preference information: upper bounds
on objective values and a desired value (aspiration level) of any objective
function. Changes made by the decision maker are immediately reflected
in the current state of the navigation process and shown in the radar
chart. Setting the upper bounds influences the objective function ranges
as described above. Setting the value of any objective function fi∗ to a
desired value τ yields updating the current solution with the solution of
the following problem

minimize max
i=1,...,k,

i̸=i∗

yi − fi(x
h)

subject to y = f

(
m∑
j=1

vjx
(j)

)
+ s,

yi ≤ bi, i = 1, . . . , k,
yi∗ = τ,
m∑
j=1

vj = 1,

v and s are non-negative.

By using the two above-described mechanisms of expressing prefer-
ences the decision maker explores the set of Pareto optimal solutions
of the surrogate problem until a most preferred or satisfactory solution
is found. Because the decision maker must provide upper bounds and
aspiration levels, the method is ad hoc by nature.

The method has been developed and implemented for intensity mod-
ulated radiation therapy treatment planning. Therefore, in addition to
the radar chart, some application-specific information about the cur-
rent solution (treatment plan) is displayed. Nevertheless, there are no
obstacles of adapting the method elsewhere when the multiobjective op-
timization problem is convex and the convex hull of some finite set of
pre-calculated Pareto optimal solutions may serve as a good enough ap-
proximation of the Pareto optimal set.
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8.4 Other Navigation Methods

Other navigation based methods developed for nonlinear multiobjective
optimization problems, implemented as software tools include [122, 123].
A collection of methods and software for solving linear multiobjective
optimization problems [5, 6] can also be mentioned as they can partly
be extended to nonlinear problems.

9. Other Interactive Methods

The number of interactive methods developed for multiobjective opti-
mization is large. So far, we have given several examples of them. Let us
next mention references to some more methods based on miscellaneous
ideas: [9, 29, 30, 31, 39, 46, 50, 54, 55, 78, 89, 94, 97, 100, 116, 117, 119,
132, 158, 162, 163, 176, 187, 188, 189, 190, 198, 199, 204, 212, 216, 217,
223, 226, 227, 229, 235, 248, 266, 267, 269].

10. Comparing the Methods

None of the many multiobjective optimization methods can be claimed
to be superior to the others in every aspect. One can say that selecting
a multiobjective optimization method is a problem with multiple ob-
jectives itself. The properties of the problem and the capabilities and
the desires of the decision maker have to be charted before a solution
method can be chosen. Some methods may suit some problems and some
decision makers better than some others.

A decision tree is provided in [136] for easing the method selection.
The tree is based on theoretical facts concerning the assumptions on the
problem to be solved and the preferences of the decision maker. Further
aspects to be taken into account when evaluating and selecting methods
are collected, for example, in [13, 58, 74, 80, 136, 228, 239, 240].

In addition to theoretical properties, practical applicability, in partic-
ular, plays an important role in the selection of an appropriate method.
The difficulty is that practical applicability is hard to determine without
experience.

Some comparisons of the methods have been reported in the literature.
They have been carried out with respect to a variety of criteria and
under varied circumstances. Instead of a human decision maker, one can
sometimes employ value functions in the comparisons. Unfortunately,
replacing the decision maker with a value function does not fully reflect
the real usefulness of the methods. One of the problems is that value
functions cannot really help in testing ad hoc methods.
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Tests with human decision makers are described in [16, 18, 20, 21, 33,
34, 41, 111, 134, 184, 247] while tests with value functions are reported
in [3, 59, 161, 191]. Finally, comparisons based on intuition are provided
in [45, 98, 99, 113, 131, 135, 185, 193, 207, 243, 246].

11. Conclusions

We have outlined several interactive methods for solving nonlinear multi-
objective optimization problems and indicated references to many more.
One of the challenges in this area is spreading the word about the exist-
ing methods to those who solve real-world problems. Another challenge
is to develop methods that support the decision maker even better. User-
friendliness cannot be overestimated because interactive methods must
be able to correspond to the characteristics of the decision maker. Spe-
cific methods for different areas of application that take into account the
characteristics of the problems are also important.

An alternative to creating new methods is to use different methods in
different phases of the solution process. This hybridization means that
the positive features of various methods can be exploited to their best
advantage in appropriate phases. In this way, it may also be possible to
overcome some of the weaknesses of the methods like proposed. Ways
to enable changing the type of preference information specified, that is,
the method used during the solution process are presented in [125, 201].

The decision maker can be supported by using visual illustrations
and further development of such tools is essential. For instance, one
may visualize (parts of) the Pareto optimal set and, for example, use 3D
slices of the feasible objective region (see [122, 123], among others) and
other tools. On the other hand, one can illustrate sets of alternatives by
means of bar charts, value paths, spider-web charts and petal diagrams
etc. For more details see, for example, [136] and references therein as
well as [139] for a more detailed survey.
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