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Z. Wang

Abstract

Let D C R? be the unit disk. The fractional Sobolev space W!'=1/72(S1)
is the trace space of W'?(D) for p > 1, that is, there exists a unique
continuous linear mapping 7~ from W'P(D) into W'~1/P?(S) such that
Tu = u|g for all u € C=(D), and there exists a continuous linear
mapping E from W1=1/PP(S1) into WP(D) such that Eg|s1 = g for all
g € Wi-l/pr(gh).

We would like to use the dyadic energy £(g;p, A) obtained via the
summation of the differences between the averages associated with a
dyadic decomposition to characterize the trace of some Sobolev space.
After modifying the energy E£(g;p,A) to E(g;p,A\) and E(g; ®) with
®(t) = t*log(e + t), we define the Banach spaces T®(S') and T®(S)
with norms | - || and || - |3, respectively. Then we prove that T®(S*)
is the trace space of the weighted Orlicz-Sobolev space W;’_%(D) and

that T®(S1) is the trace space of another weighted Orlicz-Sobolev space
WiP(D). Moreover, we show that T*(S") and T*(S") coincide as sets,

but Wpl’_q;(D) and W, ?(D) do not. Hence, this is an example of two
different Banach spaces that have the same trace space.

To verify the results above, for the extension part, we use a Whitney-
type decomposition of D and an associated partition of unity to define
the extension operator. Then the operator is shown to be continuous
and linear via a series of calculations. For the trace part, we first show
that T®(S!) and T®(S") are Banach spaces and that C°°(D) is dense in
W;’_‘E(D) and W, ?(D). Then we prove that the restriction operator for
functions in C°°(D) is continuous and linear via a series of calculations.
Using the density properties of W;’_(I;(D) and W} P(D) and the complete-

ness of T®(S) and T%(S%), we finally give the continuous linear trace
operators on W;’_q;(D) and W, (D) which coincide with the restriction

operators for functions in C=(D).
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1 Introduction

Let Q2 C R™ be a domain, i.e., an open connected subset of R"™.

Definition 1.1. Let v € L{, () and ¢ € {1,2,--- ,n}. We say g; € Li..(Q2) is the

loc loc
weak partial derivative (distributional derivative) of f with respect to x; in € if

/ﬂu%dm:—/ggiqsdm

for all ¢ € C°(Q). Then Du := (g1, - , gn) is the weak derivative or weak gradient
of u.

Then we introduce the Sobolev space WHP(Q)) with p € [1,00] as the set of all
functions u € LP(§2) whose weak derivative Du belongs to the space LP(§2). The
Sobolev space WP(Q) is a Banach space, i.e., complete normed vector space with

the norm
1/p 1/p
||u||W1,p(Q) = (/ lu(zx)|? dx) + (/ | Du(x)|? d$)
Q Q

for 1 <p < oo, and
][ Wi () == essﬂsup(|u| + [Dul).

We would like to characterize the trace of a Sobolev function u € W'r(Q),
namely, the restriction of u to the boundary 0€2. It would be interesting to find a
Banach space X (092, ||-||) characterizing the trace space such that the trace operator
becomes a bounded linear operator 7 : W'P(Q) — X (09, - ||). Also there is
a converse problem, namely, the problem of extension. Given the Banach space
X (09, || - ||), we would like to find a bounded linear operator E : X (99, - ||) —
WhP(Q) such that Eglaq = g for all g € X (09, || - ||).

For technical reasons, we only consider the case that € is the unit disk D C R2.
Then we have Q) = S'. For the Sobolev space W'?(D) with 1 < p < oo , we
have the density property of smooth functions, i.e., C*°(D) is dense in W?(D)
(see [6, Theorem 4.3]). Here C*°(D) is the set of all functions u = u(z) infinitely
differentiable in D, whose derivatives D*u are bounded and uniformly continuous.
Now u|g is well-defined for a function u € C*°(D). Assume that there exists a
Banach space X (S, || - ||) such that the trace operator 7 : C*(D) — X (S',| - |)
with Tu = u|s: is a bounded linear operator, i.e., there exists a constant C' > 0 such
that for all u € C*(D) we have ||Tul|x(s1) < C||u|lw1s(p). Then we can define the
trace operator T : WHP(D) — X (99, ] - ||) with Tu the limit of Tuy in the norm
sense, where u;, € C*(D) converge to u in W'P(D) as k — oo.

