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Abstract. We describe a first-principles NonEquilibrium Green’s Function (NEGF) approach
to time-resolved photoabsortion spectroscopy in atomic and nanoscale systems. The method
is used to highlight a recently discovered dynamical correlation effect in the spectrum of a
Krypton gas subject to a strong ionizing pump pulse. We propose a minimal model that
captures the effect, and study the performance of time-local approximations versus time-nonlocal
ones. In particular we implement the time-local Hartree-Fock and Markovian second Born (2B)
approximation as well as the exact adiabatic approximation within the Time-Dependent Density
Functional Theory framework. For the time-nonlocal approximation we instead use the 2B one.
We provide enough convincing evidence for the fact that a proper description of the spectrum
of an evolving admixture of ionizing atoms requires the simultaneous occurrence of correlation
and memory effects.

1. Introduction

Time-resolved photoabsorption spectroscopy is a cutting edge experimental technique to probe
quantum systems in nonstationary states [1-5|. The sample is driven out of equilibrium by a
strong pump pulse (whose intensity can exceed 10! W/cm?) and subsequently probed with a
weak ultrashort (down to hundreds of as) pulse. By measuring the energy per unit frequency
carried by the transmitted probe as a function of the delay between the pump and probe pulses
one obtains the time-dependent photoabsorption spectrum. From this spectrum it is possible to
read out information like, e.g., charge/exciton dynamics [6-19], dynamical screening effects [20—
23] and several other nonequilibrium properties [24-33|.

For optically thin samples (atoms, molecules and more generally nanostructures) the
transmitted probe pulse can be expressed in terms of the time-dependent probe-induced change
of the dipole moment [34-41]. The latter is defined as the difference between the time-dependent
dipole moment originating from the pump+probe fields and the time-dependent dipole moment
originating from the pump only. Both quantities can be calculated from the time-dependent
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quantum average of the dipole operator over the many-electron state of the system evolving
according to the Schrodinger equation with the appropriate electric field. Due to electron
correlations these averages are difficult to compute using the Configuration Interaction (CI)
method since the number of configurations scales exponentially with the number of electrons.
CI is often implemented in the so called Single Active Electron (SAE) approximation [42, 43|
which, by construction, neglects double or higher excitations. An alternative approach, statistical
in nature, to tackle the problem is provided by Time-Dependent Density Functional Theory
(TDDFT) [44]. In TDDFT the interacting many-body system is mapped onto a fictitious
noninteracting system having the same density, and hence the same dipole moment, as the
interacting one [45, 46]. Therefore, TDDFT is ideal to study much larger systems than those
accessible by CI. However, most TDDFT calculations are performed using the Adiabatic Local
Density Approximation (ALDA) for the potential of the fictitious system but, unfortunately,
the ALDA potential suffers from the same drawbacks of the SAE approximation in CI [47, 48|.
Other critical drawbacks of the ALDA potential in the context of photoabsorption are that (i)
the renormalization of the molecular levels due to the nearby presence of a highly polarizable
structure or medium is poorly described [49-54| and (ii) single-particle excitation with a long-
range charge-transfer character are missed [55-57].

In Ref. [41] we investigated the possibility of using a statistical approach based on
NonEquilibrium Green’s Functions (NEGF) [58-62|. The NEGF approach is computationally
more expensive than TDDFT but still more convenient than CI. From the theoretical point
of view the advantage of NEGF over TDDFT is that the relevant electron-electron scattering
processes can be incorporated through a proper selection of Feynman diagrams for the self-energy
Y from which the Green’s function G = Gg+ GoXG can be self-consistently calculated, Gg being
the noninteracting Green’s function. The aformentioned drawbacks of the ALDA potential in
TDDEFT are absent in NEGF already with rather simple self-energies. It is also worth observing
that the self-energy X[G] is a functional of the Green’s function and hence the NEGF approach
is a nonperturbative approach as it amounts to sum a subset of Feynman diagrams to infinite
order in the interaction strength.

