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4 Z. Wang

Abstract
LetD ⊂ R2 be the unit disk. The fractional Sobolev spaceW 1−1/p,p(S1)

is the trace space of W 1,p(D) for p > 1, that is, there exists a unique
continuous linear mapping T from W 1,p(D) into W 1−1/p,p(S1) such that
T u = u|S1 for all u ∈ C∞(D), and there exists a continuous linear
mapping E from W 1−1/p,p(S1) into W 1,p(D) such that Eg|S1 = g for all
g ∈ W 1−1/p,p(S1).

We would like to use the dyadic energy E(g; p, λ) obtained via the
summation of the differences between the averages associated with a
dyadic decomposition to characterize the trace of some Sobolev space.
After modifying the energy E(g; p, λ) to E(g; p, λ) and E(g; Φ) with

Φ(t) = tp logλ(e + t), we define the Banach spaces TΦ(S1) and T̃Φ(S1)
with norms ‖ · ‖Φ and ‖ · ‖∗Φ, respectively. Then we prove that TΦ(S1)
is the trace space of the weighted Orlicz-Sobolev space W 1,Φ

p−2(D) and

that T̃Φ(S1) is the trace space of another weighted Orlicz-Sobolev space

W 1,p
wΦ

(D). Moreover, we show that TΦ(S1) and T̃Φ(S1) coincide as sets,

but W 1,Φ
p−2(D) and W 1,p

wΦ
(D) do not. Hence, this is an example of two

different Banach spaces that have the same trace space.
To verify the results above, for the extension part, we use a Whitney-

type decomposition of D and an associated partition of unity to define
the extension operator. Then the operator is shown to be continuous
and linear via a series of calculations. For the trace part, we first show
that TΦ(S1) and T̃Φ(S1) are Banach spaces and that C∞(D) is dense in
W 1,Φ
p−2(D) and W 1,p

wΦ
(D). Then we prove that the restriction operator for

functions in C∞(D) is continuous and linear via a series of calculations.
Using the density properties of W 1,Φ

p−2(D) and W 1,p
wΦ

(D) and the complete-

ness of TΦ(S1) and T̃Φ(S1), we finally give the continuous linear trace
operators on W 1,Φ

p−2(D) and W 1,p
wΦ

(D) which coincide with the restriction

operators for functions in C∞(D).
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1 Introduction

Let Ω ⊂ Rn be a domain, i.e., an open connected subset of Rn.

Definition 1.1. Let u ∈ L1
loc(Ω) and i ∈ {1, 2, · · · , n}. We say gi ∈ L1

loc(Ω) is the
weak partial derivative (distributional derivative) of f with respect to xi in Ω if∫

Ω

uφxi dx = −
∫

Ω

gi φ dx

for all φ ∈ C∞c (Ω). Then Du := (g1, · · · , gn) is the weak derivative or weak gradient
of u.

Then we introduce the Sobolev space W 1,p(Ω) with p ∈ [1,∞] as the set of all
functions u ∈ Lp(Ω) whose weak derivative Du belongs to the space Lp(Ω). The
Sobolev space W 1,p(Ω) is a Banach space, i.e., complete normed vector space with
the norm

‖u‖W 1,p(Ω) :=

(∫
Ω

|u(x)|p dx
)1/p

+

(∫
Ω

|Du(x)|p dx
)1/p

for 1 ≤ p <∞, and
‖u‖W 1,∞(Ω) := ess sup

Ω
(|u|+ |Du|).

We would like to characterize the trace of a Sobolev function u ∈ W 1,p(Ω),
namely, the restriction of u to the boundary ∂Ω. It would be interesting to find a
Banach space X(∂Ω, ‖·‖) characterizing the trace space such that the trace operator
becomes a bounded linear operator T : W 1,p(Ω) → X(∂Ω, ‖ · ‖). Also there is
a converse problem, namely, the problem of extension. Given the Banach space
X(∂Ω, ‖ · ‖), we would like to find a bounded linear operator E : X(∂Ω, ‖ · ‖) →
W 1,p(Ω) such that Eg|∂Ω = g for all g ∈ X(∂Ω, ‖ · ‖).

For technical reasons, we only consider the case that Ω is the unit disk D ⊂ R2.
Then we have ∂Ω = S1. For the Sobolev space W 1,p(D) with 1 ≤ p < ∞ , we
have the density property of smooth functions, i.e., C∞(D) is dense in W 1,p(D)
(see [6, Theorem 4.3]). Here C∞(D) is the set of all functions u = u(x) infinitely
differentiable in D, whose derivatives Dαu are bounded and uniformly continuous.
Now u|S1 is well-defined for a function u ∈ C∞(D). Assume that there exists a
Banach space X(S1, ‖ · ‖) such that the trace operator T : C∞(D) → X(S1, ‖ · ‖)
with T u = u|S1 is a bounded linear operator, i.e., there exists a constant C > 0 such
that for all u ∈ C∞(D) we have ‖T u‖X(S1) ≤ C‖u‖W 1,p(D). Then we can define the
trace operator T : W 1,p(D) → X(∂Ω, ‖ · ‖) with T u the limit of T uk in the norm
sense, where uk ∈ C∞(D) converge to u in W 1,p(D) as k →∞.

Using the idea above, one can prove that the trace space of W 1,p(D) is the
fractional Sobolev space W 1−1/p,p(S1) for p > 1, see [2, Theorem 6.8.13 and Theorem
6.9.2]. Indeed, there exists a unique continuous linear mapping T from W 1,p(D) into
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W 1−1/p,p(S1) such that T u = u|S1 for all u ∈ C∞(D), and there exists a continuous
linear mapping E from W 1−1/p,p(S1) into W 1,p(D) such that Eg|S1 = g for all
g ∈ W 1−1/p,p(S1). Here the fractional Sobolev space W 1−1/p,p(S1) consists of all the
functions g ∈ Lp(S1) such that

‖g‖p
W 1−1/p,p(S1)

= ‖g‖pLp(S1) +

∫
S1

∫
S1

|g(x)− g(y)|p

|x− y|p
dH1

xdH1
y <∞.

In the paper [5], one finds a dyadic version for the energy of g : S1 → R, given
by

(1.1) E(g; p, λ) :=
∞∑
i=1

iλ
2i∑
j=1

|gIi,j − gÎi,j |
p,

where p > 1 and λ ∈ R. Here, {Ii,j : i ∈ N, j = 1, · · · , 2i} is a dyadic decomposition
of S1, such that for a fixed i ∈ N, {Ii,j : j = 1, · · · , 2i} is a family of arcs of length
2π/2i with

⋃
j Ii,j = S1. The next generation is constructed in such a way that

for each j ∈ {1, · · · , 2i+1}, there exists a unique number k ∈ {1, · · · , 2i}, satisfying

Ii+1,j ⊂ Ii,k. We denote this parent of Ii+1,j by Îi+1,j and set Î1,j = S1 for j = 1, 2.
By gA, A ⊂ S1, we denote the mean value gA = –

∫
A
g dH1 = 1

H1(A)

∫
A
g dH1. For

more details, see Section 6.
From Remark 6.4 (also see [5, Theorem 3.1]), we have a sufficient condition for

E(g; p, λ) <∞. If g : S1 → R is bounded and

(1.2)

∫
S1

∫
S1

|g(x)− g(y)|p

|x− y|2
logλ

(
e+
|g(x)− g(y)|
|x− y|

)
dH1

xdH1
y <∞,

then E(g; p, λ) <∞.
When p = 2 and λ = 0, we have

E(g; 2, 0) :=
∞∑
i=1

2i∑
j=1

|gIi,j − gÎi,j |
2.

From Example 6.1, we obtain a function g such that E(g; 2, 0) <∞ but (1.2) is
not satisfied, i.e., ∫

S1

∫
S1

|g(x)− g(y)|2

|x− y|2
dH1

xdH1
y =∞.

So it is not possible to characterize W
1
2
,2(D) by using the energy E(g; 2, 0). We

consider another energy, given by

(1.3) E(g; 2, 0) :=
∞∑
i=1

2i∑
j=1

∑
k

|gIi,j − gIk |2;
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where Ik ∈ {Ii,j+1, Ii,j−1, Îi,j}. Here Ii,0 := Ii,2i and Ii,2i+1 := Ii,1. For the new
energy E(g; 2, 0), we have the following theorem:

Theorem 1.1. (i) For any function u ∈ C∞(D), we have E(u|S1 ; 2, 0) <∞. More
precisely, there exists a constant C > 0 such that for all u ∈ C∞(D), we have

‖u|S1‖2
L2(S1) + E(u|S1 ; 2, 0) ≤ C‖u‖2

W 1,2(D).

(ii) There exists a constant C > 0 such that for any function g ∈ L2(S1) with
E(g; 2, 0) <∞, we can find a a function u ∈ W 1,2(D) which satisfies u|S1 = g and

‖u‖2
W 1,2(D) ≤ C

(
‖g‖2

L2(S1) + E(g; 2, 0)
)
.

Here, we write u|S1 = g if for a.e. x = eiθ ∈ S1, when {xn = rne
iθ}∞n=1 with

xn ∈ D and rn → 1, we have limn→∞ u(xn) = g(x).

For a general p > 1, E(g; p, 0) is the correct energy for the trace of a suitable
weighted Sobolev space. For details about weighted Sobolev spaces, see Section 2.

The fractional Sobolev space W
1
p
,p is the trace space of the weighted Sobolev space

W 1,p
p−2(D) (see [3, Theorem 2.10]). Here, W

1
p
,p(S1) consists of all the functions g such

that

‖g‖p
W

1
p ,p(S1)

= ‖g‖pLp(S1) +

∫
S1

∫
S1

|g(x)− g(y)|p

|x− y|2
dH1

xdH1
y <∞.

In order to deal with the general case p > 1 and λ ∈ R, we modify the energy
(1.3) by setting

(1.4) E(g; p, λ) :=
∞∑
i=1

iλ
2i∑
j=1

∑
k

|gIi,j − gIk |p

and

(1.5) E(g; Φ) :=
∞∑
i=1

2i∑
j=1

∑
k

2−ipΦ

( |gIi,j − gIk |
2−i

)
,

where Ik ∈ {Ii,j+1, Ii,j−1, Îi,j} and Φ(t) = tp logλ(e + t). It is easy to see that the
energy (1.3) is a special case of (1.4). Moreover, the following proposition gives us
the connection between the above two energies.

Proposition 1.1. Let g : S1 → R, g ∈ LΦ(S1) for Φ(t) = tp logλ(e + t), where
1 < p <∞ and λ ∈ R. Then E(g; p, λ) <∞ is equivalent to E(g; Φ) <∞.
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For p > 1 and general λ ∈ R, Sobolev spaces and weighted Sobolev spaces do
not suffice for us, We need to consider Orlicz-Sobolev spaces and weighted Orlicz-
Sobolev spaces, for more details see Section 4. Here, we introduce the weighted
Orlicz-Sobolev space W 1,Φ

p−2(D) as follows:

W 1,Φ
p−2(D) = {u ∈ LΦ(D) :

∫
D

Φ(s|Du(x)|)w(x) dx <∞ for some s > 0},

where w(x) = dist (x, S1)p−2. The space W 1,Φ
p−2(D) is a Banach space and C∞(D) is

dense in it with the norm

‖u‖W 1,Φ
p−2(D) = ‖u‖LΦ(D) + ‖Du‖LΦ

p−2(D)

= inf

{
k :

∫
D

Φ

(
|u|
k

)
dx ≤ 1

}
+ inf

{
k :

∫
D

Φ

(
|Du|
k

)
w(x) dx ≤ 1

}
,

where Du is the weak derivative of u. For the density property, see Section 5.
Our next result is about extensions.

Theorem 1.2. Let g ∈ LΦ(S1) for Φ(t) = tp logλ(e + t), where 1 < p < ∞ and
λ ∈ R. If E(g; p, λ) < ∞, then there exists a function u ∈ W 1,Φ

p−2(D) such that
u|S1 = g.

In the process of verifying the above results, we actually found the trace space of
W 1,Φ
p−2(D), which is much stronger than the above results. Define the space TΦ(S1)

by setting:
TΦ(S1) := {g ∈ LΦ(S1) : ‖g‖Φ <∞},

where
‖g‖Φ = ‖g‖LΦ(S1) + ‖g‖EΦ

and
‖g‖EΦ

= inf
{
k > 0,E

(g
k

; Φ
)
≤ 1
}
.

Then TΦ(S1) is the trace space of W 1,Φ
p−2(D). This is given by the following theorem.

Theorem 1.3. (i) There exists an unique continuous linear mapping T from W 1,Φ
p−2(D)

into TΦ(S1) such that T u = u|S1 for all u ∈ C∞(D).
(ii) There exists a continuous linear mapping E from TΦ(S1) into W 1,Φ

p−2(D) such
that Eg|S1 = g.

In the process of verifying Theorem 1.3 and Proposition 1.1, we obtained a similar
result. Define T̃Φ(S1) as follows:

T̃Φ(S1) := {g ∈ LΦ(S1) : ‖g‖∗Φ <∞},
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where
‖g‖∗Φ = ‖g‖LΦ(S1) + ‖g‖∗EΦ

and
‖g‖∗EΦ

= (E(g, p, λ))1/p .

Then T̃Φ(S1) is the trace space of W 1,p
wΦ

(D) where wΦ is the weight in Example 3.2.
This result is given by the following theorem.

Theorem 1.4. (i) There exists an unique continuous linear mapping T ∗ from

W 1,p
wΦ

(D) into T̃Φ(S1) such that T ∗u = u|S1 for all u ∈ C∞(D).

(ii) There exists a continuous linear mapping E∗ from T̃Φ(S1) into W 1,p
wΦ

(D) such
that E∗g|S1 = g.

For more details about W 1,p
wΦ

(D) see Example 4.4. Moreover, C∞(D) is also dense
in W 1,p

wΦ
(D); see Section 5.

Remark 1.1. From Proposition 1.1, we know that TΦ(S1) and T̃Φ(S1) are equal
as sets, but the norms ‖ · ‖Φ and ‖ · ‖∗Φ are not equivalent. Moreover, W 1,Φ

p−2(D) 6=
W 1,p
wΦ

(D), see Remark 4.2. Hence we have two different Banach spaces which have
the same trace space.

Remark 1.2. It is easy to see that Theorem 1.1 is a special case of Theorem 1.3
or of Theorem 1.4 with p = 2 and λ = 0. Moreover, we can obtain Theorem 1.2
directly via the proof of Theorem 1.3. Hence we only need to give the proofs of
Theorem 1.3 and Theorem1.4.

