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Abstract

Aquatic ecosystems are facing a growing number of human-induced stressors and the need to
implement more biomonitoring to assess the ecological status of water bodies is eminent. This
dissertation aims at providing tools to reduce the costs and improve the accuracy of fresh-
water benthic macroinvertebrate biomonitoring. To improve the cost-efficiency, we consider
automated classification and develop a novel classifier suitable for complex macroinvertebrate
image data. To enhance the accuracy of macroinvertebrate biomonitoring, we study the sta-
tistical properties of the Percent Model Affinity index crucial to current Finnish biomonitoring
and the factors affecting these statistics. Finally, we perform a simulation study to analyze
how different biological indices are affected by misclassifications in automated identification
of macroinvertebrates.
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Chapter 1

Introduction

The problems addressed in this thesis originate from the need to improve the accuracy and
cost-effectiveness of aquatic biomonitoring. This thesis deals with statistical classification,
the statistical properties of Percent Model Affinity index (PMA, Novak and Bode, 1992) and
how classification errors propagate into different biological indices. The proposed methods
and results have been investigated in extensive simulation experiments and were validated
with real data collected by the Finnish Environment Institute.

In aquatic biomonitoring, changes in the communities of biological indicator groups are
measured to evaluate the ecological status of surface waters. These biological indicator groups
include fish, periphyton (i.e. a mixture of algae, bacteria and other similar organisms living
on the surface of aquatic plants), phytoplankton and benthic macroinvertebrates (Fig. 1.1).
The ecological status assessment of surface waters is required by the European Union’s Water
Framework Directive (WFD, 2000) by all member states. In this thesis, we concentrate on
freshwater benthic macroinvertebrates.

Figure 1.1: Freshwater benthic macroinvertebrates used in aquatic biomonitoring. From the
top left: Baetis muticus, Ceratopsyche silfvenii, Isoperla sp., Protonemura intricata, Rhya-
cophila nubila and Taeniopteryx nebulosa. These images have been scaled and do not reflect
the size differences between the taxonomic groups.

Benthic macroinvertebrates are bottom dwelling animals without backbones. They are
a diverse group of species that react quickly and strongly to changes in their environment
(Rosenberg and Resh, 1993). Different taxonomic groups have varying sensitivities to dif-
ferent stressors and their community composition can reflect subtle human-induced changes
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over long-term time scales (Rosenberg and Resh, 1993). The monitoring process for macroin-
vertebrates is presented in Figure 1.2. First, macroinvertebrates are sampled and identified
to taxonomical groups by a human expert. Then, the observed taxa frequencies are used to
calculate several biological indices, and the index values – together with other monitoring
data – are used to evaluate the ecological status of the monitored waterbody. Further, deci-
sion makers use these ecological status assessments to determine whether or not monitored
waterbodies are in need of mitigation measures.

Sample Identification Indices Ecological status

Figure 1.2: The process of biomonitoring

Aquatic ecosystems are facing a growing number of anthropogenic pressures, e.g. eutroph-
ication and global warming. The growing global need to implement more biomonitoring is
apparent but due to the cost-intensity of manual taxonomic identification of samples, this need
cannot currently be met. The apparent mismatch between monitoring demands and funding
thus calls for more efficient sample processing. In order to lower the cost of the identification
step of the biomonitoring process, the automated identification of macroinvertebrates has
been studied in Tirronen et al. (2009); Lytle et al. (2010); Kiranyaz et al. (2010a,b, 2011);
Joutsijoki et al. (2014); Joutsijoki and Juhola (2012) as well as in Articles I and II of this
thesis.

To improve the accuracy of the ecological status assessment of surface waters, one must
understand the variety of errors and biases that can be introduced into the process chain at
each step (Fig. 1.2). First, the conclusions based on samples are dependent on how well the
samples represent the community of interest. Sampling variation is also a source of uncertainty
in biomonitoring. Second, as some of the sampled individuals may be misidentified, the
identification step introduces bias and variation into the process via classification error. Third,
the statistical properties of the biological indices affect the precision of the ecological status
assessment. When choosing an index, one should know what the expected value, bias and
variance of the index are and what factors affect them. In this thesis, we concentrate on the
statistical properties of biological indices especially in the case of automated identification. For
simplicity, our investigations are based on frequencies modelled by a multinomial distribution.
The effects of other models and design are not considered.

The aim of this thesis is to provide tools to reduce the costs, bias and variation of the
biomonitoring of freshwater benthic macroinvertebrates. Articles I and II explore the auto-
mated classification of benthic macroinvertebrates in order to reduce the costs of expensive
and time-consuming manual identification. Article I presents a novel classification method,
Random Bayes Array (RBA, named random Bayes forest in this paper). In Article I, RBA is
used to classify a pilot study image data set of eight macroinvertebrate taxa and its perfor-
mance is compared with several other popular classifiers. Article II provides a more thorough
description of RBA and justifies its basic idea. In Article II, RBA and other popular clas-
sification methods are tested on much larger macroinvertebrate image data of 35 different
taxonomical identities. Compared with Article I, Article II also explores new rules for making
the final class decision in RBA and utilizes the varying importance of explanatory variables
in building RBA. Articles III and IV study the different sources of bias and variation in the

2



monitoring process. Article III presents the statistical properties of the PMA index crucial to
current Finnish aquatic biomonitoring and explores what factors increase or decrease its bias
and variation. Finally, Article IV presents a simulation study that investigates how different
types of classification errors propagate into different biological indices causing bias in the in-
dex values. The bias in taxa proportions due to classification errors is also studied in Article
I.

The automated identification, i.e. classification of macroinvertebrates, is a complex task
because of the large number of taxonomic identities and features needed to separate them.
The problem of high-dimensional data is common in genomics and computational biology.
It often results in high variance and overfitting of classifiers (Hastie et al., 2009; Domingos,
2012). In an attempt to evade the curse of dimensionality, one can perform feature selec-
tion, regularization or make assumptions on the independence of the features (see e.g. Duda
et al., 2001, 2012; Hastie et al., 2009). Hastie et al. (2009) recommend quadratic discriminant
analysis (QDA) as a standard approach to pattern recognition problems, because it provides
good classification records (Michie et al., 1994). When the number of features greatly exceeds
the number of observations per class, the use of QDA is not supported, but linear methods,
such as linear discriminant analysis (LDA) or Näıve Bayes (NB), might be appropriate (Duda
et al., 2001). However, the strict assumptions of equal covariance matrices in LDA and the
independence of features in NB are unrealistic with complex data. One option is to use regu-
larized discriminant analysis (RDA, Friedman, 1989), but in this work we will present a novel
approach – an ensemble of random QDA classifiers, called Random Bayes Array (RBA, Arti-
cles I & II). Nonlinear methods, such as QDA, can benefit from introducing randomness into
the model (Hastie et al., 2009). In RBA, selecting a random subset of the features reduces
multicollinearity and enables the use of QDA by constraining the dimension of the covari-
ance matrix. The ensemble approach reduces the high variance caused by high-dimensional
data (Breiman, 1996b) and makes the classifier more robust to outliers and deviations from
normality (see Article II and Dietterich, 2000).

Understanding the statistical properties of biological indices is a key component in im-
proving the accuracy of the biomonitoring process. The PMA index is a popular measure
of the similarity of two probability profiles used in many fields of applications, e.g. biomon-
itoring (Alahuhta et al., 2009; Kauppila et al., 2012), ecology (Renkonen, 1938), sawmill
industry (Bergstrand, 1989) and sociology (Jahn et al., 1947; Duncan and Duncan, 1955). In
biomonitoring, PMA is used to measure the similarity between a monitored community and
a reference community. The statistical properties of this measure, such as bias, variance and
confidence intervals, depend on the model used for the counts in the samples, e.g. multino-
mial, log-series or negative binomial distribution. For simplicity, we consider the multinomial
case. Koskela et al. (2007) presented the expected value and variance of the index, known as
apportionment index (AI) in the sawmill industry, using a normal approximation. Ransom
(2000) approximated the asymptotic distribution of 1 − PMA, known as dissimilarity index
(D) in sociology, using the normal distribution and the delta method. However, both ap-
proaches require assumptions that are not valid in the biomonitoring context. In ecology, the
measure is known as percentage similarity (PS, Renkonen, 1938), and Smith (1982) presented
the expected value and variance of the index in the case when the reference profile is known.
Smith and Zaret (1982) studied the expected value of the index when both profiles are un-
known and estimated from samples. Smith (1982); Smith and Zaret (1982); Ricklefs and Lau
(1980) presented also limited simulation studies on the index. As a detailed understanding of
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the PMA index is needed, compared with previous works, we present exact formulas for the
expected value and variance of the PMA beyond the works of Smith (1982) and Smith and
Zaret (1982), calculated independently (Article III). Further, we study the asymptotics of the
index when the reference profile is known. We also present an extensive simulation study
relevant to the context of biomonitoring of macroinvertebrates. In the simulation study, we
analyze the effects of sample size, the number of taxa, evenness and the true value of the
index on the bias and variance of PMA.

In biomonitoring, reliable taxa identification is an important premise for index calculation.
It is crucial to understand not just the statistical properties of different biological indices,
but also how classification errors propagate into indices calculated from classified samples –
especially when shifting from manual to automated identification. The effect of automated
identification errors on indices has received minor attention in remote sensing. Wickham et al.
(1997); Shao et al. (2001) and Chen et al. (2010) studied the effect of classification errors
on landscape pattern indices, including Shannon’s diversity (Shannon, 1948) and Simpson’s
diversity (Simpson, 1949), which are also often used in biomonitoring. However, these remote
sensing studies focused mostly on indices specific to landscape patterns and concentrated more
on the variation rather than bias caused by misclassifications. In this thesis, we present a
simulation study exploring the effect of errors due to automated identification on a variety of
biological richness, diversity, dominance, evenness and similarity indices (including the PMA)
using several different classification methods with varying error rates. Further, we consider
the reasons why certain types of indices are more sensitive to classification errors than others.

Chapter 2 gives an introduction to classification and problems related to high-dimensional
data. RBA is presented as a possible solution to those issues with macroinvertebrate image
data. In Chapter 3, the statistical properties of the PMA index are presented in two scenarios.
Chapter 4 deals with error propagation and Chapter 5 summarizes the conclusions of this
thesis.
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Chapter 2

Automated identification

Automated identification, i.e. pattern recognition or classification, is a learning task. In
supervised learning, a set of variables, called inputs or features, is used to predict one or more
outputs. When the output is a qualitative, categorical variable, the prediction task is called
classification. It is an exercise in function approximation with the objective to find a model or
a classification rule that minimizes the expected prediction error – the expected loss (Hastie
et al., 2009). The classifier is built based on data where the class labels are known. Often,
the features are calculated from image data, as in our case.

There are thousands of different classification methods using different models for the data.
To give a brief description of the different types of classification methods, Domingos (2012)
divided classifiers by their representation into instances, hyperplanes, decision trees, sets of
rules, neural networks and graphical models. Instance-based methods include such classifiers
as K-Nearest-Neighbors (KNN, Hastie et al., 2009) and Support Vector Machines (SVM,
Cortes and Vapnik, 1995). SVM can also be viewed as a hyperplane-based method, as it uses a
hyperplane to separate the classes. Other hyperplane-based classifiers include e.g. Näıve Bayes
(NB, John and Langley, 1995), Quadratic Discriminant Analysis (QDA, Duda et al., 2001;
Hastie et al., 2009) and logistic regression (Hastie et al., 2009). Decision trees are nonmetric
classifiers particularly useful with nominal features (Quinlan, 1986; Duda et al., 2001) but can
be used for real-valued features as well. Decision trees can also be used to extract classification
rules (Duda et al., 2001). Neural networks use nonlinear functions to obtain decision regions
(Ripley, 1996), and graphical models include e.g. Bayesian networks (Nielsen and Jensen,
2009). This is just one coarse way of grouping the ever-growing number of classification
methods available. In this thesis, we consider QDA models and their modifications.

2.1 Bayes decision rule

Let us consider a finite set of classes {ω1, . . . , ωc} and let z = (z1, . . . , zr) be an r-dimensional
random feature vector in the Euclidian space Rr with the class-conditional probability density
function f(z|ωh) given the true class ωh. Let πh be the prior probability that z originates
from class ωh such that

∑c
h=1 πh = 1. The posterior probability is given by

P (ωh|z) =
f(z|ωh)πh
f(z)

,
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where f(z) =
∑c

h=1 f(z|ωh)πh.

Let ĥ(z) be a classification rule predicting the class from which z originates. Following
the presentations in Duda et al. (2001, chapt. 2.2) and Hastie et al. (2009, chapt. 2.4),
let L

(
ωh, ĥ(z)

)
be a loss function indicating the loss for predicting the class ĥ(z) when the

observation belongs to class ωh. The most common choice for a loss function is 0–1 loss:

L(ωh, ωh′) =

{
0, ωh′ = ωh
1, ωh′ 6= ωh

.

Now, the conditional expected loss, i.e. risk, for prediction ωh′ , is given by

R(ωh′ |z) =

c∑

h=1

L(ωh, ωh′)P (ωh|z)

and the overall risk associated with the classification rule ĥ(z) is

R = Ez

[
c∑

h=1

L
(
ωh, ĥ(z)

)
P (ωh|z)

]
. (2.1)

To minimize the overall risk, it suffices to minimize it pointwise by choosing

ĥ(z) = argminωh′

(
c∑

h=1

L
(
ωh, ωh′)P (ωh|z)

)
.

For the 0–1 loss, minimizing Equation (2.1) simplifies to choosing the class with the highest
posterior probability because now, for a fixed z,

ĥ(z) = argminωh′

(
1− P (ωh′ |z)

)
.

This is known as the Bayes decision rule and it achieves optimal performance by minimizing
the expected prediction error (Duda et al., 2001).

The Bayes decision rule can also be represented in terms of discriminant functions gh(z) by
setting gh(z) = P (ωh|z) (e.g. Duda et al., 2001, Chapt. 2.4). The discriminant functions may
be transformed using monotonically increasing functions without changing the classification.
Thus, choosing the class based on the highest discriminant function

gh(z) = ln f(z|ωh) + lnπh

is equivalent to basing the classification on the highest posterior probability and following the
optimal Bayes decision rule (Duda et al., 2001). Of course, the problem is that the choice of
a prior is not always straightforward and we seldom know the true conditional distribution
f(z|h).

If the features follow a multivariate normal distribution, i.e. z|ωh ∼ N(µh,Σh), the
discriminant functions are quadratic:

gh(z) = −1

2
(z− µh)′Σ−1h (z− µh)− 1

2
ln |Σh|+ lnπh (2.2)
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and the subsequent classifier is known as Quadratic Discriminant Analysis (QDA, Hastie
et al., 2009). If the covariance matrices are assumed equal, Σh = Σ ∀h, the quadratic
terms in Equation (2.2) disappear and the discriminant functions become linear (Duda et al.,
2001). The Bayes classifier is then called Linear Discriminant Analysis (LDA, Hastie et al.,
2009). In an even more simplified scenario where the features are assumed independent,
Σh = diag(σh1, . . . , σhr), the classifier is known as Näıve Bayes (NB, John and Langley,
1995). The mean vector and covariance matrix in Equation (2.2) are estimated from data
(see e.g. Hastie et al., 2009), which can hinder the optimal performance of the Bayes classifier
if the data is not truly Gaussian. Actually, NB, LDA and QDA perform well on a large
array of classification tasks (Langley et al., 1992; Michie et al., 1994) even though the normal
assumption is rarely met. Friedman (1997) and Hastie et al. (2009) suggest this is due to
the fact that the data can often only support simple decision boundaries, and because the
Gaussian model produces stable estimates.

2.2 Evaluating classifier performance

The performance of a classification method can be evaluated with the expected prediction
error, also known as the classification error (Hastie et al., 2009, Chapt. 7.2)

Err = ET [Ez,h|T
(
L(ωh, ĥ(z))|T

)
],

where T is a training set used to fit the classifier and obtain the predictor ĥ(z). When
compared to Equation (2.1), this expectation averages also over the training set T with fixed
sample size n. With 0–1 loss function, the classification error is the expected proportion of
misclassified observations in a new data.

The classification error can be approximated in many ways. The most common way to do
this is to split the data into separate training and test sets (see e.g. Hastie et al., 2009). The
training set is used to build the classifier and the portion of misclassified observations in the
test set serves as an estimate of the classification error.

Another option is to use cross-validation. In K-fold cross-validation, the data is split
into K equal parts. For the kth part, the other K − 1 parts are combined to form the
training set the classifier is trained with, and that classifier is used to predict the classes for
the observations in the kth data split. This is repeated for all K data splits, and the final
classification error is a combination of the K estimates of the prediction error (Hastie et al.,
2009, Chapt. 7.10). Let ĥ−k(z) denote the classifier trained with the kth data split removed.
Now, the estimate for the classification error is the proportion of misclassified observations in
the entire data set:

ÊrrCV (ĥ) =
1

n

n∑

i=1

L(ωhi , ĥ
−k(i)(zi)),

where ωhi is the true class of the observation i and ĥ−k(i) denotes the classifier where the
observation i belonged to the kth data split that was not used for training (Hastie et al.,
2009, Chapt. 7.10).

A third alternative is a bootstrap estimate of the classification error. A bootstrap sample
is a random sample drawn with replacement from the original data and having the same
sample size as the original data. When we take a bootstrap sample of the data,
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P (observation i ∈ bootstrap sample) = 1− (1− 1/n)n

≈ 1− e−1 = 0.632. (2.3)

Thus, about a third of the data is left out of the bootstrap sample and can be used as a
separate test data (Hastie et al., 2009, Chapt. 7.11). Taking many bootstrap samples of
the data and only keeping track of predictions from bootstrap samples not containing that
observation mimicks cross-validation and produces an estimate for the classification error.
Let ĥb(z) denote the classifier trained on a bootstrap sample b, b = 1, . . . , B. Now, the
leave-one-out bootsrap estimate of the classification error is

Êrr
(1)

=
1

n

n∑

i=1

1

|C−i|
∑

b∈C−i

L(ωhi , ĥ
b(zi)), (2.4)

where C−i is the set of indices of the bootstrap samples that do not contain the observation i,
and |C−i| is the number of such samples (Hastie et al., 2009, chapt. 7.11). The leave-one-out
bootstrap estimate of the classification error has been criticized for being biased upwards,
and corrections for this bias have been proposed in Efron and Tibshirani (1997). However,
we present it here as it is closely related to another bootstrap estimate of the classification
error discussed in Section 2.4.

