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Abstract An approach to constructing a Pareto front approximation to computation-
ally expensive multiobjective optimization problems is developed. The approxima-
tion is constructed as a sub-complex of a Delaunay triangulation of a finite set of
Pareto optimal outcomes to the problem. The approach is based on the concept of in-
herent nondominance. Rules for checking the inherent nondominance of complexes
are developed and applying the rules is demonstrated with examples. The quality of
the approximation is quantified with error estimates. Due to its properties, the Pareto
front approximation works as a surrogate to the original problem for decision making
with interactive methods.
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1 Introduction

In practical decision problems, there are often multiple conflicting objectives that
need to be optimized at the same time (Keeney and Raiffa, 1993). These conflicting
objectives are often handled with ad hoc aggregation or by converting all but one
objective into constraints. Multiobjective optimization is a systematic approach to
optimizing multiple conflicting objectives (see e.g., (Miettinen, 1999)).

Different multiobjective optimization methods can be classified into four classes
with respect to the role of a decision maker (an expert in the application area who
is at liberty to make decisions concerning the problem) in the optimization process
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(Miettinen, 1999; Sawaragi et al., 1985). In no-preference methods, no preference
information is used. In a priori methods, the problem is optimized with respect to a
given preference information and then the decision maker is provided with a single
solution. In a posteriori methods, the decision maker is provided with a set of solu-
tions from which he/she can choose a preferred one. In interactive methods, an itera-
tive procedure is used to explore different solutions to the problem and the decision
maker is allowed guide the exploration. All these methods find their use in different
situations, but we have concentrated on interactive methods because they allow the
decision maker to learn about the problem while solving it (Miettinen et al., 2008). In
all methods, an important concept is Pareto optimality. A solution to a multiobjective
optimization problem is Pareto optimal, if none of the objectives can be improved
without impairing some other(s). An outcome is a vector containing the values of
objectives as its components, and an outcome is Pareto optimal if it is given by a
Pareto optimal solution. The preferences are in interactive methods typically (see
(Luque et al., 2011)) given in the form of desired values, changes or proportions of
the values of objectives in Pareto optimal outcomes (see e.g., the NIMBUS method
(Miettinen and Mikeld, 1995, 2000, 2006) and the Tchebycheff method (Steuer and
Choo, 1983; Steuer, 1986, 1989) to name some).

In addition to having conflicting objectives, many practical decision problems are
also computationally expensive (see e.g., (Hasenjidger and Sendhoff, 2005; Laukka-
nen et al., 2010)). The computational cost results from the lack of closed-form de-
scription of the objective functions and the need to employ simulation, which may
take even hours (see e.g., (Hasenjidger and Sendhoff, 2005)). Computationally expen-
sive problems are naturally very hard to solve and even interactive methods — that are
often praised for their computational efficiency when compared to a posteriori meth-
ods (Miettinen, 1999) — may be inefficient. This is because the time grows between
the moments when the decision maker expresses his/her preferences and when he/she
can see the effects of those preferences in generated outcomes. The time grows be-
cause in most interactive methods the multiobjective optimization problem is in each
iteration solved with respect to the updated preferences of the decision maker. This
naturally slows down the solution process and makes it harder for the decision maker
to learn about the problem and may even make him/her reluctant to explore different
solutions to the problem.

We have developed an approach to help interactive methods deal with computa-
tionally expensive problems. The approach is based on replacing the original prob-
lem with a surrogate problem which approximates the set of Pareto optimal outcomes
(often also called the Pareto front). Following this idea, we proposed in (Hartikainen
et al., 2011) that one should construct (as defined therein) an inherently nondomi-
nated Pareto front approximation based on a small set of known Pareto optimal out-
comes and use this approximation with the interactive method instead of the original
problem. The reasoning behind an inherently nondominated Pareto front approxima-
tion is that we construct a set in the space of outcomes that contains the known Pareto
optimal outcomes as its subset. In this way, we can examine also other possible Pareto
optimal outcomes that are not contained in the set of known Pareto optimal outcomes.
In (Hartikainen et al., 2011), we argued that an inherently nondominated Pareto front
approximation does not include objective function values that would mislead the de-



cision maker. To be more specific, when approximating the Pareto front of a noncon-
vex multiobjective optimization problem, convex approximations (e.g., convex hulls
or ellipses) may include vectors that are strictly better in all components than a known
Pareto optimal outcome that was used to construct this approximation. These vectors
are infeasible for the problem by definition of Pareto optimality. One of the benefits
of an inherently nondominated approximation is that it avoids this behavior.

An inherently nondominated Pareto front approximation gives rise to a multiob-
jective optimization problem that can in a meaningful way be seen as a surrogate for
the original problem. The Pareto front of the surrogate problem equals the inherently
nondominated approximation and solving this problem interactively can be seen as
exploring the approximation with interactive methods. This surrogate problem has a
closed form formulation and, thus, it is computationally much less expensive than
the original problem. The construction of the approximation unavoidably requires
computation, but it can be done before involving the decision maker. After the ap-
proximation has been constructed, the decision maker can use the interactive method
of his/her choice with the surrogate problem without computational delay. When a
preferred outcome for the surrogate problem is found, it can then be projected onto
the actual Pareto front of the original problem with e.g., an achievement scalarizing
function (Wierzbicki, 1986).

Approaches similar to ours, where a Pareto front approximation is used in deci-
sion making, are given in (Eskelinen et al., 2010; Lotov et al., 2004; Monz, 2006).
Eskelinen et al. (2010) and Monz (2006) use custom-made iterative procedures for
finding a preferred element on the approximation, while we develop an approxima-
tion that can be used with almost any interactive method. The benefit of being able
to use various interactive methods is that we can support diverse decision makers
who may prefer different methods. In addition, approaches in (Eskelinen et al., 2010;
Monz, 2006) are only applicable to convex multiobjective optimization problems,
while ours can handle both convex and nonconvex problems. The approach in (Lotov
et al., 2004) differs from ours, because it relies on a visualization technique called
Interactive Decision Maps to find a preferred element on the approximation.

Methods for constructing Pareto front approximations (published before the year
2003) are surveyed in (Ruzika and Wiecek, 2005) and more recent ones include (Bez-
erkin et al., 2006; Efremov and Kamenev, 2009; Goel et al., 2007; Martin et al.,
2005). Some of these methods are not applicable for our needs, because they can-
not create a Pareto front approximation for nonconvex multiobjective optimization
problems. Other methods cannot operate based on a given set of Pareto optimal out-
comes, but assume that some specific a posteriori method has been used to generate
the outcomes. The value added by being able to use a given set of Pareto optimal out-
comes is that one can use Pareto optimal outcomes generated with any a posteriori
method (see e.g., (Miettinen, 1999)) including evolutionary multiobjective optimiza-
tion methods (see e.g., (Deb, 2001; Coello Coello et al., 2007)). Furthermore, none of
the methods in the literature guarantee producing an inherently nondominated Pareto
front approximation.