We have not been able to find the results contained in Proposition 1.1, Theorem
1.3 and Theorem 1.4 in the literature.

This thesis is organized as follows. Section 2 mainly introduces the weighted
Sobolev spaces. In section 3, we introduce Ap-weights and maximal functions with
respect to the measure coming from an Ap-weight. In Section 4, we recall Orlicz and

Orlicz-Sobolev spaces, and give the definitions of the spaces W 1,Φ
p−2(D) and W 1,p

wΦ
(D).

In section 5, we mainly give the proof of the density properties of W 1,Φ
p−2(D) and

W 1,p
wΦ

(D). We discuss the three different energies and their connections in Section
6. In Section 8, 9 and 10 we give the proofs of Proposition 1.1, Theorem 1.3 and
Theorem 1.4, respectively.

Finally, we make some conventions about the notation. We denote by C a
positive constant which is independent of the main parameters, but which may vary
from line to line. The formula A . B or B & A means that A ≤ CB. If A . B and
B . A, then we write A ∼ B. Denote by N the set of positive integers and R the
set of real numbers. For any locally integrable function u and measurable set E of
positive measure with respect to a measure µ, we denote uE = –

∫
E
u dµ the average

of u over E, namely, –
∫
E
u dµ = 1

µ(E)

∫
E
u dµ.
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2 Weighted Sobolev spaces

Definition 2.1. Let p ∈ [1,∞) and suppose that Ω is a nonempty open subset of
Rn. Let w : Ω→ (0,∞) be a given weight function, i.e a measurable function which
is positive almost every where in Ω. The weighted Sobolev space W 1,p

w (Ω) is defined
to be the set of all functions u ∈ Lpw(Ω) whose distributional derivatives Du belongs
to the weighted Lebesgue space Lpw(Ω), i.e.,

‖Du‖Lpw(Ω) =

(∫
Ω

|Du(x)|pw(x) dx

)1/p

<∞.

Now we can define the norm by setting

‖u‖W 1,p
w (Ω) =

(∫
Ω

|u(x)|pw(x) dx+

∫
Ω

|Du(x)|pw(x) dx

)1/p

.

Let w = ρr with ρ(x) = dist (x, ∂Ω), r > −1. Let k ∈ N and 1 < p < ∞.
Following the argument above, we define

W 1,p
r (Ω) =

{
u :

∫
Ω

|u(x)|pρ(x)r dx+

∫
Ω

|Du(x)|pρ(x)r dx <∞
}
.

We also define another weighted Sobolev space by setting

W1,p
r (Ω) =

{
u : ‖u‖pLp(Ω) +

∫
Ω

|Du(x)|pρ(x)r dx <∞
}

If our domain is a bounded Lipschitz domain and r is in an appropriate range,
thenWk,p

r (Ω) is no different from W k,p
r (Ω). This statement follows from the following

lemma which can be found in [3, Lemma 2.4].

Lemma 2.1. Let −1 < r < p and Ω be a bounded Lipschitz domain. Then
W1,p

r (Ω) = W 1,p
r (Ω).

Remark 2.1. When we abolish the restriction of r, the above two definitions of
weighted Sobolev spaces are not necessarily equal, i.e., W 6= W . For example,
let Ω = (−1, 1), p = 4, r = 8 and u(x) = dist (x, ∂Ω)−1/2. Then we claim that
u ∈ W 1,p

r (Ω) and u /∈ W1,p
r (Ω). It is sufficient to consider the case when x ∈ [0, 1).

Then u(x) = (1− x)−1/2 and u′(x) = 1
2
(1− x)−3/2 when x ∈ [0, 1). Since∫ 1

0

|u(x)|pρr dx+

∫ 1

0

|u′(x)|pρr dx =

∫ 1

0

(1− x)6 +
1

16
(1− x)2 dx <∞

and ∫ 1

0

|u(x)|p dx =

∫ 1

0

(1− x)−2 dx =∞,

the claim follows. Hence W 6=W .
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3 Ap-weights and Maximal functions

Definition 3.1. Let w be a locally integrable nonnegative function on Rn and
assume that 0 < w < ∞ almost everywhere. We say that w belongs to the Muck-
enhoupt class Ap, 1 < p < ∞, or that w is an Ap-weight, if there is a constant cp,w
such that

(3.1) –

∫
B

w dx ≤ cp,w

(
–

∫
B

w1/(1−p) dx

)1−p

for all balls B in Rn.

Let µ stand for the measure whose Radon-Nikodym derivative w is,

µ(E) =

∫
E

w dx.

According to the following lemma, µ is a doubling Radon measure (see [4, Corollary
15.7]).

Lemma 3.1. If w ∈ Ap, then µ is a doubling measure; that is,

µ(2B) ≤ Cµ(B)

for all balls B in Rn, where C = 2npcp,w.

Proof. We have

|B|=
∫
B

w1/pw−1/p dx ≤
(∫

B

w dx

)1/p(∫
B

w1/(1−p) dx

)(p−1)/p

≤µ(B)1/p

(∫
2B

w1/(1−p) dx

)(p−1)/p

=µ(B)1/p

(
–

∫
2B

w1/(1−p) dx

)(p−1)/p

|2B|(p−1)/p

≤ c1/p
p,wµ(B)1/p

(
–

∫
2B

w dx

)−1/p

|2B|(p−1)/p

= c1/p
p,w

(
µ(B)

µ(2B)

)1/p

|2B|,

where we use the Hölder inequality and the definition of Ap-weights.
Hence we get that

cp,w
µ(B)

µ(2B)
≥
(
|B|
|2B|

)1/p

= 2−np.
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Thus, we have
µ(2B) ≤ 2npcp,wµ(B)

and the claim follows.

We assume that each of the following Radon measures µ comes from an Ap-
weight, i.e.,

µ(E) =

∫
E

w dx.

Hence µ is a doubling Radon measure which is absolutely continuous with respect
to Lebesgue measure.

Example 3.1. Define w : R2 → (0,∞) with w(x) = dist (x, S1)p−2 where S1 =
{x ∈ R2 : |x| = 1} and p > 1. Then w is an Ap-weight.

Proof. To prove that w is an Ap-weight, it suffices to check the condition (3.1).
We divide this into two cases: (i) dist (B, S1) ≥ 1

2
diam (B); (ii) dist (B, S1) <

1
2

diam (B).
For the case (i), ∀ x ∈ B, we have dist (B, S1) ≤ dist (x, S1) < 3 dist (B, S1).

Let dist (B, S1) = d. We have

min{1, 3p−2}dp−2 ≤ w(x) ≤ max{1, 3p−2}dp−2, ∀ x ∈ B.

Then we have

–

∫
B

w(x) dx ∼ dp−2,

and (
–

∫
B

w1/(1−p) dx

)1−p

∼ dp−2.

Hence the condition (3.1) is satisfied as desired.
For the case (ii), we divide it into two subcases: subcase (1), diam (B) ≤ 2

3
;

subcase (2), diam (B) > 2
3
.

For the subcase (1), we have dist (B, S1) < 1
2

diam (B) and diam (B) ≤ 2
3
. We

can find a new ball Br = B(x0, r) whose center x0 is on S1 with r = 2
3

diam (B) ≤ 1
such that B ⊂ Br. Let E = {x ∈ R2, dist (x, S1) < r}. Then Br ⊂ E. Now let F
be the maximal collection with

F = {B(xi, r) : xi ∈ S1, B(xi, r) ∩B(xj, r) = ∅ for i 6= j, i, j ∈ N}.

Since r ≤ 1, from geometry, we have #F ∼ 1
r
. For any B(xi, r) ∈ F , we have∫

Br

w(x) dx =

∫
B(xi,r)

w(x) dx .
1

1/r

∫
E

w(x) dx.
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Hence

–

∫
B

w(x) dx.
1

r2

∫
Br

w(x) dx .
1

r

∫
E

w(x) dx

= 2π
1

r

∫ r

0

tp−2(1− t) dt+ 2π
1

r

∫ r

0

tp−2(1 + t) dt

= 4π
1

p− 1
rp−2 ∼ rp−2,

and

–

∫
B

w1/(1−p) dx.
1

r

∫
E

w1/(1−p) dx

= 2π
1

r

∫ r

0

t
p−2
1−p (1− t) dt+ 2π

1

r

∫ r

0

t
p−2
1−p (1 + t) dt

= 4π(p− 1)r
p−2
1−p ∼ r

p−2
1−p .

Since 1− p < 0, we have(
–

∫
B

w1/(1−p) dx

)1−p

&
(
r
p−2
1−p

)1−p
= rp−2.

Thus, the condition (3.1) is satisfied as desired.
For the subcase (2), we have dist (B, S1) < 1

2
diam (B) and diam (B) > 2

3
. Let

F = B(0, 1 + `) with ` = 3
2

diam (B) > 1. Then we have B ⊂ F and `p & 1. Hence
we have the estimate:

–

∫
B

w(x) dx.
1

`2

∫
F

w(x) dx =
1

`2

∫
B(0,1)

w(x) dx+
1

`2

∫
F\B(0,1)

w(x) dx

=
2π

p(p− 1)
`−2 +

2π

p− 1
`p−3 +

2π

p
`p−2 . `p−2

and

–

∫
B

w1/(1−p) dx.
1

`2

∫
F

w1/(1−p) dx =
1

`2

∫
B(0,1)

w1/(1−p) dx+
1

`2

∫
F\B(0,1)

w1/(1−p) dx

=
2π(p− 1)2

p
`−2 + 2π(p− 1)`

1
p−1
−2 +

2π(p− 1)

p
`

p
p−1
−2

. `
p
p−1
−2 = `

p−2
1−p .

Using the same argument as in subcase (1), we get the condition (3.1). Hence w is
an Ap-weight.
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Remark 3.1. From the proof above, we can get a more general result. Let p > 1 and
the weight wr : R2 → (0,∞) be wr(x) = dist (x, S1)r where S1 = {x ∈ R2 : |x| = 1}.
Then wr is an Ap-weight provided that −1 < r < p− 1.

Example 3.2. Define w : R2 → (0,∞) by setting

w(x) =

{
dist (x, S1)p−2 logλ

(
4

dist (x,S1)

)
, 0 ≤ |x| ≤ 2

logλ(4), |x| > 2.

where S1 = {x ∈ R2 : |x| = 1}, p > 1 and λ ∈ R. Then w is an Ap-weight.

Proof. Using the same idea as in the proof of Example 3.1, we consider case (i) and
case (ii). Case (i) is obvious, and for the case (ii), we first consider subcase (1). The
main point is to compute ∫ r

0

tα logλ(4/t) dt

for 1 > r > 0 and α > −1.
Using Integration by Parts, we have

rα+1 logλ(4/r) =

∫ r

0

(α + 1)tα logλ(4/t) dt−
∫ r

0

λtα logλ−1(4/t) dt

When 0 < r ≤ 4 exp(− 2|λ|
α+1

), for 0 < t ≤ r, we have∣∣∣∣ λ

(α + 1) log(4/t)

∣∣∣∣ ≤ 1

2
.

When 1 > r > 4 exp(− 2|λ|
α+1

), for 4 exp(− 2|λ|
α+1

) ≤ t ≤ r, we have r ∼ t. Hence we
obtain

(3.2)
1

α + 1
rα+1 logλ(4/r) ∼

∫ r

0

tα logλ(4/t) dt,

for all 0 < r ≤ 1. Using the above computation, we can easily see that the claim is
satisfied in subcase (1).

For the subcase (2), notice that w(x) is a constant when |x| > 2. It is easy to
see that the claim is also satisfied in subcase (2) via a simple computation.

Hence w is an Ap-weight.

For a measurable function f on Rn, we define the Hardy-Littlewood maximal
function of f with respect to µ by setting

Mµf(x) = sup –

∫
B

|f | dµ = sup
1

µ(B)

∫
B

|f | dµ,

where the supremum is taken over all open balls B that contain x. Then we have
an important inequality which asserts that the maximal operator maps Ls(Rn;µ)
continuously into itself for s > 1.
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Lemma 3.2. 1) : If f ∈ L1(Rn;µ) and t > 0, then

µ({Mµf > t}) ≤ C

t

∫
{Mµf>t}

|f | dµ ≤ C

t

∫
Rn
|f | dµ,

where C depends only on n, p and the Ap-constant cp,w.
2) : If f ∈ Ls(Rn;µ), 1 < s <∞, then we have that∫

Rn
|Mµf |s dµ ≤ C

∫
Rn
|f |s dµ,

where C depends only on n, p, s and the Ap-constant cp,w.

Proof. 1): We may assume that M :=
∫
{Mµf>t} |f | dµ < ∞. For each compact

subset E ⊂ {Mµf > t} and for any x ∈ E, there is a open ball B such that x ∈ B
and

–

∫
B

|f | dµ > t.

Then we have

µ(B) < t−1

∫
B

|f | dµ.

If y ∈ B, then Mµf(y) > t and thus B ⊂ {Mµf > t}. So

µ(B) < t−1

∫
B

|f | dµ ≤ 1

t

∫
{Mµf>t}∩B

|f | dµ.

Since E is compact, we can select a finite subset {Bj : 1 ≤ j ≤ m} from
{Bx : x ∈ E} such that E ⊂ ∪mj=1Bj. Now sup{ diam (Bj)} is bounded. Hence
we may use the 5r-covering lemma to find pairwise disjoint balls B1, B2, · · · , Bk as
above so that E ⊂ ∪mj=1Bj ⊂

⋃
j=1 5Bj. Then using the doubling property of µ, i.e.,

Lemma 3.1, we have

µ(E) ≤
∑
j

µ(5Bj) ≤ C
∑
j

µ(Bj) ≤
C

t

∫
{Mµf>t}

|f | dµ ≤ C

t

∫
Rn
|f | dµ,

where C depends only on n, p and the Ap-constant Ap,w. We take the supremum
over all such compact sets E ⊂ {Mµf > t}, and the conclusion 1) is proved.

2) Recall the Cavalieri principle:∫
|u|p dµ= p

∫ ∫ |v(x)|

0

tp−1 dt dµ

= p

∫ ∫ ∞
0

tp−1χ{|v|>t} dt dµ
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= p

∫ ∞
0

tp−1µ({|v| > t}) dt.

Fix t > 0 and define

ft(x) =

{
|f(x)|, |f(x)| > t/2

0, |f(x)| ≤ t/2.

Then we have that

|f(x)| ≤ |ft(x)|+ t/2

and

Mµf(x) ≤Mµft(x) + t/2.