As the performance of a classifier may depend on several parameters, finding optimal
parameter values introduces a new layer to the problem of classifier evaluation. To avoid
underestimating the classification error, parameter optimization, i.e. model selection, should
be done either with a separate validation data or within the training data (e.g. Hastie et al.,
2009, Chapt. 7). If there is enough data, it can be split into three parts, one for training,
one for validation and one for testing. The classifier is built on the training data, the optimal
parameter values are chosen based on the classification error of the validation data, and the
final classification error is estimated from the test data. If the data is limited, it can be split
into two parts, one for training and one for testing. Then the optimal parameter values for
the classifier can be obtained based on the cross-validation error or the bootstrap error of the
training data. Again, the final classification error is estimated from the test data.

2.3 Bias–variance decomposition

With a quantitative response variable and squared error loss, the bias–variance decomposition
of the prediction error is easily understood due to its additive nature. In classification, the
decomposition is not as simple. In fact, even the definitions of bias and variance vary in the
classification framework, and there have been several different attempts to understand the
relation of bias and variance to classification error in the case of 0–1 loss and two classes.
Kong and Dietterich (1995); Kohavi and Wolpert (1996) and Breiman (1996a) derived ad-
ditive bias-variance decompositions for the classification error, while Tibshirani (1996) and
Friedman (1997) gave formulations where the interaction of bias and variance is non-linear
and multiplicative. Friedman (1997) defined variance in the classification framework as the
stability of a classifier, i.e. how much the predictions of a classifier might vary due to different
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training sets. For the definition of bias, Friedman (1997) discussed the estimation bias sim-
ilar to the case of the squared error loss, and the boundary bias referring to the bias in the
estimation of the decision boundaries. He stated that in all of these decompositions of Kong
and Dietterich (1995); Kohavi and Wolpert (1996); Breiman (1996a); Tibshirani (1996) and
Friedman (1997), variance usually dominates bias, i.e. low variance is often more important
for accurate classification than low estimation bias. However, Friedman (1997) noted that
the effect of variance depends on the sign of the boundary bias. Domingos (2000) presented
unified definitions for bias and variance that can be used with other loss functions and gener-
alized the bias–variance decomposition of 0–1 loss to multi-class classification. He found that
low variance becomes increasingly important as the number of classes increases.

The bias–variance decomposition is closely related to the problem of overfitting. If the
classifier is sensitive to changes in the training data, it can result in poor generalization.
Overfitting a classifier to the training data reduces bias but increases variance (Duda et al.,
2001), which is the dominating factor in the classification error. With high dimensional data,
avoiding overfitting becomes even harder because the training data covers only a fraction of
the input space (Domingos, 2012).

2.3.1 Curse of dimensionality

Classification becomes increasingly more difficult as the dimension of the feature space grows.
The problem of high-dimensional data was coined by Bellman (1961) as the curse of dimen-
sionality. Classification methods that work well in lower dimensions cannot be used in higher
dimensions because there is not enough information in the data to estimate the models ac-
curately (Duda et al., 2001; Hastie et al., 2009). The limited amount of data can result in
singular covariance matrices, overfitting and high variance. Some possible solutions to this
are dimension reduction, i.e. reducing the number of features, assuming that the features are
independent, or regularization. For example, QDA models are too complex to fit if the number
of features exceeds the number of observations per class as the class conditional covariance
matrices become singular (Friedman, 1989; Hastie et al., 2009). Friedman (1989) stated that
even if the covariance matrices could be estimated, the estimates would be extremely unstable
giving rise to high variance. He therefore proposed Regularized Discriminant Analysis (RDA),
which shrinks the class-conditional covariance matrices of QDA towards the common covari-
ance matrix of LDA. Though, with a complex data, also RDA can suffer from computational
accuracy problems (Article II).

One common way to improve the classification accuracy by reducing variance is to build
ensemble classifiers. Two popular methods for building ensembles are bagging and boosting.
In bagging, i.e. bootstrap aggregating, the ensemble is built by taking bootstrap samples of
the training data and fitting a classifier on each of these samples (Breiman, 1996b). Typi-
cally, the classifiers in the ensemble are of the same type, e.g. decision trees (Quinlan, 1986),
and only the parameter values vary due to the different training samples (Duda et al., 2001).
The final class decision can be obtained by a majority vote or by averaging the predicted
class probabilities over the ensemble (Breiman, 1996b). Bagging improves classification accu-
racy because it greatly reduces variance while only slightly increasing bias (Domingos, 2012).
However, in order to improve classification accuracy, bagging requires an unstable base clas-
sifier, i.e. a classifier with high variance (Breiman, 2001). For example, NB is a very stable
(although often biased) classifier and cannot be improved with bagging (Bauer and Kohavi,
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1999). The idea in bagging is to approximate the underlying distribution of the data that
produced the training set (Breiman, 1996b). This makes bagged ensembles quite robust to
noise, i.e. incorrect labels of training observations (Dietterich, 2000). Another benefit with
bagging is that it gives a built-in estimate of the classification error (Eq. 2.5) without the
need for a separate test set (Breiman, 2001).

In boosting, the ensemble is a sequence of classifiers. The next classifier is trained on
observations that were found the most informative based on the previous classifier (Duda
et al., 2001, Chapt. 9.5). The most popular boosting algorithm is called Adaboost (Freund
and Schapire, 1997). Adaboost, or adaptive boosting, gives weights to each observation in
the training data. These weights are adjusted after each classifier is built. The weights are
increased for observations the previous classifier misclassified and decreased for those that
were classified correctly (Duda et al., 2001, Chapt. 9.5). The final prediction is a weighted
vote over the ensemble and the weights for the votes depend on the classification error of each
classifier (Hastie et al., 2009, Chapt. 10.1). For Adaboost, the base classifier need not be
as unstable as for bagging because Adaboost can make larger changes in the training data
(Dietterich, 2000). However, unlike bagging, Adaboost is sensitive to noise in the training
data (Dietterich, 2000).

Variance can also be decreased by introducing randomness into the classifier since this
encourages diversity which can further improve the accuracy of ensembles (Dietterich, 2000).
Breiman (2001) combined bagging and randomization in Random Forest (RF) which is an
ensemble of random decision trees. Breiman noted that the classification error of a forest
depends on the strength of the trees as well as on the correlation between them. Randomness
reduces the correlation between the base classifiers and therefore improves the accuracy.

2.4 Contributions

We propose a novel classifier called Random Bayes Array (RBA, Articles I and II) by applying
both bagging and randomness to quadratic discriminant analysis, mimicking the RF approach
of Breiman (2001). With high-dimensional data, QDA becomes a very unstable classifier and
as such can benefit from these variance reduction techniques. The randomness is introduced
through randomly selecting a subset of the features for each QDA in the ensemble. This
not only reduces the variance of the ensemble but also enables the use of QDA with high
dimensional feature space since it reduces the chance of obtaining ill-conditioned covariance
matrices (Article II). In addition to the majority vote and averaging posterior probabilities
over the ensemble, we explore weighted voting. In weighted voting, the vote of each base
classifier in the ensemble is weighted with its corresponding posterior probability, giving higher
weight for more confident votes (Article II).

As RF and RBA are ensembles of random classifiers trained on bootstrap samples of
the original training data, one third of the original training observations are left out of each
bootstrap sample (see Eq. (2.3)). Breiman (2001) named these out-of-bag or oob observations
which can be used to construct an internal estimator for the classification error. Let ĥ′(z) be
the predictor pooled over those classifiers in the ensemble where z is out-of-bag. Now, the
oob estimate for the classification error is

Êrroob =
1

n

n∑

i=1

L(ωhi , ĥ
′(zi)). (2.5)
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One standard approach to evading the problems associated with high-dimensional data
is feature selection, i.e. selecting a subset of the original feature space. Similarly as in RF,
the out-of-bag observations in RBA can be used to evaluate feature importance. Breiman
(2001) proposed to explore the importance of a feature zj , j = 1, . . . , r, by permuting the
values of the feature. If a feature zj is an integral part of successful classification, permuting
its values in the oob-observations should increase the out-of-bag error in Equation (2.5). The
importance of the feature zj is given by

imp(zj) =
1

B

B∑

b=1

[
#{Correct classifications of b’s oob-observations}

#{b’s oob-observations} (2.6)

−#{Correct classifications when zj values of b’s oob-observations permuted}
#{b’s oob-observations}

]
,

where b denotes the different bootstrap samples. Feature importance is a highly useful measure
since it takes into account each feature individually as well as multivariate interactions with
other features (Strobl and Zeileis, 2008).

Breiman and Cutler (2008) suggested to calculate standardized importance scores that,
based on the central limit theorem, are assumed asymptotically standard normal under the
null hypothesis of zero feature importance. Thus, they could be used for feature selection.
However, Strobl and Zeileis (2008) demonstrated in simulation experiments that the power of
the test does not increase with the relevance of the feature but with the number of random
decision trees in RF – a parameter chosen by the researcher. Therefore, the test should not
be used to identify the most important features.

Instead of selecting a subset of features based on the ranking of feature importance or the
standardized importance score test, in Article II we propose to utilize the feature importances
as weights when drawing the random subset of features for each QDA in the ensemble. This
way, all the features are included and no information is lost, yet the most important features
will be used more often. The weights are obtained from the raw feature importance as follows:

w(zj) =
imp(zj)∑r
j′=1 imp(zj′)

.

The performance of RBA was tested and compared to other classification methods with
macroinvertebrate image data in Articles I, II and IV. In article I, the data comprised of 15
features and 1350 observations belonging to 8 classes. With this data, RBA matched the
performance of QDA and RF. All three classifiers produced classification errors of 7–8 %.
Article II used a much more complex data of 64 features and 6814 observations belonging to
35 classes. In Article II, RBA yielded the lowest classification error out of all tested classifiers,
comparing favourably to such classifiers as LDA, RF, SVM and neural networks. We achieved
the lowest classification error (18.8 %) when basing the predictions on the averaged posterior
probabilities and using feature importance as weights for the features. The three pooling
methods, i.e. using majority vote, average posterior probabilities or posterior weighted voting,
yielded similar accuracies but using feature importance weights produced a clear improvement
in the classification accuracy. We also compared RBA to other Bayesian classifiers (QDA,
LDA and NB) and found it to outperform them in small training sample scenarios – even
when the data was multivariate normal (Article II). With real image data deviating from the
Gaussian assumption, RBA gave higher classification accuracy than QDA even with larger
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training samples (Article II). In Article IV, the data of 35 classes was modified slightly to
include 32 classes (see Article IV for details) and classified with a wider range of classification
methods. RBA produced a similar classification error to that in Article II, ranking fifth among
the classifiers. The proportion of data used for training was higher in Article IV than Article
II, and the benefit of the ensemble approach in RBA is precisely that it works well even with
limited training data. Other classifiers may outperform RBA when there is more training
data available but RBA’s performance endures cuts in data size.
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Chapter 3

Percent Model Affinity Index

3.1 On biological indices

In biomonitoring, ecological status assessments of surface waters are based on scores of indices
calculated from samples of biological indicator groups, such as benthic macroinvertebrates.
Different indices use different aspects of taxa abundancies identified from samples and aim to
assess the diversity of a monitored community or to determine whether two communities are
similar to each other.

The biological diversity of a community is a combination of its species richness and the
evenness of those species (Krebs, 1999). Consequently, diversity indices can be divided into
groups based on which aspects of diversity they cover the most. Diversity can also be viewed
as the average rarity within a community (Patil and Taillie, 1982). Some popular and widely
used diversity, richness, evenness and dominance indices are presented in Article IV.

Similarity indices are an important tool in biomonitoring to measure similarity over time
and space. They are often used to compare a monitored community to an ideal reference
community considered to be either in a natural state or largely undisturbed by human action.
If a monitored community is very similar to the reference community, the monitored water-
body is estimated to have good ecological status. If the similarity between the monitored
community and the reference community is low, the monitored waterbody is in poor ecolog-
ical condition, indicating a need for mitigation measures. Besides measuring the similarity
between two communities, similarity indices can also be used to detect changes in community
composition over time. This is done by calculating the similarity of two samples taken from
the same community at different times. Article IV presents six well-known similarity indices,
including the Percent Model Affinity (PMA) index.

The accuracy of the ecological status assessment depends strongly on the statistical prop-
erties, i.e. bias and variation, of the chosen indices. As for many of the diversity indices, it is
difficult to give reliable confidence intervals for most similarity measures (Ricklefs and Lau,
1980): The statistical properties of most similarity indices have only been evaluated with sim-
ulation procedures, such as jackknife and bootstrap experiments. The statistical properties
of an index arise from the underlying distribution assumed for the samples. Typical choices
include multinomial distribution (Smith, 1982; Smith and Zaret, 1982), Poisson distribution
(Farley and Johnson, 1985), log-series distribution (Wolda, 1981) and negative binomial dis-
tribution (Venrick, 1983; El-Shaarawi, 2006). Here, we limit the study on biological indices to
the case of multinomial distribution. The statistical properties of the PMA index, assuming
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multinomial distribution for the samples, are presented in the following sections.

3.2 Statistical properties of the Percent Model Affinity index

The Percent Model Affinity (PMA) index was introduced to the aquatic biomonitoring field
by Novak and Bode (1992). In their article, Novak and Bode proposed PMA as a new
index of stream water quality that quantitatively compares the community composition of a
monitored community with an expected, model community. In PMA, the proportional taxa
distributions in the monitored community and the model community are compared using
Percentage Similarity (PS), originally proposed by Renkonen (1938). This makes the PMA
index an application of PS. Mathematically, PS is defined as follows: Let us consider a finite
set of classes (e.g. taxonomic groups) {ω1, . . . , ωc} and let p = (p1, ..., pc) and q = (q1, ..., qc)
be two probability mass distributions over Ω, such that

∑c
h=1 ph = 1 and

∑c
h=1 qh = 1. Then,

PS = 1− 1

2

c∑

h=1

|ph − qh|. (3.1)

In the case of perfect similarity, when p = q, the PS is equal to 1. In the case of perfect
dissimilarity, i.e. phqh = 0, h = 1, . . . , c, the PS is equal to 0. In all other cases, 0 < PS < 1.
For the PMA index, p represents the taxa distribution of the monitored community and q
represents the taxa distribution of the model community.

Generally, the probability profiles p and q are unknown, and therefore it is necessary to
consider an estimator that can be derived from empirical data. Following the presentation
of Novak and Bode (1992), the taxa distribution of the monitored community is estimated
from a sample and the model community is obtained as the average taxa distribution from
reference (sensu Stoddard et al., 2006) stream samples. For the monitored community, let X =
(X1, . . . , Xc) be a random sample drawn from a multinomial distribution Multinom(n,p).
Then, the maximum likelihood estimator for ph is p̂h = Xh/n for each h = 1, . . . , c. For the
reference community, let Y = (Y1, . . . , Yc) ∼ Multinom(m,q). Respectively, the maximum
likelihood estimator for qh is q̂h = Yh/m. This leads to three possible estimators for the PS:
If the model community is assumed known,

P̂S = 1− 1

2

c∑

h=1

|p̂h − qh|, (3.2)

or if both probability profiles are estimated from one sample,

P̂S = 1− 1

2

c∑

h=1

|p̂h − q̂h|. (3.3)

The third estimator, where p̂ and q̂ are obtained from multiple samples, is discussed in Article
III.

Percentage similarity is a popular measure of similarity between two probability profiles
and has applications in many fields, such as the sawmill industry (Bergstrand, 1989), ecology
(Renkonen, 1938) and sociology (Duncan and Duncan, 1955). The PMA index has gained
popularity and is widely used in the biomonitoring of aquatic ecosystems (see e.g. Passy
and Bode, 2004; Alahuhta et al., 2009; Kauppila et al., 2012). Yet, in the field of aquatic

14



biomonitoring, the statistical properties of the estimators in Equations (3.2) and (3.3) have
received very little attention even though these properties may have a significant impact on
the ecological status assessment of waterbodies. In the other fields of study, some theoretical
results exist on the statistical properties of percentage similarity.

3.2.1 Known reference profile

In the sawmill industry, PS is used to measure the fit between the demand distribution
and the observed distribution of logs (Bergstrand, 1989). In this field of application, the
index is referred to as Apportionment Index and it is a measure of the successfulness of the
harvesting operation. Using multinomial distribution for the samples, Koskela et al. (2007)
presented the expected value and variance of the estimated index in Equation (3.2) using a
large-sample normal approximation. This approach assumes that the observed frequencies
of log size classes follow a known demand distribution, i.e. X ∼ Multinom(n,q), fixing the
true value of the index to be 1. The expected value was found to approach 1 with increasing
the sample size, making the index asymptotically unbiased. Koskela et al. (2007) noted the
variance to be a function of the sample size as well, decreasing with increases in the sample
size. Besides sample size, they found the size and shape of the demand distribution q to affect
the expected value of the estimator P̂S in Equation (3.2). Koskela et al. (2007) also derived
a lower tolerance limit for the index that can be used to determine when deviations from the
demand distribution are statistically significant.

Percentage similarity is also used in the field of ecology to measure niche breadth by
comparing resource use with resource availability (Feinsinger et al., 1981). Smith (1982)

derived exact formulas for the expected value and variance of the estimator P̂S in Equation
(3.2) when X ∼Multinom(n,p) and q is fixed. Smith further derived an approximate formula
for the variance using the delta method (Seber, 1973). However, these results are not reliable
as the transformation function (Eq. 3.2) in the delta method is not differentiable.

3.2.2 Estimated reference profile

In sociology, PS is utilized to calculate Dissimilarity index (D = 1 − PS, Jahn et al., 1947;
Duncan and Duncan, 1955) which is a common tool to measure segregation. Having both p
and q estimated from single samples following the multinomial distributions Multinom(n,p)
and Multinom(m,q), Ransom (2000) used a normal approximation for large samples to derive
the asymptotic distribution of D. The variance for D was calculated using the delta method
(Seber, 1973). As with Smith (1982), the results obtained with the delta method are not
reliable as the transformation function in Equation (3.3) is not differentiable.

Smith and Zaret (1982) extended the results of Smith (1982) to the more general framework
where both probability profiles in PS are estimated from single samples. They studied the
bias of the estimator P̂S in Equation (3.3) using exact formulas from Goldstein and Wolf
(1977) in order to calculate the expected value of the estimator. Smith and Zaret (1982)

found the bias of P̂S to decrease with increasing sample sizes and to increase with increasing
the number of classes and evenness of the probability profiles p and q. They also claimed
that the true value of the index has no effect on the bias.

Ricklefs and Lau (1980) studied the bias and variation of the estimator P̂S in Equation
(3.3) with simulation experiments. In contrast to the claims of Smith and Zaret (1982),
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simulating samples from two multinomial distributions and estimating p and q from the
samples, Ricklefs and Lau (1980) found the bias to be a problem when the true value of PS
approaches 1. They noticed both the bias and variance of the estimated index to decrease with
increases in sample size and to increase with increasing the number of classes. In addition,
Ricklefs and Lau (1980) argued that the bias and variance are not affected by changes in
evenness.