In this paper, we lay theoretical foundations for constructing an inherently non-
dominated Pareto front approximation for (convex or nonconvex) multiobjective op-
timization problems with continuous objectives. The proposed approximation im-



proves on the weaknesses of existing methods discussed above. Technically, our ap-
proximation is based on intelligent interpolation between a set of known Pareto opti-
mal outcomes. The interpolants are taken from the polytopes of a Delaunay triangula-
tion (see e.g., (Fortune, 1997)) of the set of known Pareto optimal outcomes. The idea
for our approximation comes from computational geometry (for a general overview
see e.g., (Goodman and O’Rourke, 1997)), where different subcomplexes of Delau-
nay triangulations have been extensively used in shape reconstruction (Edelsbrunner,
1998). We construct a subcomplex that satisfies some properties that are based on
inherent nondominance so that the final approximation is inherently nondominated.
The Delaunay triangulation is of combinatorial nature. Here we do not deal with the
implementation of our approximation but concentrate on the theoretical aspects.

The rest of this paper is structured as follows. Section 2 concentrates on the nota-
tions and basic definitions used in this paper. The most relevant concepts from com-
putational geometry are presented in Section 3 and combined with the inherent non-
dominance property in Section 4. Section 5 proposes an approach to constructing an
inherently nondominated Pareto front approximation as a sub-complex of a Delau-
nay triangulation while Section 6 demonstrates the proposed approximation with two
examples. Properties of the approximation for two special types of multiobjective
optimization problems are examined in Section 7 and error estimates for the approx-
imation are derived in Section 8. Finally, Section 9 concludes with some remarks on
decision making with the constructed Pareto front approximation.

2 Notation and Definitions

We consider multiobjective optimization problems

min_(fi(x),..., fk(x)), (D
s.t. xeS
where f;: S — Risforalli € {1,...,k} areal-valued function and S C R". We define
a vector-valued function f: § — R¥, f(x) = (f1(x),..., f(x))T for all x € S. Because
we aim to interpolate between the known Pareto optimal outcomes, we assume that
all objectives are measured in continuous scales. This is the case for example when
the set S is connected and the functions f; are continuous.

The set S is called the feasible decision set of the multiobjective optimization
problem and every vector x € S is called a (feasible) decision. The set f(S) is the
feasible outcome set of the multiobjective optimization problem and every vector
Z € f(8) is called a (feasible) outcome.

For a set K C R* the boundary of K is denoted by bnd(K) and the interior is
denoted by int(K). The closure of the set K is denoted by cl(K). The convex hull of
K is denoted by conv(K). For two sets K', K> C R¥ the notation k! C K* means that
if a vector s € K'! then s € K?. Notation K! C K? means that K' C K? but K' # K.

For two vectors 7!,z € R, notation z' < 72 means that z} <z? foralli=1,...,k
and z! # 2. If 7! < z? then 7! is said to dominate z* or z? is said to be dominated by
z!. A vector b € B is Pareto optimal in a set B C R¥ if there does not exist a vector
b' € B that dominates b. An outcome z € f(S) is Pareto optimal for multiobjective



optimization problem (1) if the vector z is Pareto optimal in the set f(S). Finally,
the Pareto front of the set B, denoted by PF(B), is the set of Pareto optimal vectors
in the set B and the Pareto front of (1), denoted by PF, is the set of Pareto optimal
outcomes of the multiobjective optimization problem. A feasible decision x € S is a
Pareto optimal solution to the multiobjective optimization problem if f(x) is a Pareto
optimal outcome for the multiobjective optimization problem.

In (Hartikainen et al., 2011), some properties and definitions concerning Pareto
front approximations are given. They are summarized below.

Definition 1 A set A C R is inherently nondominated if there do not exist vectors
a,b € Asothata <b.

Definition 2 Let P C R¥ be a finite set of Pareto optimal outcomes. A set A C R is
an inherently nondominated Pareto front approximation (based on the set P) if the
set A is inherently nondominated and P C A.

Definition 3 Let B C R¥ be a set and let the set P C R¥ be as above. A set A C B is
a B-maximal inherently nondominated Pareto front approximation (based on the set
P) if the set A is an inherently nondominated Pareto front approximation based on P
and for all vectors b € B\ A the set AU {b} is not inherently nondominated.

As shown in (Hartikainen et al., 2011), an inherently nondominated Pareto front
approximation based on P is the Pareto front of a multiobjective optimization prob-
lem that has outcomes P on its Pareto front. In this way, an inherently Pareto front
approximation can be seen as a surrogate for the actual Pareto front.

The starting point of this study is as follows. We assume that we are given a
computationally expensive multiobjective optimization problem. This problem is re-
ferred to as the initial multiobjective optimization problem. We also assume that we
are given a finite set of m Pareto optimal outcomes P = {p!,..., p"}. This set is re-
ferred to as the initial set of Pareto optimal outcomes or the known Pareto optimal
outcomes. This set may have been generated with any appropriate method in the lit-
erature e.g., an evolutionary multiobjective optimization method (Deb, 2001) or any
of the 0*-order approximation methods mentioned in (Ruzika and Wiecek, 2005).
In this paper, we use the initial set of Pareto optimal outcomes for constructing an
inherently nondominated Pareto front approximation that intelligently interpolates
between the known Pareto optimal outcomes.

3 Background on Polytopes, Complexes and (Delaunay) Triangulations

The Pareto front approximation constructed in this paper is a complex i.e., a collec-
tion of polytopes with certain properties. In the first part of this section, we review
all the properties of polytopes and complexes that are needed in this paper. For the
proofs and further properties we refer to (Griinbaum, 1967) and references therein.
We mostly follow the notation and definitions established in (Griinbaum, 1967). The
only difference is that here the prefix “a-" before the words “polytope”, “face” or
“complex” refers to the number of vertices minus one and not to the dimension. This



is because in our setting it is easier to count the number of vertices of the polytope
than to compute the dimension of the polytope.

The rest of this section deals with triangulations of a finite vector set. A trian-
gulation is a complex with certain additional properties. Especially, we discuss the
Delaunay triangulation, which is a well-known triangulation (see e.g., (Edelsbrun-
ner and Shah, 1994; Fortune, 1997)). Some reasons for the fame of the Delaunay
triangulation are that it is useful in shape reconstruction, as argued in (Boissonnant,
1984), and it can be computed in R¥ by computing the convex hull of a set in R¥*!,
as shown in (Edelsbrunner, 1987). In our approximation, the complex that approxi-
mates the Pareto front is a sub-complex of a Delaunay triangulation of the initial set
of Pareto optimal outcomes P. Previously Delaunay triangulations have been used
mostly in finite element methods (see e.g., (George and Borouchaki, 1998; Shenton
and Cendes, 1985)) and for reconstructing different solids from a set of vectors (see
e.g., (Edelsbrunner, 1998)). In (Schandl et al., 2002), the Delaunay triangulation is
used for initializing an algorithm for Pareto front approximation. Their aim is to con-
struct a piecewise linear approximation by means of block norms whose level sets
provide a polyhedral structure of the approximation. However, the resulting approxi-
mation has features different from ours and does not allow the decision maker to use
interactive multiobjective optimization methods.

An alternative comprehensive treatment of the topics contained in this section can
be found in (Fukuda, 2004). That article also contains references to more detailed
treatments of these and further topics.