Thus,

{x : Mµf(x) > t} ⊂ {Mµft(x) > t/2}.

By the Cavalieri principle, part 1) of this lemma and the Fubini theorem, we
obtain the estimate∫

Rn
|Mµf(x)|p dµ= p

∫ ∞
0

tp−1µ({|Mµf(x)| > t}) dt

≤ p
∫ ∞

0

tp−1µ({|Mµft(x)| > t/2}) dt

≤Cp
∫ ∞

0

tp−1 1

t

∫
Rn
|ft| dµ dt

≤Cp
∫ ∞

0

tp−2

∫
{|f(x)|>t/2}

|f | dµ dt

≤Cp
∫ ∞

0

tp−2

∫
R
|f |χ{|f(x)|>t/2} dµ dt

=Cp

∫
Rn
|f(x)|

∫ 2|f(x)|

0

tp−2 dt dµ

=C ′
∫
Rn
|f(x)|µ,

where C ′ depends on n, p, s and the Ap-constant cp,w.

The definition and the doubling property of Ap-weights are from the monograph
[4]. The ideas for the maximal function and Lemma 3.2 are from the lecture notes
[10], but we generalize the Lebesgue measure to a Radon measure which comes from
an Ap-weight. Example 3.1 and Example 3.2 were verified by us.
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4 Orlicz and Orlicz-Sobolev spaces

In this section and the following sections, we assume that the Radon measure µ
comes from an Ap-weight, i.e., there exist wµ which is an Ap-weight such that

µ(E) =

∫
E

wµ dx.

Hence µ is a doubling Radon measure which is absolutely continuous with respect
to Lebesgue measure.

Definition 4.1. We say that Φ : [0,∞)→ [0,∞) is a Young function if

Φ(t) =

∫ t

0

ϕ(s) ds, t ≥ 0,

where the real-valued function ϕ defined on [0,∞) has the following properties:
(i) ϕ(0) = 0;
(ii) ϕ(s) > 0 for s > 0;
(iii) ϕ is right continuous at any point s ≥ 0;
(iv) ϕ is nondecreasing on (0,∞);
(v) lims→∞ ϕ(s) =∞.

The following properties of Young function can be easily checked.

Lemma 4.1. A Young function Φ is continuous, nonnegative, strictly increasing
and convex on [0,∞). Moreover,

Φ(0) = 0, lim
t→∞

Φ(t) =∞;

lim
t→0+

Φ(t)

t
= 0, lim

t→∞

Φ(t)

t
=∞;

Φ(αt) ≤ αΦ(t) for α ∈ [0, 1] and t ≥ 0;

Φ(βt) ≥ βΦ(t) for β > 1 and t ≥ 0.

Since Φ is convex, it satisfies the following Jensen’s inequality.

Lemma 4.2. Let Φ be convex on R.
(i) Let t1, · · · , tn ∈ R and let α1, · · · , αn be positive numbers. Then

Φ

(
α1t1 + α2t2 + · · ·+ αntn
α1 + α2 + · · ·+ αn

)
≤ α1Φ(t1) + α2Φ(t2) + · · ·+ αnΦ(tn)

α1 + α2 + · · ·+ αn
.
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(ii) Let Ω ⊂ Rn be a domain and let α = α(x) be defined and positive almost
everywhere on Ω. Then

Φ

(∫
Ω
u(x)α(x) dx∫
Ω
α(x) dx

)
≤
∫

Ω
Φ(u(x))α(x) dx∫

Ω
α(x) dx

for every nonnegative function u provided all the integrals in the above inequality
are meaningful.

Then (i) is called Jensen’s inequality and (ii) is called Jensen’s integral inequality.

For any Young function Φ, we can define the complementary function.

Definition 4.2. Let Φ be a Young function generated by the function ϕ, i.e.,

Φ(t) =

∫ t

0

ϕ(s) ds.

We put
ψ(t) = sup

ϕ(s)≤t
s, t ≥ 0,

and

Ψ(t) =

∫ t

0

ψ(s) ds.

It is easy to check that Ψ is also a Young function. The function Ψ is called
the complementary function to Φ. We call Φ,Ψ a pair of complementary Young
functions.

We now introduce Young’s inequality.

Lemma 4.3. Let Φ,Ψ be a pair of complementary Young functions. Then for all
a, b ∈ [0,∞), we have that

ab ≤ Φ(a) + Ψ(b).

Equality holds if and only if

b = ϕ(a) or a = ψ(b).

Moreover, if u(x) and v(x) are measurable functions on Ω, we get∫
Ω

|u · v| dµ ≤
∫

Ω

Φ(|u|) dµ+

∫
Ω

Ψ(|v|) dµ.

Equality occurs if

|v(x)| = ϕ(|u(x)|) or |u(x)| = ψ(|v(x)|).
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There is a special class of Young functions which is very important.

Definition 4.3. A Young function Φ is said to be doubling if there exists a constant
k > 0 such that

Φ(2t) ≤ kΦ(t) for all t ≥ 0.

Combining convexity and the doubling property, we can easily get the following
property:

Proposition 4.1. If a Young function Φ is doubling, then for any constant c > 0,
there exist c1, c2 > 0 such that

c1Φ(t) ≤ Φ(ct) ≤ c1Φ(t) for all t ≥ 0,

where c1 and c2 depend only on c and the doubling constant k.

Now we introduce an ordering in the class of Young functions.

Definition 4.4. Let Φ1,Φ2 be two Young functions. If there exist two constants
k > 0 and t ≥ T such that

Φ1(t) ≤ Φ2(ct) for t ≥ T,

we write
Φ1 ≺ Φ2.

Remark 4.1. If we have Φ1 ≺ Φ2, then their complementary functions Ψ1,Ψ2

satisfy Ψ2 ≺ Ψ1.

Example 4.1. Let p > 1. Then the function Φ(t) = tp/p is a Young function and
the complementary function is Ψ(t) = tq/q where 1

p
+ 1

q
= 1. Moreover, Φ satisfies

the doubling condition, where we can put k = 2p.
Let Φ(t) = tp logλ(e+ t), where 1 < p <∞ and λ ∈ R. Then

tp−ε ≺ Φ(t) ≺ tp+ε,

for p > 1 and 0 < ε < p− 1.

Next, we introduce Orlicz spaces.

Definition 4.5. Let Φ be a Young function and u be a measurable function defined
almost everywhere on Ω ⊂ Rn. The space

LΦ(Ω;µ) := {u ∈ L1
loc(Ω;µ) :

∫
Ω

Φ(s|u(x)|) dµ <∞ for some s > 0}

is called an Orlicz space.
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Let Ψ be the complementary Young function of Φ. We define the Orlicz norm
of u ∈ LΦ(Ω;µ) by setting

‖u‖LΦ(Ω;µ) = sup
v

∫
Ω

|u(x)v(x)| dµ,

where the supremum is taken over all the measurable functions v such that∫
Ω

Ψ(|v(x)|) dµ ≤ 1.

Since the above norm requires the knowledge of the expression for the comple-
mentary Young function Ψ, we define another norm which is expressed only in terms
of Φ. Define the Luxemburg norm of u ∈ LΦ(Ω;µ) by setting

‖u‖LLΦ(Ω;µ) = inf

{
k > 0 :

∫
Ω

Φ

(
|u|
k

)
dµ ≤ 1

}
.

The following proposition tells us that the two norms ‖ · ‖LΦ(Ω;µ) and ‖ · ‖LLΦ(Ω;µ)

are equivalent (see [2, Theorem 3.8.5]).

Proposition 4.2. For each u ∈ LΦ(Ω;µ),

‖u‖LLΦ(Ω;µ) ≤ ‖u‖LΦ(Ω;µ) ≤ 2‖u‖LLΦ(Ω;µ).

To prove the above proposition, we need the following lemma:

Lemma 4.4. Let Φ be a Young function and let u ∈ LΦ(Ω;µ) be such that ‖u‖LΦ(Ω;µ) 6=
0. Then we have

(4.1)

∫
Ω

Φ

(
|u|

‖u‖LΦ(Ω;µ)

)
dµ ≤ 1.

Proof. For u ∈ LΦ(Ω;µ), we claim that

(4.2)

∫
Ω

|u(x)v(x)| dµ ≤
{
‖u‖LΦ(Ω;µ) for

∫
Ω

Ψ(|v|) dµ ≤ 1,
‖u‖LΦ(Ω;µ)

∫
Ω

Ψ(|v|) dµ for
∫

Ω
Ψ(|v|) dµ > 1.

The first part of inequality (4.2) follows from the definition of the Orlicz norm. For
the second part, we use the convexity of Ψ, i.e., Ψ(αt) ≤ αΨ(t) for t ≥ 0 and
α ∈ [0, 1]. Hence we obtain that∫

Ω

Ψ

(
|v(x)|∫

Ω
Ψ(|v|) dµ

)
dµ ≤ 1∫

Ω
Ψ(|v|) dµ

∫
Ω

Ψ(|v(x)|) dµ = 1.
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By the definition of the Orlicz norm,∫
Ω

|u(x)| |v(x)|∫
Ω

Ψ(|v|) dµ
dµ ≤ ‖u‖LΦ(Ω;µ)

which gives the proof of the second part of inequality (4.2).
Let us first suppose that u ∈ LΦ(Ω;µ) is bounded and that u(x) = 0 for x ∈ Ω\Ω0

with µ(Ω0) <∞. If we take

v(x) = ϕ

(
|u(x)|
‖u‖LΦ(Ω;µ)

)
,

then also the functions Φ
(

|u(x)|
‖u‖

LΦ(Ω;µ)

)
and Ψ(|v(x)|) are bounded and integrable over

Ω0; furthermore, they belong to L1(Ω;µ) because they are zero outside of Ω0.
Using the Young’s inequality in Lemma 4.3, and we check that the equality

occurs, i.e.,∫
Ω

1

‖u‖LΦ(Ω;µ)

|u(x)v(x)| dµ =

∫
Ω

Φ

(
|u(x)|
‖u‖LΦ(Ω;µ)

)
dµ+

∫
Ω

Ψ(|v(x)|) dµ.

Then using inequality 4.2 and we get that

max

(∫
Ω

Ψ(|v(x)|) dµ, 1
)
≥
∫

Ω

Φ

(
|u(x)|
‖u‖LΦ(Ω;µ)

)
dµ+

∫
Ω

Ψ(|v(x)|) dµ.

If
∫

Ω
Ψ(|v(x)|) dµ > 1, then necessarily∫

Ω

Φ

(
|u(x)|
‖u‖LΦ(Ω;µ)

)
dµ = 0.

If
∫

Ω
Ψ(|v(x)|) dµ ≤ 1, then ∫

Ω

Φ

(
|u(x)|
‖u‖LΦ(Ω;µ)

)
dµ ≤ 1.

Hence we proved inequality (4.1) when u is bounded.
Now, let u ∈ LΦ(Ω;µ) be arbitrary. We pick a sequence of subsets Ωn ⊂ Ω,

n ∈ N such that Ωn ⊂ Ωn+1, µ(Ωn) < ∞ and Ω =
⋃∞
n=1 Ωn. Then we define the

functions un, n ∈ N by

un(x) =


u(x) for x ∈ Ωn and |u(x)| ≤ n,
n for x ∈ Ωn and |u(x)| > n,
0 for x ∈ Ω \ Ωn.
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It follows From the first part of the proof that (4.1) holds for every function un,
i.e., ∫

Ω

Φ

(
|un(x)|
‖un‖LΦ(Ω;µ)

)
dµ ≤ 1.

Moreover, as |un(x)| ≤ |u(x)| for all x ∈ Ω, we can easily check that ‖un‖LΦ(Ω;µ) ≤
‖u‖LΦ(Ω;µ) for all n ∈ N. Thus, we have

|un(x)|
‖u‖LΦ(Ω;µ)

≤ |un(x)|
‖un‖LΦ(Ω;µ)

and Φ

(
|un(x)|
‖u‖LΦ(Ω;µ)

)
≤ Φ

(
|un(x)|
‖un‖LΦ(Ω;µ)

)
.

Consequently, ∫
Ω

Φ

(
|un(x)|
‖u‖LΦ(Ω;µ)

)
dµ ≤ 1.

The sequences {|un(x)|}∞n=1 and
{

Φ
(
|un(x)|
‖u‖

LΦ(Ω;µ)

)}∞
n=1

are nondecreasing. Hence,

using the Monotone Convergence Theorem, we get that∫
Ω

Φ

(
|u|

‖u‖LΦ(Ω;µ)

)
dµ = lim

n→∞

∫
Ω

Φ

(
|un(x)|
‖u‖LΦ(Ω;µ)

)
dµ ≤ 1,

and inequality (4.1) follows.

Proof of Proposition 4.2. Using Lemma 4.4, it follows that if u ∈ LΦ(Ω;µ), we have

‖u‖LLΦ(Ω;µ) ≤ ‖u‖LΦ(Ω;µ).

For the other inequality, define w = u/‖u‖LLΦ(Ω;µ). Then we have

‖w‖LΦ(Ω;µ) = sup
v

∫
Ω

|u(x)v(x)| dµ ≤
∫

Ω

Φ(|w|) dµ+ 1,

where we used the Young inequality in Lemma 4.3 and that the supremum is taken
over all the measurable functions such that∫

Ω

Ψ(|v(x)|) dµ ≤ 1.

Now, let us estimate
∫

Ω
Φ(|w|) dµ. From the definition of Luxemburg norm, if we

let k tend to ‖u‖LLΦ(Ω;µ) in ∫
Ω

Φ

(
|u|
k

)
dµ ≤ 1,

Fatou’s lemma gives us∫
Ω

Φ(|w|) dµ =

∫
Ω

Φ

(
|u|

‖u‖L
LΦ(Ω;µ)

)
dµ ≤ lim inf

k

∫
Ω

Φ

(
|u|
k

)
dµ ≤ 1.
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Hence we have

‖w‖LΦ(Ω;µ) ≤ 2

and the other inequality follows.

Example 4.2. (i): When Φ(t) = tp, p ≥ 1, we have LΦ(Ω;µ) = Lp(Ω;µ) and
‖ · ‖LLΦ(Ω;µ) = ‖ · ‖Lp(Ω,µ).

(ii): When µ = Ln, i.e., µ is the Lebesgue measure, we denote LΦ(Ω, µ) by
LΦ(Ω).