3.2.3 Contributions

Although some theoretical results exist on the statistical properties of percentage similarity,
not all of the results are reliable or valid in the context of aquatic biomonitoring. First, for
the case of a known reference profile, the results of Koskela et al. (2007) assume that the
monitored sample follows a known reference distribution. In biomonitoring, this is not a
reasonable assumption for samples from streams impacted by human action. For the case of
an estimated reference profile, the assumption in Ransom (2000) that all taxa proportions in
the monitored and the reference community must be unequal is not reasonable for samples
from streams that are in reference condition. There is a need for a general framework for all
possible taxa profiles p and q and all three possible estimators of PS.

In Article III, we derive and present the exact formulas for the expected value and variance
of the estimators in Equations (3.2) and (3.3), calculated beyond and independently of the
results of Smith (1982) and Smith and Zaret (1982). In addition, we explain how the results
for the latter estimator can be extended to multiple samples. To our knowledge, the exact
variance for Equation (3.3) has not been studied previously. As another novel contribution,
we provide asymptotic results for the expected value of the estimator in Equation (3.2). We
find the estimator to be asymptotically unbiased with the bias approaching zero faster if the
probability profiles p and q are unequal (Article III).

Using simulated taxa profiles p and q, we study the effects of sample size, number of
taxa, evenness of the taxa profiles and the true value of the index on the bias and variance
of the estimators in Equation (3.2) and (3.3). Our analyses support the results of Ricklefs
and Lau (1980) and Smith and Zaret (1982) that increasing sample size decreases the bias
and variance and increasing the number of taxa increases the bias (Article III). We concur
with the findings of Smith and Zaret (1982) that increasing the evenness of the taxa profiles p
and q increases the bias of the estimator in Equation (3.3). This is also true for the variance
(Article III). In addition, we show that the true value of the PS index indeed does affect the
bias and variance of the estimated index, as suggested by Ricklefs and Lau (1980). There
is a steep increase in the bias as the true value of the index approaches 1. The results are
similar for both estimators of the PS index (Eqs. (3.2) and (3.3)). In comparison with the
previous analytical and simulation studies, we use parameter values more relevant to the field
of aquatic biomonitoring where e.g. the number of taxonomic groups is very large (Article
III).
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Chapter 4

Error propagation

Measuring data quality has become increasingly important for bioassessment and should be
done based on the ultimate uses of the data (Cao et al., 2003). One major source of uncer-
tainty in the biomonitoring process chain are identification errors. As biological indices are
calculated from samples that are identified to taxa, identification errors may affect the statis-
tical properties of the indices. In addition to the sampling distribution of biological indices,
it is crucial to understand how identification errors propagate into the indices and into the
ecological status evaluation of waterbodies. This error propagation depends not only on the
total accuracy of the identification but also on the probabilities of different misclassifications.

The important issue of error propagation has received some attention in the field of biomon-
itoring. The European Union funded STAR project (Furse et al., 2006) aimed at identify-
ing different sources of uncertainty and their effects on biological indices and the ecological
status assessment of waterbodies. In the project, 6 countries were audited for identifying
macroinvertebrates. In the audit, Haase et al. (2006) studied the identification differences
between the primary analysts and the auditors on a group of indices (e.g. Shannon’s diversity
Shannon and Weaver, 1963) and found statistically significant differences in the index values
using Wilcoxon’s test (Wilcoxon, 1945). Stribling et al. (2008) reported on quality control
of biomonitoring of macroinvertebrates in the USA, auditing 8 laboratories performing taxa
identification. In this study, the identifications of the laboratories and the auditors differed on
average 21 % leading to different ecological status classes in 22.2 % of the audited samples. In
a similar auditing of the biomonitoring of macroinvertebrates in Germany, Haase et al. (2010)
found a 33.8 % difference in identifications between the primary analysts and the auditors,
leading to differences in index values. The final ecological status class was determined as
the worst-case-scenario out of three indices and was different for 8/50 samples (Haase et al.,
2010).

In biomonitoring, the decreasing funding drives the search for alternative identification
methods with lower costs, such as automated classification (Articles I & II, Blaschko et al.,
2005; Culverhouse et al., 2006; Lytle et al., 2010; Kiranyaz et al., 2011; Joutsijoki et al., 2014)
and citizen-science monitoring (Dickinson et al., 2012). While being cost-effective, these ap-
proaches may introduce additional bias and variation to indices calculated from identified
samples. In fact, Gardiner et al. (2012) studied how identification errors of lady beetles prop-
agated into Menhinick’s index of species richness (Magurran, 2004) and Simpson’s diversity
index (Simpson, 1949) in citizen-science monitoring programs. Both indices were found bi-
ased upwards due to identification errors. The effect of automated classification on indices has
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mainly been studied in the field of remote sensing, concentrating mostly on additional varia-
tion due to misclassifications. Wickham et al. (1997) simulated automatically classified maps
using information on spatial autocorrelation and the confusion matrix - a matrix containing
the probabilities of different classification decisions. They calculated bias due to classification
errors for four landscape pattern indices and approximated the confidence intervals of these
indices using t-distribution. Shao et al. (2001) studied the effects of 23 different classifica-
tions of a thematic map on 18 landscape pattern indices calculated from the map. They
noted that classifiers with similar total accuracy resulted in varying index values, indicating
the effect of the shape of the confusion matrix. Using the same data, Shao and Wu (2004)
found that the mean index values did not differ very much between classifiers of different total
accuracy but that variation in the index values was greatly affected by the amount of classifi-
cation errors. They also discovered certain landscape pattern indices to be more sensitive to
misclassifications than others.

The probabilities of different classification decisions are stored in a confusion matrix with
the rows representing the predicted classes and the columns representing the true classes of
the observations. Therefore, if a gold standard training set is used, then the confusion matrix
can be utilized to correct the bias due to classification errors in the predicted proportions or
frequencies (see e.g. Card, 1982; Hay, 1988; Fortier, 1992; Buonaccorsi, 2010). Studying the
effect of misclassifications on proportion estimation, Healy (1981) gave a formula for the mean
square error (MSE) of the predicted proportions based on the confusion matrix. Healy (1981)
also advised how to build a classifier that minimizes the MSE of the estimated proportions
due to misclassifications. In an effort to approximate the uncertainty caused by classification
errors, Hess and Bay (1997) used a confusion matrix correction and bootstrapping to construct
confidence intervals for several landscape pattern indices. This study included Simpson’s
diversity and Shannon’s diversity (Shannon and Weaver, 1963) also used in biomonitoring.
Of course, for any confusion matrix correction to work, we must have a good estimate for the
confusion matrix, which is not always possible.

4.1 Contributions

In Article IV, we study the effects of automated taxa identification errors on a wide range
of biological indices describing richness, diversity, dominance, evenness and similarity (Table
4.1). In that article, we study how different classification methods introduce bias and variation
into biological indices. We also look at the reasons why certain indices are more sensitive to
misclassifications than others.

Using a multinomial model, we simulate macroinvertebrate samples from 12 stream types,
estimating the taxa probabilities from monitoring data collected by the Finnish Environment
Institute. For each stream type, we simulate both reference and non-reference samples, having
all together 24 different taxa profiles for the multinomial model. To simulate classified samples,
we use multinomial distribution, where the taxa probabilities are mixed with a confusion
matrix. The confusion matrices for 11 classifiers are estimated from image data described in
Articles II and IV.
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To evaluate the bias in index values caused by classification errors, we use proportional
bias

%bias =
E(Ĩ)− E(I)

|max I −min I| ,

where I is a general notation for an index with correct classification and Ĩ a general notation
for the same index with possible classification errors. Chen et al. (2010) used similar propor-
tional bias to represent bias in landscape pattern indices in remote sensing. There are other
possibilities for scaling the bias (see e.g. Shao and Wu, 2004) but they usually depend on the
class probabilities. We scale the bias with the range of each index to make it comparable be-
tween indices with varying ranges, different classifiers and varying taxa distributions (Article
IV). The %bias serves a measure of the biological significance of the bias. Similarly, the effect
of misclassifications on the standard deviation of biological indices can be evaluated with

%sd =
sd(Ĩ)− sd(I)

|max I −min I| .

In contrast to the findings of Shao and Wu (2004) with landscape pattern indices, we
find that classification errors cause bias in biological indices but leave the variation mostly
unaffected (Article IV). The results from the simulation study suggest that richness indices
based on the number of observed taxa are the most vulnerable to classification errors because
even a single misclassification can cause overestimation (Article IV). Interestingly, these in-
dices are also sensitive to the dimensions of the training data used to train the classifiers: If
the training data has a larger number of taxa than the sample from which we estimate the
number of observed species, the confusion matrix tends to spread out the observations so that
species richness will be biased upwards. Other presence/absence-based indices, where the
number of the observed taxa affects both the denominator and the numerator of the index,
are less affected by classification errors. Indices based on the observed proportions of taxa
are quite robust to misclassifications except if the most common taxa are poorly classified
(Article IV). We find Simpson’s diversity to be the least biased diversity index and Euclid-
ian similarity, PMA index and Morisita-Horn index to be the least biased similarity indices.
Similarity indices measure the similarity between two conditions – in our study the reference
and non-reference communities of a fixed stream type. In our simulations, we explore a sce-
nario where the reference sample is known, i.e. classified correctly, and a scenario where both
the reference and the non-reference sample can contain misclassifications. We find the sim-
ilarity indices to be biased downwards if the reference sample is known and biased upwards
if also it contains classification errors (Article IV). We suspect this is due to the fact that
our chosen classifiers tend to increase the entropy of the samples. As the entropy increases,
the samples for reference and non-reference condition become increasingly more similar, thus
overestimating the similarity indices (Article IV).

As many of the biological indices are based on estimated taxa abundances or proportions,
it might be worthwhile to explore correction methods based on the confusion matrix. In
Article I, we study the bias in proportion estimation due to classification errors and apply a
correction method based on the inverse of the confusion matrix (Hay, 1988). The correction
yields promising results with the RBA and a C4.5 decision tree classifier (Quinlan, 1993) –
although in Article I the data consists of only 8 taxa making the estimation of the confusion
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matrix a considerably easier task than in the case of larger image data, as in Articles II and
IV. The effect of the confusion matrix correction on biological indices is not considered here.
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Chapter 5

Discussion

The aim of this thesis was to provide tools to improve the cost-efficiency and accuracy of fresh-
water benthic macroinvertebrate biomonitoring. To achieve this objective, we studied existing
and developed new automated classification methods suitable for challenging macroinverte-
brate image data, and strove to understand the different sources of errors and bias that
introduce uncertainty to biological indices calculated from macroinvertebrate samples.

Shifting from manual to automated identification can greatly reduce the costs of macroin-
vertebrate biomonitoring. For example, automated classification of a sample of 3400 indi-
viduals can be over 300 times faster compared with manual expert identification, and even
more if we take into account the time it takes to train an expert or a classifier. The shift to
automated identification requires classification methods with high accuracy. The results for
RBA (and other classifiers) are very promising, although the image data used in this thesis
contained only 35 taxa and the true number of different taxonomic groups for a sample can
be much higher. According to our results, RBA performed well with complex data where the
number of classes and features is high and the observations per class are limited. As the imag-
ing systems for macroinvertebrates develop further, other classifiers that benefit from having
a large training data may outperform RBA. However, due to bagging and random feature
selection, RBA remains a good option for classifying challenging data that suffers from the
curse of dimensionality. Furthermore, we only used equal priors for the classes in RBA in
this thesis. As with other Bayesian classifiers, we would expect RBA’s performance to benefit
from more informative priors.

The accuracy of ecological status assessment of water bodies can be improved by utilizing
knowledge on the different sources of uncertainty in the biomonitoring process chain. To
achieve this, we derived the mean and variance of the estimated PMA index used in Finnish
biomonitoring, and explored the effects of sample size, the number of taxa, evenness and the
true value of the index on these statistics. Our results increase the understanding of e.g.
whether the PMA scores for two different streams are comparable or not. Namely, the most
disconcerting result for the properties of the PMA index was the amount of bias as the true
value of the index approaches its maximum. The PMA index is strongly biased downwards
for samples from streams in reference condition. In practice, the sample size needs to be much
larger for streams in reference condition to achieve as low bias as for streams in non-reference
condition. In this thesis, we limited the study on biological indices to the case of multinomial
distribution. In nature, however, the variation in macroinvertebrate samples is much greater,
and to understand the behavior of the PMA index in those circumstances, we need to develop
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a more realistic model which takes overdispersion into account.
Besides the sampling distributions of biological indices, another source of uncertainty

arises from identification errors. In this dissertation, we studied how automated classification
errors affect a variety of common biological indices. We found presence/absence-based indices
to be very sensitive to misclassifications in the sense of bias but not standard deviation, and
proportion-based indices to be the most robust. Naturally, the indices have to be chosen
such that they measure the subject of interest from a community. However, if an index
is highly biased, it is not a good measurement of the phenomenon altogether. Choosing
another distribution instead of the multinomial model for the samples could result in more
variation. However, in Article IV we were only interested in bias and extra variation caused
by classification errors.

For future research, besides different models for the counts, it would be interesting to
consider how different correction methods based on the confusion matrix can decrease the
bias in biological indices. Studies comparing the performance of automated classifiers and
human experts from the identification of samples to the calculation of biological indices and,
finally, the ecological status assessment of water bodies would also be very advantageous as
biomonitoring is slowly moving towards automation.
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Summary of original publications

Article I introduces the RBA classifier with a small preliminary macroinvertebrate image
data set. RBA – called Random Bayes Forest in this paper – is compared with several other
popular classification methods and found to work well, although its potential lies with more
problematic data. The article studies the effect of classification errors on sample proportions
estimated from predicted classes and briefly discusses the confusion matrix correction.

Article II gives a thorough presentation of the RBA classifier. Its origins in random forests
and quadratic discriminant analysis are discussed. RBA’s benefits with complex data suffer-
ing from the curse of dimensionality are considered and several ways of using the produced
posterior probabilities are examined, including the possibility of assessing feature importance
and using it as weights for better classification results. RBA is compared with a variety
of classification methods with a large macroinvertebrate image data and found to yield the
lowest error rate.

In biomonitoring, the identified samples are used to calculate biological indices that are then
used to assess the ecological status of waterbodies. One popular measure is the PMA index
which compares a monitored taxa profile with a reference profile. In article III, the statistical
properties of the PMA index are studied in two different scenarios, 1) when the reference
profile is assumed to be known and 2) when the reference profile is estimated. Theoretical
formulas for expected value and variance are given in both scenarios and asymptotics are
considered when the reference profile is assumed to be known. The effect of sample size, true
value of the index, evenness and number of classes on the bias and variance of the PMA index
are studied.

Article IV studies the effect of classification errors on biological indices, such as the PMA
index, calculated from classified samples. Error propagation is a problem with both manual
and automated identification but in automated identification the errors are more systematic
and the confusion matrix of a classifier can be an indicator of how the classification errors
propagate into indices calculated from the identified samples. A simulation study is performed
to assess the amount of bias resulting in different indices using different classifiers.
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or personal use of this material is permitted. If interested in reprinting/republishing IEEE
copyrighted material for advertising or promotional purposes or fo creating new collective
works for resale, please go to

http://www.ieee.org/publications standards/publications/rights/rights link.html

to learn how to obtain a License from RightsLink.



STATISTICAL CLASSIFICATION AND PROPORTION ESTIMATION – AN APPLICATION
TO A MACROINVERTEBRATE IMAGE DATABASE
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ABSTRACT

We apply and compare a random Bayes forest classifier and
three traditional classification methods to a dataset of comp-
lex benthic macroinvertebrate images of known taxonomi-
cal identity. Since in biomonitoring changes in benthic macroin-
vertebrate taxa proportions correspond to changes in wa-
ter quality, their correct estimation is pivotal. As classifica-
tion errors are passed on to the allocated proportions, we
explore a correction method known as a confusion matrix
correction. Classification methods were compared using the
misclassification error and the χ2 distance measures of the
true proportions to the allocated and to the corrected propor-
tions. Using low misclassification error and smallest χ2 dis-
tance measures as performance criteria the classical Bayes
classifier performed best followed closely by the random
Bayes forest.

1. INTRODUCTION

Macroinvertebrate samples are commonly used in biomon-
itoring to study human induced changes on aquatic ecosys-
tems (e.g. [1], [2]). Traditionally species in samples are clas-
sified by human experts. In this work, we compare the ef-
ficiency of the image-based classification methods and ex-
plore the effect of a confusion matrix correction to species
proportions after initial classification (e.g. [3]).

Benthic macroinvertebrates living on the bottom of wa-
terbodies are quick to react to changes in water quality. For
biomonitoring, it is crucial to obtain highly accurate esti-
mates of macroinvertebrate species abundances and propor-
tions since observed changes in them are good indicators of
ecosystem changes. The traditional human-made classifica-
tion is, however, both time-consuming and expensive.

We would like to warmly thank Phil Culverhouse, Harri Högmander,
Serkan Kiranyaz, Simon Oliver, Antti Penttinen, Mats Rudemo and Sara
Taskinen for valuable suggestions and discussions. The financial support of
STATCORE (a project of the University Alliance Finland) is appreciated.

In our work, classification, i.e. automated identification,
is based on the features such as area extracted from greyscale
images of individuals (Fig. 1). We present random Bayes
forest classifier, which is the implementation of the random
forest approach on the Bayes classifier. A similar type of
approach, i.e. random naive Bayes, can be found in [4]. We
briefly describe traditional Bayes, decision tree and random
forest (e.g. [5]). Besides forming the basis of our novel clas-
sifier, classifiers of this type have been used for automated
identification [6, 7]. Since class conditional classification er-
rors cause bias to the allocated proportions (the proportions
resulting from the automated classification), we further ex-
plore the correction of the allocated proportions using the
inverse of the confusion matrix [3].

With a predefined macroinvertebrate image database, we
can apply and compare the classification methods using the
misclassification error, the χ2 distance measures between
true and allocated proportions and the distance measures be-
tween true and corrected proportions, respectively [8].

2. DATA

Due to the high amount of manual expert labor needed to
identify true species identities, the number of species used
here to get an initial estimate of the viability of automated
recognition for benthic macroinvertebrate was deliberately
limited. Although the taxa included into this digitized data
set are representative of taxa typically found in rivers, they
form a small subset of the 30-75 taxa typically encountered
at individual river sites. We used eight common macroin-
vertebrate taxa (Baetis rhodani, Diura nanseni, Heptagenia
sulphurea, Hydropsyche pellucidulla, Hydropsyche siltalai,
Isoperla sp., Rhyacophila nubila and Taeniopteryx nebu-
losa) for automated identification, see examples in Fig. 1.