Definition 4 Let a € N. The set
P, ) = conv ({zl,...,zaH})

with vectors z',...,z%*! € RF is called a (convex a-)polytope. The empty set is a

(—1)-polytope. The polytope Z2(z!,...,z%"!) is said to be determined by vectors
1 a+1
Zh, .2

The following propositions and definitions summarize the properties of poly-
topes. The proofs can be found in (Griinbaum, 1967).

Proposition 1 Ler a,b € N and consider vectors z',...,z2¢71 51 ... 2PT1 c Rk If
{21, 2 {2, ) then (). oY) C 23, .

Definition 5 A vertex of a polytope is a vector x € K so thatify, z€ K,0 <A <1
and x = Ay—+ (1 — A)z, then x = y = z. The set of all vertices is denoted by vert(K).

Definition 6 Let u € R be a vector, & € R be a scalar and K C R¥ be a polytope.
The hyperplane

H={xecR:xTu=a}

is a supporting hyperplane of the polytope K if KN H # 0 and either K C {x € R¥:
Mu<oa}orKcC{xeR:xTu>a}.
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Definition 7 Let K C R be a polytope. A set F C R* is called a face of the polytope
K if F =0, F =K or if there exists a supporting hyperplane H of the polytope K so
that F = KN H. The sets 0 and K are called improper faces of the polytope K and the
other faces are called proper faces of K. A face F that is also an a-polytope is called
an a-face.

Example 1 TfK = 2(z',7%) C R® is a 1-polytope with z! # z2, then the set of vertices
is vert(K) = {z',7z?} and the faces are 0, {z'}, {z*} and 2(z!,7%).

Proposition 2 A face of a polytope is also a polytope.

Proposition 3 IfK C R¥ is a polytope, then the boundary of the polytope is bnd(K) =
UregF, where & is a collection containing all the proper faces of K.

Proposition 4 Let K', K% K3 C RF be polytopes so that the polytope K? is a face of
the polytope K" and the polytope K3 is a face of the polytope K. Then the polytope
K3 is a face of the polytope K.

Definition 8 The dimension of a polytope K C R¥ is the minimal dimension of a
linear subspace L C R* so that K C z+ L with some z € R¥.

Proposition 5 The dimension of an a-polytope K C R¥ is at most a.

A simplex is a special type of polytope. In a way, a simplex can be seen as the
simplest type of all polytopes, as argued in (Griinbaum, 1967). In order to define a
simplex, we need to define affine independence of vectors in R¥.

Definition 9 Vectors v!,...,1* € R¥ are affinely independent if the vectors v —v!, ...

v* —v! are linearly independent.

Definition 10 An a-polytope K = Z(z',...,z%"1) is called an a-simplex (or merely
1 a+1

a simplex) if the vectors z',...,z%"" are affinely independent.
By Proposition 5, the dimension of an a-polytope is at most a. We can say even
more about simplices.

Proposition 6 The dimension of an a-simplex is a.

Another important property of a simplex is that its faces are also simplices and
that any proper subset of vertices determines a proper face of the simplex. Notice
that the latter is not true all for polytopes, because e.g., the vertices (0,0),(1,1) of a
polytope Z((0,0),(1,0),(0,1),(1,1)) C R? do not determine a face of the polytope.

Proposition 7 Let a,b € N so that a > b. All the b-faces of an a-simplex are b-
simplices and any b+ 1 vertices of a simplex determine a b-face of the simplex.

A complex is a collection of polytopes with certain properties. The complex is
used to describe polyhedral sets beyond polytopes.

Definition 11 A collection .# of polytopes in R¥ is called a (polyhedral) complex
provided that



(1) every face of a polytope in % is also a polytope in £ and
(2) the intersection of any two polytopes in Z is a face of each of them.

A complex % is called an a-complex, if there exists an a-polytope K € % and there
is no b-polytope K’ € # with b > a.

The body of a complex contains all the vectors in all the polytopes in the complex.
The body is sometimes also called the underlying space (see e.g., (Vegter, 1997)).

Definition 12 The body of a complex %" is body( %) = Uge K.

Now we are ready to define a triangulation of a finite set P C R¥. Informally, the
triangulation of a set can be seen as a subdivision of the convex hull of the set.

Definition 13 A triangulation of a finite set P C R is a complex .#" so that the body
of the complex is body(.#") = conv(P) and the set of vertices of the polytopes in the
collection JZ is the set P.

In this paper, we use the Delaunay triangulation. There are different definitions
for the Delaunay triangulation. Following (Edelsbrunner and Shah, 1994), we use the
following definition.

Definition 14 A triangulation & of a set P is a Delaunay triangulation if for every
polytope Z(p',...,p**!) € 2 there exists an open ball B so that BN P = 0 and
cd(BynP={p',...,p*1}.

In an informal fashion, one may say that the Delaunay triangulation contains all
the polytopes defined by neighboring vectors. This is formalized by the link between
the Delaunay triangulation and the Voronoi diagram (see e.g., (Edelsbrunner, 1987)).

An important concept concerning Delaunay triangulations and their construction
is so-called general position of vectors (see e.g., (Rajan, 1994)). In this paper we do
not assume general position, because often it is not valid for outcomes of a multi-
objective optimization problem. See e.g., the first example in Section 6, where the
outcomes in P are not in general position.

Delaunay triangulations can be constructed with methods proposed in many pa-
pers e.g., (Edelsbrunner, 1987; Rajan, 1994). For this reason this is not a topic of
this paper, but we assume that some existing method has been used to construct a
Delaunay triangulation of the initial set of Pareto optimal outcomes P.

In this section, we have introduced the main concepts from computational geom-
etry that are used in this paper. In the next section, we further develop these concepts
for our purposes.

4 Inherently Nondominated Polytopes and Complexes

In this section, we discuss inherently nondominated polytopes and complexes. The
definition of an inherently nondominated polytope follows the original definition of
an inherently nondominated set established in Definition 1 and in Definition 15 in-
herent nondominance is generalized for complexes.



According to Proposition 5, the dimension of an a-polytope is at most a. Accord-
ing to the following theorem, irrespective of the number of vertices, the dimension of
an inherently nondominated polytope is at most the number of objectives minus one.

Theorem 1 The dimension of an inherently nondominated polytope K C R¥ is at
most k — 1.

Proof Assume that K = 2(z',...,7%"!) with a > k, because if it held that a < k then
the claim would be trivially true by Proposition 5 . It can be seen that K C z' + L with
L={leRF: =Y Ai(Z—7'), A € Rforalli=2,...,a+ 1}, because every vec-
tor s € K can be written as s = z' + Y4 A1(z —z!) with A’ e Rforalli=2,...,a+1.
Thus, it remains to prove that dim(L) < k — 1. To prove this assume the contrary i.e.,
dim(L) = k. If dim(L) = k, then there are linearly independent vectors v!,... W €
{2 —z',..., 2% —z'}. Choose z = Y*_,(1/k)v'. By Propositions 7 and 3 and be-
cause the polytope Z(v!,...,vk) is now a simplex, it holds that z € int(Z22(v!,... vk))
and by Proposition 1 it holds thatint(22(v',... V)) Cint(2 (%> —7!,...,2%T = z1)).
Therefore, z' +z € int(K) and there exists a real number 7 > 0 so that B(z' +z,7) C K,
where B(z1 +z,r) is a ball with radius r centered at 1 + 7, and, especially, it holds
that z' +z— (r/2,...,r/2) € K. This is a contradiction with the fact that the polytope
K is inherently nondominated, since it holds that z! +z—(r/2,...,r/2) < z' +z. This
completes the proof. O

Corollary 1 A k-simplex is not inherently nondominated.
Proof This follows from Proposition 6 and Theorem 1. O

An inherently nondominated polytope is always a union of polytopes with fewer
vertices than objectives. This is given by the following theorem.