Actually, the most convenient method to calculate the nonequilibrium G is not through the
Dyson equation G = Gp+GoXG but through the so called Kadanoff-Baym Equations (KBE) [58—
62]. The KBE are nonlinear integro-differential equations for the lesser and greater components
of G, G< and G~ respectively. For a given self-energy the computational cost for the solution
of the KBE scales like N [63-71], where N; is the number of time steps. This poses severe
limitations to the maximum propagation time, essentially preventing the use of NEGF for an
acceptable frequency resolution of the time-resolved photoabsorption spectra. The scaling of
the computational cost can be reduced from N} to N? using the Generalized Kadanoff-Baym
Ansatz (GKBA) [72]. The GKBA is an ansatz for GS(¢,t') in terms of the one-particle density
matrix p(t) = —iG<(t,t), and allows for collapsing the KBE into a single nonlinear integro-
differential equation for the one-time quantity p(t). The ansatz is exact for the Hartree-Fock
(HF) self-energy and an approximation for correlated self-energies (beyond HF'). Nevertheless,
this approximation turns out to be extremely accurate in systems with well-defined quasiparticles
(like atoms and molecules) and more generally whenever the collision time is much smaller than
the quasiparticle lifetime [72]. We wish to emphasize here that within the GKBA the NEGF
formalism is converted into a theory for the one-particle density matrix which could provide
useful hints for the development of TDDFT functionals beyond the ALDA.

In this work we briefly describe the NEGF+GKBA approach to time-resolved photoabsorption
spectroscopy and apply it to model Hamiltonians with few bound states and a continuum of
states. Our purpose is to shed light on a recently discovered dynamical correlation effect in a gas
of Krypton atoms [28, 41]. In the experiment the gas is perturbed by a strong near infrared pump
pulse responsible for the ionization of some of the atoms. During the action of the pump the
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neutral gas evolves into an admixture of Kr atoms and Kr"" ions with n = 1,2, 3, .... By probing
the admixture with a weak, extreme ultraviolet attosecond pulse having a delay 7 with respect
to the pump pulse one can monitor the evolution of the photoabsorption spectrum as a function
of 7. The development of absorption peaks in different spectral regions are fingerprints of the
presence of Kr ions with different charge. Our calculations have shown that the HF self-energy
as well as other time-local self-energies, e.g., the Markovian second-Born (M2B), capture at most
the absorption of Kr'* [41]. Thus, time-local approximations to the self-energy do not describe
the absorption of multiply ionized Kr atoms. Instead the full (nonlocal in time) second-Born (2B)
approximation correctly captures the absorption of Kr't and Kr?T as well as the retardation
in the onset of the absorption peak of Kr?tT with respect to the onset of the absorption peak
of Kr'T. In this work we introduce a simple model Hamiltonian to clarify the role of time-
nonlocal correlations in the formation of an admixture of multiply ionized atoms. The simplicity
of the model also allows for obtaining an analytic expression of the exact exchange-correlation
potential of static DFT, and hence to perform exact adiabatic TDDFT simulations. We show
that similarly to the HF and the M2B approximations also the exact adiabatic approximation
of TDDFT fails in reproducing the absorption peaks of multiply ionized atoms. This provides
a conclusive evidence for the fact that a proper description of the time-resolved spectrum of
an evolving admixture of ions requires the simultaneous inclusion of correlations and memory
effects.

2. Time-resolved photoabsorption spectrum

We consider a finite system like an atom or a molecule driven out of equilibrium by a pump
pulse. Choosing the pump frequency appropriately electrons can be expelled from the system,
thus changing its absorption properties. Our goal is to study the photoabsorption spectrum
of the system during the ionization process. For this purpose we assign a single-particle basis
consisting of a certain number of orthonormal bound wavefunctions {¢;(r)} and of a continuum
of extended wavefunctions {py(r)}. Let éao (Cho) be the annihilation (creation) operator for
an electron with spin o =7, in ¢4 (r), where a can be either a bound index or a continuum
index. For ionization processes from the valence shells Auger recombination are unlikely to occur.
Furthermore, as we are not interested in the energy of the photoelectrons, we ignore the Coulomb
repulsion between bound and extended electrons. The equilibrium Hamiltonian then reads

Ty = 3 erél A 12 ot s
Heq = €kClyCho T Z hijcz‘o_cjo' + 5 VijmnCigCjgr Cmo’ Cno- (1)
k,o ij,0 igmn

oo’

Without any loss of generality we have chosen the set {pr(r)} to be the set of continuum
eigenstates with energy e of the single particle Hamiltonian h(r) = —%2 + Va(r), Va(r) being
the nuclear potential. The one- and two-electron integrals appearing in Eq. (1) are defined
according to hy; = [dr g} (r)h(r)e;(r) and vijm, = [drdr’ ¢} (r)e; () em ()en(r) /[t — |
The interaction between light and matter is treated in the dipole approximation. Let £(t) be
the electric field and dog = [dr ¥ (r)reg(r) the matrix elements of the dipole vector. The
Hamiltonian of the light-matter interaction reads

Hum(t) = ) [E(t) - dagl €l a0 (2)
af,o

where the sum runs over all bound and continuum states. The time-evolution of any many-body
state |W(t)) is therefore governed by the Schrodinger equation z%hlf(t)) = H(t)|¥(t)) where

H(t) = I:qu + I:ILM(t) (3)
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is the total Hamiltonian.