Specimens included were first keyed traditionally by tax-
onomic experts and then scanned onto a computer in single
species batches. The segmentation for each batch-scan pic-



Fig. 1. Example of segmented macroinvertebrate taxa im-
ages used for feature extraction and classification. Taxa de-
picted from upper left to bottom right are: Baetis rhodani,
Diura nanseni, Heptagenia sulphurea, Hydropsyche pellu-
cidulla, Hydropsyche siltalai, Isoperla sp., Rhyacophila nu-
bila and Taeniopteryx nebulosa.

ture file was performed in multiple steps. First an estima-
tion of the image background was obtained by median fil-
tering the image with kernel size larger than the radius of
the largest object in the image. The background image was
used to normalize the background value of each pixel in the
original image to the average of the background level. A
global threshold was used to generate a mask that separat-
ed the specimens from the background in the normalized
image. This procedure enables the detection of individual
specimens as connected (we used 8-connectivity) areas in
the mask. We used an automatic technique for choosing the
threshold value first developed by Ridler & Calvard [9]. In
some cases, when the specimens were touching or overlap-
ping, the segmentation was solved manually. We acknowl-
edge that there are more automatic ways to handle touching
or overlapping specimens. However, due to the low num-
ber of overlapping cases requiring our attention, we did not
make use of e.g. sophisticated blob detectors (e.g., LoG,
DoG) to detect the amount of specimens in the image and
then finding the minimum cost path (e.g, seam carving) be-
tween the objects for this dataset.

After segmentating all the greyscale batch-scan picture
files for the eight species, 1350 images of indivuals were
subsequently obtained. From those images, used features
were extracted as follows: First, using ImageJ the indivual
was automatically separated from the background of the im-
age and subsequently the features were extracted. Second,
we reduced the initial number of features through the use of
canonical discriminant analysis on the data [5]. Finally, the
following set of simple a) geometry and b) intensity -based
features were obtained for classification:

a) area, perimeter, height and width of smallest rectan-
gle, major and minor axes of smallest ellipse, circu-
larity, Feret’s diameter

b) mean, median, mode, standard deviation, kurtosis, skew-
ness and sum of grey values,

see ImageJ [10] for more details.

3. CLASSIFIERS

3.1. Bayes classifier

Let {ω1, . . . , ωk} be the finite set of k classes and let P (ωi)

be the prior probability of class ωi such that
∑k

i=1 P (ωi) =
1. Let x be a p-dimensional feature vector in the Euclidi-
an space Rp with the class-conditional probability density
function p(x|ωi) given the true class ωi. Now the posterior
probability is

P (ωi|x) =
p(x|ωi)P (ωi)

p(x)
,

where p(x) =
∑k

i=1 p(x|ωi)P (ωi). The Bayes decision
rule classifies each individual to the class corresponding to
the largest posterior probability, thus minimizing the proba-
bility of classification error [11].

The Bayes decision rule can also be represented in the
form of a discriminant function gi(x) = ln p(x|ωi)+lnP (ωi),
instead of the posterior probability. If the features are dis-
tributed normally, x|ωi ∼ Np(µi,Σi),

gi(x) = −1

2
(x − µi)

′Σ−1
i (x − µi) − p

2
ln 2π

−1

2
ln |Σi| + lnP (ωi) (1)

[5]. The Bayes classifier is known as quadratic discrimi-
nant analysis (QDA), if the covariances for each class are
arbitrary. If all classes have a common covariance matrix
Σi = Σ for all i, the quadratic terms disappear, and we get
linear discriminant functions (LDA). In this work, we use
QDA and equal priors.

3.2. Decision tree

A decision tree consists of nodes, branches and leaves. First
the feature that best splits the data into the classes is cho-
sen as a root node. Observations are then split according to
the values of the root node into subsets, which form the first
branches of the decision tree. The procedure is repeated for
all branches until the resulting subsets are pure - that is, all
the observations in the subset belong to the same class. At
the end of each pure branch a leaf is grown and labeled ac-
cording to the class of the individuals on that branch.

Let {ω1, . . . , ωk} be values of a discrete random vari-
able Y representing the species class, and let X be a dis-
crete random feature with s classes. The choice of a feature



for a node of the decision tree is made based on entropy.
The entropy of Y is

H(Y ) = −
k∑

i=1

pi log pi, (2)

where pi = P(Y = ωi) = P (ωi) ≥ 0 for all i = 1, . . . , k.
The conditional entropy of Y conditioned on feature X is

H(Y |X) =

s∑

j=1

p·jH(Y |X = xj), (3)

where p·j =
∑k

i=1 pij and within the class xj

H(Y |X = xj) = −
k∑

i=1

P (Y = ωi|X = xj)

× log(P (Y = ωi|X = xj))

equals the entropy of the distribution of taxa into the class-
es. Low entropy values indicate that the feature X discrim-
inates the classes well, consequently that information can
be used in selecting the feature for a node. The Id3 algo-
rithm uses Information gain, G(Y,X) = H(Y )−H(Y |X),
and chooses the feature with the largest G(Y,X) (small-
est H(Y |X)) for the node variable [12]. Although decision
trees were originally developed for discrete features, some
of them can also deal with continous ones, an example is the
C4.5 decision tree, which uses Gain ratio:

Gain ratio(X) =
G(Y,X)

H(X)

to determine the node features [13]. In this work, the C4.5
decision tree is used.

3.3. Random Forests

Random forest (RF) uses bagging (random inputs) and ran-
dom feature selection on decision trees resulting in a forest
of random decision trees [14, 5]. Each tree is grown on a dif-
ferent bootstrap sample drawn randomly with replacement
from the training data. At each node m features are random-
ly drawn from the original M features and from these the
best split is chosen. For the classification of a new observa-
tion each tree casts a vote and the class for each observation
is assigned based on the majority vote.

A typical estimate for the misclassification error is the
test error, the ratio of misclassifications of all observations
in the test data [5]. Since random forest uses bagging there
is no need for a separate test set. When a tree is grown on
a bootstrap sample, about one-third of the observations are
left out. These cases form the out-of-bag (oob) data that can
subsequently be used in estimating the test error. Each ob-
servation is classified using the majority vote from all the

trees in which it was ”out-of-bag”. The oob error eoob gives
a running unbiased estimate for the test error when the trees
are added.

3.4. Random Bayes forest

Random Bayes forest (RBF) is the application of the ran-
dom forests approach on a Bayes classifier. It produces a
collection of random Bayes classifiers, each built on a dif-
ferent bootstrap sample of the training data and using m
randomly drawn features of the original M features. Bag-
ging enhances the robustness of the base classifier whereas
the random feature selection improves its accuracy [4].

Each random Bayes classifier computes posterior prob-
abilities or discriminant functions for all classes and classi-
fies each observation to the class corresponding to the largest
quadratic discriminant function. The classifier then votes for
this class. Similarly to random forests, the final classifica-
tion is made based on the majority vote of all individual
random Bayes classifiers. As with random forests in random
Bayes forests there is no need for a separate test set because
the oob error (eoob) provides an estimate for the test error.

4. CORRECTION OF ALLOCATED
PROPORTIONS

Let us consider objects from k different classes with their
true proportions p = (p1, . . . , pk) such that

∑
pi = 1. The

classification of objects is based on the observed features
x = (x1, . . . , xp) of each object. Using only the features of
objects, we are not able to discriminate the classes perfectly.
Misclassification errors are then included in the allocated
proportions p̂ = (p̂1, . . . , p̂k), referred to in the literature
also as raw estimates [3]. Our focus is on the estimation
of true proportions p using allocated proportions p̂ and the
confusion matrix (misclassification error matrix).

Assuming that the confusion matrix A of a specified
classification procedure is known, as proposed by Fortier
[3], the element aij of A is the probability of classifying an
object in the class i when originating from the class j. Fur-
ther,

∑
i aij = 1 and aij ≥ 0, i, j = 1, . . . , k. Following

Fortier’s model [3], let us consider the classification result
in matrix form where the element nij is the number of ob-
jects classified in the class i when originating from the class
j. Allocated proportions are obtained as follows:

p̂i =
Ni

N
,

where the sample size is denoted by N and the number of
objects classified in the class i,

Ni =
∑

j

nij , (4)



is the sum of the elements of the ith row.
When considering the real sample, only Ni’s can be ob-

served but not the elements of the matrix, {nij}. The el-
ements of the jth column, however, follow a multinomial
distribution

(n1j , . . . , nkj) ∼ multin(pjN, a1j , . . . , akj), (5)

where pjN =
∑

i nij is the sum of the elements of the jth
column. Since the classification in the given class is inde-
pendent from the classification of other classes, the vector
(N1, . . . , Nk) is the sum of the independent random vec-
tors following the multinomial distribution. Consequently,
the expectations for i = 1, . . . , k are

E(Ni) =
∑

j

E(nij) =
∑

j

aijpjN,

see formulas (4) and (5). Then E(p̂i) =
∑

j aijpj . In the
matrix form, the latter equals

E(p̂) = Ap. (6)

The elimination of the systematic bias in formula (6) is achieved
by using the estimator A−1p̂, when A is nonsingular.

5. COMPARISON OF CLASSIFIERS

The four classifiers were compared using the misclassifica-
tion error. In the case of Bayes classifier and decision tree
the data was randomly split into the training and test sub-
sets. Given the training subset τ we estimated the test error
Errτ from the test data [5, p. 220]. Further, we calculated
the mean test error Errτ over the 100 training and test set
splits. For both the RF and RBF classifier, the estimate for
the misclassification error was obtained using the out-of-
bag data as the test data and calculating the mean oob error
eoob over the 100 forests.

In addition, we compared the results of four classifiers
using the allocated proportions p̂ and the corrected propor-
tions A−1p̂ after the confusion matrix correction. Since the
confusion matrix A is unknown, the data was divided into
three parts (training data, validation data and test data) to be
able to utilize the confusion matrix correction. The classifi-
cation rule was obtained from the training data. Using this
classification rule, the confusion matrix was estimated from
the validation data. From the test data we calculated the true
p, and both the raw p̂, and the corrected estimates A−1p̂ of
the true proportions. We estimated the difference between
the true and the estimated proportions using the χ2 distance
measure [8]

χ2 =

k∑

i=1

(hi − pi)
2

pi
, (7)

where pi is the true proportion of the class i and hi is either
the raw estimate or the corrected estimate of pi. Note that
the χ2 distance measures of (7) for both the raw and correct-
ed proportion estimates are affected by chance variation. In
addition, corrected proportion estimates are also affected by
the estimation of the confusion matrix itself.

Using a bootstrap method frequently used in the esti-
mation of variance (e.g. [5]), we assessed the variation and
distribution of the distance measure for each classifier. Giv-
en the classification rule, the bootstrap was used for both
the validation and test data as follows. We randomized B
bootstrap samples from the validation and test data. From B
pairs of bootstrap samples, we calculated the raw p̂1, . . . , p̂B,
and the corrected proportion estimates A−1p̂1, . . . ,A

−1p̂B.
Since the true proportions pl of lth bootstrap sample of the
test data were known, we were able to calculate the lth dis-
tance measure

χ2
l =

k∑

i=1

(hli − pli)
2

pli
, (8)

where pli is the true proportion of the class i and hli is ei-
ther the raw or the corrected estimate of pli. Using (8), we
obtained the distribution of the distance measure for both
raw and corrected proportion estimates for each classifier.

With the forest classifiers (RF and RBF), we could esti-
mate the confusion matrix from the oob data. Consequently,
we picked one third of our data as the test data and the rest
of the data was used both for training and validation.

6. RESULTS OF COMPARISON

6.1. Bayes classifier

For the comparison of the misclassification errors, we drew
100 samples which each used 650 observations as training
data and the remaining 700 as test data for the Bayes classi-
fier. For every sample we calculated the test error and aver-
aged it over all the samples, Errτ = 0.0736.

For the comparison of the proportion estimates we split
the data into three subsets. We built the Bayes classifier with
the first subset (i.e. the training data) and randomized 100
bootstrap samples both from the second and third subset;
i.e. the validation data and test data, respectively. Raw pro-
portion estimates p̂1, . . . , p̂B, the corrected proportion esti-
mates A−1p̂1, . . . ,A−1p̂B and their distance measures χ2

were calculated using the aforementioned subsets. Thus, we
were able to obtain the empiric bootstrap distibution of the
distance measure for both estimates. For the Bayes classi-
fier, raw estimates of proportions clearly outperformed the
corrected ones (Fig. 2, Tables 1-2).



Table 1. Summary statistics of the empiric distribution of
χ2 distance measure between true and allocated proportions
for each classifier. See text for abbreviations.

Mean Median Range Std.
Bayes 0.0005 0.0003 0.0000 – 0.0049 0.0007
C4.5 0.0084 0.0082 0.0007 – 0.0238 0.0045
RF 0.0035 0.0027 0.0000 – 0.0141 0.0030
RBF 0.0015 0.0009 0.0000 – 0.0074 0.0017

Table 2. Summary statistics of the empiric distribution χ2

distance measure between true and corrected proportions
for each classifier. See text for abbreviations.

Mean Median Range Std.
Bayes 0.0025 0.0015 0.0000 – 0.0153 0.0030
C4.5 0.0040 0.0022 0.0000 – 0.0225 0.0046
RF 0.0043 0.0025 0.0000 – 0.0228 0.0048
RBF 0.0009 0.0004 0.0000 – 0.0068 0.0013

6.2. Decision tree

For the C4.5 decision tree we drew 100 samples which each
used 650 observations as training data and the remaining
700 observations as test data. Averaging over all the sam-
ples, we obtained Errτ = 0.1731.

The distributions of the distance measures for the raw
estimates and the corrected ones were calculated using anal-
ogous procedures as with the Bayes classifier. In the case of
the C4.5 decision tree we observed more small distances
for the corrected estimates than for the raw estimates. The
post-classification correction improved the accuracy of pro-
portion estimates for the C4.5 decision tree (Fig. 2, Tables
1-2).

6.3. Random forest

Since random forest does not require a separate test data, we
were able to use all observations to build the classifier. We
simulated 100 random forests with 70 trees each. Individual
trees were built using five randomly selected features at each
node. Averaging the out-of-bag error over all simulations we
obtained eoob = 0.0762.

We randomly picked one third of the observations to be
our test data for the comparison of the raw and corrected es-
timates of proportions. From the remaining data we simulat-
ed 100 random forests and calculated the confusion matrices
from the out-of-bag observations for each forest. Thus, with
each forest this data were used both for the training and vali-
dation data. We randomized 100 bootstrap samples from the
test data to compute the estimates for raw and corrected pro-
portions and their distance measures. Allocated and correct-
ed proportion estimates produced quite similar distributions

Fig. 2. The empiric bootstrap distributions of the χ2 dis-
tance measure between true and allocated proportions (up-
per row) and between true and corrected proportions (bot-
tom row) for each classifier. Depicted, from left to right: the
Bayes classifier, the C4.5 decision tree, the random forest
(RF) and the random Bayes forest (RBF).

of distance measures in the case of random forests (Fig. 2,
Tables 1-2).

6.4. Random Bayes forest

As random Bayes forest operates similarly to random forest,
it does not require a separate test data either. We simulated
100 random Bayes forests with 90 Bayes classifiers built
from 8 randomly drawn features. We averaged the out-of-
bag error over all simulations and obtained eoob = 0.0769.

For comparisons between raw and corrected proportion
estimates we randomly picked one third of our observations
to be the test data and simulated 100 random Bayes forests
with the remaining data. Confusion matrices were comput-
ed from the out-of-bag-observations of each forest. We then
randomized 100 bootstrap samples from the test data and
calculated the raw and the corrected proportion estimates
and their empiric distance measure distributions. As for the
C4.5 decision trees, the corrected proportion estimates out-
performed the raw ones for random Bayes forests (Fig. 2,
Tables 1-2).

Of the classifiers examined in this work the decision tree
performed poorest, whereas the Bayes classifier produced
the lowest misclassification error with RF and RBF achiev-
ing almost similar results. Obtaining such a good result for
the Bayes classifier is no surprise, for detailed examples and
reasons see [5, p. 111]. Further, Hastie et al. point out that



as a highly nonlinear classification method the decision tree
stands to benefit the most from random inputs and random
feature selection [5, p. 589]. The macroinvertebrate image
feature data used here mirror these predictions (Table 1, Fig.
2, upper row).

When the correction for allocated proportions is used,
the result of the decision tree improves the most, followed
closely by random Bayes forest. However, the Bayes clas-
sifier performs worse after correction (Tables 1-2, Fig. 2).
According to Fortier [3], allocated proportions can beat cor-
rected ones in cases where the data for classification is small.
Note also that the confusion matrix of the Bayes classifier
was estimated from the data set of same size. In both previ-
ous cases, the data was quite small with respect to the num-
ber of species.

7. DISCUSSION

In this work, we applied and compared three classical clas-
sification methods to a random Bayes forest. We further ex-
plored the effect of a confusion matrix correction to allocat-
ed proportions. Our data were features extracted from com-
plex benthic macroinvertebrate images.

The Bayes classifier yielded the best results. With it we
obtained the smallest misclassification error and the best es-
timates for the proportions of species when compared us-
ing the χ2 distance measures. Random forest and random
Bayes forest achieved almost as good results as the Bayes
classifier. Especially when examining corrected proportion
estimates, the random Bayes forest produced results similar
to the raw proportion estimates of the Bayes classifier. We
believe that through fine tuning of the parameters and with
larger simulations random Bayes forest may outperform the
Bayes classifier.