Theorem 2 If a polytope K = P(7',...,2°T1) C R¥ is inherently nondominated,
then there exist a;-polytopes K' CRX, i=1,....t, so that K = Uﬁlei anda; <k-—1
foreveryi=1,...,t.

Proof Let a vector s € K be arbitrary. By Carathéodory’s theorem (Caratheodory,
1913), the vector s belongs to some k-polytope K’ = 2(v!, ... V1) withv! ... vVl e
{z',...,2%"}. Assume that s = Y¥"' 2V € K for some A’ € [0,1]. By the proof of
Theorem 1, there exists a linear subspace L of R so that dim(L) <k—1and K —vc
L. Thus, there exist real numbers p2,..., ! € R so that Y5 u/(v' —v!) = 0 and
w/ # 0 for some j € {2,...,k+1}. Thus by choosing u! = 725;:21 L', it holds that
Yl pivi =0 and YS! u? = 0. Therefore, for all a € R it holds that

k+1 k+1 k+1

5= Zlivi_azui i Z(li_a’ui)vi
i=1 i=1 i=1

and ):fill A — au’ = 1 Especially by choosing

o= 1Inin A
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it holds in addition that A’ — qu’ >0 foralli=1,...,k+1and A’ — o’ = O for some
i€{l,...,k+1}. Thus, s is presented as a convex combination of k vectors and, thus,
s belongs to some b-polytope with b < k— 1. It follows that K C Uf»:lKi for some a'-
polytopes K* witha' < k—1foralli=1,...,f. From the construction it is seen that we
have for each polytope K = 2(u',... ub™") with {u',... . ub*'} C {Z',... 2%}
Thus, also K O Ui_,K i by Proposition 1. This proves the claim. O

The inherent nondominance was defined in (Hartikainen et al., 2011) for sets and
not for collections of polytopes that we need in this paper. For this reason, we need
to extend that definition for our needs.

Definition 15 A collection of polytopes % is said to be inherently nondominated
if the set Uge K is inherently nondominated. Especially, a complex is inherently
nondominated if its body is inherently nondominated.

Finally, we have extensions to Definitions 2 and 3. These are the main concepts
in this paper.

Definition 16 A collection of polytopes %" is said to be an inherently nondominated
Pareto front approximation if the collection of polytopes is inherently nondominated
and the singleton {p} € % for all p € P.

Analogously to what is noticed in (Hartikainen et al., 2011), the complex {0} U
{{p},p € P} is by definition an inherently nondominated Pareto front approximation.
However, it is not a good approximation because it does include any intermediate
outcomes but only the initial Pareto optimal outcomes in P. This is why the following
definition is important. The collection %" in the following definition is further on
chosen as a Delaunay triangulation of the initial set of Pareto optimal outcomes P.

Definition 17 Let % be a collection of polytopes. A collection of polytopes <7 is
said to be a £ -maximal inherently nondominated Pareto front approximation if the
collection 47 is an inherently nondominated Pareto front approximation and for all
polytopes K € # \ « the collection & U{K?} is not inherently nondominated.

An important property is that a .# -maximal inherently nondominated Pareto
front approximation is a complex whenever % is. This is given by the following
theorem.

Theorem 3 Let % be a complex so that singleton {p} €  for all p € P. If a
collection of polytopes </ is a K -maximal inherently nondominated Pareto front
approximation, then the collection &/ C ¥ is a complex.

Proof The collection </ is not empty, because the collection of sets {0} U{{p}: p €
P} is an inherently nondominated Pareto front approximation. Assume a polytope
K € o7 and let F be a face of the polytope K. Then two observations are immediate: (i)
the face F € JZ, because the collection # is a complex, and (ii) the collection &7 U
{F} is inherently nondominated, because its body is body(e/ U{F}) = body(<)
since by Definition 7 face F C K. Observations (i) and (ii) yield that also the face
F € o/ which implies property (1) in Definition 11. Property (2) is trivially true,
because o7 C ¥ . o
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Finally, we have the following theorem implying the existence of at least one
¢ -maximal inherently nondominated Pareto front approximation for an appropriate
complex % . The following theorem combined with Theorem 3 yields that there ex-
ists a complex &7 C ¢ that is a /¢ -maximal inherently nondominated Pareto front
approximation. In multiobjective optimization problems with more than two objec-
tives, the maximal inherently nondominated Pareto front approximation may not be
unique. For the proof of existence we need the Zorn’s lemma.

Lemma 1 (Zorn’s lemma) Every partially ordered set, in which every chain (i.e.
totally ordered subset) has an upper bound, contains at least one maximal element.

Theorem 4 Let ¥ be a complex so that {p} €  for all p € P. Then there exists a
J -maximal inherently nondominated Pareto front approximation.

Proof Define a family of collections of polytopes
K ={%:% C J is an inherently nondominated Pareto front approximation.}.

The collection {{p} : p € P} € K and thus K is not an empty family. Relation C is a
partial ordering in the family of collections K. Let collections %', %?,... ¢ K be a
totally ordered chain so that Z'~! € %' for all i = 2,3, . ... Each collection %' is then
especially an inherently nondominated Pareto front approximation. Define a collec-
tion Z = Uz | %', It is clear that the collection Z is an upper bound for the chain
', 7 ... In order to use Zorn’s lemma we prove that the collection Z € K. Triv-
ially, the singleton {p} € % for all p € P, because {p} € #' by definition. Assume
now that the collection 2 is not inherently nondominated. Then there exist vectors
a',a* € UgczK so that al <a?. Butthena! €U 1K and a® € U 2 K for some

Ke#'
i',i% € N and, moreover, the vectors a',a? € U 1 2,K. This implies that the

Ke%B
Kegpgmali
collection ZBmax{i' %} is not inherently nondominated, which is a contradiction with
the fact that the collection ZMm>{i'*} € K. Since all the assumptions of the Zorn’s
lemma have been fulfilled, there exists a maximal element within K. Trivially, this
maximal element is a J# -maximal inherently nondominated Pareto front approxima-
tion. a

5 The Construction of a Maximal Inherently Nondominated Pareto Front
Approximation

Naturally, the existence of a maximal inherently nondominated Pareto front approx-
imation given by Theorem 4 is not sufficient for practical uses. In this section, we
elaborate on how to construct a sub-complex of a Delaunay triangulation & of the
initial set of Pareto optimal outcomes P that is a Z-maximal inherently nondomi-
nated Pareto front approximation. Because of Corollary 1, we however exclude the
k-simplices, with k being the number of objectives of the initial multiobjective opti-
mization problem, from the complex &. Without confusion, we use the same symbol
2 for this sub-complex of the Delaunay triangulation. Even if Theorem 2 implies that
every inherently nondominated polytope can be represented as a union of polytopes
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with the number of vertices being lower than k, these polytopes may not be included
in the Delaunay triangulation of P.