Let E(t) be the pump field and e(t) the probe field. The pump field is typically a few-
cycle pulse with frequency centered around the transition from a valence state to a low-energy
continuum state. Thus for &€ = E we can ignore the terms in the sum of Eq. (2) where both
indices «, 8 are continuum indices. On the contrary the main effect of the probe field is to
promote transitions in the bound sector. Therefore we can restrict the sum in Eq. (2) to bound
indices o, 8 =1, for £ = e. It follows that for £€ = E we have

Hin(t) = Hp(t) = Y [EB(t) - dyjl el 0 + Y ([E(t) ~dig] el eno + H.c.> : (4)

ij,0 ik,o
whereas for € = E + e we have

Hini(t) = Hpgp(t) = He(t) + Y [e(t) - dig] 65 (5)
17,0
These approximations are based on physical considerations and simplify the presentation.
However, they are not necessary for the theory developed in the next section.

We are interested in calculating the time-resolved photoabsorption spectrum &(w) for
frequencies corresponding to transitions between bound many-particle states. Using the
convention that quantities with a tilde denote the Fourier transform of the corresponding time-
dependent quantities, the spectrum for the frequencies of interest is given by

G(w) = —2Im |wé* (W) - ap(w)] (6)

where d, is the probe-induced change of the time-dependent average of the dipole operator
d= zijp dijé;rgéjg. In order to calculate d,, one has to calculate the time-dependent average
dpgp(t) of the dipole operator with Hyym = Hpg,p, the time-dependent average dp(t) of the
dipole operator with ]:ILM = H p and then subtract the two

dy(t) = dpgp(t) — dp(t). (7)

We observe that d,,(w) is not proportional to &(w) since the system is out of equilibrium. The
spectrum &(w) depends on the entire function e(t) and not only on its frequency component
é(w). In particular S(w) depends on the delay between the pump and probe pulses.

3. NEGF+GKBA approach

In this section we describe the NEGF+GKBA approach to calculate dpg,,. The same approach
can be used for dp by setting e = 0. The average dpg,(t) = —2i )_,;; d;;G5;(t,t) where G=(t,1) is
the equal-time lesser component of the Green’s function G(z, 2’) with arguments on the Keldysh
contour. The latter is a matrix function with indices in both the bound and extended sector and
it satisfies the equation of motion

d

[ZE — hHF(z)]G(z, z/) =(z, z/) + /dé ¥(z,2)G(z, z/). (8)
In accordance with the considerations of the previous section the HF hamiltonian in Eq. (8)
reads

E(z)-d; «, = (1,
hiras(2) = | g(). d;j o B) = (k1) 9)
hij + [E(2) + e(2)] - dij + 3,00 Wimnjpnm(2) (o, B) = (4, 4)
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With Wimnj = 2Vimn; — Vimjn and ppm(z) = —iGpm(z,27) = —iG5,, (¢, t) independently of the

branch of the contour where z lies. The correlation self-energy ¥ is a functional of G and has
nonvanishing matrix elements only in the bound sector. As for the calculation of dpg,, we only
need G with bound indices we project Eq. (8) onto the bound sector and find

3 [id%éim — e im(2)] Gomg (2, #) — 3 [B(2) - dig] Gy (2, #)

k

= 5505+ / 42 Som(2, 2) Gy (5, 2). (10)
m
Similarly we can obtain an equation for Gy;. Taking into account Eq. (9) we find