We feel that it may be worthwhile exploring the use of
posterior probabilities in the voting process more profound-
ly, rather than just determining the most likely class for each
random Bayes classifier in the forest. Posterior probalities
could also be used in identifying outliers, e.g. observations
that do not actually contain a macroinvertebrate. In this test
study on a limited selection of macroinvertebrate taxa we
used equal prior probabilities for the Bayes classifier and the
random Bayes forest. However, in biomonitoring of com-
plex benthic river communities experts can make very accu-
rate predictions on probabilities of species occurences based
on the geological and physico-chemical characteristics of
the target river. Exploring the use and validating these ex-
pert derived priors in future studies will prove a very inter-
esting challenge.
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Breaking the curse of dimensionality in
quadratic discriminant analysis models with a
novel variant of a Bayes classifier enhances
automated taxa identification of
freshwater macroinvertebrates
J. Ärjea*, S. Kärkkäinena, T. Turpeinenb and K. Meissnerc

Macroinvertebrate samples are commonly used in biomonitoring to study changes on aquatic ecosystems. Traditionally,
specimens are identified manually to taxa by human experts being time-consuming and cost intensive. Using the image
data of 35 taxa and 64 features, we propose a novel variant of the quadratic discriminant analysis for breaking the
curse of dimensionality in quadratic discriminant analysis models. Our variant, called a random Bayes array (RBA), uses
bagging and random feature selection similar to random forest. We explore several variations of RBA. We consider three
classification (i.e taxa identification) decisions: majority vote, averaged posterior probabilities, and a novel approach;
a score of weighted votes. Besides modifying the voting, we propose to weight features according to their importance
instead of eliminating the least important features. We compared the performance of RBA with traditional Bayesian and
several other popular classification methods and assessed how the methods behave in relation to each other and the
different macroinvertebrate species. Further, we investigate how severely misclassifications affect the performance of
different methods when set into a biomonitoring context. We found that the lowest and least severe classification error
(i.e. most accurate taxa identification) was achieved with RBA by using averaged posterior probabilities and weighted
features. Copyright © 2013 John Wiley & Sons, Ltd.

Keywords: biomonitoring; classification; correspondence analysis; random Bayes array

1. INTRODUCTION
Aquatic ecosystems worldwide face a large variety of anthropogenic pressures. Among these, climate change, pollution, and land use are
causing biodiversity loss and deterioration in water quality (Millennium Ecosystem Assessment, 2005). In biomonitoring, benthic macroin-
vertebrates are often used to detect these human-induced changes in aquatic ecosystems. Macroinvertebrate taxa have varying sensitivities
to certain pressures, for example, pollution, and are not only quick to react to changes in water quality but also reflect subtle long-term water
quality changes in their community composition.

Despite the obvious advantages of using macroinvertebrate biomonitoring as an indicator of water quality change, currently the manual
identification of macroinvertebrates is laborious. The traditional human-made classification is time-consuming, expensive, and has recently
been found to be unexpectedly error prone (Haase et al., 2010). Recent advances have demonstrated that both in terms of speed and accuracy,
automated classification matches and even outperforms manual taxa identification (Ärje et al., 2010; Kiranyaz et al., 2011; Lytle et al., 2010;
Joutsijoki and Juhola, 2012). Compared with previous works, this data is more extensive, comprising 6814 individuals from 35 taxa with 64
features extracted from an image of each individual. The data includes classes with few observations compared with the number of features
(Table A1, second left column) and images with overlapping and damaged individuals (Figure 2).

Hastie et al. (2009) recommend to have linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA), because these
provide good classification records (Michie et al., 1994). The reason for the good records is likely to be because the data often supports
the linear or quadratic boundaries with stable, Gaussian model-based estimates. When the class-specific feature space is high dimensional
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compared with the number of observations, the use of QDA is not supported, but linear methods LDA and even naïve Bayes (NB) with
independent features may be appropriate to efficiently estimate the high-dimensional covariance matrices and their inverses.

Because the conditional independence assumption of NB or the common covariance matrix assumption of LDA rarely hold with real
data, we propose a novel modification of the QDA model designed for small sample sizes and a large number of features, to reduce the
dimension of the feature space. Prinzie and van den Poel (2007) proposed a random NB (RNB) classifier for this purpose. The RNB is based
on the random forest (RF) of Breiman (2001) and requires the selection of feature subsets to better satisfy the conditional independence
assumption (Langley and Sage, 1994). According to Hastie et al. (2009), nonlinear classification methods (such as QDA, not NB and LDA)
can be improved by introducing randomness to the model. For example, the use of RNB in Prinzie and van den Poel (2007) only slightly
enhances the prediction accuracy of NB. To build our novel modification, we extend the RNB classifier to dependent Gaussian features, that
is, to QDA, which is a nonlinear classifier and can benefit from random shaking. Our classification method, random Bayes array (RBA),
is a collection of random QDA classifiers trained with bootstrap samples of a training set and random feature selection of the original fea-
tures. The performance of this novel RBA approach (Ärje et al., 2010), based on dependent Gaussian features has, to our knowledge, not
been investigated earlier. Using an ensemble approach, we reduce the high variance of the QDA model in cases where a large number of
parameters needs to be estimated from small samples – as for our data set. Random feature selection may reduce the chance of obtaining
ill-conditioned covariance matrices when some of the features are highly correlated, as in our data. Finally, utilizing random subset selection
of the features enables the use of QDA with smaller sample sizes.

In this article, we explore several variations of RBA. We first consider three alternative ways of making the final classification decision:
majority vote, averaged posterior probabilities (Breiman, 1996), and a method of our own where we use the score of weighted votes. Further,
we propose a method to improve the random selection of the features by using variable importance (Breiman, 2001) as weights.

By using the macroinvertebrate image database, we compare RBA with QDA and other Bayesian classifiers with real and simulated data
to show that bagging and random feature selection can improve the performance of the QDA classifier on complex data. We compare RBA
to several popular methods for automated classification: multilayer perceptron (MLP; Ripley, 1996), k-nearest neighbors (KNN; Hastie
et al., 2009), radial basis function (RBF; Buhmann, 2003), support vector machine (SVN; Cortes and Vapnik, 1995), and RF (Breiman,
2001). Comparisons of the different methods are based on their error rates and confusion matrices. Further, we assess what type of images
typically lead to misclassifications. By using correspondence analysis (e.g. Greenacre, 2007), we investigate how the classifiers behave in
relation to each other and to the different macroinvertebrate species.

2. DATA
Macroinvertebrate specimens from 33 lotic taxa (Table A1) were obtained through research projects of the Finnish Environment Institute
and through the national freshwater biomonitoring program. Three taxonomic experts ensured the identity of the taxonomic specimens.
Further, two lentic gastropod taxa (Bithynia tentaculata and Myxas glutinosa) were collected through a project of the department of Bio-
logical and Environmental Sciences of the University of Jyväskylä. Specimens were batch imaged by taxa by using VueScan(c) software
(http://www.hamrick.com/, Phoenix, Arizona, USA) with an HP Scanjet4850 flatbed scanner at an optical resolution of 2400 d.p.i. The
images were normalized to the same intensity range and color balance by using a calibration target. Individual specimens were segmented,
and each specimen was saved as a single posture image (for examples, see Figure 2).

In total, we obtained 6814 images from freshwater macroinvertebrates belonging to 35 different taxa. From each image, we extracted
a total of 64 geometrical and statistical features. The features are a basic set of features provided by ImageJ (Rasband, 1997–2010). The
following basic features were selected by using ImageJ’s built in measurement and analysis functions: pixel value (grayscale and RGB)
statistics (mean, SD, mode, minimum, maximum, center of mass coordinates, integrated density, median, kurtosis, and skewness) and geo-
metric features (area, centroid, perimeter, bounding rectangle’s coordinates, width and height, fitted ellipse’s angle, major and minor axis,
Feret’s diameter, coordinates, angle and minimum caliber diameter, roundness, circularity, and solidity). A detailed description of these
features can be found in the ImageJ manual (Rasband, 1997).

This data exhibits several special characteristics. First, imaged specimens are semirigid and fragile, which creates a large amount of vari-
ation in the actual shape between specimens belonging to the same taxa. Specimens may also overlap during the digitizing, exhibit rotations
and vary in intensity levels (Figure 2). In addition, part of the taxa groups are small compared with the number of features extracted (i.e. 64).
The number of individuals in a taxa class varies from 63 individuals to 633 individuals, which given a 50/50 division of the image data into
test and training sets leads to smaller class sizes than feature numbers for many taxa (Table A1).

3. RANDOM BAYES ARRAYS
Our data is characterized by a large feature number to class number ratio. Traditionally, QDA models are considered too complex to fit to
small data sets because of their large number of parameters (Friedman, 1989), which often leads to high variance (i.e. “overfitting”). There-
fore, simpler models such as NB or LDA have been employed. However, those simpler models impose very strong assumptions that are
unlikely to be true. To alleviate the problems associated with QDA and LDA, Friedman (1989) proposed regularized discriminant analysis
(RDA). With our complex data, RDA suffers from computational accuracy problems when inversing the covariance matrices, similarly to
QDA. Instead of regularization, our novel approach applies an ensemble approach on the basis of RF (Breiman, 2001) to QDA models.
Further, we compare different methods for making the final classification decision and introduce a method for weighting the features with
their variable importance instead of dropping out the least important features.
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3.1. A single Bayes classifier

More formally, let � be a finite set of classes c D 1; : : : ; C , and let p.c/ be the prior probability of class c such that
PC
cD1 p.c/ D 1.

Let x D .x1; : : : ; xp/ be a p-dimensional feature vector in the Euclidean space Rp with the class-conditional probability density function
f .xjc/ given the true class c: Then the posterior probability is given by

p.cjx/D
f .xjc/p.c/
f .x/

;

where f .x/ D
PC
cD1 f .xjc/p.c/. The Bayes decision rule classifies each individual to the class corresponding to the largest posterior

probability, thus minimizing the probability of classification error; see for example, Duda et al. (2001).
If the features given the class c are distributed normally, xjc � Np.�c ;†c/; the Bayes decision rule can also be represented in the form

of a discriminant function,

gc.x/D lnf .xjc/C lnp.c/ (1)

D�
1

2
.x��c/

0†�1c .x��c/�
p

2
ln 2 �

1

2
ln j†c j C lnp.c/

where�c is the mean vector, and†c is the covariance matrix; they are estimated from the training data; see for example, Hastie et al. (2009).
The Bayes classifier is known as QDA if the covariance matrix of each class is arbitrary. However, if all classes have a common covariance
matrix †c D †, the quadratic terms in equation 1 disappear, and we get LDA. The model where the features are further conditionally
independent in each class, that is, †c D diag.�c1; : : : ; �cp/, is an NB classifier (John and Langley, 1995). Friedman (1989) proposed a
compromise between LDA and QDA: RDA with two regularization parameters (�; � ). With special choices of parameter values, we obtain
LDA .�D 0; � D 0/, QDA .�D 1; � D 0/, and NB with equal variances within group .�D 0; � D 1/.

3.2. A basic random Bayes array

As a possible solution to overfitting experienced with basic QDA on data sets like ours, we extend the RNB classifier (Prinzie and van
den Poel, 2007) to dependent Gaussian features. We propose a collection of B random Bayes classifiers (QDAs), each built on a different
bootstrap sample that we subsequently refer to as a RBA. For a single random Bayes classifier, N observations are randomly sampled with
replacement from the original training data of N observations. For each bootstrap sample, we further sample randomly m features from the
original p ones to be used in building the classification model.

In RBA, each random Bayes classifier b; b D 1; : : : ; B; produces the posterior probability Opb.cjx/ for each class c. The predicted class
Oc.x/ of a new individual x can be obtained from the posterior probabilities. First, each random Bayes classifier votes for the class with the
highest posterior probability, that is, a classifier b votes the class Ocb.x/ D c; if Opb.cjx/ D maxc0 Opb.c

0jx/. Then, the final class Oc.x/ is
determined by majority vote f Ocb.x/g. We have applied this voting rule earlier in Ärje et al. (2010). Here it is denoted by RBAbasic.

3.2.1. Modifications of voting

For cases where the classification method provides a class probability estimate, Breiman (1996) suggested an alternative strategy to voting,
namely the averaging of probabilities. We use this approach for the RBA and average the class posterior probabilities over its B classifiers
as follows:

Opave.cjx/D
1

B

BX
bD1

Opb.cjx/ (2)

The final class is the class with the highest averaged posterior; Oc.x/D c; if Opave.cjx/Dmaxc0 Opave.c
0jx/. In the later text, this voting method

is denoted by RBAave.
In addition, we explore another method for the classification decision, which we call RBAweight. Instead of the number of votes, each class

c; c D 1; : : : ; C , obtains a score of votes weighted by the posterior probabilities

score.cjx/D
BX
bD1

1f Opb.cjx/Dmaxc0 Opb.c
0jx/g Opb.cjx/;

where the indicator has value 1 if the class c was voted by a single classifier b and the vote is weighted by its corresponding posterior
probability. The decision on the final class Oc.x/D c, if score.cjx/Dmaxc0 score.c0jx/, is based on the class with the highest score.

3.2.2. Using the importance of features as weights in sampling

As with random forests (Breiman, 2001), we can explore the importance of a feature xj ; j D 1; : : : ; p, by permuting the values of the feature
xj . If a feature xj is important for successful classification, its permutation in a test set should decrease the number of correctly classified
objects. Because approximately one third of the original training observations (i.e. out-of-bag (oob) cases) are left out of each bootstrap250
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sample, they can be used as a test set in the calculation of feature importance. As an importance measure for the feature xj ; j D 1; : : : ;p,
Breiman (2001) used the variable importance:

imp.xj /D
1

B

BX
bD1

�
#fcorrect classifications of b0s oob casesg

#fb0s oob casesg

�
#fcorrect classifications when xj values of b0s oob cases permutedg

#fb0s oob casesg

�
(3)

Breiman (2001) stated that the variable importance of a permuted feature is decreased in the presence of highly correlated features. However,
in simulation studies, Archer and Kimes (2008) discovered that the true predictors of highly correlated features were ranked among those
features with the highest variable importance values.

Variable importance can be utilized in the sampling of m features for each classifier in the ensemble. Using the weights for the features
xj ; j D 1; : : : ; p,

w.xj /D
imp.xj /Pp

j 0D1
imp.xj 0/

;

the most important features are sampled more often than others. These weights can be used with the different classification decisions denoted
by RBA�basic, RBA�ave, and RBA�weight.

In addition to the weights, we also considered the use of ´-score (Breiman and Cutler, 2008), which is the standardized value of the
variable importance

eimp.xj /D
imp.xj /

O�=
p
B
;

where O� is the estimated standard deviation of the difference term in the definition (3). On the basis of the central limit theorem, the mean
eimp.xj / is assumed to be asymptotically standard normal under the null hypothesis of zero variable importance and therefore can be used
for feature selection. However, using simulation studies, Strobl and Zeileis (2008) showed that the power of the test-based ´-score does not
increase with sample size but with the number of trees chosen by the researcher. Thus, rather than basing variable selection on ´-scores, we
propose the use of weights, as this includes all features and thus prevents information loss.

3.3. Out-of-bag error

The RBA produces an internal estimate for the classification error, mimicking cross validation. Let L.c; Oc.x// be the 0-1 loss function indi-
cating if the class Oc.x/ predicted by the RBA matches the correct class c. As with RF, any versions of RBA produce an estimate for the
prediction error by using the oob observations

cErroob D
1

N

NX
iD1

L.c.i/; Oc0.xi //;

where c.i/ is the correct class of the observation xi ; and Oc0.xi / is the RBA predictor constructed using the bootstrap samples in which xi
does not appear (Breiman, 2001). Because the oob error can be used for validation, a separate validation set is not required.

3.4. Benefits of introducing randomness to quadratic discriminant analysis

There are a number of possibilities to improve classification results by introducing randomness to the classification model. For instance,
bagging can enhance the accuracy of a QDA classifier by reducing its variance. In addition, there are three possible advantages for the use
of random feature selection. First, as random feature selection encourages diversity it can improve the predictive accuracy of ensembles
(Dietterich, 2000). Second, when two features are highly correlated, random feature selection can also reduce the chance of obtaining ill-
conditioned covariance matrices. Finally, random feature selection can reduce the impact of noisy or non-Gaussian features on the fit of
the model. We explore the benefits of random feature selection and bagging by using simulated data and a part of our real data, where the
classes are sufficiently large for QDA and compare the performance of RBA, QDA, and other Bayesian classifiers in detail in Section 6. In
Section 7, RBA, NB, and LDA are compared with common classifiers by using all of the real data, which suffers from small class sizes.

4. OTHER CLASSIFICATION METHODS TESTED
We also tested the performance of a number of alternative classification methods such as the MLP (Ripley, 1996; Duda et al., 2001), the KNN
(Hastie et al., 2009), RF (Breiman, 2001), the SVM (Boser, 1992; Cortes and Vapnik, 1995) by using an implementation described by Chang
and Lin (2011), and the RBF (Buhmann, 2003). Although RBFs are not classifiers as such, they can be built into a classification method.
Here, we have implemented a naïve classifier on the basis of RBFs by fitting an RBF for each class in the training data and classifying the
test observations into the class producing the highest RBF score.
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5. COMPARISON METHODS FOR CLASSIFIERS
Classifiers were compared using their error rates, that is, the proportions of misclassifications in a test set. The data were split randomly into
the training and test subsets. After fitting the classifier to the training set, we estimated its test error, etest from the test data (Hastie et al.,
2009, p. 220). This was repeated 100 times to obtain the standard deviation of the error rate.

In addition to the overall error rate, we also rank the classifiers by using class-specific error rates obtained from the confusion matrix. As a
measure, we use the sum of the weighted distances between the elements of the confusion matrix of each classifier and the confusion matrix
of a perfect classification, which is a diagonal matrix. The distances are weighted with an expert defined loss matrix. More mathematically,
let L.c; Oc/ be the loss function, where the correct class is c and the predicted class Oc. The weighted distance between matrices is then

D.R;T/D
CX
iD1

CX
jD1

L.ci ; Ocj /jrij � tij j;

where R is the confusion matrix of a classifier with elements rij ; T is the confusion matrix of a perfect classification with elements tij .
Without the loss functions, ranking the classifiers on the basis of these distances would be the same as ranking them on the basis of their
error rates.

With the help of correspondence analysis (CA; e.g. in Greenacre, 2007), we explore how misclassification differs between methods in
relation to each other and the different classes. To do so, we use the class-specific error rate type of information obtained from the diagonal
of the confusion matrix of each classifier.

6. COMPARISON OF RANDOM BAYES ARRAY WITH OTHER BAYESIAN CLASSIFIERS
6.1. Real data

The use of the classical QDA model requires that the class sizes are larger than the number of features. Therefore we are able to include only
18 of the original 35 classes in the comparison of classic QDA and RBA based on QDA models (see Table A1). We restrict the comparison
with RBAave, because it provides the lowest error rate with this smaller data of 18 classes. We also compare the performance of RBAave with
other Bayesian classifiers: NB, RNB, and LDA.

The reduced data consisting of 5078 observations and 18 classes was split into training and test sets 100 times. Each classifier used the
same training data. NB, LDA, and QDA used all 64 features and RNB used 300 single NB classifiers, each with 15 randomly selected
features. RBA was built by randomly selecting m D 24 features for each of the 500 single QDA classifiers. For both RNB and RBA, the
number of single classifiers in the ensemble and the number of randomly selected features, were determined using the oob error. The final
classification decision for RBAave was based on the averaged posterior; see Equation (2).