We first develop methods for checking whether or not a collection of polytopes is
inherently nondominated. In Subsection 5.1, we show that checking this amounts to
checking all pairs of polytopes in the collection for a certain property. In Subsection
5.2, we show how to use the concepts developed in Subsection 5.1 for constructing a
2-maximal inherently nondominated Pareto front approximation.

5.1 Checking if a Collection of Polytopes is Inherently Nondominated

In this subsection, we show an efficient way of checking whether a collection of
polytopes, or a complex, is inherently nondominated. We first define what is meant
by dominance between polytopes.

Definition 18 Let K', K> C R¥ be polytopes. The polytope K'! is said to dominate
(to be dominated by) the polytope K2, if there exist vectors s' € K! and s? € K? so
that s' < s? (s> < s'). If the O-polytope #(z) = {z} dominates (is dominated by) a
polytope K C IR¥ then the vector z is said to dominate (be dominated by) the polytope
K.

The connection between inherent nondominance and dominance between sets is
given by the two following theorems. Theorem 5 deals with the inherent nondomi-
nance of a polytope and Theorem 6 deals with the inherent nondominance of a col-
lection of polytopes.

Theorem 5 A polytope is inherently nondominated if and only if the polytope does
not dominate itself.

Proof The proof follows directly from Definitions 1 and 18. a

Theorem 6 Let 2 be a collection of polytopes. The collection J¢ is inherently non-
dominated if and only if there does not exist polytopes K' | K> € ¢ so that K" domi-
nates K°.

Proof ” = ": Assume the contrary, i.e., there exist polytopes K', K> € # so that the
polytope K'! dominates the polytope K2. This means that there exists a vector s' € K'
that dominates another vector s> € K2. This is a contradiction with the assumption
that the collection of polytopes % is inherently nondominated, since the vectors
s',s2 € body(X).

” <= ": Assume that the collection of polytopes .#" is not inherently nondominated.
Then there exist vectors s!, 5% € body(.#") so that the vector s' dominates the vector
s?. This means that there exist polytopes K',K? € . so that the vector s' € K!
and the vector s> € K2. But then, by Definition 18, the polytope K' dominates the
polytope K2 which is a contradiction with the assumption. g

As shown by Theorems 5 and 6, checking whether a polytope or a collection of
polytopes is inherently nondominated can be done by checking for dominance be-
tween polytopes as defined in Definition 18. For this reason we need an efficient way
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of checking for dominance between polytopes. According to the following theorem,
the dominance between polytopes can be checked by solving optimization problems.

Theorem 7 Let K', K> C R¥ be non-empty polytopes. Consider optimization prob-

lems l_ 2
min max;—i _k(s; —s7) 2)
sit. sl € Kl s? € K?

and
min Y (sf = 57)
st she Kl7 s? € K? 3
sil §si2foralli: 1,...,k.

The polytope K' dominates the polytope K? if and only if one of the following holds:

(i) the optimal value in problem (2) is less than zero
OR

(ii) the optimal value in problem (2) is exactly zero and the optimal value in problem
(3) is less than zero.

Proof Notice that problem (2) has a solution, because the outer objective function
g(s!,s?) = max,-zlwk(sl1 - 512) is continuous and the feasible set is compact and non-
empty. Furthermore, problem (3) has a solution, if the optimal value in problem (2)
is zero, because the objective function is continuous and the feasible set is compact
and non-empty.

By Definition 18, if the polytope K' dominates the polytope K> then there exist
vectors s! € K! and s> € K? so that s' dominates s*>. The dominance can either be

strong or weak i.e., either

(1) st <s?foralli=1,....k
OR
(2) s; <sjforalli=1,....kand s} < s for some index j € {1,...,k}.

Clearly, alternative (i) holds if and only if alternative (1) holds. Assume now that
alternative (2) holds but alternative (i) does not hold. Then the optimal value in prob-
lem (2) is equal to zero, because if it was more than zero alternative (2) could not
hold, and the optimal value in problem (3) is less than zero, because Z{-‘Zl (sll — s,z) <
s} - s? for all j € {1,...,k}. Finally, if alternative (ii) holds, then there exist vectors
s' € K" and s> € K? so that s} <s? foralli=1,...,kand Y*_ (s! —s?) < 0. But if
Y5 (s} —s?) <0, then there exists an index j € {1,...,k} so that s}- < s? and thus
alternative (2) must hold. This completes the proof. g

5.2 Removal of Polytopes from the Delaunay Triangulation

Assume that we have constructed the Delaunay triangulation & of the initial set of
Pareto optimal outcomes P C R¥ and that we have excluded the k-simplices from
it. In this subsection, we propose an approach to finding a collection of polytopes
Z C 2 so that the collection of polytopes

D\ % @)
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is a Z-maximal inherently nondominated Pareto front approximation based on the
initial set of Pareto optimal outcomes P. In other words, we propose ways to remove
polytopes from the Delaunay triangulation to get the approximation.

Without loss of generality we may assume that for all @ = 0,...,m — 1, the a-
polytopes in the complex & are K*!, ... K% Foralla=m—1,m—2,...,1 and for
all j =1,...,1% it holds that the polytope K%/ € Z i.e., the polytope is removed, if
either

(R1) there exists an outcome p € P that dominates or is dominated by the polytope
K%J or the polytope K%/ dominates itself
OR

(R2) there exists a b-polytope K>/ € 2\ % with either b > a or b =a and j' < j that
dominates or is dominated by the polytope K%/.

Rule (R1) dictates that a polytope is removed if it either dominates or is dominated
by some of the Pareto optimal outcomes in P or if the polytope is not inherently
nondominated. There may be multiple Z-maximal inherently nondominated Pareto
front approximations that can be constructed from polytopes that are not removed
by rule (R1) and rule (R2) dictates which of them we choose. According to it, the
polytopes with more vertices are less likely to be removed from the collection because
whenever we choose not to remove a polytope, then the polytopes with less vertices
are removed if they dominate or are dominated by this polytope.

Theorem 8 If the collection Z is given by rules (R1) and (R2) then the collection of
polytopes given by (4) is a P-maximal inherently nondominated Pareto front approx-
imation.