[ZC% - €k] ij(z, Z/) - Z [E(Z) ’ dkm] ij(z, Z/) = 5(Z’ Z/)‘ (11)

m

Next we define the noninteracting Green’s function g as the solution of

i~ elor(z,2) = 8(2,2) (12)

with Kubo-Martin-Schwinger boundary conditions, and rewrite Eq. (11) in integral form

ij(z7z/) = /dzgk(zaz) Z [E(E) ' dkm] ij('?? Z/). (13)

m

Substitution of this result into Eq. (10) leads to

Z [Z%(szm — hir,im(2)| Gmj (2, 2') = 6(2,2)6i; + Z /dz [Sion(2,2) + %(2, 2)],,Gmj (7, 2'),

(14)
where we defined the ionization self-energy according to

Eion’l-j(z, Z/) = Z [E(Z) . dzk] gk(z, Z/) [E(Z/) . dk]] . (15)
k

Although the ionization self-energy resembles the embedding self-energy in quantum
transport [73-75| its physical origin is different, see below.

Equation (14) is a closed equation for the Green’s function in the bound sector. Subtracting
from it the adjoint of Eq. (14) and setting 2 = 2% we obtain an equation for the one-particle
density matrix p;;(t) with indices in the bound sector

_i%p(t) + [hnp(t), p(t)] = i [I(t) + Lion(t)] — Hec.. (16)

where the collision integral I(¢) reads

I(t) :/t dt' [S<(t,1)G™ (¢, t) + 27 (¢, )G (¢, 1)] (17)

—00

and the ionization integral Ijo,(t) is defined as I(t) with ¥, in place of X. Due to the presence
of the off-diagonal in time G in the collision and ionization integrals Eq. (16) is not a closed
equation for p. The GKBA is an approximation that relates G=(t,t') to p(t) and p(t') [72],
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thereby transforming Eq. (16) into a closed integro-differential equation for p. According to the
GKBA

GS(t,t") = =GR, pt') + p(t)GA (L, 1), (18a)
G”(t,t) = +GRt,t)p(t) — p(t)GA(t,t), (18b)

with p;; = 6;; — pij. It is worth noting that the GKBA results are extremely sensitive to the
choice of the quasiparticle propagator GR(t,t') = [GA(¢/,t)]!. For ¥ = 0 (no correlations) the
Green’s functions G= that solve the equation of motion (10) can be written as in Egs. (18)
provided that

GR(1, ) = —if(t — ¢) T [ o e ()] (19)

is the HF propagator. The numerical simulations presented in Ref. [41] show that for atomic
systems the HF propagator yields accurate results in the correlated case too. Similar accuracies
were recently reported for Hubbard clusters [76] and for the two-dimensional Anderson—Hubbard
model [77]. A nice property of the HF propagator is that it guarantees the satisfaction of all
basic conservation laws provided that the self-energies is conserving [78]. The results presented
in this work have been obtained using Eq. (19). Nevertheless, it should be emphasized that the
performance of the HF propagator is not always this good for all systems. In open systems, e.g.,
in molecular junctions attached to metallic electrodes, it is pivotal to include relaxation effects
due to electron collisions and to the presence of the electrodes (electronic bath) [79].

Before closing this section let us discuss and simplify the ionization self-energy. From Eq. (12)
we have

gr (1) = —if=(eg)e et (20)

with f<(ex) the Fermi function and f~ = 1— f<. As the energy of the extended states is larger
than the chemical potential we have f<(e;) = 0 and f~(ex) = 1. This implies that the lesser
ionization self-energy vanishes. On the other hand the greater component reads

St t) = =i S [B(t) - dig)e I [E() - dy]
k
— E(1)5(t - E(), (21)

where in the last equality we defined the dyad ?ij(t) = —i Yy, djpe *kdy;. In Fourier space

?ij(w) = —2m Z dik 5(w — Ek) dkj ~ 21 Z dik Im |: dkj7 (22)
k k

w—ek—i-in]

where 7 is a positive constant of the order of the level spacing of the continuum states. We
already mentioned that the pump pulse is a few cycles pulse centered around some ionization
frequency wp. Therefore, X7 is dominated by those terms in ?(t—t’ ) that oscillate at frequency
€ ~ wp. Then, for simplicity, we implement a time-local approximation ?ij (W) =~ ?ij(wp)
which implies & (t — t') = &4 (wp)d(t — t'). Substituting this result into Eq. (21) yields

Se () = —id(t — t)T(¢), (23)

where
Tyj(t) = iB(t) 03 (wp)E(t) (24)

is a self-adjoint positive-definite matrix for all times ¢. Inserting this result into the ionization
integral the equation of motion (16) for p becomes

—i%p(t) + [har(t), p(1)] — i{T'(t), p(t)} = il (¢) — H.c. (25)
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where the curly brackets signify an anticommutator. From Eq. (25) we clearly see that the
ionization self-energy is responsible for taking away particles from the system. We also see that
the draining of particles is effective only during the pump since I'(¢) vanishes for E(¢) = 0. This
corresponds to the intuitive picture that no ionization occurs after the pump pulse has passed
through the system.