Using the idea above, one can prove that the trace space of W'P(D) is the
fractional Sobolev space W!=1/PP(S1) for p > 1, see [2, Theorem 6.8.13 and Theorem
6.9.2]. Indeed, there exists a unique continuous linear mapping 7 from W'?(D) into
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W1=1/pp(S1) such that Tu = u|g for all u € C*°(D), and there exists a continuous
linear mapping E from W'=1/P?(S1) into W'P(D) such that Eg|s = g for all
g € W=1/pp(SY). Here the fractional Sobolev space W'~1/P?(S1) consists of all the
functions g € LP(S") such that

l9(z) —gW)IP 1 00
HgH];Vl*l/p,p(sl HgHLp S1) /Sl /Sl Wd’f’[xdﬂy < 0.

In the paper [5], one finds a dyadic version for the energy of g : S' — R, given
by

(1.1) E(gip, \) : Z Z|QI”_91”

i=1 7j=1

)

where p > 1 and A € R. Here, {I[;;:i € N,j =1,---,2'} is a dyadic decomposition
of S, such that for a fixed i € N, {[;; : j = 1,---,2} is a family of arcs of length
27 /2" with {J; I;; = S*. The next generation is constructed in such a way that
for each j € {1,---,2""1} there exists a unique number k € {1,--- ,2'}, satisfying
Iiy1; C I ;. We denote this parent of I;1; ; by —E+1,j and set ij =Sl for j =1,2.
By ga, A C S', we denote the mean value g4 = f,gdH' = Hl;wagd’H,l. For
more details, see Section 6.

From Remark 6.4 (also see [5, Theorem 3.1]), we have a sufficient condition for
E(g;p,\) < 0. If g : ST — R is bounded and

Ig(:v)—g(y)\”OA . l9(x) — g(y)| L < oo
o L 1g<+ 4] )d}‘zd}‘“ ’

then £(g;p, \) < o0.
When p =2 and A = 0, we have

£(g;2,0) ZZ\gz”—gI”

=1 j=1

From Example 6.1, we obtain a function g such that £(g;2,0) < oo but (1.2) is

not satisfied, i.e.,
/ lg() — 9(2)| IHAIH! = oo,
5151 |z —y|

So it is not possible to characterize W22 (D) by using the energy £(g;2,0). We
consider another energy, given by

o0

(1.3) E(g;2,0): ZZZW},J g1

=1 j=1 k
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where I, € {]i7j+1,li7j_1,_/f;j}. Here I,y := I, and I; 54y = I;;. For the new
energy E(g;2,0), we have the following theorem:

Theorem 1.1. (i) For any function u € C=(D), we have E(uls1;2,0) < co. More
precisely, there exists a constant C' > 0 such that for all u € C*(D), we have

[l stl|72(s1) + E(ulsi32,0) < Cllullfzp).

(ii) There exists a constant C > 0 such that for any function g € L*(S') with
E(g;2,0) < 0o, we can find a a function u € WY2(D) which satisfies u|s1 = g and

lullfrzy < € (llglagsr) + E(g:2,0))

Here, we write u|g1 = g if for a.e. z = ¢ € S', when {z, = r,e"?}>°, with
z, € D and r, — 1, we have lim,, ., u(z,) = g(x).

For a general p > 1, E(g;p,0) is the correct energy for the trace of a suitable
weighted Sobolev space. For details about weighted Sobolev spaces, see Section 2.
The fractional Sobolev space WP is the trace space of the weighted Sobolev space
WP (D) (see [3, Theorem 2.10]). Here, WP (S1) consists of all the functions g such

p—2
that

» 19) = 9P 151400
_— < .
gl bogsty = Nl9ll7r (s /S /S P HedH) < oo

In order to deal with the general case p > 1 and A € R, we modify the energy
(1.3) by setting

(14) g p7 ZZ)\ZZLQIU _glk|p
k
and
oo 20
i=1 j=1 &k

where I, € {IZ-JH,]m_l,E,j} and ®(t) = t?log*(e + t). It is casy to see that the
energy (1.3) is a special case of (1.4). Moreover, the following proposition gives us
the connection between the above two energies.