Proof The polytopes in the complex Z can be ordered as in rule (R2) with respect to
the number of vertices a and the index j. According to rule (R2) a polytope with at
least two vertices is removed from the complex if there exists a polytope prescribed
by this rule that is either dominated or dominates this polytope. For this reason there
cannot be distinct polytopes K', K/ € 2\ % with more vertices than 2 that dominate
each other. The first part of rule (R1) dictates that there cannot be a polytope in the
collection that dominates or is dominated by an outcome in P and, thus, there are
no distinct polytopes in the collection that dominate each other. According to the
second part of rule (R1), no polytope in Z \ Z is dominated by it self. According to
Theorem 7, the collection of polytopes & \ Z is inherently nondominated and since
the singleton {p} € 2\ Z for all p € P, the collection of polytopes is an inherently
nondominated Pareto front approximation. Trivially, the Pareto front approximation
is Z-maximal. O

According to (McMullen, 1970), a Delaunay triangulation of the set P contains
at most O(m“‘/ 2]) polytopes, where m is the number of outcomes in P and k is the
number of objectives of the multiobjective optimization problem. For this reason,
one may have to solve O(m*) optimization problems in order to find out all domi-
nations between the polytopes in the triangulation with problems (2) and (3). This is
computationally the most expensive part of the approximation approach. Methods for
reducing this computational expense go beyond the scope of this paper.



6 Examples of Inherently Nondominated Pareto Front Approximations

In this section, we present two examples of inherently nondominated Pareto front ap-
proximations constructed as proposed in the previous section. In the first example,
we approximate the Pareto front of the three-objective DTLZS test problem intro-
duced in (Deb et al., 2002). The DTLZS test problem’s special feature is that even if
it has three objectives, the Pareto front is merely one-dimensional. Additionally, the
outcome set f(S) of the DTLZS test problem is nonconvex. For these reasons, ap-
proximating the Pareto front of this problem is not trivial, which makes it a suitable
task for demonstrating the power of our approximation approach. Even though the
DTLZS5 problem is not computationally expensive, we can demonstrate our approx-
imation approach with it, because the computational expense of the problem only
affects the computation of the Pareto optimal outcomes P and not the Pareto front
approximation. The second example concerns approximating the Pareto front of the
three-objective DTLZ2 test problem (Deb et al., 2002). In this example, we do not
show the construction of the approximation but merely give the inherently nondomi-
nated Pareto front approximation to further illustrate the versatility of our approach.
The DTLZS test problem can be formulated as

min  (f1(x), f2(x), f3(x))

s.t. 0<xl§1f0rallz_123
where fi(x) = (1+ ) os( ") cos (6(x)) s
£(x) = (101 cos (%) sin (8(x)) )
fi(0) =1+ )Sm(x% )
e(x)—7(1+2 ).

414231

The actual Pareto front of the DTLZS5 test problem is explicitly known and given as

{(Aix), fo(x), fa(x =0}.

Assume that the set of initial Pareto optimal outcomes is
P={p".p%p’p" P’}
_ (11()) V2+V2 V242 V2-V2
\/57\/§a 2\/5 ) 2\/§ ) 2 9
<11 ) V2-V2 V22 V242 0.0.1)
2 2 \/7 2\/7 ) 2\/§ 2 ) 2V

given by x € {(x1,x2,x3) : x1 =0,1/4,1/2,3/4,1, x, =0 and x3 = 0}.
A Delaunay triangulation of this set is given by

7={0.20"),2(%), 2 (0), 2(5), 2 (0°), 2(p,17), 2 (P, 1),
20,0, 2 (5*,0°). 2 (0, 0"), 20" 1% 00" ) }
={K',...,k"?}.
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The dimension of polytope K2 is two so it is not removed before applying the rules.
The different dominations between polytopes in the Delaunay triangulation can be
presented in a matrix with entries a;; equal to 1 if the polytope K’ dominates the
polytope K/ and equal to 0 otherwise. In this problem, the dominations yield a 12 x 12

matrix
000000000000

000000000000 |~
001110111101
001110111101

where all entries in the 10 top rows are zeros. As an example we verify that polytope
K’ = 2(p', p?) is dominated by polytope K'! = 22(p°, p') using problems (2) and
(3). Problem (2) becomes
min max;_; (s} —s?)
sts! = (1-21) (&, 25.0) +21(0,0,1)
2= (1-22) (L 1 0) a2 (\/2+ﬁ V2142 \/2ﬁ>

V2’ V2’ 22 0 2v2 2
0<A/<lforj=1,2

and with some reformulation it assumes the form of a linear optimization problem

min ¢
2-V2+V242 191
s.t. tzizﬂ A \/E)L

V2-V2
tZ?Ll'— VEvE)?
0<A/<l1forj=1,2.

This problem can be solved with e.g., the simplex method and the optimal value of ¢

; 2—-V24+V2-V2-V2
2(V2+1)

By Theorem 7, the polytope Z(p>, p!) dominates polytope Z(p', p?).

Notice that in the complex Z the polytope @ is a —1-polytope, the polytopes
K?,...,K® are O-polytopes, the polytopes K’,... , K'! are 1-polytopes and the poly-
tope K'2 is a 4-polytope. The polytope K'? € # by rule (R1), because it dominates
itself. This shows up in the above matrix with the entry a2 12 = 1. Of the 1-polytopes,
the polytope K'! dominates e.g., the outcome p> € P and, thus, K'! € % by rule (R1).
This rule does not apply to the other polytopes except for K'! and K'2. As it can be
seen from the matrix, there is no domination left when the polytopes K'! and K'?
have been removed from the collection. For this reason, rule (R2) does not apply
to any of the polytopes K',...,K'0. Thus, the Z-maximal inherently nondominated
Pareto front approximation is

%=\ {20000 0. 20 P}
={Kk',....k'""}

~ —0.12698(< 0).
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(a) A Z-maximal inherently nondominated (b) An inherently nondominated Pareto front approx-
Pareto front approximation of the DTLZ5 test imation of the DTLZ2 test problem based on 19
problem based on 5 Pareto optimal outcomes.  Pareto optimal outcomes.

Fig. 1: Bodies of two inherently nondominated Pareto front approximations

The body of this complex is shown in Figure 1a.

The same approach applied to the DTLZ2 test problem introduced in (Deb et al.,
2002) with 19 random Pareto optimal outcomes py,..., pg yields the approximation
shown in Figure 1b. As in the DTLZS problem, the Pareto front of this problem is not
convex, either.

The two examples presented in this section demonstrate that the proposed approx-
imation approach can handle unusual or difficult problems. The Pareto front of the
DTLZS test problem is merely one-dimensional while the problem has three objec-
tives and the DTLZ2 test problem is nonconvex. In both cases, the approach produces
an interpolation between the known Pareto optimal outcomes that can be used with
an interactive method through the surrogate problem defined in Hartikainen et al.
(2011).

7 Two Special Cases of Multiobjective Optimization Problems

As in the previous section, assume that & is a Delaunay triangulation of the initial
set of Pareto optimal outcomes P and that the k-simplices have been excluded from
it. In this section, we demonstrate how the concept of a Z-maximal inherently non-
dominated Pareto front approximation applies to two special cases, which are the
biobjective case and the R’jr—convex case. It is shown that in these special cases the
approximation is similar to some approximations in literature and, thus, the approach
proposed in this paper can be seen as a generalization of those methods.
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7.1 Biobjective Case

If the number of objectives of the multiobjective optimization problem is two, then
the -maximal inherently nondominated Pareto front approximation is unique and
can be explicitly stated. With the help of the following theorem one may construct
a Z-maximal inherently nondominated Pareto front approximation without the rules
(R1) and (R2).