All of the classifiers were built using R (R Development Core Team, 2011). The estimation of QDA and RBA was performed using the
qda-function (Venables and Ripley, 2002) on the basis of a spherical transformation of the data. NB and RNB were estimated using the
naiveBayes-function and LDA using the lda-function (Venables and Ripley, 2002).

The lowest classification error is produced by RBAave (Table 1). We propose that this is because of the complexity of our data and the fact
that some of the features may suffer from non-normalities. The difference in the error rates is clearer with a 50/50 (i.e. training/test) split,
demonstrating that the use of bagging and random feature selection improves results even more with a smaller training set. A bagged QDA
classifier by using all 64 features and a 80/20 split produces mean.etest/ D 0:1653, SD.etest/ D 0:0135. The performance of the QDA clas-
sifier is clearly not enhanced by bagging alone, but random feature selection is needed to improve the classification results, as the minimum
classification error is reached with 24 features (Figure 1). Similarly to Prinzie and van den Poel (2007), the RNB also did not substantially
improve NB’s error rate with our data. Because of the poor performance of RNB with the real data, we did not use it in the performance tests
of Section 7 and the CA of Section 7.4.

We injected outliers into the data by randomly switching the class labels of 5% of the training observations, the error rate for QDA rises
to mean.etest/ D 0:148, SD.etest/ D 0:016 in the 80/20 split, whereas for RBAave mean.etest/ D 0:126 and SD.etest/ D 0:012. With 5%
of outliers, in the 50/50 split into training and test data, the error rate for QDA is mean.etest/ D 0:200, SD.etest/ D 0:015 and for RBAave

Table 1. Means and standard deviations of classification errors using 80/20
and 50/50 division for a training and test data in 100 splits of the real data

80/20 50/50

etest SD.etest/ etest SD.etest/

NB 0.440 0.014 0.439 0.009
RNB 0.440 0.015 0.437 0.010
LDA 0.206 0.011 0.215 0.008
QDA 0.122 0.010 0.180 0.013
RBAave 0.118 0.009 0.127 0.006
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Figure 1. The mean classification error (CE) is plotted against the numberm of features used in RBA by using 80/20 division for a training and test data in
100 random splits at each value ofm

mean.etest/ D 0:133, SD.etest/ D 0:009. Bagging and random feature selection clearly reduced the effect of outliers on error rates obtained
with RBA.

6.2. Simulation example

To further investigate the performance of RBA compared with QDA, we simulated a setup of the 18 largest classes of the real data. First, from
each class of the real data, we estimated the .1�64/mean vector O�c ; c D 1; : : : ; 18, and the .64�64/ covariance matrix O†c; c D 1; : : : ; 18.
Apart from the aforementioned estimates, we used the same class sizes nc ; c D 1; : : : ; 18 as in the real data in the simulation as well. For
each class c, we simulated nc observations from the multivariate normal distribution of 64 features with the mean vector O�c and covariance
matrix O†c . We obtained 5078 simulated observations equaling the number of observations in the real data of 18 classes. As the data now
satisfied the multivariate normal distribution required by QDA, it should be the optimal classifier.

The simulated data was split into a training and test set 100 times, and the classifiers were built as with the real data. With an 80/20 split
into training and test data, a single QDA classifier produced a slightly lower error rate (Table 2) than RBA, which is to be expected. However,
with a 50/50 split (Table 2), RBA actually achieves a lower classification error than a single QDA classifier, demonstrating the benefits of
bagging combined with random feature selection in the case of smaller training data.

As with the real data, we investigated how the number of features affects the error rate of RBA, and whether bagging alone would enhance
the QDA classifier (Figure 1). Again, the error rate for QDA with bagging (mD 64), mean.etest/D 0:034, SD.etest/D 0:001 is higher than
for RBA with 24 randomly selected features, mean.etest/D 0:004, SD.etest/D 0:001.

7. PERFORMANCE COMPARISONS OF THE CLASSIFIERS
7.1. Setup

For the performance comparison, we used all 6814 observations of the 35 taxa. The data set was randomly split into half training and test data.
The following classification methods were compared: MLP, KNN, NB, RNB, RBF, SVM, RF, LDA, and RBA with all of its modifications.

Table 2. Means and standard deviations of classification errors by using
80/20 and 50/50 division for a training and test data in 100 splits of simulated
multivariate normal data

80/20 50/50

etest SD.etest/ etest SD.etest/

NB 0.367 0.014 0.370 0.008
RNB 0.366 0.014 0.367 0.009
LDA 0.184 0.012 0.192 0.006
QDA 0.002 0.001 0.036 0.012
RBAave 0.004 0.002 0.010 0.003

NB, naïve Bayes; RNB, random naïve Bayes; LDA, linear discriminant
analysis; QDA, quadratic discriminant analysis; RBA, random Bayes array.
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Table 3. Classification errors using 50/50 split for the training and test data

Classifier etest SD.etest/

NB 0.498 0.007
KNN 0.374 0.007
MLP 0.285 0.021
LDA 0.276 0.007
RF 0.258 0.008
RBF 0.223 0.007
SVM 0.200 0.007
RBAbasic 0.195 0.007
RBAweight 0.195 0.006
RBAave 0.193 0.007
RBA�basic 0.191 0.007
RBA�weight 0.190 0.007
RBA�ave 0.188 0.007

NB, naïve Bayes; KNN, k-nearest neighbor; MLP, multilayer perceptron;
LDA, linear discriminant analysis; RF, random forest; RBF, radial basis
function; SVM, support vector machine; RBA, random Bayes array.

The MLP was built holding out 20% of the training data for validation. The best model was selected on the basis of the classification error
of the validation set and had one hidden layer with 49 hidden units. The activation function used was sigmoid, and the model was built using
batch learning.

The KNN classifier was built using 10 inverse distance weighted nearest neighbors. The optimal number of nearest neighbors was
determined with leave-one-out cross-validation.

The NB and LDA models were formed using all of the 64 features, which were assumed Gaussian.
The RBF classifier was built using polyharmonic splines of rank one. The chosen basis function is nonparametric and smooth

requiring no validation or optimizing. The features of observation xi were scaled to Œ�10; 10� and the class was recoded as a vector
Œ�1; : : : ;�1; 1;�1; : : : ;�1�, where the correct class had value 1, and the other classes had value �1. The classifier was built fitting RBF for
each class in the training data and the test observations were classified into the class producing the highest RBF score.

The SVM construction followed Hsu et al. (2003) and was built using costD 2048 and RBF (Gaussian) kernel with � D 3:125e � 2. The
parameter values were determined using 10-fold cross validation within the training data.

The RF was built using 700 trees with 20 features randomly selected at each node. The parameter values were obtained using oob error as
an estimate for the classification error.

All the different versions of RBA were built using 300 QDA classifiers with 11 random features each. The number of features was limited,
because some of the taxonomical groups had too few observations. For the same reason the QDA classifier by using all 64 features cannot
be implemented on our 35 class data. The variable importance used as weight (Figure A1) for the features was calculated from the oob
observations of the training data.

The RF (Breiman et al., 2007), the LDA (Venables and Ripley, 2002), the NB, the SVM (Chang and Lin, 2011), and the RBA classifiers
were built using R (R Development Core Team, 2011), and the MLP and the KNN were computed with Weka (Hall et al., 2009). The RBF
is a personal code written with MATLAB (The MathWorks Inc. 2009).

7.2. Error rates and the effect of costs

The classifiers were compared according to their error rates. The data were split randomly into the training and test set, both including 3407
individuals. Each classifier was built using the training data, and the error rate was estimated from the test data. This procedure was repeated
100 times to obtain the mean and standard deviation of the error rates. From Table 3, we see that the lowest classification errors are achieved
with the RBAs. SVM and RBF also work quite well. The most ineffective classification methods for our macroinvertebrate data are the
simple and popular methods of KNN and NB. As the modifications of RBA do not differ much from each other, we will use only one of
them, RBA�ave to evaluate CA results.

From Table 3, we see that it is advantageous to use the variable importance as a weight for features. To investigate the benefits of our
method, we performed a comparison in which the data was randomly split into equal sized training and test sets. Variable importance for
each feature was obtained with RBA by using 300 random Bayes classifiers each with 11 randomly selected features and utilizing the oob
observations of the training data. Next, RBAbasic, RBAave, and RBAweight were built on the training data, using the following: (i) variable
importance weights; (ii) ´-score weights; and (iii) ´-scores to eliminate half of the features. For each scenario, the error rate was estimated
from the test data. This was repeated 100 times to obtain the mean and standard deviation of the error rates. From Table 4, we see that the
lowest classification errors for all versions of RBA are achieved by using the variable importance weights.254
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Table 4. Classification errors by using variable importance scores

Classifier etest SD.etest/

1) Variable importance as weights. 0.191 0.007
RBAbasic 2) Z-score as weights. 0.194 0.006

3) Thirty-two features eliminated. 0.207 0.017

1) variable importance as weights. 0.188 0.007
RBAave 2) Z-score as weights. 0.191 0.007

3) Thirty-two features eliminated. 0.204 0.016

1) Variable importance as weights. 0.190 0.007
RBAweight 2) Z-score as weights. 0.192 0.006

3) Thirty-two features eliminated. 0.205 0.016

Table 5. Loss matrix of classification errors

Predicted taxa

Index Non-index Non-typical

Index 0.5 1 1
Correct taxa Non-index 1 0.3 0.8

Non-typical 1 1 0.3

We devised a loss matrix of misclassifications on the basis of an expert opinion approximation of error severity to biomonitoring (Table 5).
In the loss matrix, index taxa are taxa used to calculate indices from samples and non-typical taxa are taxa not expected to be found in a
sample. Utilizing this matrix, we explored the loss-weighted distances from the confusion matrices of the classifiers to the confusion matrix
of a perfect classification for small peatland and woodland streams. Accounting for approximate losses of different types of classification
errors did not change the ranking of the top four methods, (RBA, SVM, RBF, RF).

7.3. Examples of observed misclassification results

Our theoretical investigation in Section 6 of the effect of outliers on classification was based on the fact that this type of biological data is
likely to include a significant proportion of suboptimal images. To illustrate this, we chose images of the taxa Elmis aenea, Hydropsyche
siltalai, and Micrasema setiferum as examples (Figure 2). The three images on the left side were classified correctly with all classifiers used
in the current work. In contrast, the three images on the right side were misclassified.

Although some misclassified cases are intuitively obvious, others are less obvious as they are based on subtle differences in size or color.
The similar looking H. siltalai seem to be misclassified because of their size. The individuals on the right side of the middle row are much
smaller than those on the left side. This type of misclassification is due to the limited size range covered by the training data and may be
overcome by better future representation of taxa size ranges. For the M. setiferum, the difference seems to be in the shape of the individuals.
The misclassified M. setiferum are wider or narrower, lower or less circular than those classified correctly. We believe that improvements
in classification could be achieved if multiposture images and a suite of more tailored features of each specimens were available and used
for classification.

7.4. Correspondence analysis on classification of macroinvertebrates

To gain further insights into the behavior of individual classifiers and their relationships to one another and identified taxa, we performed
CA. CA was run on the table of correctly classified individuals (Table A1) with taxa in rows and classification methods in columns. Note
that specific individuals can be associated with more than one classification method or none at all. Further, the grand total of the table is not
the total number of observations but the number of “correctly classified individual to classification method” pairs (see the Hatco data in Hair
et al., 1998, for a similar approach). The total inertia of the table was 0.021 and the first, and second principal axis explained 75.6 % of the
total inertia. In the resulting CA biplot classification methods are plotted close to taxa they classify well (Figure 3). Given the number of
classes in our data set, plotting classes in vertex coordinates would make it difficult if not impossible to visualize differences between the
classification methods. Therefore, both classes and classifiers were plotted in principal coordinates.

The first principal axis separates the NB classifier from the rest, whereas the second principal axis separates LDA, SVM, and RBAave
into a group of their own. This is to be expected, because NB is the weakest classifier, and SVM and RBA�ave produce the best results. The
Bayesian classifiers LDA and RBA�ave group close because of similar behavior. The second principal axis also separates MLP and RBF from

Environmetrics 2013; 24: 248–259 Copyright © 2013 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/environmetrics
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Figure 2. The three images on the left side are individuals that are always classified correctly. The three images on the right side are individuals that are
misclassified. Taxonomical groups from the top: Elmis aenea, Hydropsyche siltalai, and Micrasema setiferum. The images are all scaled to be 180 pixels

wide. The actual pixel values are shown next to each image
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Figure 3. Correspondence analysis biplot with row and column variables in principal coordinates. For the ease of interpretation, only some of the classes
are labeled

KNN and RF. The most challenging taxa, Protonemura meyeri, Nemoura sp. and Heptagenia dalecarlica clearly differ from other taxa and
group especially far away from MLP, KNN and NB.

Protonemura meyeri and Nemoura sp. lie closest to LDA, SVM and RBA�ave , because these methods classify these taxa the best (Figure 3,
Table A1). LDA and SVM are closer to H. dalecarlica than RBA�ave, because RBA�ave produces a higher error rate for H. dalecarlica than the
former. Asellus aquaticus, Hydropsyche pellucidula, and Habrophlebia sp. lie on the opposite side of the plot from NB and KNN, indicating
especially poor classification results. Average classification error is not well represented by CA, because RF and KNN group close even
though RF produces a much lower classification error. The same applies for RBA�ave and LDA, which are in close proximity on the biplot
despite lower error rates for RBA�ave.

To see which classifiers produced predicted taxa proportions closest to the actual ones, we performed CA on a table of predicted indi-
viduals where we included a column with the correct number of individuals in each taxa. With CA on this table, RBA and SVM plotted256
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close to the correct classification, with SVM being the closest. Although SVM made more misclassifications than RBA, its predicted class
proportions were the closest to the correct ones. To investigate the influence of a rarefied data set, we also explored CA in a situation when
all the classes in the test data have the same number of observations. However, the results did not change much, so the graphs are not shown.

8. CONCLUSIONS
We tested a variety of classifiers in automated identification of freshwater macroinvertebrate taxa. We developed a novel classification
method, RBA, and demonstrated its benefits compared with the traditional QDA and other Bayesian classifiers by using real and simulated
data. RBA performance in comparison with several popular methods was assessed using our complex benthic macroinvertebrate image data
set with 64 features, 35 classes, and 6814 observations. The input data was deliberately kept realistic to ensure conservative estimates of
automated identification results. The image data included routinely encountered outliers in normal macroinvertebrate samples, that is, over-
lapping or severely damaged individuals. Also the classification task was far from standard, because not all of the easily extractable features
used were relevant to the classification task. Based on our results with this challenging data, we are convinced that RBA can overcome many
of these challenges with the help of bagging and random feature selection.

Quadratic discriminant analysis is known to be the optimal classifier if we have sufficiently large multivariate normal data. This is rarely
the case in practice, especially with biological data. We showed with simulation that even with a multivariate normal data set, RBA produces
a lower error rate than QDA when the size of the training data decreases. The same effect was observed with noisy and partially non-Gaussian
real data of 18 classes.

Classification error rates for a larger data of 35 classes showed that RBA produces a lower error rate than the other classifiers tested. The
best results were obtained with a particular variant, RBA�ave. In cases of data with many irrelevant features, it is best to calculate the variable
importance and use it to weight the features as this produces lower classification errors without the need to eliminate features.

If our automated identification results are put into a biomonitoring context, it should be acknowledged that a low error rate alone does
not necessarily equate with reliable information. Rather, we need to understand the error structure of the chosen automated classification
method to avoid introducing costly artifactual errors that propagate further into decision making. To assess this risk, we explored the effects
of different approximate losses associated with our classifiers by weighting the distances between the produced confusion matrices and the
optimal confusion matrix with a loss matrix. However, weighting automated misidentification with the severity of this error (i.e. loss) did
not change the ranking of the top four classifiers. Our novel RBA method still performed best, followed by SVM, RBF, and RF.

The CA-based visualization of classifier methods in relation to taxa identification results confirmed NB as the worst and RBA, SVM, and
LDA as the best performing methods.

In conclusion, our novel variant of QDA, RBA, provides tools to utilize the benefits of QDA with less strict assumptions in situations when
the data suffer from the curse of dimensionality. RBA provided very promising results on this complex single posture macroinvertebrate
image data set. We anticipate further improvements in overall performance when multiple posture data sets become available.
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APPENDIX

Table A1. The number of correctly classified individuals for each classification method

n MLP KNN NB RBF SVM RF RBA�ave LDA

Ameletus inopinatus 54 47 40 33 44 48 48 46 46
Arctopsyche ladogensis 24 13 16 18 18 19 16 16 16
Asellus aquaticus 180 141 84 33 152 143 123 140 129
Baetis muticus 146 113 105 85 126 116 118 125 105
Baetis niger group 89 42 46 66 67 73 72 82 55
Baetis rhodani 67 35 26 38 39 38 42 55 41
Bithynia tentaculata 136 134 133 101 133 132 130 131 122
Caenis rivulorum 29 16 5 22 12 19 15 20 22
Callicorixa wollastoni 40 38 33 37 38 33 39 35 36
Ceratopsyche silfvenii 116 84 78 84 84 94 88 89 65
Ceratopogonidae 33 32 22 30 31 32 30 30 28
Cheumatopsyche lepida 57 52 32 34 43 51 40 49 49
Diura sp. 122 104 89 80 104 98 100 98 90
Elmis aenea 92 82 77 66 82 77 81 86 77
Ephemerella aurivillii 103 65 55 53 67 73 68 73 82
Seratella ignita 51 42 31 34 45 39 47 49 39
Ephemerella mucronata 29 25 20 24 23 22 25 25 22
Habrophlebia sp. 41 25 10 8 17 21 16 24 25
Heptagenia dalecarlica 100 23 12 1 32 50 25 30 45
Hydraena sp. 61 60 59 61 60 61 61 59 60
Hydropsyche pellucidula 59 26 7 8 18 28 17 24 19
Hydropsyche saxonica 86 29 32 27 39 34 40 47 40
Hydropsyche siltalai 120 76 71 76 88 89 92 102 79
Isoperla sp. 267 205 207 152 230 223 217 216 187
Leuctra sp. 74 47 50 43 53 52 54 55 53
Limnius volckmari 96 87 72 59 90 92 82 92 89
Micrasema gelidum 44 35 37 42 40 43 42 44 41
Micrasema setiferum 151 146 140 107 147 146 145 147 138
Myxas glutinosa 108 100 89 96 106 104 102 108 98
Nemoura sp. 134 24 46 26 67 82 37 77 77
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Table A1. Continued.

n MLP KNN NB RBF SVM RF RBA�ave LDA

Sphaeridae sp. 29 28 20 29 28 28 25 27 26
Protonemura intricata 168 84 84 78 112 116 99 117 115
Protonemura meyeri 55 8 9 9 16 31 18 40 31
Rhyacophila nubila 114 96 55 51 99 93 79 100 79
Taeniopteryx nebulosa 332 314 225 140 310 291 309 322 253

3407 2478 2117 1851 2660 2691 2542 2780 2479

MLP,multilayer perceptron; KNN, k-nearest neighbor; NB, naïve Bayes; RBF, radial basis function; SVM, support vector machine; RF,
random forest; RBA, random Bayes array; LDA, linear discriminant analysis.