(iii): If w is an Ap-weight such that µ(A) =
∫
A
w dx for any measurable set A,

then we denote LΦ(Ω, µ) by LΦ
w(Ω) with

‖u‖LLΦ(Ω;µ) = inf

{
k > 0 :

∫
Ω

Φ

(
|u|
k

)
dµ ≤ 1

}
= inf

{
k > 0 :

∫
Ω

Φ

(
|u|
k

)
w(x) dx ≤ 1

}
= ‖u‖LLΦ

w(Ω).

For the Lebesgue Lp-spaces, we have the Hölder inequality, i.e., if u ∈ Lp(Ω) and
v ∈ Lq(Ω) with 1

p
+ 1

q
= 1, we have∫

Ω

|u(x)v(x)| dx ≤ ‖u‖Lp(Ω) · ‖v‖Lq(Ω).

The following lemma provides an analogous inequality for Olicz spaces.

Lemma 4.5. Let Φ,Ψ be a pair of complementary Young functions. If u ∈ LΦ(Ω)
and v ∈ LΨ(Ω), the u · v ∈ L1(Ω) and∫

Ω

|u(x)v(x)| dx ≤ ‖u‖LΦ(Ω) · ‖v‖LΨ(Ω).

Proof. For ‖v‖LΨ(Ω) = 0, inequality is obvious. If ‖v‖LΨ(Ω) 6= 0, we apply Lemma
4.4 for the Young function Ψ, obtaining∫

Ω

Ψ

(
v

‖v‖LΨ(Ω)

)
dx ≤ 1.

Then the inequality follows from the definition of the Orlicz norm of u:∫
Ω

|u(x)v(x)| dx = ‖v‖LΨ(Ω)

∫
Ω

∣∣∣∣u(x)
v

‖v‖LΨ(Ω)

∣∣∣∣ dx ≤ ‖u‖LΦ(Ω) · ‖v‖LΨ(Ω).
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For the Lebesgue spaces Lp(Ω) and Lq(Ω), if µ(Ω) <∞ and 1 ≤ p < q, then

Lq(Ω) ⊂ Lp(Ω).

We can also obtain a similar result for the Orlicz spaces LΦ1 and LΦ2 making use of
the ordering ≺ introduced in Definition 4.4. We have the following lemma (see [2,
Theorem 3.17.1 and Theorem 3.17.5]):

Lemma 4.6. Let Φ1,Φ2 be two Young functions and µ(Ω) < ∞. If Φ2 ≺ Φ1, then
there exists a constant k > 0 such that

‖u‖LΦ2 (Ω,µ) ≤ k‖u‖LΦ1 (Ω,µ)

for all u ∈ LΦ1(Ω, µ).

Proof. Suppose Φ2 ≺ Φ1 holds. If we denote by Ψ1,Ψ2 the complementary functions
to Φ1,Φ2, respectively, then according to Remark 4.1 we have Ψ1 ≺ Ψ2, i.e., there
exist C > 0 and T ≥ 0 such that

Ψ1(t) ≤ Ψ2(Ct) for t ≥ T,

or, equivalently,
Ψ1(t/C) ≤ Ψ2(t) for t ≥ CT.

Since
Ψ1(t/C) ≤ Ψ1(T ) for t ≤ CT,

we have that
Ψ1(t/C) ≤ Ψ1(T ) + Ψ2(t) for t ≥ 0.

Now, let v satisfy
∫

Ω
Ψ2(|v|) dµ ≤ 1. Then we have∫

Ω

Ψ1(|v|/C) dµ ≤ Ψ1(T )µ(Ω) +

∫
Ω

Ψ2(|v(x)|) ≤ 1 + Ψ1(T )µ(Ω) <∞.

If we denote α = (Ψ1(T )µ(Ω) + 1)−1 ≤ 1 and k = C/α, then we conclude from the
convexity of Ψ2 that∫

Ω

Ψ1(|v|/k) dµ =

∫
Ω

Ψ1

(
α
|v(x)|
C

)
dµ ≤ α

∫
Ω

Ψ1

(
|v(x)|
C

)
dµ ≤ αα−1 = 1.

Thus, we have that
∫

Ω
Ψ2(|v|) dµ ≤ 1 implies

∫
Ω

Ψ2(|v|/k) dµ ≤ 1. Hence our
claim follows from the definition of the Orlicz space:

‖u‖LΦ2 (Ω,µ) = sup
v

∫
Ω

|u(x)v(x)| dµ = k sup
v

∫
Ω

∣∣∣∣u(x)
v(x)

k

∣∣∣∣ dµ
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≤ k sup
v/k

∫
Ω

∣∣∣∣u(x)
v(x)

k

∣∣∣∣ dµ = k sup
w

∫
Ω

|u(x)w(x)| dµ

= k‖u‖LΦ1 (Ω,µ),

where the supremum of v is taken over all v such that
∫

Ω
Ψ2(|v|) dµ ≤ 1 and the

supremum of v/k is taken over all v/k such that
∫

Ω
Ψ2(|v|/k) dµ ≤ 1.

Next, we will introduce Orlicz-Sobolev spaces. Here, we consider the case when
µ = Ln, i.e., µ is the Lebesgue measure.

Definition 4.6. Let Φ be a Young function and suppose that Ω is a nonempty
open subset of Rn. The Orlicz-Sobolev space W 1,Φ(Ω) is defined to be the set of all
functions u ∈ LΦ(Ω) whose distributional derivative Du also belongs to the space
LΦ(Ω). Then W 1,Φ(Ω) is the linear set

{u ∈ LΦ(Ω) : Du ∈ LΦ(Ω)}

equipped with the norm

‖u‖W 1,Φ(Ω) := ‖u‖LΦ(Ω) + ‖Du‖LΦ(Ω).

Similarly, we can also give the definition of weighted Orlicz-Sobolev spaces.

Definition 4.7. Let Φ be a Young function and suppose that Ω is a nonempty
open subset of Rn. The weighted Orlicz-Sobolev space with weight w, W 1,Φ

w (Ω) is
the linear set

{u ∈ LΦ(Ω) : Du ∈ LΦ
w(Ω)}

equipped with the norm

‖u‖W 1,Φ
w (Ω) := ‖u‖LΦ(Ω) + ‖Du‖LΦ

w(Ω).

Example 4.3. Let Ω be the unit disk D and w(x) = dist (x, S1)p−2. We have that
w(x) is an Ap-weight. Let µ stand for the measure whose Radon-Nikodym derivative
w(x) is,

µ(E) =

∫
E

w(x) dx.

Then we can also define the Orlicz space LΦ(D,µ) with respect to measure µ,
equipped with the norm

‖u‖LΦ(D,µ) = inf{k > 0 :

∫
D

Φ

(
|u|
k

)
dµ ≤ 1}.

Then LΦ(D,µ) = LΦ
p−2(D). The definition of W 1,Φ

p−2(D) is obtained via Definition
4.7.
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Example 4.4. Let Ω be the unit disk D and wΦ(x) be the weight in Example 3.2
which is an Ap-weight. Then we can define a new weighted Orlicz-Sobolev-type
space W 1,p

wΦ
(D) by setting:

W 1,p
wΦ

(D) =

{
u ∈ LΦ(D) :

∫
D

|Du|pwΦ(x) dx <∞
}

with norm

‖u‖W 1,p
wΦ

(D) = ‖u‖LΦ(D) +

(∫
D

|Du|pwΦ(x) dx

)1/p

,

where Φ(t) = tp logλ(e+ t) with p > 1 and λ ∈ R.

We give an example to show that W 1,Φ
p−2(D) 6= W 1,p

wΦ
(D) for Φ(t) = tp logλ(e + t)

with p > 1 and λ ∈ R.

Remark 4.2. When λ 6= 0, we have W 1,Φ
p−2(D) 6= W 1,p

wΦ
(D).

Define a function u by setting

u(x) =

∫ 1

|x|
t−2/p log−

1
p
− λ

2p

(
e+

1

t

)
dt.

Then

|∇u(x)| = |x|−2/p log−
1
p
− λ

2p

(
e+

1

|x|

)
.

Moreover, we have the estimate

|u(x)| .
∫ 1

|x|
t−

2
p
−ε dt . (1 + |x|

p−2
p
−ε),

for some ε small enough. For p > 1 and ε small enough, we check that∫
D

Φ(|u(x)|) dx .
∫
D

(Φ(1) + Φ(|x|
p−2
p
−ε) dx <∞,

and hence u ∈ LΦ(D).
Now, we divide the unit disk D into two parts: D1 = {x ∈ D : |x| ≤ 1

2
}

and D2 = {x ∈ D : 1
2
< |x| < 1}. Then we have |∇u(x)| ∼ 1 for x ∈ D2 and

wΦ(x) ∼ 1 ∼ dist (x, S1)p−2 = w(x) for x ∈ D1.
For λ > 0, we have∫

D

Φ(|∇u(x)|)w(x) dx ≥
∫
D1

Φ(|∇u(x)|)w(x) dx ∼
∫ 1

2

0

t−1 log−1+λ
2 (e+ t−1) dt =∞
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and ∫
D

|∇u(x)|pwΦ(x) dx=

∫
D1

|∇u(x)|pwΦ(x) dx+

∫
D2

|∇u(x)|pwΦ(x) dx

∼
∫
D2

w(x) dx+

∫
D1

|x|−2 log−1−λ/2(e+ |x|−1) dx

≤C +

∫ 1
2

0

t−1 log−1−λ/2(e+ t−1) dx <∞.

Hence, u ∈ W 1,p
wΦ

(D) but u /∈ W 1,Φ
p−2(D) .

For λ < 0, using a similar argument, we have∫
D

|∇u|pwΦ(x) dx ≥
∫
D1

|∇u|pwΦ(x) dx ∼
∫ 1

2

0

t−1 log−1−λ/2(e+ t−1) dt =∞

and ∫
D

Φ(|∇u|)w(x) dx=

∫
D1

Φ(|∇u|)w(x) dx+

∫
D2

Φ(|∇u|)w(x) dx

∼
∫
D1

w(x) dx+

∫
D2

|∇u|p logλ(e+ |∇u|) dx

.C +

∫ 1
2

0

t−1 log−1+λ
2 (e+ t−1) dt <∞.

Hence, u ∈ W 1,Φ
p−2(D) but u /∈ W 1,p

wΦ
(D).

Most of the results in this section are from the monograph [2] except for Remark
4.2 which is due to us. However, we have generalized the results from the Lebesgue
measure to a Radon measure which comes from an Ap-weight.

5 Mean continuity and Density Property

first , we discuss mean continuity in Lp(Ω) for 1 ≤ p <∞.

Definition 5.1. Let 1 ≤ p < ∞ and u ∈ Lp(Ω). Then the function u is said to be
p-mean continuous if for every ε > 0 there exists a δ = δ(ε) > 0 such that

‖uh − u‖Lp(Ω) < ε

for h ∈ Rn with |h| < δ, where

uh(x) =

{
u(x+ h) if x ∈ Ω and x+ h ∈ Ω,
0 otherwise in Rn.
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A basic result for p-mean continuity is the following lemma (see [2, Theorem
2.4.2]):

Lemma 5.1. Let Ω ⊂ Rn be a bounded domain. Then any function u ∈ Lp(Ω) is
p-mean continuous.

Proof. Let ε > 0. Using the absolute continuity of integration, we have that there
exist an η > 0 such that for each E ⊂ Ω for which Ln(E) < 4η, we have

(5.1)

(∫
E

|u(x)|p dx
)1/p

< ε.

For this η, there exists a % such that Ln(H%) < η, where

H% = {x ∈ Ω : dist (x, ∂Ω) ≤ %}.

Put Ω% = Ω\H%. Clearly f is a measurable on Ω% and thus Luzin’s theorem implies
the existence of a closed set F 1

η ⊂ Ω% such that the restriction of the function u to
F 1
η is continuous, Ln(Ω% \ F 1

η ) < η and thus

Ln(Ω \ F 1
η ) < 2η.

Since F is closed and bounded, it is compact. Then f is uniformly continuous
on F 1

η . Hence there exists a δ ∈ (0, %) such that

(5.2) |f(x+ h)− f(x)| ≤ ε

(Ln(Ω))1/p

for all x, x+ h ∈ F 1
η with |h| < δ.

Let |h| < δ, F 2
η = {x ∈ Ω : x + h ∈ F 1

η }. Then Ln(F 2
η ) = Ln(F 1

η ), according
to the translation invariance of Lebesgue measure. Hence Ln(Ω \ F 2

η ) < η. Let
Fη = F 1

η ∩ F 2
η . Then we have

Ln(Ω \ Fη) ≤ Ln(Ω \ F 1
η ) + Ln(Ω \ F 2

η ) < 4η.

Using inequality (5.1) we obtain(∫
Ω\Fη
|f(x+ h)| dx

)1/p

+

(∫
Ω\Fη
|f(x)| dx

)1/p

< 2ε,

and since inequality (5.2) holds for arbitrary x ∈ Fη, we have(∫
Fη

|f(x+ h)− f(x)| dx

)1/p

< ε.
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Hence(∫
Ω

|f(x+ h)− f(x)| dx
)1/p

≤

(∫
Ω\Fη
|f(x+ h)| dx

)1/p

+

(∫
Ω\Fη
|f(x)| dx

)1/p

+

(∫
Fη

|f(x+ h)− f(x)| dx

)1/p

< 3ε.

Then the claim follows.

For Orlicz spaces, we have the following definition of Φ-mean continuity.

Definition 5.2. Let u ∈ LΦ(Ω;µ). Then the function u is said to be Φ-mean
continuous if for every ε > 0 there exists a δ = δ(ε) > 0 such that

‖uh − u‖LΦ(Ω;µ) < ε

for h ∈ Rn with |h| < δ, where

uh(x) =

{
u(x+ h) if x ∈ Ω and x+ h ∈ Ω,
0 otherwise in Rn.

Using the same idea as in the proof of Lemma 5.1, we can get the following
result of Φ-mean continuity. The main point in the proof below is to take care of
the measure µ which is not as good as Lebesgue measure.

Lemma 5.2. Let u ∈ LΦ(Ω, µ) with Φ doubling, Ω ⊂ Rn bounded. Then u is
Φ-mean continuous.

Proof. Let u ∈ LΦ(Ω;µ) and ε > 0. Let us first prove that there exists a δ = δ(ε)
such that for any h ∈ Rn with |h| < δ we have

(5.3)

∫
Ω

Φ(|uh − u|) dµ < ε.

Since u ∈ LΦ(Ω;µ), there exists s > 0 such that∫
Ω

Φ(s|u|) dµ <∞.