Theorem 9 [If the number of objectives is k = 2 and the initial set of Pareto optimal
outcomes is P = {p',...,p™} so that p} < p? < ... < pY, then the only 9-maximal
inherently nondominated Pareto front approximation is

%z{@}u{{p}:pEP}U{@(piil,p"):i:2,...,m}.

Proof Notice that since the outcomes in P are Pareto optimal, it must be that pé >
p% > ...> p4. Thus, the complex %" is inherently nondominated, because if shs? e
body(.#") and s} < 57 then s} > 3.

Assume now a non-empty polytope K € & so that ¢ U{K} is inherently non-
dominated and let a vector s € K be arbitrary. Since s € conv(P), it must be that
p{ <s1 < p'". Thus, there must be a vector s’ € body(.#") so that s; = s}. Because the
complex .# U {K} is assumed inherently nondominated, it must be that s, = s, and,
thus, s’ = s. Therefore, K C body(.%#"). Because the collection & is a sub-complex of
a Delaunay triangulation of the set P, it must be that K = K’ for some K’ € % . Thus,
the complex % is a Z-maximal inherently nondominated Pareto front approxima-
tion.

For uniqueness of the complex %7, assume another inherently nondominated
Pareto front approximation ¥’ C 9 so that #”\ ¢ # 0. Choose a non-empty
polytope K’ € ¢\ ¢ . Since vert(K') C P, ¢ is a complex and K’ ¢ 7, there
must be i, j € {1,...,m} so that j —i > 1 and 2 (p', p/) C K" and p'*' ¢ 2(p', p/).
However, by Definition 16 {p'*!} € .#” and since .#” is inherently nondominated,
pte 2(p,p)). 0

Corollary 2 If the number of objectives is k = 2, then the 9-maximal inherently
nondominated Pareto front approximation is connected.

According to Theorem 9, the only Z-maximal inherently nondominated Pareto
front approximation is the piece-wise linear curve that connects adjacent Pareto opti-
mal outcomes. This approximation has been used in e.g., in (Schandl ef al., 2001).

7.2 Convex Case

In this subsection, we study the structure of the Pareto front approximation in convex
multiobjective optimization problems. Convex multiobjective optimization problems
have been studied extensively (see e.g., (Ruzika and Wiecek, 2005)). For our treat-
ment of this case, we need a lemma from (Yu and Zeleny, 1975).
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Lemma 2 The Pareto front of a polytope can be represented as a union of the Pareto
faces (i.e., the faces of the polytope in which all the vectors are Pareto optimal) of the

polytope.

Definition 19 Assume that B C R¥ is a set. Then a set A C R is called B-convex, if
theset A+B={a+b:acA, be B} is convex.

Theorem 10 If the outcome set f(S) is RX -convex, then the complex
A ={K € 2:K CPF(conv(P))}
is a P-maximal inherently nondominated Pareto front approximation.

Proof First, the collection . is inherently nondominated because, as noticed in
(Hartikainen e al., 2011), the Pareto front is inherently nondominated and body(.¢") C
PF(conv(P)) by definition. Second, because a face of a polytope is a subset of the
polytope, then if the polytope is in the collection .%", then the face is in the collec-
tion. This again implies that the collection . is a complex. Thus the collection Z
is an inherently nondominated complex.

To prove that the inherently nondominated complex %" is Z-maximal, let a poly-
tope K € 2 be so that the collection .#"U{K} is inherently nondominated. If K ¢ ¢/,
then there exists a vector s € K \ PF(conv(P)). This immediately implies that there
exists s € PF(conv(P)) so that s < s. From Lemma 2 and Definition 13 it follows
that

PF(conv(P)) = body(%")

and, thus, s’ € body(.#"), which contradicts the inherent nondominance of .#"U{K}.
Therefore K € # and the complex %" is a Y-maximal inherently nondominated
Pareto front approximation. a

The set PF(conv(P)) has been used to approximate the Pareto front in e.g., (Es-
kelinen et al., 2010; Lotov et al., 2004). According to the following corollary the
body of a Z-maximal Pareto front approximation based on P is equal to this set in
the Rﬁ -convex case.

Corollary 3 If the outcome set f(S) is Rﬁ-convex, then there exists a 9-maximal
inherently nondominated Pareto front approximation J& so that

body(.#") = PF(conv(P)).

8 Error Estimates

In this section, we examine how well a Z-maximal inherently nondominated Pareto
front approximation .2~ approximates the Pareto front. More accurately, we develop
the following estimate: given a vector s € body(.#") we estimate an error vector
d(s) € R¥ that fulfills two conditions:

1. there exists an outcome z € f(S) so that z; < s; +d;(s) foralli=1,...,k and
2. there does not exist an outcome z € f(S) so that z < s —d(s).
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These error estimates should have a clear meaning to the decision maker: (1) implies
that there exists an actual Pareto optimal outcome that is at least as good as s+ d(s) in
all objectives and (2) implies that there is no actual outcome that dominates s — d(s).

We estimate d(s) in two ways. In Subsection 8.1, we develop estimates for d(s)
that require computing the approximation before the estimation and, in Subsection
8.2, we develop estimates that can be computed by means of just the set of initial
Pareto optimal outcomes P. The former error estimates can be used to help the deci-
sion maker in choosing a vector on the Pareto front approximation to be projected on
the actual Pareto front. The latter estimates can be used for deciding whether to add
more outcomes into P before computing the approximation — if these error estimates
are big it may be useful to compute more Pareto optimal outcomes if possible.

8.1 Estimates after Computing the Approximation

In this section, we assume that the complex .# has already been computed. We de-
velop estimates for d(s) defined above. We start with a lemma.

Lemma 3 Let s, e € RX. If there exists an outcome p € P so that p; > s; — e; for all
i=1,...,k then there does not exist an outcome z € f(S) so that 7 < s —e.

Proof This is clear since p is assumed to be Pareto optimal. g

The following lemma gives the required estimates and the main result is given by
Theorem 11.

Lemmad LetK= 2(7',...,72%T") € # be apolytope. Furthermore, let s = Z?i} Azl e
K be a vector in this polytope with A/ >0 for all j =1,....k and Zj’ill A =1and
let 7™ 7™ and 79 be vectors in R so that for alli € {1,...,k}

M= max 7, Z"M=  min 7/ and Z"" = " —
je{l,...,a+1} je{l,...a+1}

Then,

Losi— (1= )28 < o and
2. s+ (1= A0)Z8 > 7

forallj=1,...;a+1landi=1,... k.
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Proof Letj€{1,...,a+1}andi€ {1,...,k} be arbitrary. With the above definitions

a+l1

Si_ d1f Z;L]Z _ ) dif

a+1 N
max_|_ Z/'L] maX) ( _)Lj)z;ilf

Jj=

<Zmax+2’]< Z:nax) (1 _)JA) dif

(=A™ ATz = (1= AT - (1= )™
= Az] 4 (1= Ad)zmin
<z J
l
where the first inequality follows from the property zl’ — z?“‘" <Oforall j=1,...,a+
1 and the second one follows from the inequality z?‘i“ < z{ . In a similar way we obtain
si+ (1= AN > 7]

This proves the assertion. O

Theorem 11 Let K = 2(7',....2%"") € H be a polytope. Furthermore, let s =
):““ Aizl € K be a vector in thls polytope and let 77, z™" and 79 be defined as

above. Then d(s) < (1 — A4 forall j=1,...,a+1.
Proof This follows from Lemmas 3 and 4. O

Corollary 4 With the definitions of Theorem 11, it holds that d(s) < az%"/(a+1).