Proposition 1.1. Let g : S' — R, g € L*(SY) for ®(t) = t"log*(e + t), where
l<p<ooand A € R. Then E(g;p, \) < 0o is equivalent to E(g; ) < oo.
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For p > 1 and general A € R, Sobolev spaces and weighted Sobolev spaces do
not suffice for us, We need to consider Orlicz-Sobolev spaces and weighted Orlicz-
Sobolev spaces, for more details see Section 4. Here, we introduce the weighted
Orlicz-Sobolev space W;f;(D) as follows:

W;’_q;(D) ={uec L*(D): / O (s|Du(x)|)w(z) de < oo for some s > 0},
D

where w(z) = dist (x, S1)?~2. The space Wpl’_q;(D) is a Banach space and C=(D) is

dense in it with the norm

lullwr oy = lull L2 o) + | DullLe_,p)

el [o() et vl [0 (20 uimar <1},

where Du is the weak derivative of u. For the density property, see Section 5.
Our next result is about extensions.

Theorem 1.2. Let g € L®(S") for ®(t) = tPlog*(e + t), where 1 < p < oo and
A€ R IfE(g;p,\) < oo, then there exists a function u € W;’_q;(D) such that

ulsr =g.

In the process of verifying the above results, we actually found the trace space of
Wpl’_q;(D), which is much stronger than the above results. Define the space T®(S1)
by setting:

T(8%) == {g € L*(S") : lglle < oo},
where
lglle = llgllres) + llglle,

and

lglle, = int {k > 0.E (Z:0) <1}.
Then T®(S?) is the trace space of TW,"%(D). This is given by the following theorem.

Theorem 1.3. (i) There exists an unique continuous linear mapping T from W;;%(D)
into T®(SY) such that Tu = u|g: for all u € C=(D).

(ii) There exists a continuous linear mapping E from T®(S') into W[}’_q;(D) such
that Egls1 = g.

In the process of verifying Theorem 1.3 and Proposition 1.1, we obtained a similar
result. Define T*(S) as follows:

T*(SY) = {g € L*(S") : |lgll3 < oo},
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where
l9lle = llgllce sy + ll9ll&,

and
* 1
I9l5, = (E(g,p, \)'"".

Then T®(S!) is the trace space of WyP(D) where wg is the weight in Example 3.2.
This result is given by the following theorem.

Theorem 1.4. (i) There ezists an unique continuous linear mapping T* from
WLP(D) into T®(S") such that T*u = u|s: for all u € C*(D).

(ii) There exists a continuous linear mapping E* from T®(SY) into WyP(D) such
that E*gls1 = g.

For more details about W.?(D) see Example 4.4. Moreover, C*(D) is also dense
in W, P(D); see Section 5.

Remark 1.1. From Proposition 1.1, we know that 7%(S%) and T*(S!) are equal
as sets, but the norms || - || and || - |5 are not equivalent. Moreover, Wpl’_q;(D) +
WyP(D), see Remark 4.2. Hence we have two different Banach spaces which have
the same trace space.

Remark 1.2. It is easy to see that Theorem 1.1 is a special case of Theorem 1.3
or of Theorem 1.4 with p = 2 and A\ = 0. Moreover, we can obtain Theorem 1.2
directly via the proof of Theorem 1.3. Hence we only need to give the proofs of
Theorem 1.3 and Theorem1.4.

We have not been able to find the results contained in Proposition 1.1, Theorem
1.3 and Theorem 1.4 in the literature.

This thesis is organized as follows. Section 2 mainly introduces the weighted
Sobolev spaces. In section 3, we introduce A,-weights and maximal functions with
respect to the measure coming from an A,-weight. In Section 4, we recall Orlicz and
Orlicz-Sobolev spaces, and give the definitions of the spaces W;’};(D) and WP (D).

In section 5, we mainly give the proof of the density properties of Wpl’f;(D) and
WyP(D). We discuss the three different energies and their connections in Section
6. In Section 8, 9 and 10 we give the proofs of Proposition 1.1, Theorem 1.3 and
Theorem 1.4, respectively.