Since Φ is doubling, Φ(s|u|) ∼ Φ(|u|) according to Proposition 4.2. Hence∫
Ω

Φ(|u|) dµ <∞,
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i.e., Φ(|u|) is integrable. Using the absolute continuity of integration, we have that
there exist an η > 0 such that for each E ⊂ Ω for which µ(E) < 5η, we have∫

E

Φ(|u|) dµ < ε.

For this η, since µ is absolutely continuous with respect to Lebesgue measure
Ln, there exists a % such that µ(H%) < η, where

H% = {x ∈ Ω : dist (x, ∂Ω) ≤ %}

Put Ω% = Ω \H%. Clearly f is measurable on Ω% and thus Luzin’s theorem implies
the existence of a closed set F 1

η ⊂ Ω% such that the restriction of the function u to
F 1
η is continuous, µ(Ω% \ F 1

η ) < η and thus

µ(Ω \ F 1
η ) < 2η.

Let |h| < % be small, F 2
η = {x ∈ Ω : x + h ∈ F 1

η }. Assume that w is the
Radon-Nikodym derivative of µ. Then w ∈ L1(Ω). Using 1-mean continuity of w,
we have ∫

F 1
η

|w(x+ h)− w(x)| dx→ 0, as |h| → 0.

Moreover, since F is closed and bounded, it is compact. Then f is uniformly con-
tinuous on F 1

η . Hence there exists a δ ∈ (0, %) small enough such that

|f(x+ h)− f(x)| ≤ Φ−1

(
ε

µ(Ω)

)
for all x, x+ h ∈ F 1

η , and ∫
F 1
η

|w(x+ h)− w(x)| dx < η

for all |h| < δ. Hence |µ(F 1
η ) − µ(F 2

η )| ≤ η. Then µ(Ω \ F 2
η ) < 3η. Letting

Fη = F 1
η ∩ F 2

η , we get that

µ(Ω \ Fη) ≤ µ(Ω \ F 1
η ) + µ(Ω \ F 2

η ) < 5η.

Using the same argument as the one in the proof of Lemma 5.1, we have∫
Ω

Φ(|f(x+ h)− f(x)|) dµ

≤
∫

Ω\Fη
Φ(|f(x+ h)|+ |f(x)|) dµ+

∫
Fη

Φ(|f(x+ h)− f(x)|) dµ
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≤C
∫

Ω\Fη
Φ(|f(x+ h)|) dµ+ C

∫
Ω\Fη

Φ(+|f(x)|) dµ+ ε

≤ (2C + 1)ε.

Here we used the doubling property of Φ, and C is a constant that depends only on
the doubling constant. Hence we get the claim (5.3).

Now, let us prove that u is Φ-mean continuous. Let k = ε/2 be fixed, and let us
denote v = u/k. Then vh = uh/k, v ∈ LΦ(Ω;µ). By applying claim (5.3) to v, we
get that there exists a δ = δ(ε) such that for h ∈ Rn with |h| < δ, one has∫

Ω

Φ(|vh − v|) dµ =

∫
Ω

Φ(|vh − v|/k) dµ ≤ 1.

From the definition of Luxemberg norm, we have

|uh − u|LLΦ(Ω;µ) <
1

2
ε.

From Proposition 4.2, we immediately obtain

|uh − u|LΦ(Ω;µ) ≤ 2|uh − u|LLΦ(Ω;µ) < ε.

Hence u is Φ-mean continuous.

Denote by S the set of all functions η satisfying

(5.4)

η ∈ C∞c (Rn),

η(x) ≥ 0 for all x ∈ Rn,∫
Rn η(x) dx = 1,

supp(η) = {x ∈ Rn; |x| ≤ 1}.

S is not an empty set, since we have the following classical example of a function in
S.

Example 5.1. Define a C∞c -function η : Rn → R by setting

η(x) :=

{
c exp

(
1

|x|2−1

)
if |x| < 1

0 if |x| ≥ 1,

where the constant c > 0 is adjusted so that∫
Rn
η(x) dx = 1.

Then it is easy to check that η ∈ S. Write

ηε(x) :=
1

εn
η(
x

ε
) (ε > 0, x ∈ Rn);

ηε is called the standard mollifier.
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Now, for any ε > 0, write

Ωε := {x ∈ Ω| dist (x, ∂Ω) > ε}.

Given f ∈ L1
loc(Ω), define

f ε := ηε ∗ f ;

that is,

f ε(x) :=

∫
Ω

ηε(x− y)f(y) dy =

∫
B(x,ε)

ηε(y)f(x− y) dy

for x ∈ Ωε.
Mollification provides us with a systematic technique for approximating Orlicz-

functions by C∞-functions.

Lemma 5.3. (i): If f ∈ L1
loc(Ω), then for each ε > 0, f ε ∈ C∞(Ωε).

(ii): Let Φ be doubling. If f ∈ LΦ(Ω;µ) ∩ L1
loc(Ω) and Ω is bounded, then

f ε → f in LΦ(V ;µ),

whenever V ⊂ Ω is compact.
(iii): Let Φ be doubling. If f ∈ W 1,Φ(Ω;µ) ∩W 1,1

loc (Ω) and Ω is bounded, then

f εxi = ηε ∗ fxi , (i = 1, · · · , n) on Uε

and

f ε → f in W 1,Φ(V ;µ),

whenever V ⊂ Ω is compact.

Proof. (i): Fix any point on x ∈ Ωε and choose i ∈ {1, · · · , n}. We let ei denote the
i-th coordinate vector (0, · · · , 1, · · · , 0). Then for |h| small enough, x + hei ∈ Ωε,
and thus

f ε(x+ hei)− f ε(x)

h

=
1

εn

∫
Ω

1

h

[
η

(
x+ hei − y

ε

)
− η

(
x− y
ε

)]
f(y) dy

=
1

εn

∫
V

1

h

[
η

(
x+ hei − y

ε

)
− η

(
x− y
ε

)]
f(y) dy

for some V ⊂⊂ Ω. The difference quotient converges as h→ 0 to

1

ε
ηxi

(
x− y
ε

)
= εnηε,xi(x− y)
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for each y ∈ V . Furthermore, the absolute value of the integrand is bounded by

1

ε
‖Dη‖L∞|f | ∈ L1(V ).

Hence the Dominated Convergence Theorem implies

f εxi = lim
h→0

f ε(x+ hei)− f ε(x)

h

exists and equals to ∫
Ω

ηε,xi(x− y)f(y) dy.

Using a similar argument, we conclude that partial derivatives of f ε of all orders
exist and are continuous at each point of Ωε. Hence f ε ∈ C∞(Ωε).

(ii) Given a compact set V ⊂ Ω, let Ψ be the complementary function of Φ and
v satisfy

∫
V

Ψ(|v|) dµ ≤ 1. Then let ε < dist (V, ∂Ω). We have∫
V

|f ε(x)− f(x)||v(x)| dµ

=

∫
V

∣∣∣∣∫
B(x,ε)

ηε(y)[f(x− y)− f(x)] dy

∣∣∣∣ · |v(x)| dµ

≤
∫
V

[∫
B(x,ε)

|ηε(y)| · |f(x− y)− f(x)| · |v(x)| dy
]
dµ

=

∫
B(x,ε)

[∫
V

|f(x− y)− f(x)| · |v(x)| dµ
]
ηε(y) dy

≤ 2

∫
B(x,ε)

‖fy(x)− f(x)‖LΦ(V ;µ)ηε(y) dy

Here, we denoted fy(x) = f(x−y) and used Fubini’s theorem. In the last inequality,
we used the Hölder inequality and the inequality

‖v‖LΨ(V ;µ) ≤
∫
V

Ψ(|v|) dµ+ 1 ≤ 2.

From the definition of the Orlicz norm we obtain

‖f ε(x)− f(x)‖LΦ(V ;µ) ≤ 2

∫
B(x,ε)

‖fy(x)− f(x)‖LΦ(V ;µ)ηε(y) dy.

Using Lemma 5.2, when ε small enough, for any y ∈ B(x, ε) we have

‖fy(x)− f(x)‖LΦ(V ;µ) ≤ ‖fh(x)− f(x)‖LΦ(Ω;µ) → 0,
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for |h| ≤ ε.
Hence for any V ⊂ Ω compact, we have

f ε → f in LΦ(V ;µ).

(iii) As computed in (i), we have

f εxi(x) =

∫
Ω

ηε,xi(x− y)f(y) dy = −
∫

Ω

ηε,yi(x− y)f(y) dy

=

∫
Ω

ηε(x− y)fxi(y) dy = (ηε ∗ fxi)(x)

for x ∈ Ωε. Using (ii), we can get

f ε → f in W 1,Φ(V ;µ)

immediately, where V ⊂ Ω is compact.

When Φ(t) = tp logλ(e + t) for p > 1, λ ∈ R, we can get the following density
property.

Proposition 5.1. Let D ⊂ R2 be the unit disk. Then C∞(D) is dense in W 1,Φ
p−2(D)

for Φ(t) = tp logλ(e + t) and p > 1, λ ∈ R. Moreover, C∞(D) is also dense in
W 1,p
wΦ

(D). Here W 1,Φ
p−2(D) and W 1,p

wΦ
(D) are the spaces in Example 4.3 and 4.4.

Proof. First, let us check W 1,Φ
p−2(D) ⊂ W 1,1(D). Since for u ∈ W 1,Φ

p−2(D), we have
u ∈ LΦ(D), and it follows that u ∈ L1(D). Now it is enough to prove that the
distributional derivative Du ∈ LΦ

p−2(D) is in L1(D). Let w(x) = dist (x, S1)p−2. We
have the estimate∫

D

|Du(x)| dx=

∫
D

|Du(x)|w(x)1/(p−ε)w(x)−1/(p−ε) dx

≤
(∫

D

|Du(x)|p−εw(x) dx

)1/(p−ε)(∫
D

w(x)−1/(p−ε−1) dx

) p−ε−1
p−ε

.

When ε is small enough,
∫
D
w(x)−1/(p−ε−1) dx <∞. Using Lemma 4.6 and Example

4.1, we know that(∫
D

|Du(x)|p−εw(x) dx

)1/(p−ε)

≤ K‖Du‖LΦ
p−2

<∞.

Hence |Du(x)| ∈ L1(D) and we get W 1,Φ
p−2(D) ⊂ W 1,1(D).

Let R1 = {x ∈ R2 : 1
2
< |x| < 1} and R2 = {x ∈ R2 : 1 < |x| < 2}. Define a map

F : R1 → R2 by setting

F (x) =
x

|x|2
.
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Then we know that F−1 = F and that F is a bi-Lipschitz map between R1 and R2.
For any function u ∈ W 1,Φ

p−2(D), we extend u to ũ which is defined on D′ =
{x ∈ R2 : |x| < 2} by setting ũ(x) = u(x) for x ∈ D and ũ(x) = u(F (x)) for
x ∈ R2. Since u ∈ W 1,1(D), there exists a function v with v(x) = u(x) for a.e
x ∈ D such that the functions g(t, θ) = v(t cos θ, t sin θ) are absolutely continuous
on almost all lines L = {teiθ : t ∈ (0, 1), θ ∈ [0, 2π)}. In addition, g′(t, θ) ∈ L1(D).

Hence g(1, θ) = g(1
2
, θ) +

∫ 1
1
2
g′(t, θ) dt exists a.e. θ ∈ [0, 2π). Then we can define

ũ(cos θ, sin θ) = g(1, θ). Define g̃(t, θ) = v(t cos θ, t sin θ) for 0 ≤ t ≤ 1, θ ∈ [0, 2π);
g̃(t, θ) = v(F (t cos θ, t cos θ)) for 1 < t < 2, θ ∈ [0, 2π). Then we can check that
g̃(t, θ) = ũ(t cos θ, t sin θ) almost everywhere. Moreover, since F is bi-Lipschitz, we
can check that for a.e. θ ∈ [0, 2π), g̃(t, θ) is absolutely continuous on almost all
lines Lθ = {teiθ : t ∈ (0, 2)}; and that for a.e. t ∈ (0, 2), g̃(t, θ) is absolutely
continuous on almost all lines Lt = {teiθ : θ ∈ [0, 2π)}; and that |∇g̃| ∈ L1(D′).
Hence ũ ∈ W 1,1(D′).

Next, let us show that ũ ∈ W 1,Φ
p−2(D′). Since F is bi-Lipschitz map, we have∫

R2

Φ(|ũ(x)|) dx .
∫
R1

Φ(|u(F (x))|) dx

and |Dũ(x)| ∼ |Du(F−1(x))| for x ∈ R2. Hence, we have∫
R2

Φ(|Dũ(x)|)w(x) dx .
∫
R1

Φ(|Du(F (x))|)w(F (x)) dx,

where we used w(x) ∼ w(F (x)) which is from

1− |x| ∼ 1− |x|
|x|

= 1− 1

|x|
, for all x ∈ R1.

Then we have∫
D′

Φ(|ũ(x)|) dx+

∫
D′

Φ(|Dũ(x)|)w(x) dx .
∫
D

Φ(|u(x)|) dx+

∫
D

Φ(|Du(x)|)w(x) dx <∞,

which means that ũ ∈ W 1,Φ
p−2(D′).

By Lemma 5.3, for a compact set V ⊃ D, we can find a sequence fi ∈ C∞(V ) with
fi → ũ in W 1,Φ

p−2(V ). Now, define ui = fi|D. Then ui ∈ C∞(D) and ui → ũ|D = u in

W 1,Φ
p−2(D). Hence, we get the density property for W 1,Φ

p−2(D). Using a similar proof as
above, we can also get the density property for W 1,p

wΦ
(D). Thus the proof is complete.

The results regarding p-mean continuity and Φ-mean continuity are from the
monograph [2]. The ideas for the density properties, i.e., Lemma 5.3 and Proposition
5.1 are from the monograph [6], but we generalized the results from Sobolev spaces
to weighted Orlicz-Sobolev spaces.
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6 Energies and the trace spaces

We begin by recalling the definitions of our dyadic decomposition and the three
energies. Fix a dyadic decomposition of S1, such that for a fixed i ∈ N, {Ii,j : j =
1, · · · , 2i} is a family of arcs of length 2π/2i with

⋃
j Ii,j = S1. The next generation

is constructed in such a way that for each j ∈ {1, · · · , 2i+1}, there exists a unique
number k ∈ {1, · · · , 2i}, satisfying Ii+1,j ⊂ Ii,k. We denote this parent of Ii+1,j

by Îi+1,j and Î1,j = S1 for j = 1, 2. By gA, A ⊂ S1, we denote the mean value
gA = –

∫
A
g dH1 = 1

H1(A)

∫
A
g dH1.