Proof Since Y9! AJ = 1, then there exists / € {1,...,a+1} so that 1/ > 1/(a+1)
and, thus, (1— A7) <1—1/(a+1) =a/(a+1). This combined with Theorem 11
proves the assertion.

O

Example 2 Continuing the DTLZ5 example from Section 6 assume that

s=1/3p> +2/3p* ~ (0.34707,0.34707,0.85162) € K* = 2 (p>, p*).
Then 2™ = (1/2,1/2,V2+V2/2),2"" = (2-v2)/(2v2),(2-V?2)/(2V2),1/V2)

and
dif __ _max _ _min __ ﬂ_\/m \/E—\/m\/i 2+\/§_1
N Y BV, RV

~(0.22940,0.22940,0.21677).
Theorem 11 yields
d(s) <(1-2/3)(0.22940,0.22940,0.21677) ~ (0.076467,0.076467,0.072257)

and, thus,
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1. there exists an outcome z € f(S) that is at least as good as
s+d =~ (0.42353,0.42353,0.92388)

in all objectives and
2. there does not exist an outcome z € f(S) so that

z<s—d = (0.27060,0.27060,0.77936).

8.2 Estimates before Computing the Approximation

In this section, we assume that the complex %" has not yet been computed but we
have the set of initial Pareto optimal outcomes P. Theorem 12 establishes an estimate
for d(s) without computing the complex J¢ .

Theorem 12 Assume that K! = W(p-ill , pjlz) with Pareto optimal outcomes p«"l1 , p-’ll2 €
Pandl=1,...,r are all the 1-polytopes so that K' UP is inherently nondominated.
Define a vector e € R¥ so that

for all s € body(%).

Proof Assume that ¢ is a Z-maximal inherently nondominated Pareto front ap-
proximation. The structure of % remains unknown but the existence of the ap-
proximation is proven in Theorem 4. Let a vector s € body(.%") be arbitrary. Then
se 2(p',...,p*") forsome p',..., pt! € P. By Theorem 2, there exist z!,...,zF €
{p',...,p"} so that s € 2(z',...,z"). Now the union 2 (z/ 7Zj2) U P is inherently
nondominated for all indices j', j> € {1,...,k}, because .#  is an inherently nondom-
inated Pareto front approximation and, thus,

-1 2
Izl =zl | <e

for all indices i, j', j? € {1,...,k}. This immediately implies z{if < ¢; for all i =
1,...,k with the definitions of Lemma 4 and this combined with Theorem 4 yields
the claim. O

In order to be useful, the computation of the above a priori error estimate should
be less expensive than the computation of the whole Z-maximal inherently nondomi-
nated Pareto front approximation. This indeed is the case, if the number of objectives
k is sufficiently large. To find the polytopes K’ in Theorem 12, one has to solve
problems (2) and (3) O(m?) times, while the computation of the Z-maximal inher-
ently nondominated Pareto front approximation demands solving problems (2) and
(3) O(m") times in the worst case scenario. Thus, if k > 3, then the computation of
the a priori estimate is worthwhile.
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Example 3 Continuing with the DTLZ5 example from Section 6, the 1-polytopes K’
of Theorem 12 are K7, K8, K°, K'0. We calculate e; = max{|p! — p?|,|p? — p3|,
\p? — p},|p? — p?|} forall i = 1,2,3 and obtain

V2-vV2 V2-v2 V2-V2
e = b b
222 22 2
~ (0.27060,0.27060,0.38268).

By Theorem 12, d(s) <2/3e ~ (0.18040,0.18040,0.25512) and for every s € body (%)

1. there exists an outcome z € f(S) that is at least as good as
5+ (0.18040,0.18040,0.25512)

in all objectives and
2. there does not exist an outcome z € f(S) so that z < s—(0.18040,0.18040,0.25512).

9 Concluding Remarks on Decision Making with the Pareto Front
Approximation

We have introduced a way to construct a Pareto front approximation that can be used
in decision making involving computationally expensive multiobjective optimization
problems. As shown in (Hartikainen et al., 2011), the problem of choosing a pre-
ferred vector on the inherently nondominated Pareto front approximation J#" can be
formulated as a multiobjective optimization problem

min  (z1,...,2)
s.t. z € body (%) (6)
where z=(z1,...,2)7,

which can be used as a surrogate to Problem (1). Additionally, it holds that
PF(body(.#")) = body (%),

because % is inherently nondominated and, consequently, all vectors in the set
body () are feasible solutions to problem (6). A preferred outcome of problem (6)
is called a preferred vector on the approximation .. Since problem (6) is a multi-
objective optimization problem, any interactive multiobjective optimization methods
can be employed to solve it.

The body of the inherently nondominated Pareto front approximation .#” can be
parameterized and so problem (6) has a representation that can be input to e.g., the
WWW-NIMBUS® implementation (Miettinen and Mikeld, 2000, 2006) (available
at http://nimbus.it.jyu.fi/) of the NIMBUS method (Miettinen and Mékela,
1995, 2006). Obviously, the parameters that are used for parameterizing the body of
2 are not meaningful to the decision maker but the vectors z € body(.#") are. The
only drawback of this approach is that the parameters used for describing the dif-
ferent polytopes in the complex %" are discrete and thus problem (6) has discrete
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variables in its decision space. In effect, the solvers used for solving the scalariza-
tions employed by an interactive multiobjective optimization method must be able
to handle discrete variables. Fortunately, e.g., WWW-NIMBUS® has global solvers
that are able to do this.

The a priori error estimates are useful whenever a decision maker has chosen a
preferred vector on the approximation. Whenever this happens, the decision maker
can be given information about the actual Pareto optimal solutions in the form of
error estimates. Having examined the error estimates, the decision maker can either
choose to have the chosen point on the approximation projected on the actual Pareto
front by means of the achievement scalarizing function (Wierzbicki, 1986) or not.

Future research on this topic is needed to implement the approximation approach
given in this paper. For example, the computational expense of directly employing
rules (R1) and (R2) grows exponentially when the number of objectives rises and
smart computation schemes are needed to handle this. Second, we need to find an
efficient way to solving problems (2) and (3). As further research, it is of interest
to study which interactive multiobjective optimization methods and implementations
are most suitable for solving problem (6) in real life problems and with real decision
makers. The choice of the interactive method may obviously depend on the initial
multiobjective optimization problem and also on the decision maker’s desires. Fi-
nally, to make our approximation approach more versatile, we intend to examine how
the continuity assumption in Section 2 can be relaxed.

Another direction of research is to study other uses of our approximation in multi-
objective optimization. For example, in bilevel multiobjective optimization it is some-
times required to approximate the Pareto front of the lower level problem that is then
brought to the upper level. Because of the inherent nondominance property, our ap-
proximation has potential to be efficient in this kind of use.
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