4. Numerical Results
In this Section we present numerical results on a simple model system in order to illustrate
the performance of various approximations in describing the strong-field multiple ionization and
the subsequent formation of a mixture of different ions. The model consists of two levels, one
describing a 3d orbital (level 1) and the other describing a 4p orbital (level 2) of a Kr atom. The
pump couples level 1 and 2 via the dipole matrix d;; = @dy(1—9;;), and at the same time couples
level 2 to the continuum states, thus generating a ionization dyad ?ij(wP) = —i000;20;2. The
remaining quantities of the model are h;; = €;0;; and viyun; = UindijOmn, with 4,j = 1,2. The
numerical values of the model parameters have been chosen to closely reproduce energy- and
time-scales of the first-principle simulations of Ref. [41]. These values are all reported in the
caption of Fig. 1.

Equation (25) has been solved within two different approximations, namely HF and 2B. In
the first case the collision integral I(t) is identically zero, while within 2B we have [61]

I(ZB) szzrpnwmqé‘] /t dt’ [G< (t, )G< (t,t)G(t, t)G> (t',t)

nm
rq 3
sT

G (8, Go (8, ) Gt G5 )] (26)

The real-time propagation has been performed with a time step A = 0.1 a.u. and the spectra
have been obtained by a discrete Fourier transform of the probe-induced dipole with N, = 10*
time-steps.

The atom, initially in its ground state with both levels filled, is ionized by a few-cycle pump
E(t) = npE(t) where E(t) = Eqsin?(nt/Ap)sin(wpt). The expelled charge as a function of time
is diplayed in Fig. 1. During the ionization process the occupation of level 1 remains roughly
constant, meaning that the atom is loosing charge mainly from level 2. We also notice that the
time-evolution of the expelled charge calculated within HF and 2B is essentially the same. This
fact could suggest that the system is weakly correlated and that HF well captures the physics of
the problem. However, the expelled charge is just one possible observable. Below we show that
the HF and 2B photoabsorption spectra exhibit qualitative different features (although the local
density in these two approximations agrees with high accuracy).

After a time 7 the system is probed with an ultrashort pulse e(t) = mpe(t), with e(t) =
eosin?(m(t — 7)/A,) sin(wy(t — 7)) for F <t < 7+ A,. Here 7 = 7 — (Ap — A,)/2 is the time
distance between the maxima of the pump and probe pulses. The frequency w,, of the probe is
chosen to promote the intra-atomic excitation between the levels 1 and 2.

The transient absorption spectrum within the HF approximation is displayed in the top-left
panel of Fig. 2. Only one absorption peak appears, corresponding to the absorption of a singly
ionized atom. We verified that the only effect of increasing the intensity of the pump is a shift in
the position of the peak. We also varied the frequency and duration of the pump but we found
no sign of absorption peaks due multiply ionized atoms. A single-peak absorption spectrum is
also observed within the M2B approximation [41] (not shown), thus suggesting that the solution
of Eq. (25) without the inclusion of memory effects in the self-energy cannot describe multiple
ionization. However, the occurrence of multiple ionization (and subsequent absorption) for a
strong enough pump is physically expected [28].
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Figure 1: Total expelled charge (solid line) as a function of time. The pump profile E(t) (in
arbitrary units) is displayed as a dashed line. The model parameters (in atomic units) are:
g1 = —6.82, €9 = —2.25, U11 = 1.8, UQQ = 0.5, U12 = U21 = 0.6, do = 0.1, o) — 1.8, EO = 0.14,
wp = 0.061, Ap = 314, np = &. The expelled charge does not vary appreciably within the
different approximations used in this work, see main text.

We then performed a full 2B simulation, by including time-nonlocal correlation effects
according to Eq. (26), and calculated the time-resolved spectrum, see the top-right panel of
Fig. 2. We clearly see the development of a second peak at higher energy, corresponding to the
absorption of a doubly ionized atom. Furthermore the onset of the high-energy peak as function
of 7 is retarded with respect to the onset of the absorption peak at lower energy. This is consistent
with the fact that expelling two electron requires more time than expelling one electron, and is
also in qualitative agreement with both the experimental data [28] and our previous analysis [41].