Then we define three energies as follows:

(6.1) E(g; p, λ) :=
∞∑
i=1

iλ
2i∑
j=1

|gIi,j − gÎi,j |
p;

(6.2) E(g; p, λ) :=
∞∑
i=1

iλ
2i∑
j=1

∑
k

|gIi,j − gIk |p;

(6.3) E(g; Φ) :=
∞∑
i=1

2i∑
j=1

∑
k

2−ipΦ

( |gIi,j − gIk |
2−i

)

where Ik ∈ {Ii,j+1, Ii,j−1, Îi,j}. Here Ii,0 = Ii,2i and Ii,2i+1 = Ii,1.

Remark 6.1. Let Φ be doubling. In the definition of (6.2) and (6.3), we can replace

Ik ∈ {Ii,j+1, Ii,j−1, Îi,j} with Ik ∈ {Ii,j+1, Ii,j−1}. we claim that the new energies are
equivalent to the original ones.

First, we know that Îi,j is equal to Ii,j
⋃
Ii,j+1 or Ii,j

⋃
Ii,j−1. If Îi,j = Ii,j

⋃
Ii,j+1,

then we have

gÎi,j = –

∫
Îi,j

g dH1 =
1

H1(Îi,j)

(∫
Ii,j

g dH1 +

∫
Ii,j+1

g dH1

)
=

1

2H1(Ii,j)

∫
Ii,j

g dH1 +
1

2H1(Ii,j+1)

∫
Ii,j+1

g dH1

=
1

2
–

∫
Îi,j

g dH1 +
1

2
–

∫
Îi,j+1

g dH1 =
1

2
(gIi,j + gIi,j+1

).

Hence we obtain ∣∣∣gIi,j − gÎi,j ∣∣∣ =
1

2

∣∣gIi,j − gIi,j+1

∣∣ .



Dyadic norms for trace spaces 39

Similarly, if Îi,j = Ii,j
⋃
Ii,j−1, we obtain∣∣∣gIi,j − gÎi,j ∣∣∣ =

1

2

∣∣gIi,j − gIi,j−1

∣∣ .
Since Φ is doubling, we have∣∣∣gIi,j − gÎi,j ∣∣∣p . ∣∣gIi,j − gIi,j+1

∣∣p +
∣∣gIi,j − gIi,j−1

∣∣p
and

Φ

(
|gIi,j − gÎi,j |

2−i

)
. Φ

( |gIi,j − gIi,j−1
|

2−i

)
+ Φ

( |gIi,j − gIi,j+1
|

2−i

)
.

Then the claim follows.

The above remark tells us that there is no difference if Ik is only from the set
{Ii,j+1, Ii,j−1}. Then let us consider the connections between these three energies.

Proposition 1.1 gives us the connection between E(g; p, λ) and E(g; Φ). Now, let
us consider E(g; p, λ) and E(g; p, λ). It is obvious that E(g; p, λ) ≤ E(g; p, λ). From
the proof of [5, Theorem 3.1], we obtain a sufficient condition for E(g; p, λ) <∞.

Remark 6.2. Let g : S1 → R, be bounded. Let λ ∈ R and p > 1. If

(6.4)

∫
S1

∫
S1

|g(x)− g(y)|p

|x− y|2
logλ

(
e+
|g(x)− g(y)|
|x− y|

)
dH1

xdH1
y <∞,

then E(g; p, λ) ≤ E(g; p, λ) < ∞. Moreover, if the function g is Hölder continuous
with exponent α > 1

p
, i.e., there exists a constant C > 0 such that

|g(x)− g(y)| ≤ C|x− y|α

for any x, y ∈ S1, then the condition (6.4) is satisfied, and hence E(g; p, λ) ≤
E(g; p, λ) <∞.

The following example tells us that there exists a function g such that E(g; p, λ) <
∞ but E(g; p, λ) =∞ for a fixed dyadic decomposition.

Example 6.1. Let λ ≥ −1. Fix a dyadic decomposition {Ii,j : i ∈ N, j =
1, 2, · · · , 2i}. Define

g(x) = χI1,1 =

{
1, x ∈ I1,1,
0, x ∈ I1,2.

Then, we have

E(g; p, λ) =
∞∑
i=1

iλ
2i∑
j=1

|gIi,j − gÎi,j |
p
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= |gI1,1 − gI0,1|p + |gI1,2 − gI0,1|p = 21−p.

and

E(g; p, λ)≥
∞∑
i=1

iλ
2i∑
j=1

|gIi,j − gIi,j+1
|p

≥
∞∑
i=1

2 iλ =∞.

Moreover, we can also see that condition (6.4) is not satisfied.

If we do not fix the dyadic decomposition, we could consider the supremum of
the energies over all the dyadic decompositions of S1. Then for the fixed function g
in the above example, we have

sup{E(g; p, λ)} = sup{E(g; p, λ)} =∞,

where the supremum is taken over all the dyadic decompositions of S1. Hence we
have the following open question.

Question 6.1. If we have sup{E(g; p, λ)} < ∞, do we have sup{E(g; p, λ)} < ∞?
Here the supremum is taken over all the dyadic decompositions of S1.

Now, let us focus on the spaces TΦ(S1) and T̃Φ(S1) defined via

TΦ(S1) := {g ∈ LΦ(S1) : ‖g‖Φ <∞}; T̃Φ(S1) := {g ∈ LΦ(S1) : ‖g‖∗Φ <∞},

where

‖g‖Φ = ‖g‖LΦ(S1) + ‖g‖EΦ
; ‖g‖∗Φ = ‖g‖LΦ(S1) + ‖g‖∗EΦ

,

and

‖g‖EΦ
= inf

{
k > 0,E

(g
k

; Φ
)
≤ 1
}

; ‖g‖∗EΦ
= (E(g, p, λ))1/p .

The following lemma tells us that TΦ(S1) and T̃Φ(S1) are Banach spaces.

Lemma 6.1. ‖ · ‖Φ and ‖ · ‖∗Φ are well-defined norms and TΦ(S1) and T̃Φ(S1) are
Banach spaces, i.e., complete normed vector spaces.

Before the proof, we first give the following lemma (see [7, Theorem 1.3.9]).

Lemma 6.2. A normed space X is a Banach space if and only if each abso-
lutely convergent series in X converges, i.e., for each sequence (xn)∞n=1 ⊂ X, if∑∞

n=1 ‖xn‖X <∞, then
∑∞

n=1 xn converges in X.
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Proof of Lemma 6.1. The first issue is to check that ‖ · ‖Φ is a norm.
(i) ‖g‖Φ ≥ 0 is obvious. If g = 0, then ‖g‖Φ = 0. If ‖g‖Φ = 0, then ‖g‖LΦ(S1) = 0.

Hence g = 0. Thus, ‖g‖Φ = 0⇔ g = 0.
(ii) For any α ∈ R, ‖αg‖Φ = |α|‖g‖Φ is obvious from the definition.
(iii) In order to prove the triangle inequality, it suffices to prove the triangle

inequality of ‖ · ‖EΦ
. Assume g, h satisfy ‖g‖EΦ

= k1 and ‖h‖EΦ
= k2. If k1k2 = 0,

using (i), we have that
‖g + h‖EΦ

= k1 + k2,

which satisfies the triangle inequality. If k1k2 6= 0, it suffices to prove that

‖g + h‖EΦ
≤ k1 + k2.

Using Jensen’s inequality in Lemma 4.2, we obtain

E(
g + h

k1 + k2

; Φ) =
∞∑
i=1

2i∑
j=1

∑
k

2−ipΦ

( |(g + h)Ii,j − (g + h)Ik |
(k1 + k2)2−i

)

≤
∞∑
i=1

2i∑
j=1

∑
k

2−ipΦ

( |gIi,j − gIk |+ |hIi,j − hIk |
(k1 + k2)2−i

)

≤
∞∑
i=1

2i∑
j=1

∑
k

2−ip
(

k1

k1 + k2

Φ

( |gIi,j − gIk |
k12−i

)
+

k2

k1 + k2

Φ

( |hIi,j − hIk |
k22−i

))
≤ k1

k1 + k2

+
k2

k1 + k2

≤ 1.

Hence ‖g + h‖EΦ
≤ k1 + k2 = ‖h‖EΦ

+ ‖g‖EΦ
. Thus, ‖ · ‖Φ is a norm.

In order to prove that TΦ(S1) is a Banach space, from Lemma 6.2, it suffices to
show that for any sequence (gn)∞n=1 ⊂ TΦ(S1), if

∑∞
n=1 ‖gn‖Φ < ∞, then

∑∞
n=1 gn

converges in TΦ(S1). Since
∑∞

n=1 ‖gn‖Φ <∞ implies
∑∞

n=1 ‖gn‖LΦ <∞ and LΦ(S1)
is a Banach space, then

∑∞
n=1 gn converges in LΦ(S1) by using the above lemma

again. Moreover,∥∥∥∥∥
∞∑
n=1

gn −
m∑
n=1

gn

∥∥∥∥∥
Φ

≤
∞∑

n=m+1

‖gn‖Φ → 0, as m→∞.

Hence
∑∞

n=1 gn converges in TΦ(S1).

Using a similar argument, we can prove the same results for ‖ · ‖∗Φ and T̃Φ(S1).
Thus, the proof is finished.

The energy (6.1) is from the paper [5]. The modified energies (6.2) and (6.3)
may be new. Most of the results in this section have been obtained by ourselves,
except for the ones that we gave references for.
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7 Whitney-type decomposition of unit disk and

associated partition of unity

Let {Qi,j : i ∈ N, j = 1, 2, · · · , 2i} be the set of all Qi,j such that

Qi,j = {reiθ : 1− 1

2i−1
≤ r ≤ 1− 1

2i
,
(j − 1)π

2i−1
≤ θ ≤ jπ

2i−1
.}

for i ∈ N, j = 1, 2, · · · , 2i. If P : B(0, 1) → S1 is the radial projection map, then
P (Qi,j) = Ii,j for all i ∈ N, j = 1, 2, · · · , 2i, where {Ii,j : i ∈ N, j = 1, 2, · · · , 2i} is a
dyadic decomposition of S1.

Now, {Qi,j : i ∈ N, j = 1, 2, · · · , 2i} is a Whitney-type decomposition of unit disk
D = B(0, 1), since we have that

(1) D =
⋃
i∈N
⋃2i

j=1Qi,j;
(2) Qi,j are pairwise almost disjoint;
(3) there exist c1 and c2 such that

c1 diam (Qi,j) ≤ dist (Qi,j, D
C) = dist (Qi,j, S

1) ≤ c2 diam (Qi,j);

(4) there exist a constant C such that for any Qi,j with center xi,j, we have

(7.1) B(xi,j, C
−1 diam (Qi,j)) ⊂ Qi,j ⊂ B(xi,j, C diam (Qi,j)).

Associated to this decomposition, there exists a partition of unity, that is, there
exists a family of smooth functions {ϕi,j}i,j∈N such that

(i) supp(ϕi,j) ⊂ 5
4
Qi,j := {reiθ : 1− 5

4·2i−1 ≤ r ≤ 1− 3
4·2i ,

(j− 5
4

)π

2i−1 ≤ θ ≤ (j+ 1
4

)π

2i−1 .}
(ii) There exists a constant L > 0 such that |∇ϕi,j| ≤ L

diam (Qi,j)
∼ 2i.

(iii)
∑

i,j ϕi,j(x) = χD.
For the existence of such functions {ϕi,j}i,j∈N, see [9, pp. 168-171]. For any

x ∈ D, let Jx be the collection of all (i, j) such that x ∈ 5
4
Qi,j. Then from the

properties of Whitney-type decomposition, we know that

#Jx . 1, ∀x ∈ D.

More precisely, if x ∈ Qi,j, then {Ik, k = (i′, j′) ∈ Jx} ⊂ {Ii,j, Ii,j−1, Ii,j+1, Îi,j, Îi,j−1, Îi,j+1}∪
{Ik, Îk = Ii,j or Ii,j−1 or Ii,j+1}. Hence #Jx ≤ 12.

8 Proof of Proposition 1.1

Proof. When λ = 0, there is nothing to prove since E(g; p, λ) = E(g; Φ).
When λ > 0, first we estimate the logarithmic term from above. Since g ∈ LΦ,

we have ∫
S1

|g|p dH1
x ≤

∫
S1

|g|p logλ(e+ |g|) dH1
x <∞.
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Hence ‖g‖Lp <∞.
Then, using the Hölder inequality and H1(Ii,j) ∼ H1(Ik) ∼ 2−i , we have

|gIi,j − gIk | ≤ |gIi,j |+ |gIk | = | –
∫

Ii,j

g dH1
x|+ | –

∫
Ik

g dH1
x|

≤ –

∫
Ii,j

|g| dH1
x + –

∫
Ik

|g| dH1
x

≤

(
–

∫
Ii,j

|g|p dH1
x

)1/p

+

(
–

∫
Ik

|g|p dH1
x

)1/p

. 2i/p‖g‖Lp(S1).

Hence
|gIi,j−gIk |

2−i
. 2(1+1/p)i‖g‖Lp(S1). Moreover, we get

logλ
(
e+
|gIi,j − gIk |

2−i

)
. logλ

(
e+ 2(1+1/p)i‖g‖Lp(S1)

)
≤ Ciλ,

where C = C(‖g‖Lp(S1), p, λ). Now, we can estimate E(g; Φ) as follows:

E(g; Φ) =
∞∑
i=1

2i∑
j=1

∑
k

2−ipΦ

( |gIi,j − gIk |
2−i

)

=
∞∑
i=1

2i∑
j=1

∑
k

|gIi,j − gIk |p logλ
(
e+
|gIi,j − gIk |

2−i

)

≤C
∞∑
i=1

2i∑
j=1

∑
k

|gIi,j − gIk |piλ = CE(g; p, λ),

where C = C(‖g‖Lp(S1), p, λ).
In order to estimate the logarithmic term from below, we define

(8.1) χ(i, k) =

{
1, if |gIi,j − gIk | > 2−

2i
p+1

0, otherwise.

Then we have

E(g; p, λ) =
∞∑
i=1

iλ
2i∑
j=1

∑
k

|gIi,j − gIk |p

=
∞∑
i=1

iλ
2i∑
j=1

∑
k

χ(i, k)|gIi,j − gIk |p
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+
∞∑
i=1

iλ
2i∑
j=1

∑
k

(1− χ(i, k))|gIi,j − gIk |p

=:P1 + P2.