Figure A1. Weights for the features calculated from the variable importance
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Abstract

In most biomonitoring, the target is to determine the status of ecosystems based
on several biological indices. Taxa identification errors can, however, have strong ef-
fects on the indices and thus on the determination of the ecological status. To increase
cost-efficiency, computer-based taxa identification for macroinvertebrate image data
has recently been developed. We examine the effect of eleven classification methods
in the case of macroinvertebrate image data and show how those errors propagate into
different indices. We evaluate 14 richness, diversity, dominance and similarity indices
commonly used in biomonitoring. Besides the error rate of the classification method,
we discuss the potential effect of different types of identification errors. Finally, we pro-
vide recommendations on indices that are least affected by the automatic identification
errors.

Keywords: Biomonitoring; Classification error; Diversity: Error propagation; Identification;
Similarity.

1 Introduction
In biomonitoring, reliable taxa identification is an important prerequisite for subsequent
index calculation. Diversity, richness, dominance and similarity indices are often used in
aquatic biomonitoring to determine the status of waterbodies (e.g. Birk et al., 2012). In order
to calculate indices, samples of biological indicator groups such as benthic macroinvertebrates
are collected and the individuals in the samples are identified to taxa. However, when
taxa identification errors are made, these errors may affect the statistical properties of the
estimated indices. This can result in incorrect ecological status predictions that can further
propagate into unnecessary mitigation measures or even prevent needed mitigation measures
(Haase et al., 2010).

The ever decreasing research and monitoring funding calls for new and more efficient ways
of monitoring and sample processing. To address this problem, researchers have explored
e.g. citizen-science monitoring (Dickinson et al., 2012) and automated identification methods
(e.g. Blaschko et al., 2005; Culverhouse et al., 2006; Lytle et al., 2010; Kiranyaz et al., 2011;
Ärje et al., 2013; Joutsijoki et al., 2014). However, such approaches may introduce addi-
tional bias and variation into biological indices calculated from samples due to identification
errors. Indeed, Gardiner et al. (2012) noted that misidentification in citizen-science moni-
toring results in overestimation of species richness (Magurran, 2004) and Simpson’s diversity
(Simpson, 1949). The goal of this study is to empirically investigate the statistical properties
of biological indices when the automated identification of individuals contains misidentifica-
tions. Similar studies have been done in remote sensing for landscape pattern indices (Chen
et al., 2010; Shao et al., 2001; Wickham et al., 1997), e.g. mean patch size, total edge and
contagion index. Shao et al. (2001) included Shannon’s and Simpson’s diversity indices in
their study but concentrated on variation caused by classification errors rather than bias.

We consider several commonly derived biological indices i) describing richness, i.e. species
richness (Magurran, 2004), Margalef’s diversity (Clifford and Stephenson, 1975) and Chao’s
estimator of the absolute number of species in an assemblage (Chao, 1984), ii) describing
diversity, i.e. Shannon index (Shannon and Weaver, 1963) and Simpson’s index (Simpson,
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1949), iii) describing evenness and dominance, i.e. Shannon evenness (Pielou, 1969, 1975),
Simpson’s evenness (Smith and Wilson, 1996) and Berger-Parker index (Berger and Parker,
1970), and iv) describing similarity of two assemblages, i.e. Sørensen index (Sørensen, 1948),
percent model affinity index (Renkonen, 1938; Novak and Bode, 1992), Canberra metric
(Lance and Williams, 1967), Euclidian similarity (Clifford and Stephenson, 1975), Morisita-
Horn index (Horn, 1966) and Jaccard similarity (Jaccard, 1901). The similarity indices
compare the similarity of species distributions in two conditions, e.g. reference and monitored
conditions in aquatic systems. Richness, diversity and dominance indices are calculated for
a single species distribution, i.e. for a monitored sample.

In the current work, we are especially interested in estimating the error propagation of
indices that use computer-based taxa identification from image data. In automated identi-
fication, the task is to classify n images of individuals belonging to c classes using features
extracted from the images (e.g. width, height, mean grey value, etc). Various classification
methods can be used in automated identification (see e.g. Hastie et al., 2009; Duda et al.,
2001). However in all approaches, the classifiers are trained with a training data of known
identity (i.e. the gold standard). Subsequently, optimal parameter values are selected based
on classification error of a validation data and the final error rate is evaluated with an inde-
pendent test data set. Often, the best classifier is the one having lowest error rate. Besides
error rate, we can also estimate a confusion matrix which provides the probabilities of differ-
ent correct and incorrect classifications. When considering the estimation of the indices, the
confusion matrix is of great interest as its properties affect the amount of bias and variation
propagated. We perform a simulation study to showcase the effects of different types of
confusion matrices on error propagation. We acknowledge that there are other sources of
bias but in this paper we focus on bias due to classification errors.

Using a benthic macroinvertebrate image data, we illustrate the effect of classification
errors on biological indices. We use eleven classifiers: Random Bayes Array (RBA, Ärje
et al., 2013), Support Vector Machines (SVM, KSVM, Cortes and Vapnik, 1995), Random
Forest (RF, Breiman, 2001), Linear Discriminant Analysis (LDA, Hastie et al., 2009), Radial
Basis Function Network (RBFN, Haykin, 2009; Kiranyaz et al., 2011), Multilayer Perceptron
(MLP, Haykin, 2009; Kiranyaz et al., 2009), Reference Discriminant analysis + nearest neigh-
bor (KRDA, Iosifidis et al., 2014a), Graph Embedded Extreme Learning Machine (GEELM,
Iosifidis et al., 2015), Graph Embedded Kernel Extreme Learning Machine (GEKELM, Iosi-
fidis et al., 2014b) and Naïve Bayes (NB, Hastie et al., 2009). Some of these methods have
been evaluated with the same image data in Ärje et al. (2013) with small changes. However,
the target of the current work is to compare the statistical properties of estimated indices
using the results of these eleven classifiers. In the comparisons, we use simulation-based
results. Finally, we provide some recommendations which of the indices are least biased by
classification errors.

2 On biological indices and their properties
In this section, we first describe the set-up for data collection, second, the considered indices
with respect to the given set-up and third, the modified set-up in the case of misclassification
is outlined.

3



2.1 The set-up

Mathematically, let {ω1, . . . , ωc} be the finite set of c classes such that ph is the probability
of class ωh in a monitored situation and qh is the probability of class ωh in a reference
situation. For simplicity, we assume that a random sample of counts X = (X1, . . . , Xc) is
drawn from a multinomial distribution M(n,p), where n is sample size and p = (p1, . . . , pc)
the probabilities of interest. Then, the natural estimator of ph is p̂h = Xh/n, a maximum
likelihood estimator for h = 1, . . . , c. Similarly, the random sample Y = (Y1, . . . , Yc) of size
m is drawn from a multinomial distribution M(m,q), where a natural estimator for the
values of q = (q1, . . . , qc) is q̂h = Yh/m.

Below, we present the indices (Table 1), give the references for the statistical properties,
if known, and further outline some practical details. The ranges of the indices are used in
the comparison of index behavior in Section 4.

We tested three richness indices: 1) species richness (S, Magurran, 2004), 2) Chao’s esti-
mator of the absolute number of species in an assemblage (SChao, Chao, 1984) and 3) Mar-
galef’s diversity (DMg, Margalef, 1958; Clifford and Stephenson, 1975). Smith and Grassel
(1977) studied the theoretical mean and variance of S. Using those results, the same prop-
erties of DMg could easily be derived. Chao (1987) derived variance for SChao = S +F 2

1 /2F2.
Due to cases F2 = 0, we use instead the formula in Table 1 by Magurran and McGill (2010).

We also study the effect of classification errors on two diversity indices: 4) Shannon’s
index (H ′, Shannon and Weaver, 1963) and 5) Simpson’s index (Dx, Simpson, 1949). Tong
(1983) presents some distributional properties for H ′ assuming multinomial distribution.
Paninski (2003) studies nonparametric estimation of H ′ and gives an overview on its bias
and variance.

Further, we study three evenness/dominance indices in our analyses: 6) Shannon evenness
(J ′, Pielou, 1969, 1975), 7) Simpson’s evenness (E1/D, Smith and Wilson, 1996) and 8)
Berger-Parker index (d, Berger and Parker, 1970). J ′ is a scaled version of H ′ that measures
evenness instead of diversity.

We study the effect of classification errors on six similarity indices: 9) Sørensen similarity
(QS, Sørensen, 1948), 10) percent model affinity index (PMA, Renkonen, 1938; Novak and
Bode, 1992), 11) Canberra metric (1 − CM , Lance and Williams, 1967), 12) Euclidian
similarity (1 − D2

Eucl, Clifford and Stephenson, 1975), 13) Morisita-Horn index (Cλ, Horn,
1966) and 14) Jaccard similarity coefficient (J , Jaccard, 1901). Theoretical properties of the
PMA in the case of multinomial distribution are presented in Ärje et al. (2016) and the
references therein. For the calculation of 1 − CM , classes with zero abundancies in both
samples are left out. Janson and Vegelius (1981) studied the asymptotical standard error
of J . Further, Albatineh and Niewiadomska-Bugaj (2011) discovered the expectation for
corrected form of the index. Cλ has a maximum value not equal to one but ’about one’
(Horn, 1966).

To our knowlegde, the properties of the other diversity, evenness, dominance and similar-
ity indices have only been studied with simulation experiments (e.g. Magurran, 2004; Smith,
2002).
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2.2 The effect of classification errors on indices

The classification of objects performed by either human or machine may include errors which
affect the values of indices calculated from classified samples. Let us formulate the set-up as
proposed by Healy (1981) and Fortier (1992). The confusion matrix A of a specified classi-
fication procedure is assumed to be known. Its element ahh′ is the probability of classifying
an object into the class h when originating from the class h′. Further,

∑
h ahh′ = 1 and

ahh′ ≥ 0, h, h′ = 1, . . . , c. Then, the probability of an object to be classified to the class h is

p̃h =
c∑

h′=1

ahh′ ∗ p′
h.

The interesting consequence is that the allocated counts X̃1, . . . , X̃c of size n are drawn from
a multinomial distribution M(n, p̃) instead of M(n,p), respectively Ỹ ∼ M(m, q̃). As the
distribution of the allocated counts is biased, the identification errors may propagate into
the expected values of the indices causing bias in the index values.

In this paper, we do not comment on the properties of the indices per se but restrict our
analyses to study the error propagation into the indices due to classification errors as follows.
Using a general notation of index I with correct classification and index Ĩ with incorrect
classification, we concentrate on the proportional bias defined as follows

%bias =
E(Ĩ) − E(I)

| max I − min I| , (1)

where the expectations are Monte Carlo estimates. Similar proportional bias has been used
by Chen et al. (2010) to study error propagation in remote sensing. The %bias provides
a measure of the biological significance of the bias and enables us to compare the bias in
different biological indices over a range of taxa distributions. Similarly, we study the effect
of classification errors on the variation of the biological indices as follows

%sd =
sd(Ĩ) − sd(I)

| max I − min I| , (2)

where the standard deviations are Monte Carlo estimates.
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3 Materials and methods

3.1 Data

To study the effects of identification errors on biological indices, we use two datasets. The
first data is a benthic macroinvertebrate image data set with 6814 individual images of 33
lotic taxa and two lentic gastropod taxa. Lotic specimens were collected during research
projects of the Finnish Environment Institute and the national freshwater biomonitoring
program in Finland, whereas lentic specimens were collected by the department of Biological
and Environmental Sciences at the university of Jyväskylä. The taxonomic identities of
the specimens were verified by three taxonomic experts and are considered to be true (i.e.
form the gold standard). The macroinvertebrates were batch imaged onto a computer one
taxa at a time using VueScan(c) software (http://www.hamrick.com/, Phoenix, Arizona,
USA) with an HP Scanjet4850 flatbed scanner at an optical resolution of 2400 d.p.i. The
images were normalized to the same intensity range and color balance. The specimens were
segmented from these batches to their individual images and from each image, a total of
64 geometric and color scale features were extracted. The feature extraction was done with
ImageJ (Rasband, 1997-2010). Detailed information on the features and taxa used can be
found in Ärje et al. (2013).

The second data set is abundance data of benthic macroinvertebrates gathered during the
national freshwater biomonitoring program 2006–2013 in Finland. The monitoring program
includes a total of total 12 stream types (small, medium and large or extra large peatland and
woodland streams for northern and southern Finland separately). For details, see Aroviita
et al. (2012). For each stream type, there are reference streams that are considered to be
in near natural condition unaltered by human-induced stressors and non-reference streams
considered to be impacted by human actions. The second data set comprises a total of 149
taxa. We restrict our analysis to taxa that are present in both data sets and combine some
taxa into groups to obtain equal taxa lists (i.e. 32 taxa) for both the image data and the
monitoring data. The taxa list and info of combined taxa can be found in the appendix
(Table 7).

3.2 Classification

We first use the image data for taxa identification, i.e. classification. The data is divided
10 times into training (33,33 %), validation (33,33 %) and testing (33,33 %) sets. Each
classifier is first trained with the training data and the validation data is utilized to find
the optimal parameter values. Then, training and validation data are combined and used
to train the classifier with the chosen parameter values. Finally, we evaluate the classifier
with the test data. This procedure is repeated 10 times, once with each data split. The
error rate of a classifier is then calculated as the average classification error from these 10
repetitions. Similarly, we obtain the confusion matrix of a classifier as the average from the
10 repetitions.

We explore the effects of misclassifications with eleven different classifiers: Naïve Bayes
(NB, Hastie et al., 2009), Linear Discriminant Analysis (LDA, Hastie et al., 2009), Random
Forest (RF, Breiman, 2001), Random Bayes Array (RBA, Ärje et al., 2013), Support Vec-
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tor Machines (SVM, KSVM, Cortes and Vapnik, 1995), Reference Discriminant analysis +
nearest neighbor (KRDA, Iosifidis et al., 2014a), Graph Embedded Extreme Learning Ma-
chine (GEELM, Iosifidis et al., 2015), Graph Embedded Kernel Extreme Learning Machine
(GEKELM, Iosifidis et al., 2014b), Multilayer Perceptron (MLP, Haykin, 2009; Kiranyaz
et al., 2009) and Radial Basis Function Network(RBFN, Haykin, 2009; Kiranyaz et al.,
2011). Some of the classifiers are known to perform poorly with the macroinvertebrate im-
age data (Ärje et al., 2013) but are included as examples to fully explore to gradient of error
propagation.

NB and LDA are Bayesian classifiers (e.g. Hastie et al., 2009) that both assume that
features are normally distributed and which classify observations according to the high-
est posterior probability. LDA assumes that all classes have a common covariance matrix
whereas NB that features are independent from each other.

RF (Breiman, 2001) is a collection of random decision trees. For each tree, the classifier
takes a bootstrap sample of the training data. For each node in a tree, RF randomly selects
a subset of M features and chooses the one that best separates the data based on entropy.
RF builds k trees and uses voting to get the final class predictions for the test data.

RBA (Ärje et al., 2013) is an implementation of RF for quadratic discriminant analysis
(QDA) which is a generalization of LDA that allows arbitrary covariance matrices. RBA
forms a collection of random QDAs. Each QDA classifier is trained using a bootstrap sample
of the training data and M randomly selected features. RBA consists of k random QDAs.
It uses either voting, posterior weighted voting, averaged posterior probabilities, or highest
average rank to determine the final class predictions of the test data. RBA can also be
used to evaluate the importance of the features, which can thereon be used as weights when
sampling the features for each random QDA. Here we use averaged posterior probabilities
to make the final class decision.

SVM (Cortes and Vapnik, 1995) is a non-probabilistic binary classifier that determines the
hyperplane separating the two classes with maximal margin. Non-linear decision functions
are obtained by exploiting the kernel trick, which inherently maps the input data to a
feature space of high dimensions. The determination of the optimal hyperplane separating
the two classes in this high-dimensional feature space corresponds to the determination
of a non-linear decision function in the input space. Multi-class classification is obtained
by combining multiple binary classifiers. In this paper we employ the One-Versus-Rest
combination scheme. KSVM is an extension of SVM that uses a radial basis function kernel.

KRDA (Iosifidis et al., 2014a) is an extension of Kernel Discriminant Analysis (KDA)
that tries to overcome the assumption of the latter concerning the optimal representation of
each class. KDA employs the class mean for class representation, assuming that the classes
in the feature space are unimodal and follow Gaussian distributions. However, since these
two assumptions are usually not valid in many real world problems, class representation
by the class mean is suboptimal. KRDA overcomes this problem by determining both the
optimal class representation and data projection.

GEELM (Iosifidis et al., 2015) is an algorithm for Single-hidden Layer Feedforward Neural
(SLFN) network training that exploits geometric data relationships. GEELM first nonlin-
early maps the data from the input space to a high-dimensional feature space based on
random weights. Then a regularized regression problem is solved. The regularization term
in this process is designed in order to exploit geometric data (or class) relationships encoded
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in an intrinsic and a penalty graph. In our experiments we employed the graphs used in
Local Fisher Discriminant Analysis (LFDA Sugiyama, 2007, ,).

GEKELM is a kernel extension of GEELM. The main idea of GEKELM is that the
networkâĂŹs hidden layer can be formed by a very large (even infinite) number of neurons.
In this case, the ELM network is similar to an infinite neural network in which the training
data similarities are encoded in a kernel matrix (Iosifidis et al., 2014b). GEKELM trains such
a network by also exploiting geometric data (or class) relationships encoded in an intrinsic
and a penalty graph. For GEKELM we also employ the LFDA graphs.

MLPs (Haykin, 2009; Kiranyaz et al., 2009) are feed-forward, fully-connected Artificial
Neural Networks (ANNs), which can be described as directed graphs where each node is
performing some activation function to its inputs and forwarding the result to the input of
other neurons in the adjacent layer. MLPs may contain one or more layers of hidden neurons.
In this work, for all experiments, a conventional back-propagation training rule with a global
adaptation of the learning rate (with initial value of 0.001) is used and both shallow (single
hidden layer of 32 neurons) and deep (two hidden layers of 64 and 32 neurons respectively)
MLP configurations are considered.