We argue that the difference between time-local approximations, like HF and M2B, and the
2B approximation in describing the double ionization process is due to the absence of multiple
excitations in the formers. Multiple excitation are a direct consequence of the simultaneous
presence of correlation and memory effects in the self-energy. We therefore conjecture that
correlations alone are not sufficient to describe the absorption of multiply ionized atoms as
obtained from a real-time propagation. To reinforce this conjecture we have performed a
TDDFT calculation using the exact-adiabatic (EX-ADIA) exchange-correlation potential of the
model system. The EX-ADIA approximation produces the exact level densities in equilibrium.
However, being it an adiabatic approximation, the EX-ADIA ignores memory effects entirely.
Within this approximation the time propagation is performed by setting the collision integral
I(t) = 0 and by replacing in Eq. (25) the HF Hamiltonian hypr(¢) with the Kohn-Sham
Hamiltonian hkg(t). The matrix element of the Kohn-Sham Hamiltonian are hkg;;(t) =
hij + [BE(t) +e(t)] - dij + 6ijVHxc 21, n2], With n; = p;; the density at level i. Since the occupation
numbers commute with the equilibrium Hamiltonian, the exact Hartreetexchange-correlation
potential vpye of the model is a step-wise function of the total density ni + ng (80, 81], and is
explicitly displayed in the bottom-left panel Fig. 2. In the bottom-right panel of Fig. 2 we
show the corresponding EX-ADIA absorption spectrum. Notice that during and after the action
of the pump the total number of electrons ni 4+ no remains close to four and hence the vy
value stays on the highest energy plateau. This implies that vy is essentially a constant energy
shift and consequently the spectrum is similar to the noninteracting spectrum. In particular the
position of the peak is very close to the single-particle energy difference €9 —e1 = 4.57 a.u.. Even
more important for our analysis is that in this case too only a single peak develops, no matter
of the strenght of the pump, thus confirming our conjecture that time-local approximations do
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Figure 2: TPA spectrum (normalized to the maximum height) within HF (top-left), 2B (top-
right) and EX-ADIA TDDFT (bottom-right). The probe parameters are (in atomic units)
ep = 1.7 x 1073, wp =294, A, =6.19, n, = . A broadening of 0.03 a.u. has been introduced
in order to smoothen the finite-time Fourier transform of d,(¢). In the bottom-left panel we
show the exact Hartree+exchange-correlation potential v, of the model as a function of the
densities n; of the two levels. The value of vy in the different plateaus is reported explicitly as
a function of the repulsion parameters U;;. The exact sharp discontinuities occurring at integer
values of the total density ni + no have been artificially broadened for graphical reasons.

not describe the absorption of multiply ionized atoms.

5. Conclusions

We discussed the recently proposed NEGF-based approach to calculate the time-resolved
photoabsorption spectrum of finite systems [41]. The approach relies on the GKBA and
amounts to solving an approximate equation of motion for the one-particle density matrix of
the system. The external driving fields are treated to all orders, while correlation effects are
included systematically by means of non-equilbrium many-body perturbation theory. Strong-
field ionization can be accurately described via an appropriate ionization self-energy i, that
accounts for the coupling to a continuum of extended states. The inclusion of ¥j,, renders the
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real-time evolution not unitary and it is responsible for the loss of electrons during the ionization
process.

We studied a two-level model coupled to a continuum to illustrate how different
approximations perform in describing the time-resolved photoabsorption spectrum of finite
systems under the action of a strong ionizing pump. The model stems from our analysis [41] of a
recent experiment on Krypton [28] where the pump causes multiple ionization, as one can infer
from the presence of different absorption peaks attributable to Kr, Kr?* and Kr®+. The proper
description of the produced admixture of ions constitutes the central issue of the present work.
We computed the spectrum using the time-local approximations HF and M2B for the collision
integral as well as using the EX-ADIA approximation in TDDFT. In all cases we only observed
the absorption from a single ion. Our numerical results show unambiguosly that 2B is the only
scheme able to provide more than a single absorption peak. We conclude that the inclusion
of time-nonlocal correlations is crucial for a correct description of the absorption spectra of an
evolving admixture of ionizing atoms.
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