If |gIi,j − gIk | > 2−
2i
p+1 , since p > 1 and λ > 0, we have

logλ
(
e+
|gIi,j − gIk |

2−i

)
> logλ

(
e+ 2

p−1
p+1

i
)
≥ Ciλ,

where C = C(λ, p). Hence we have

P1 ≤ C
∞∑
i=1

2i∑
j=1

∑
k

|gIi,j − gIk |p logλ
(
e+
|gIi,j − gIk |

2−i

)
= CE(g; Φ).

For P2, since for |gIi,j − gIk | ≤ 2−
2i
p+1 ,

logλ
(
e+
|gIi,j − gIk |

2−i

)
≤ logλ

(
e+ 2

p−1
p+1

i
)
≤ Ciλ,

we have that

P2 .
∞∑
i=1

2i∑
j=1

(1− χ(i, k))2−
2pi
p+1 · iλ ≤

∞∑
i=1

iλ2−
2pi
p+1 · 2i =

∞∑
i=1

iλ2
1−p
1+p

i ≤ C.

Therefore, we obtain P1 + P2 ≤ CE(g; Φ) + C.
Hence we obtain that for λ > 0 we have

(8.2)
1

C
E(g; Φ) ≤ E(g; p, λ) ≤ CE(g; Φ) + C

where C depends on ‖g‖Lp(S1), p and λ.
When λ < 0, in order to estimate the logarithmic term from above, using defi-

nition (8.1), we obtain the estimate

E(g; Φ) =
∞∑
i=1

2i∑
j=1

∑
k

|gIi,j − gIk |p logλ
(
e+
|gIi,j − gIk |

2−i

)

=
∞∑
i=1

2i∑
j=1

∑
k

χ(i, k)|gIi,j − gIk |p logλ
(
e+
|gIi,j − gIk |

2−i

)

+
∞∑
i=1

2i∑
j=1

∑
k

(1− χ(i, k))|gIi,j − gIk |p logλ
(
e+
|gIi,j − gIk |

2−i

)
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=:P ′1 + P ′2.

If |gIi,j − gIk | > 2−
2i
p+1 , since p > 1 and λ < 0, we have

logλ
(
e+
|gIi,j − gIk |

2−i

)
< logλ

(
e+ 2

p−1
p+1

i
)
≤ Ciλ,

where C = C(λ, p). Hence we have

P ′1 ≤ C

∞∑
i=1

2i∑
j=1

∑
k

|gIi,j − gIk |piλ = CE(g; p, λ).

For P ′2 we use the definition of χ and logλ(e+ t) ≤ 1 to obtain

P ′2 .
∞∑
i=1

2i∑
j=1

(1− χ(i, k))2−
2pi
p+1 · 1 ≤

∞∑
i=1

2−
2pi
p+1 · 2i =

∞∑
i=1

2
1−p
1+p

i ≤ C.

Therefore, we obtain P ′1 + P ′2 ≤ CE(g; p, λ) + C.
Next, we estimate the logarithmic term from below. Since g ∈ LΦ, using Lemma

4.6 and Example 4.1, we know that g ∈ Lp−ε for 0 < ε < p− 1. Fix ε.
Using the same argument as in the case λ > 0, we can get that

|gIi,j − gIk |
2−i

. 2(1+ 1
p−ε )i‖g‖Lp−ε(S1).

Hence we have

logλ
(
e+
|gIi,j − gIk |

2−i

)
& logλ

(
e+ 2(1+ 1

p−ε )i‖g‖Lp−ε(S1)

)
≥ Ciλ,

where C = C(‖g‖Lp−ε(S1), p, λ). Now we get the estimate via

E(g; p, λ) =
∞∑
i=1

iλ
2i∑
j=1

∑
k

|gIi,j − gIk |p

≤C
∞∑
i=1

2i∑
j=1

∑
k

χ(i, k)|gIi,j − gIk |p logλ
(
e+
|gIi,j − gIk |

2−i

)
≤CE(g; Φ).

Hence we obtain that for λ < 0, we have

(8.3)
1

C
E(g; p, λ) ≤ E(g; Φ) ≤ CE(g; p, λ) + C

where C depends on ‖g‖Lp−ε(S1), p and λ.
Combining the inequalities (8.2) and (8.3) and the finiteness of ‖g‖Lp(S1)and

‖g‖Lp−ε(S1) with respect to λ > 0 and λ < 0, we obtain that E(g; p, λ) < ∞ is
equivalent to E(g; Φ) <∞.
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9 Proof of Theorem 1.3

For the proof, we need the following lemma (see [2, Theorem 6.4.1 and 6.4.2]):

Lemma 9.1. Let D ⊂ R2 be the unit disk. For 1 ≤ p < 2, q = (2p− p)/(2− p) or
p ≥ 2, q ≥ 1, there exists a unique continuous linear mapping R : W 1,p(D)→ Lq(S1)
such that Ru = u|S1 for all u ∈ C∞(D).

Proof of Theorem 1.3 (i). First, we prove that for any function u ∈ C∞(D), we have

‖u|S1‖Φ ≤ C‖u‖W 1,Φ
p−2(D)

where C is a constant independent of u.
Fix u ∈ C∞(D), and let g = u|S1 . Let x ∈ Ii,j and y ∈ Ik, where Ik ∈

{Ii,j+1, Ii,j−1, Îi,j}. Then

|g(x)− g(y)| ≤
∫
γx,y

|∇u|ds

where γx,y is an arc which is a part of a circle with γx,y⊥S1 at x and y. Since
∪y∈Ikγx,y ⊂ CQi,j ∩D where C = 2π, using the Fubini Theorem, we obtain∫

Ik

|g(x)− g(y)| dH1
y≤
∫
Ik

∫
γx,y

|∇u|dsdH1
y

≤
∫
CQi,j∩D

|∇u(z)|dz,

where {Qi,j} is the Whitney decomposition from Section 7.
If ` = H1(Ii,j) ∼ H1(Ik) ∼ diamQi,j ∼ 2−i, then |CQi,j ∩D| ∼ `2. We obtain

|gIi,j − gIk |= | –
∫

Ii,j

g(x) dH1
x − –

∫
Ik

g(y) dH1
y|

≤ –

∫
Ii,j

–

∫
Ik

|g(x)− g(y)| dH1
ydH1

x

.
1

`

∫
CQi,j∩D

|∇u(z)|dz.

Let Φ(t) = tp logλ(e + t) and Ψ(t) = tr logλr/p(e + t) with max{1, p − 1} < r <
p where λ ∈ R. Then Φ(t) = Ψp/r(t) and both Φ,Ψ are doubling. Fix ε with

max{1, p− 1} < ε < r. Then Ψ
1
ε is also a Young function and doubling. Recall that

ρ(z) = d(z, S1). Using Jensen’s integral inequality in Lemma 4.2, we obtain

Ψ

( |gIi,j − gIk |
`

)
.

(
Ψ

1
ε

(
–

∫
CQi,j∩D

|∇u(z)|dz

))ε
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≤

(
–

∫
CQi,j∩D

Ψ
1
ε (|∇u(z)|)dz

)ε

=

(
–

∫
CQi,j∩D

Ψ
1
ε (|∇u(z)|)ρ(z)

p−2
ε ρ(z)

2−p
ε dz

)ε

≤

(
–

∫
CQi,j∩D

Ψ(|∇u(z)|)ρ(z)p−2dz

)(
–

∫
CQi,j∩D

ρ(z)
2−p
ε
· ε
ε−1dz

) ε−1
ε
·ε

where we use the Hölder inequality in the last inequality. Then we can estimate
that (

–

∫
CQi,j∩D

ρ(z)
2−p
ε
· ε
ε−1dz

) ε−1
ε
·ε

=

(
–

∫
CQi,j∩D

ρ(z)
2−p
ε−1 dz

)ε−1

.

(
1

`2

∫ C`

0

∫ C`

0

t
2−p
ε−1 dtdx

)ε−1

. `2−p,

since 2−p
ε−1

> −1 for max{1, p− 1} < ε < r.

Let µ(E) =
∫
E
ρ(z)p−2 dz for any measurable set E ⊂ R2. We obtain

Ψ

( |gIi,j − gIk |
`

)
. `−p

∫
CQi,j∩D

Ψ(|∇u(z)|)ρ(z)p−2dz

= `−p
∫
CQi,j∩D

Ψ(|∇u(z)|) dµ.

Since Φ = Ψp/r, we have that

`pΦ

( |gIi,j − gIk |
`

)
=

(
`rΨ

( |gIi,j − gIk |
`

))p/r
. `p(1−

p
r

)

(∫
CQi,j∩D

Ψ(|∇u(z)|) dµ

)p/r

≤ `p(1−
p
r

)

(∫
CQi,j∩D

Ψ
q
r (|∇u(z)|)dµ

)p/q

(µ(CQi,j ∩D))
q−r
q
· p
r

where r < q < p and we used the Hölder inequality in the last inequality.
From the condition (7.1) in Section 7, we know that for any Qi,j, there exists a

ball Bi,j such that Bi,j ⊂ Qi,j ⊂ CBi,j, where C is independent of Qi,j. Moreover,
since µ is doubling, we have that

µ(CQi,j∩D) =

∫
CQi,j∩D

ρ(z)p−2 dz ∼ `p ∼ µ(CQi,j) ∼ µ(Qi,j) ∼ µ(Bi,j) ∼ µ(CBi,j).
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Hence we obtain

`pΦ

( |gIi,j − gIk |
`

)
. `p(1−

p
r

) · `
p(q−r)p
qr

(∫
CQi,j∩D

Ψ
q
r (|∇u(z)|)dµ

)p/q

. `p

(
–

∫
CQi,j∩D

Ψ
q
r (|∇u(z)|)dµ

)p/q

. `p

(
–

∫
CBi,j

Ψ
q
r (|∇u(z)|)χB(z)dµ

)p/q

. `p

(
–

∫
Bi,j

Mµ(F )(z)dµ

)p/q

.
∫
Bi,j

M
p
q
µ (F )(z)dµ

≤
∫
Qi,j

M
p
q
µ (F )(z)dµ.

Here
F (z) = Ψ

q
r (|∇u(z)|)χD(z)

and

Mµ (F ) (z) = sup –

∫
B

|F (y)| dµ,

where the supremum is taken over all ope balls B that contain z.
Since

2−ipΨ

( |gIi,j − gIk |
2−i

)
∼ `pΦ

( |gIi,j − gIk |
`

)
,

and ρ(z)p−2 is an Ap-weight (see Example 3.1), using Lemma 3.2, we can estimate
E(g; Φ) as follows:

E(g; Φ) =
∞∑
i=1

2i∑
j=1

∑
k

2−ipΦ

( |gIi,j − gIk |
2−i

)

.
∞∑
i=1

2i∑
j=1

∫
Qi,j

M
p
q
µ (F )(z)dµ

≤
∫
R2

M
p
q
µ (F )(z)dµ .

∫
R2

F
p
q dµ

=

∫
D

Ψ
p
r (|∇u(z)|) dµ =

∫
D

Φ(|∇u(z)|)ρ(z)p−2 dz.

In conclusion, there exists a constant C independent of u and g such that

(9.1) E(g; Φ) ≤ C

∫
D

Φ(|∇u(z)|)ρ(z)p−2 dz.
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Next, we use the above inequality to prove that

(9.2) ‖g‖EΦ
≤ max{1, C}‖∇u‖LΦ

p−2(D).

Assume ‖∇u‖LΦ
p−2(D) = t <∞. From the definition of norm ‖ · ‖LΦ

p−2(D), we have∫
D

Φ

(
|∇(u)(z)|

t

)
ρ(z)p−2 dz ≤ 1.

If C ≤ 1, then (9.1) applied to g/t gives that

E
(g
t
; Φ
)
≤
∫
D

Φ

(∣∣∣∣∇(u(z)

t

)∣∣∣∣) ρ(z)p−2 dz =

∫
D

Φ

(
|∇(u)(z)|

t

)
ρ(z)p−2 dz ≤ 1,

Hence ‖g‖EΦ
≤ t. If C > 1, then

E
(g
t
; Φ
)
≤ C

∫
D

Φ

(
|∇(u)(z)|

t

)
ρ(z)p−2 dz ≤ C.

Using the convexity of Φ, we obtain

1 ≥ 1

C
E
(g
t
; Φ
)
≥ E

( g

Ct
; Φ
)
,

and hence ‖g‖EΦ
≤ Ct. Thus we get inequality (9.2).

Now let us prove that

(9.3) ‖g‖LΦ(S1) . ‖u‖W 1,Φ
p−2(D).

Because of Lemma 4.6 and Lemma 9.1, we expect that there exist p− 1 > δ > 0
and q > 1 such that

‖g‖LΦ(S1) . ‖g‖Lp+δ(S1) . ‖u‖
W

1,
p−δ
q (D)

= ‖u‖
L
p−δ
q

+ ‖∇u‖
L
p−δ
q

=: H3 +H4.

Assume this for a moment. We estimate H3 and H4. For H3, using the Hölder
inequality and Lemma 4.6, we obtain

H3 . ‖u‖Lp−δ(D) . ‖u‖LΦ(D).

For H4, we also use the Hölder inequality and Lemma 4.6. If 2−p
q−1

> −1, we get

H4 =

(∫
D

|∇u|
p−δ
q ρ(z)

p−2
q ρ(z)

2−p
q dz

) q
p−δ

≤
(∫

D

|∇u|p−δρ(z)p−2 dz

) 1
p−δ
(∫

D

ρ(z)
2−p
q

q
q−1

) q−1
p−δ
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= ‖∇u‖Lp−δp−2(D)

(∫
D

ρ(z)
2−p
q−1

) q−1
p−δ

. ‖∇u‖Lp−δp−2(D) . ‖∇u‖LΦ
p−2(D).