Finally, we make some conventions about the notation. We denote by C' a
positive constant which is independent of the main parameters, but which may vary
from line to line. The formula A < B or B 2 A means that A < CB. If A < B and
B < A, then we write A ~ B. Denote by N the set of positive integers and R the
set of real numbers. For any locally integrable function u and measurable set E of
positive measure with respect to a measure u, we denote ug = fEu dp the average
of u over E, namely, {,udu = ﬁ [ udp.
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2 Weighted Sobolev spaces

Definition 2.1. Let p € [1,00) and suppose that {2 is a nonempty open subset of
R™. Let w : Q@ — (0,00) be a given weight function, i.e a measurable function which
is positive almost every where in Q. The weighted Sobolev space W1?(Q) is defined
to be the set of all functions u € LP () whose distributional derivatives Du belongs
to the weighted Lebesgue space LF (€2), i.e.,

1/p
IDullgio) = ( [ IPutalPu@dn) <0
Q

Now we can define the norm by setting

[ullwir ) = (/Q Ju@)Pw(x) dﬂf+/Q!DU(:B)Ipw(95) daf)l/p-

Let w = p" with p(z) = dist (x,0Q), r > —1. Let k € Nand 1 < p < 0.
Following the argument above, we define

W) = qu: [ Ju(x)Pp(z) de+ [ |Du(z)Pp(z)" de < oo .
v J |

We also define another weighted Sobolev space by setting

W) = us fulfo + [ DUy do < oo
Q

If our domain is a bounded Lipschitz domain and r is in an appropriate range,
then W*P(Q) is no different from W#P(€)). This statement follows from the following
lemma which can be found in [3, Lemma 2.4].

Lemma 2.1. Let —1 < r < p and Q be a bounded Lipschitz domain. Then
WrP(Q) = WP(Q).

Remark 2.1. When we abolish the restriction of r, the above two definitions of
weighted Sobolev spaces are not necessarily equal, i.e., W # W. For example,
let @ = (—1,1), p =4, r = 8 and u(x) = dist (z,00)""/2. Then we claim that
u € WIP(Q) and u ¢ WHP(Q). Tt is sufficient to consider the case when x € [0,1).
Then u(z) = (1 — 2)~/? and v/(z) = 3(1 — 2)7%/? when z € [0,1). Since

1
0

1 1
/ |u(z)|P doe = / (1—2)?dx = oo,
0 0
the claim follows. Hence W # W.

1 1
1
/ lu(z)[Pp" dx +/ |/ (z)[Pp" do = / (1—2)%+ 1_6(1 — )% dr < oo
0 0
nd

a.
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3 A,-weights and Maximal functions

Definition 3.1. Let w be a locally integrable nonnegative function on R™ and
assume that 0 < w < oo almost everywhere. We say that w belongs to the Muck-
enhoupt class A,, 1 < p < oo, or that w is an A,-weight, if there is a constant c,,,
such that

1-p
(3.1) f wdr < ¢y (/ w'/ P dx)
B B

for all balls B in R™.

Let p stand for the measure whose Radon-Nikodym derivative w is,

W(E) = /E wdz.

According to the following lemma, x is a doubling Radon measure (see [4, Corollary
15.7]).

Lemma 3.1. If w € A,, then p is a doubling measure; that is,
u(2B) < Cu(B)

for all balls B in R", where C = 2"cy, .

Proof. We have

1/p (r=1)/p
| B| :/ wPw P dr < </ wd:z:) (/ wt/ =P da:)
B B B

(p=1)/p
< u(B)l/p </QB wl/(=p) da:)

(p=1)/p
= M(B)l/p <]/ wl/(-p) d:c) ‘23|(p71)/p
2B

-1/p
<oy ({ wis) s
2B

—c/p _'U(B) l/p\2B\
P\ m(2B) ’

where we use the Holder inequality and the definition of A,-weights.
Hence we get that




14 Z. Wang

Thus, we have
1(2B) < 2"cpp(B)

and the claim follows. O]

We assume that each of the following Radon measures p comes from an A,-

weight, i.e.,
M(E):/wdx.
E

Hence p is a doubling Radon measure which is absolutely continuous with respect
to Lebesgue measure.

Example 3.1. Define w : R* — (0,00) with w(z) = dist (x, S*)P~2 where S' =
{x € R?:|z| =1} and p > 1. Then w is an A,-weight.

Proof. To prove that w is an A,-weight, it suffices to check the condition (3.1).
We divide this into two cases: (i) dist (B,S') > idiam(B); (i) dist(B,S') <
5 diam (B).