RBFN (Haykin, 2009; Kiranyaz et al., 2011) is another well-known feed-forward, fully-
connected ANN type which can approximate any solution space or function as a sum of N
RBFs (such as Gaussian functions) in a single hidden layer. For training of RBFN, given the
specified maximum number of hidden neurons and the spread parameter of each Gaussian
neuron, for each epoch a hidden layer neuron is added to minimize training Mean-Squared
Error (MSE) below specified target level. For each data partition, the spread parameter is
chosen to minimize the validation data classification error. Both shallow (64 hidden neurons)
and deep (384 hidden neurons) RBFN configurations are considered.

3.3 Simulation study

We study the effect of classification errors on the richness, diversity, evenness and dominance
indices in each of the 12 river types for both, reference and non-reference compositions,
resulting in a total of 24 different taxa distributions. We use the reference and non-reference
streams as the two conditions being compared with the similarity indices. In biomonitoring,
the reference condition is often considered to be a known (i.e. fixed) target distribution.
Therefore, we study the error propagation of the similarity indices in two cases. In the first
case, the reference sample is assumed to be known, i.e. correctly identified by several human
experts, and the non-reference sample is classified using the aforementioned classifiers. In the
second case, both samples are classified using the classifiers and may contain classification
errors.

First, we draw 1000 samples from multinomial distributions, X ∼ M(n,p) for non-
reference streams and respectively, Y ∼ M(n,q) for reference streams. The taxa distribu-
tions p and q are weighted averages over one river type’s non-reference and reference stream
monitoring samples using sample sizes as weights. We calculate the values of all richness,
diversity, evenness, dominance and similarity indices, denoted by I. As a result, we obtain an
empirical distribution of each index I, called the correct distribution below. Second, we draw
1000 samples from multinomial distributions X̃ ∼ M(n, p̃) and Ỹ ∼ M(n, q̃), where p̃ = Ap,
q̃ = Aq and A is the average confusion matrix of a classifier. Using the allocated counts,
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we calculate the values of each index, denoted by Ĩ, and the obtained empirical distribution
is called the allocated distribution of the index I. Finally, we compare the distributions
of the correct and allocated index values to see how the different indices are affected by
misclassifications. In this work, we restrict sample sizes to n = m = {200, 500, 1000}.

4 Results
Considering solely classification error, the best classifier is GEKELM and the worst MLP
(see Table 2). However, we are more interested in the end result, i.e. how index values
affecting decision making are biased due to classification errors. Below we discuss the results
summarized over all river types, i.e. 24 different taxa distributions for the richness, diversity,
evenness and dominance indices and 12 different taxa distribution pairs for the similarity
indices. As an example, Fig. 1, 2 and 3 show the results for the most common river type of
the monitoring data, medium-sized non-reference peatland streams in southern Finland. All
following tables are ordered based on the classification errors of Table 2.

To evaluate the severity of error propagation to biological indices, we concentrate on the
proportional bias in Eq. 1. Table 3 shows the average proportional bias for the diversity,
richness, evenness and dominance indices over all river types, i.e. 24 different species dis-
tributions. As the sign of the bias can be different among the classifiers even in one river
type and different for the same classifier in different river types, in Table 3 the average is
taken over absolute proportional bias. With our parameters (c = 32, n = 500), SChao has
a very high maximum value which is reached if there is one large class with the majority
of observations and all other classes have a single observation in them. As this is a highly
unlikely scenario, we calculate the %bias in SChao proportional to the range of S, which is c,
instead of | max SChao − min SChao|.

From Table 3, it is evident that richness indeces 1)-3) S, SChao and DMg are sensitive to
classification errors. For these indices, even the best classifiers result in approximately 20
%bias. All three indices are based on presence/absence data and linked to the number of
species, which may well be the cause of their sensitivity. This is due to the fact that even one
misclassified observation can bring a new taxa into the calculation and cause overestimation
in the number of taxa. This conclusion is also supported by Fig. 1 as the allocated index
value distributions for S, SChao and DMg are biased upwards for all classifiers.
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Figure 1: The effect of classification errors on richness, diversity, evenness and dominance
indices for medium-sized non-reference peatland streams in southern Finland. Here, X ∼
M(500,p). The red boxplots represent the correct index value distributions. The blue
boxplots represent the allocated index value distributions.
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Figure 2: The effect of classification errors on similarity indices for medium-sized non-
reference peatland streams in southern Finland when the reference sample is assumed to
be known. Here, X ∼ M(500,p) and Y ∼ M(500,q). The red boxplots represent the
correct index value distributions. The blue boxplots represent the allocated index value
distributions.
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Figure 3: The effect of classification errors on similarity indices for medium-sized non-
reference peatland streams in southern Finland when both samples may contain classifi-
cation errors. Here, X ∼ M(500,p) and Y ∼ M(500,q). The red boxplots represent the
correct index value distributions. The blue boxplots represent the allocated index value
distributions.
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The rest of the diversity, evenness and dominance indices have proportional bias 10 % or
under (Table 3), at least with the better classifiers that have classification errors under 30 %.
Actually, even for the poorly performing classifiers, NB (ce>51%) and MLP (ce>89%), the
error propagation into the biological indices is surprisingly small. The reason for this is that,
the calculation of these indices is based on taxa proportions instead of counts. Therefore few
individual misclassifications have less influence on the index values, at least with reasonably
large sample size. E1/D seems to have a slightly larger %bias than D because it is proportional
to S and therefore affected more by extra species. Note that the proportional bias for H ′

and J ′ is identical, as the latter is a scaled version of the former. The Berger-Parker index,
d, depends only on the most common taxa in the sample so it may have high %bias in river
types where the most common taxa is one with a higher classification error rate. However,
this problem can be overcome since biologists are likely to choose classification methods that
identify the most common taxa of a sampling site well.

According to Tables 4 and 5, none of the similarity indices are as sensitive to classification
errors as the richness indices based on presence/absence data (Table 3). For similarity indices,
the quality of the classification method has a more clear impact as MLP produces severe
%bias in the index values when compared to the other classifiers. However, not taking MLP
into account, all of the similarity indices have proportional bias mostly under 10 % (Table 4).
QS and J are based on presence/absence data but are much less biased than S, SChao and
DMg. This may be because in QS and J the number of species affects both the numerator
and denominator. Extra species due to misclassifications thus increase both the number of
common taxa and the number of observed taxa and therefore do not increase the final index
value as much. Euclidian similarity, 1 − D2

Eucl, and PMA index have very similar formulas,
yet 1 − D2

Eucl has smaller proportional bias than the PMA index. Unlike PMA, 1 − D2
Eucl

is affected by how the observations are distributed in non-common classes, giving a larger
distance if the observations in the non-common classes are distributed evenly. Therefore
Euclidian similarity has range [−1, 1], compared to the range of the PMA [0, 1].

The proportional bias increases the most for the Canberra metric, 1 − CM , when both
samples are classified (see Table 5), compared to the case when the reference sample is
assumed to be known (Table 4). In fact, all similarity indices have higher expected values
when both samples are classified, compared to the case when the reference sample is assumed
to be known (see Fig. 2 and 3). The index values are often biased downwards when only
one of the samples is classified and biased upwards when both samples contain classification
errors. This may be caused by the fact that classification errors increase the entropy and
evenness of the samples. The higher the evenness in both samples, the more similar they
become.

While the aforementioned results (Figures 1, 2, 3 and Tables 3, 4 and 5) are obtained
with sample size 500, we also tested sample sizes 200 and 1000 to assess whether error
propagation in biological indices varies with sample size (see results in appendix, Tables 8,
9, 10, 11, 12 and 13). Of the diversity, richness, evenness and dominance indices, only S,
SChao and DMg are affected by sample size. For S and DMg, the average proportional bias
clearly increases with the sample size for all classification methods. For SChao, the %bias
increases for good classifiers. When there are more observations in the sample, the chance
of a misclassified observation introducing an extra species is higher. DMg proportional to
sample size which should make it less sensitive to changes in sample size. However, when
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Table 6: Average proportional bias for different classifiers over all river types and diversity,
richness, evenness and dominance indices (DIV), similarity indices when one sample is clas-
sified (SIM1) and similarity indices when both samples are classified (SIM2). Here, n = 500.
Standard deviation of the proportional bias is presented in parenthesis.

%Bias
Classifier DIV SIM1 SIM2
GEKELM 0.10 (0.08) 0.04 (0.04) 0.05 (0.04)
KRDA 0.10 (0.08) 0.04 (0.04) 0.05 (0.04)
KSVM 0.12 (0.10) 0.04 (0.05) 0.06 (0.05)
GEELM 0.10 (0.08) 0.05 (0.04) 0.05 (0.04)
RBA 0.11 (0.09) 0.04 (0.05) 0.05 (0.05)
RBFN 0.11 (0.09) 0.05 (0.05) 0.06 (0.05)
LDA 0.13 (0.10) 0.05 (0.05) 0.07 (0.05)
RF 0.13 (0.10) 0.06 (0.06) 0.07 (0.05)
SVM 0.14 (0.12) 0.06 (0.06) 0.08 (0.06)
NB 0.17 (0.12) 0.07 (0.06) 0.11 (0.08)
MLP 0.16 (0.12) 0.22 (0.18) 0.15 (0.12)

calculating the %Bias, the log(n) terms are cancelled and the %Bias is identical to that of
S. Of the similarity indices, the bias increases with sample size for QS, 1−CM and J when
both samples may contain classification errors. PMA, Cλ and 1 − D2

Eucl are less sensitive to
sample size.

In addition to studying the effect of classification errors on biological indices, we compare
the different classification methods. Usually, classifiers are compared on error rate but we
are interested in their effect on decision making via the indices. The classifiers which have
classification errors under 20 % are very similar with respect to the %bias in biological indices
(Table 6). However, note that the third best classifier based on error rate, KSVM, introduces
more bias in the indices than some classification methods that have higher error rates than
KSVM. This is more clear for diversity, richness, evenness and dominance indices. Even
though the differences are small, this does show that classification error should not be the
only basis in the selection of classification methods.

Last, we consider the effect of individual river types, i.e. the effect of species distribu-
tion combined with the different confusion matrices. When we use automated classification
methods, the number of possible taxa is fixed based on the training image data and this
sets the dimensions for the confusion matrix. In this setting, taxa distributions with only
few taxa are problematic for indices based on presence/absence data (see e.g. Tables 14,
15, 16 and 17 in appendix). When a confusion matrix has many classes, misclassification
easily introduces extra taxa into the samples and therefore affects the index values. The
problem is even larger if the taxa present in the distribution happen to be ones with a high
classification error. On the other hand, taxa distributions with the majority of the taxa
present tend to produce smaller %bias in the index values. For indices based on proportions,
the most problematic taxa distributions are ones where the most common taxa have high
error rates as the highest proportions contribute most in the calculation of these indices.
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For example, in our simulation study, proportion based indices for medium-sized woodland
streams of northern Finland display higher bias than other river types (see Table 18 in ap-
pendix compared to Table 3). This is because almost half of this river type’s observations are
Baetis rhodani which is a taxa identified well only by RBA. Unsurprisingly, RBA is the only
classifier with a low bias in proportion based indices for medium-sized woodland streams of
northern Finland.

Using Eq. 2, we also study how the standard error of biological indices is affected by
classification errors. However, as there is very little difference in the standard errors before
and after classification, the results are not shown here.

5 Conclusions
In this paper, we discuss the effect of classification errors on biological indices describing
richness, diversity, evenness, dominance and similarity. We study the error propagation into
biological indices with simulation experiments based on real data. We train 11 classifiers with
benthic macroinvertebrate image data and use these classification results to evaluate how
different confusion matrices affect index values calculated from classified macroinvertebrate
samples. We study which indices are most sensitive to misclassifications and sample size and
how different taxa distributions affect the error propagation.

The most sensitive indices to classification errors are the richness indices based on pres-
ence/absence data, i.e. S, SChao and DMg. As the calculation of these indices relies on the
number of observed species, even one misclassified observation can introduce an extra taxa
into the calculation and therefore introduce bias into the index. These indices are even more
sensitive to errors when there are fewer taxa in the species distribution than in the confusion
matrix since this makes it possible to have false extra taxa. S, SChao and DMg are also sensi-
tive to sample size since increasing sample size increases the possibility of misclassifications
introducing extra taxa in the sample.

Diversity, evenness, dominance and similarity indices analyzed in this paper are less
sensitive to classification errors than richness indices, with proportional bias less than 10
% when using good classifiers. Presence/absence based similarity indices, i.e. QS and J ,
are less biased than S, SChao and DMg because in their calculation extra taxa increase
both the numerator and denominator, keeping the ratio roughly the same. Proportion-
based indices can also be sensitive to classification errors if the most common taxa in the
samples are poorly classified, i.e. identified. However, since biologists have prior knowledge
of expected taxa distributions at sampling sites they are likely to choose the classification
method accordingly. The classification methods used in this paper can be split into three
groups: good classifiers (ce < 20 %), mediocre classifiers (20 % < ce < 50 %) and poor
classifiers (ce > 50 %). Although different in error rates, the good classifiers do not really
differ when considering the proportional bias they bring into biological indices, allowing to
choose the most favourable classifier among them for a given scenario.

We found many of the similarity indices to be sensitive to sample size as well. When
both samples being compared are classified, bias caused by misclassifications increases with
sample size for QS, 1 − CM and J . We found that for similarity indices, misclassifications
often increase entropy of the samples. Thus, when both samples are classified, their simi-
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larity increases and the similarity index values become over-estimated. Therefore decision
makers should carefully consider cases where the necessity of mitigation measures is eval-
uated based on similarity values. Based on our analyses and simulation experiments, the
similarity indices least affected by classification errors, sample size and taxa distributions are
1 − D2

Eucl, PMA and Cλ. The least biased diversity index is D. We acknowledge that there
are other sources of bias, e.g. sampling error, but in this paper we limit our analyses on
classification errors and restrict the study of the effect of sample size and taxa distribution to
their interaction with classification errors, when the counts follow a multinomial distribution.
We also note that the choice of an index ultimately depends on what needs to be measured
from a monitored community but we would generally recommend proportion-based indices
for diverse communities as these are the most robust against taxa misidentification error
propagation, based on our simulation experiments.

The results in this paper were obtained using automated classification. A nice property
of automated classification given a gold standard training set is the knowledge of confusion
matrices. As misclassifications with good classifiers are systematic and predictable, for fu-
ture work, correction methods will be considered in order to decrease the bias in biological
indices due to misclassification. Even though we like to think that human experts rarely
make identification errors, it does happen (Culverhouse et al., 2003) and can cause remark-
able bias in resulting index values and ecological status evaluations (Haase et al., 2010).
Unlike in automated methods, human expert errors rarely include knowledge of the human
expert’s confusion matrix. Also as human misclassifications may not be as systematic as
with automated classifiers it is not sensible to construct a correction method for every single
human expert. In contrast, it is highly sensible to construct a correction method for a well
performing automated classifier to further boost its performance.
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Table 7: Taxa used for the classification and simulation experiments. Baetis muticus and
Baetis niger are identified separately in the image data but are combined here into the
Baetis niger group to have equal taxa lists in both image and monitoring data. Similarly
Protonemura intricata and Protonemura meyeri are combined to Protonemura spp.

Taxonomic group
Ameletus inopinatus Habrophlebia spp.
Arctopsyche ladogensis Heptagenia dalecarlica
Asellus aquaticus Hydraena spp.
Baetis niger group Hydropsyche pellucidula
Baetis rhodani Hydropsyche saxonica
Bithytnia tentaculata Hydropsyche siltalai
Caenis spp. Isoperla spp.
Corixidae Leuctra spp.
Ceratopsyche silfvenii Limnius volckmari
Ceratopogonidae Micrasema gelidum
Cheumatopsyche lepida Micrasema setiferum
Diura spp. Nemoura spp.
Elmis aenea Sphaeriidae
Ephemerella aurivillii Protonemura spp.
Ephemerella ignita Rhyacophila nubila
Ephemerella mucronata Taeniopteryx nebulosa
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Table 14: Proportional bias for richness indices for large or extra large woodland reference
streams of southern Finland with sample size n = 500. For this river type, c = 22.

%Bias
Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP
S 0.28 0.27 0.33 0.28 0.30 0.31 0.33 0.32 0.34 0.42 0.42
SChao 0.31 0.30 0.36 0.29 0.31 0.32 0.35 0.33 0.37 0.41 0.44
DMg 0.28 0.27 0.33 0.28 0.30 0.31 0.33 0.32 0.34 0.41 0.42

Table 15: Proportional bias for richness indices for small peatland reference streams of
southern Finland with sample size n = 500. For this river type, c = 19.

%Bias
Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP
S 0.29 0.29 0.34 0.27 0.34 0.30 0.36 0.36 0.39 0.46 0.41
SChao 0.36 0.37 0.43 0.34 0.41 0.40 0.41 0.42 0.46 0.48 0.46
DMg 0.29 0.29 0.34 0.27 0.34 0.30 0.36 0.36 0.39 0.46 0.41

Table 16: Proportional bias for richness indices for medium-sized peatland non-reference
streams of northern Finland with sample size n = 500. For this river type, c = 30.

%Bias
Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP
S 0.07 0.09 0.12 0.07 0.10 0.07 0.13 0.11 0.17 0.16 0.17
SChao 0.10 0.10 0.13 0.10 0.11 0.10 0.12 0.12 0.16 0.14 0.16
DMg 0.07 0.09 0.12 0.07 0.10 0.07 0.13 0.11 0.17 0.16 0.17

Table 17: Proportional bias for richness indices for large or extra large peatland non-reference
streams of northern Finland with sample size n = 500. For this river type, c = 29.

%Bias
Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP
S 0.06 0.08 0.08 0.05 0.09 0.05 0.10 0.08 0.12 0.13 0.09
SChao 0.07 0.08 0.09 0.07 0.08 0.09 0.09 0.10 0.12 0.11 0.10
DMg 0.06 0.08 0.08 0.05 0.09 0.05 0.10 0.08 0.12 0.13 0.09

Table 18: Proportional bias for proportion-based indices for medium-sized woodland non-
reference streams in northern Finland with sample size n = 500. Standard deviation of the
proportional bias is presented in parenthesis.

%Bias
Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP
H ′ 0.13 0.11 0.14 0.14 0.06 0.15 0.15 0.15 0.19 0.20 0.27
J ′ 0.13 0.11 0.14 0.14 0.06 0.15 0.15 0.15 0.19 0.20 0.27
D 0.11 0.09 0.11 0.12 0.04 0.13 0.12 0.12 0.14 0.14 0.18
E1/D 0.07 0.02 0.03 0.08 0.04 0.09 0.04 0.05 0.05 0.07 0.14
d 0.18 0.12 0.15 0.19 0.04 0.23 0.17 0.18 0.21 0.19 0.27
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