Hence, what remains is to check the existence of δ and q as above, which is equivalent
to both of the following systems of inequalities

p− 1 > δ > 0, q > 1
p ≥ 2

(p− δ)/q ≥ 1
2−p
q−1

> −1.

and 

p− 1 > δ > 0, q > 1
1 < p < 2

(p− δ)/q ≥ 1

p+ δ > (p−δ)/q
2−(p−δ)/q

2−p
q−1

> −1

to have solutions for δ and q. It is easy to check that the above systems of inequalities
have solutions for δ and q. Hence we obtain

‖g‖LΦ(S1) . H3 +H4 . ‖∇u‖LΦ
p−2(D) + ‖∇u‖LΦ

p−2(D) = ‖u‖W 1,Φ
p−2(D),

which gives inequality (9.3).
Together with inequalities (9.2) and (9.3), we have that there exists a constant

C > 0 independent of u such that

(9.4) ‖u|S1‖Φ ≤ C‖u‖W 1,Φ
p−2(D)

for all u ∈ C∞(D). Using the density property from Proposition 5.1, for every
u ∈ W 1,Φ

p−2(D), we have a Cauchy sequence ui such that ui ∈ C∞(D) and ‖ui −
u‖W 1,Φ

p−2(D) → 0 as i → ∞. Then, from the norm inequality (9.4), we obtain that

ui|S1 is a Cauchy sequence in TΦ(S1), and hence we can define T u as the limit of
ui|S1 under the norm ‖ · ‖Φ. Since TΦ(S1) is a Banach space, the limit exists and
is unique. Hence we get the existence and uniqueness of the mapping T . Thus the
proof is completed.

Before proving Theorem 1.3 (ii), we give the following lemma:

Lemma 9.2. Using the Whitney decomposition and the associated partition of unity
in Section 7, for any g ∈ TΦ(S1), we define Eg as

(9.5) Eg = u(x) =
∑

k∈Jx ϕk(x)gIk , x ∈ D.
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where {ϕk(x)} is the partition of unity in Section 7. Then Eg can be extended to
the boundary S1 with Eg|S1 = g for a.e. x, i.e., for a.e. x = eiθ ∈ S1, when
{xn = rne

iθ}∞n=1 with xn ∈ D and rn → 1, we have limn→∞Eg(xn) = g(x).

Proof. From the argument in section 7, we know that #Jx ≤ 12. Then for xn, we
redefine Jxn = {Ink : 1 ≤ k ≤ 12, n ∈ N}. Now, we know that for any k, we have
Ink → x as n→∞. Let us prove that

(9.6) lim
n→∞

gInk = f(x) for a.e. x.

To prove this, we need the Lebesgue differentiation theorem (see [8, Theorem
1.3, Page 104]), i.e., if g is integrable on S1, then for x ∈ I, we have

lim
H1(I)→0

–

∫
I

g(y) dH1
y = g(x) for a.e. x.

Fix k. Then there are two cases: (1) x ∈ Ink ; (2) x /∈ Ink . For the case (1), since
g ∈ LΦ(S1) is integrable on S1, we may use the Lebesgue differentiation theorem
directly to obtain condition (9.6).

For the case (2), we need more arguments. Here, we consider one of the cases;
the other cases follow in the same way. For every level n, if x ∈ Iin,jn and Ink =

Iin,jn+1, then x ∈ Iin,jn ∪ Iin,jn+1 = Ĩn. Moreover, we have H1(Ĩn) = 2H1(Iin,jn) =
2H1(Iin,jn+1) and

lim
n→∞

–

∫
Ĩn
g(y) dH1

y = g(x) for a.e. x,

and

lim
n→∞

–

∫
Iin,jn

g(y) dH1
y = g(x) for a.e. x.

Hence we can get condition (9.6) after a simple calculation.
Now using (9.6), together with

∑
k∈Jx ϕk(x) = 1 for any xn, we get limn→∞Eg(xn) =

g(x) for a.e. x. Hence Eg|S1 = g for a.e. x.

Proof of Theorem 1.3 (ii). We define Eg as in Lemma 9.2. Then we know that
Eg|S1 = g for a.e. x.

For x ∈ D, we have

|u(x)| =

∣∣∣∣∣∑
k∈Jx

ϕk(x)gIk

∣∣∣∣∣ ≤∑
k∈Jx

ϕk(x)|gIk | ≤
∑
k∈Jx

ϕk(x)|g|Ik ≤
∑
k∈Jx

|g|Ik .

For any x ∈ Qi,j, and any k ∈ Jx, we have |Qi,j| ∼ 2−2i, H1(Ik) ∼ 2−i. Since Φ
is doubling, using Jensen’s inequality, we obtain∫

D

Φ(|u|) dx=
∞∑
i=1

2i∑
j=1

∫
Qi,j

Φ(|u|) dx .
∞∑
i=1

2i∑
j=1

2−2iΦ

(∑
k∈Jx

|g|Ik

)
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.
∞∑
i=1

2i∑
j=1

∑
k∈Jx

2−2iΦ(|g|Ik) .
∞∑
i=1

2i∑
j=1

2−2iΦ(|g|Ii,j)

≤
∞∑
i=1

2i∑
j=1

2−2i –

∫
Ii,j

Φ(|g|) dx .
∞∑
i=1

2−i
∫
S1

Φ(|g|) dx

≤
∫
S1

Φ(|g|) dx.

Using the same argument as in the proof of Theorem 1.3 (i), we get

(9.7) ‖u‖LΦ(D) . ‖g‖LΦ(S1).

For any x ∈ Qi,j, from the definition of u as in (9.5), we have

u(x)− gIi,j =
∑
k∈Jx

ϕk(x)gIk − gIi,j =
∑
k∈Jx

ϕk(x)(gIk − gIi,j),

since
∑

k∈Jx ϕk(x) = 1. Hence we obtain

|∇u(x)| =
∣∣∇(u(x)− gIi,j)

∣∣ ≤∑
k∈Jx

|∇ϕk(x)|
∣∣gIk − gIi,j ∣∣ . ∑

k∈Jx

2i
∣∣gIk − gIi,j ∣∣ .

Then since Φ is doubling, we can get the estimate∫
D

Φ(|∇u|)ρ(z)p−2 dz.
∞∑
n=1

2i∑
j=1

∫
Qi,j

Φ(|∇u(x)|)ρ(z)p−2 dx

.
∞∑
i=1

2i∑
j=1

2−2iΦ

(∑
k∈Jx

∣∣gIk − gIi,j ∣∣
2−i

)
2−i(p−2)

.
∞∑
i=1

2i∑
j=1

2−ipΦ

(∑
k∈Jx

∣∣gIk − gIi,j ∣∣
2−i

)

.
∞∑
i=1

2i∑
j=1

∑
k∈Jx

2−ipΦ

(∣∣gIk − gIi,j ∣∣
2−i

)

.
∞∑
i=1

2i∑
j=1

∑
k

2−ipΦ

(∣∣gIk − gIi,j ∣∣
2−i

)

where Ik ∈ {Ii,j+1, Ii,j−1, Îi,j}.
Hence we have

∫
D

Φ(|∇u|)ρ(z)p−2 dz . E(g; Φ), and using the same argument as
in the proof of Theorem 1.3 (i), we obtain

(9.8) ‖∇u‖L1,Φ
p−2(D) . ‖g‖EΦ

.
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Combing inequalities (9.7) and (9.8), we get the inequality

(9.9) ‖u‖W 1,Φ
p−2(D) ≤ C‖g‖Φ

where C is a constant independent of g. Hence the extension operator is linear and
continuous with Eg|S1 = g.

10 Proof of Theorem 1.4

Proof of Theorem 1.4 (i). Using the same idea as in proof of Theorem 1.3 (i), fix
u ∈ C∞(D), and let g = u|S1 . For i ∈ N and j = 1, 2, · · · , 2i. Now ` = H1(Ii,j) ∼
H1(Ik) ∼ diamQi,j ∼ 2−i and |CQi,j ∩D| ∼ `2. We have

|gIi,j − gIk | .
1

`

∫
CQi,j∩D

|∇u(z)|dz ∼ ` –

∫
CQi,j∩D

|∇u(z)|dz,

where Ik ∈ {Ii,j+1, Ii,j−1, Îi,j}.
Fix max{1, p− 1} < r < p and ε with max{1, p− 1} < ε < r. Then we have

|gIi,j − gIk |r. `r

(
–

∫
CQi,j∩D

|∇u(z)|dz

)r

≤ `r

(
–

∫
CQi,j∩D

|∇u(z)|
r
ε dz

)ε

= `r

(
–

∫
CQi,j∩D

|∇u(z)|
r
ε (wΦ)1/ε(wΦ)−1/εdz

)ε

≤ `r
(

–

∫
CQi,j∩D

|∇u(z)|rwΦ dz

)(
–

∫
CQi,j∩D

(wΦ)
−1
ε
· ε
ε−1

)ε−1

,

where we used the Hölder inequality in the last inequality. Moreover, using the same
argument as in Example 3.2, we estimate(

–

∫
CQi,j∩D

(wΦ)
−1
ε
· ε
ε−1

)ε−1

=

(
–

∫
CQi,j∩D

ρ(z)
2−p
ε−1 log

−λ
ε−1

(
4

ρ(z)

)
dz

)ε−1

.

(
1

`2

∫ C`

0

∫ C`

0

t
2−p
ε−1 log

−λ
ε−1

(
4

t

)
dtdx

)ε−1

. `2−p logλ
(

4

C`

)
∼ `2−pi−λ;

notice that 2−p
ε−1

> −1 for max{1, p− 1} < ε < r and ` ∼ 2−i.

Set µ(E) =
∫
E
wΦ(z) dz for each measurable set E. We obtain that

|gIi,j − gIk |r . i−λ`r−p
∫
CQi,j∩D

|∇u(z)|rwΦ dz = i−λ`r−p
∫
CQi,j∩D

|∇u(z)|r dµ.
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Fix r < q < p. Using the Hölder inequality, we obtain that

iλ|gIi,j − gIk |p = iλ
(
|gIi,j − gIk |r

) p
r . iλ(1− p

r
)`p(1−

p
r

)

(∫
CQi,j∩D

|∇u(z)|r dµ

) p
r

≤ iλ(1− p
r

)

(∫
CQi,j∩D

|∇u(z)|q dµ

)p/q

(µ(CQi,j ∩D))
q−r
q
· p
r .

From condition (7.1) in Section 7, we know that for any Qi,j there exists a ball
Bi,j such that Bi,j ⊂ Qi,j ⊂ CBi,j, where C is independent of Qi,j. Moreover, since
µ is doubling, we have that

µ(CQi,j∩D) =

∫
CQi,j∩D

wΦ(z) dz ∼ iλ`p ∼ µ(CQi,j) ∼ µ(Qi,j) ∼ µ(Bi,j) ∼ µ(CBi,j).

Hence we obtain that

iλ|gIi,j − gIk |p. iλ(1−p/q)`p(1−
p
q

)

(∫
CQi,j∩D

|∇u(z)|q dµ

)p/q

≤ iλ`p
(

–

∫
CQi,j∩D

|∇u(z)|q dµ

)p/q

. iλ`p

(
–

∫
CBi,j

|∇u(z)|qχD(z) dµ

)p/q

. iλ`p

(
–

∫
Bi,j

Mµ(G)(z) dµ

)p/q

.
∫
Bi,j

M
p
q
µ (G) dµ

≤
∫
Qi,j

M
p
q
µ (G) dµ.

Here
G(z) = |∇u(z)|qχD(z)

and

Mµ(G)(z) = sup –

∫
B

|F (y)| dµ,

where the supremum is taken over all open balls B that contain z.
Since wΦ is an Ap-weight (see Example 3.2), using Lemma 3.2, we can estimate

E(g; p, λ) as follows:

E(g; p, λ) =
∞∑
i=1

iλ
2i∑
j=1

∑
k

|gIi,j − gIk |p .
∞∑
i=1

2i∑
j=1

∫
Qi,j

M
p
q
µ (G) dµ
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≤
∫
R2

M
p
q
µ (G) dµ .

∫
R2

G
p
q dµ =

∫
D

|∇u(z)|pwΦ(z) dz.

Hence we have the inequality

(10.1) ‖g‖∗EΦ
.

(∫
D

|∇u(z)|pwΦ(z) dz

)1/p

.

Using the same idea as in the proof of inequality (9.3), i.e., ‖g‖LΦ(S1) . ‖u‖W 1,Φ
p−2(D),

we can also prove that

(10.2) ‖g‖LΦ(S1) . ‖u‖W 1,p
wΦ

(D).

Combing inequalities (10.1) and (10.2), we have that there exists a constant C
independent of u such that

(10.3) ‖u|S1‖∗Φ ≤ C‖u‖W 1,p
wΦ

(D)

for all u ∈ C∞(D). Using the density property from Proposition 5.1, for every
u ∈ W 1,p

wΦ
(D), we have a Cauchy sequence ui such that ui ∈ C∞(D) and ‖ui −

u‖W 1,p
wΦ

(D) → 0 as i → ∞. Then, from the norm inequality (10.3), we obtain that

ui|S1 is a Cauchy sequence in T̃Φ(S1). Hence we can define T ∗u as the limit of ui|S1

under the norm ‖ · ‖∗Φ. Since T̃Φ(S1) is a Banach space, then the limit exists and
is unique. Hence we get the existence and uniqueness of the mapping T ∗. Thus we
finish the proof.

Proof of Theorem 1.4 (ii). Using the Whitney decomposition and the associated

partition of unity in section 7, for any g ∈ T̃Φ(S1), we define E∗g by setting

(10.4) E∗g = u(x) =
∑

k∈Jx ϕk(x)gIk , x ∈ B.

Hence E∗g|S1 = g for a.e. x by Lemma 9.2. From the proof of Theorem 1.3 (ii), we
know that

(10.5) ‖u‖LΦ(B) . ‖g‖LΦ(S1).

Moreover, for any x ∈ Qi,j, we can also get that

|∇u(x)| .
∑
k∈Jx

2i|gIk − gIi,j |.

Hence we have the estimate∫
D

|∇u(x)|pwΦ(x) dx.
∞∑
n=1

2i∑
j=1

∫
Qi,j

|∇u(x)|pwΦ(x) dx
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.
∞∑
n=1

2i∑
j=1

2−2i

(∑
k∈Jx

2i|gIk − gIi,j |

)p

2−i(p−2)iλ

.
∞∑
n=1

iλ
2i∑
j=1

∑
k∈Jx

|gIk − gIi,j |p

.
∞∑
n=1

iλ
2i∑
j=1

∑
k

|gIk − gIi,j |p

where Ik ∈ {Ii,j+1, Ii,j−1, Îi,j}.
Thus, we have(∫

D

|∇u(x)|pwΦ(x) dx

)1/p

. (E(g; p, λ))1/p = ‖g‖∗EΦ
.

Combining with inequality (10.5), we arrive at

‖u‖W 1,p
wΦ

(D) ≤ C‖g‖∗Φ

where C is a constant independent of g. Hence the extension operator is linear and
continuous with E∗g|S1 = g.

We have not been able to find the results contained in Proposition 1.1, Theorem
1.3 and Theorem 1.4 in the literature. The proofs of these results were given by us.
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