For the case (i), V x € B, we have dist (B, S!) < dist (x, S') < 3dist (B, S).
Let dist (B, S*) = d. We have

min{1,3? ?}d" % < w(r) < max{1,3**}d*? V€ B.

Then we have

f w(x) dr ~ dP~?,
B

1-p
(7[ w'/ (=P da:) ~ dP2.
B

Hence the condition (3.1) is satisfied as desired.

For the case (i), we divide it into two subcases: subcase (1), diam (B) < ;
subcase (2), diam (B) > 2.

For the subcase (1), we have dist (B, S!') < diam (B) and diam (B) < 2. We
can find a new ball B, = B(xo, ) whose center ¢ is on S' with r = 2 diam (B) < 1
such that B C B,. Let E = {x € R?, dist (z,S') < r}. Then B, C E. Now let F
be the maximal collection with

and

F ={B(z;,r) : x; € S*, B(zi,r) N B(x;,7) =0 for i# j,i,j € N}.

Since r < 1, from geometry, we have #F ~ % For any B(x;,r) € F, we have

/Tw(x) iz = /B(W)w(@ iz < I—}T/Ew(x) da.
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Hence
f dx < — | w(r)dr < - / w(z) dx
Br E
1 9 I
=27— tp (1—t)dt+2m— [ P2(1+¢t)dt
" Jo " Jo
L —2
=4 rP=% ~ P
p—1 ’
and

]/ W/ 0=p) gy < L / WD) gy
B rJE

1 (7 p—2 1 [ p—2
—277—/ tl—p(l—t)dt+27r—/ t=r(1+1t)dt
0 T Jo

r

=4n(p — 1)7“% ~ i

Since 1 — p < 0, we have

1/(1- e p=2)\ 1P —2
w/ ) dy 2 <r1—p> =P
B

Thus, the condition (3.1) is satisfied as desired.

For the subcase (2), we have dist (B, S') < 3 diam (B) and diam (B) > 2. Let
F = B(0,1+¢) with £ = 2 diam (B) > 1. Then we have B C F and (7 > 1. Hence
we have the estimate:

1 1 1
dx,ﬁ— dr = — x)dr + — w(x) dz
[ petsy [wwdr=g [ w@aeg [

- _gp—?» + 2_7rgp—2 < p—2
p(p—1) p—1 p

]/ w!/(1=P) dxﬁ% w'/7P) dy = 12/ wt/(1=P) dx+12 w/7P) dy
B e Jr 2 /o) 2 Jr\B(o,1)

—1 2 1 2 —1 p
— p—)g—2 + 2n(p — 172 4 Mfﬁ*2
p p
<t = (s,

Using the same argument as in subcase (1), we get the condition (3.1). Hence w is
an A,-weight. O]
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Remark 3.1. From the proof above, we can get a more general result. Let p > 1 and
the weight w, : R? — (0,00) be w,(x) = dist (z, S')" where S = {z € R? : |z| = 1}.
Then w, is an Ay,-weight provided that —1 <r <p — 1.

Example 3.2. Define w : R? — (0, 00) by setting

w(z) = dist (z, S*)P~2log” <—dist(4x,31)> 0 <]z <2
log™(4), 2| > 2.

where S' = {r € R?: |z| =1}, p > 1 and X\ € R. Then w is an A,-weight.

Proof. Using the same idea as in the proof of Example 3.1, we consider case (i) and
case (ii). Case (i) is obvious, and for the case (ii), we first consider subcase (1). The
main point is to compute

/ t*log™(4/t) dt
0

for 1 >r>0and a > —1.
Using Integration by Parts, we have

rotl log)‘(4/7“):/ (o + 1)t* log*(4/1) dt—/ M@ log ™t (4/t) dt
0 0

When 0 <r < 4exp(—§|—+}‘|1), for 0 <t < r, we have

A
(v + 1) log(4/t)

When 1 > r > 4exp(—§|—jll), for 4exp(—j'—ﬁ‘1) <t < r, we have r ~ t. Hence we
obtain

1 T
2 —— ot oo 4 N/talutdt
(3.2) P og”(4/r) ; og”(4/t) dt,

for all 0 < r» < 1. Using the above computation, we can easily see that the claim is
satisfied in subcase (1).

For the subcase (2), notice that w(x) is a constant when |z| > 2. It is easy to
see that the claim is also satisfied in subcase (2) via a simple computation.

Hence w is an A,-weight. O

‘ 1
< -
2

For a measurable function f on R", we define the Hardy-Littlewood maximal
function of f with respect to u by setting

Mfte) = s o [flau=sup— [ [fldn

where the supremum is taken over all open balls B that contain x. Then we have

an important inequality which asserts that the maximal operator maps L*(R"; u)
continuously into itself for s > 1.
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Lemma 3.2. 1): If f € LY(R"; ) and t > 0, then

C C
pr > < S [ iplans [ ifan

{M,. f>t} R

where C' depends only on n,p and the Ay,-constant c,,,.
2): If fe L*(R"; ), 1 < s < oo, then we have that

M fldu < C | |f dn,
R R~

where C' depends only on n,p,s and the A,-constant c, ..

Proof. 1): We may assume that M := f{Muf>t} |fldp < oo. For each compact
subset £ C {M,f >t} and for any x € E, there is a open ball B such that x € B

and
f |fldp > t.
B

u(B) <o [ 11

If y € B, then M, f(y) >t and thus B C {M, f > t}. So

_ 1
u(B) <t [ ifldusy [ £l dp.
B {Mpf>t}nB

Since E is compact, we can select a finite subset {B; : 1 < j < m} from
{B: : x € E} such that £ C UJL, B;. Now sup{diam (B;)} is bounded. Hence
we may use the 5r-covering lemma to find pairwise disjoint balls By, By, --- , By as
above so that £ C U™, B; C szl 5B;. Then using the doubling property of (4, i.e.,
Lemma 3.1, we have

W(E) Y u(5B) < €Y u(By) < S /{

Then we have

C
Ifldué? | fldu,
M, f>t} Rn

where C' depends only on n,p and the A,-constant A,,. We take the supremum
over all such compact sets £ C {M,, f > t}, and the conclusion 1) is proved.

2) Recall the Cavalieri principle:

|v(2)]
/|u|pd,u:p// P~ dt dp
0
:p//o X ol dt dp
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— / T u{le] > 1)) d.

Fix ¢t > 0 and define

(@ @) > 12
ft(x)‘{ 0. |f) <2

Then we have that
|f(@)] < |fe(2)] +1t/2

and

M, f(x) < M, fi(z) +t/2.

Thus,
{x: M, f(z) >t} C {M,fi(z) >t/2}.

By the Cavalieri principle, part 1) of this lemma and the Fubini theorem, we
obtain the estimate

M, f ()P du=p / V(| M, f ()] > 1)) dt
R» 0
<p / U ({IMfo()] > £/2)) dt
0
scp/ o2 [ fdpat
0 t Rn
<cp[ v fl dudt
0 {1f(z)|>t/2}
SCP/ tp_2/|f|X{|f(x)|>t/2} dpdt
0 R
2| f(x)]
—Cp / f ()] / 2 dt du
R” 0

=c' [ 1f@)n,

where C” depends on n,p, s and the A,-constant ¢, . O

The definition and the doubling property of A,-weights are from the monograph
[4]. The ideas for the maximal function and Lemma 3.2 are from the lecture notes
[10], but we generalize the Lebesgue measure to a Radon measure which comes from
an A,-weight. Example 3.1 and Example 3.2 were verified by us.
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4 Orlicz and Orlicz-Sobolev spaces

In this section and the following sections, we assume that the Radon measure pu
comes from an A,-weight, i.e., there exist w, which is an A,-weight such that

M@=A%%

Hence p is a doubling Radon measure which is absolutely continuous with respect
to Lebesgue measure.

Definition 4.1. We say that ¢ : [0,00) — [0,00) is a Young function if

where the real-valued function ¢ defined on [0, 00) has the following properties:
(i) (0) = 0;

(ii) ¢(s) >0 for s> 0;

(iii) ¢ is right continuous at any point s > 0;

(iv) ¢ is nondecreasing on (0, c0);

(v) limss00 0(8) = 00.

The following properties of Young function can be easily checked.

Lemma 4.1. A Young function ® is continuous, nonnegative, strictly increasing
and convex on [0,00). Moreover,

®(0) =0, lim $(t) = oo;

t—o0
() ()
lim —t) =0, lim —(t) = o0;
t—0t ¢ t—oo ¢

O(at) < ad(t)  for a€l0,1] and t > 0;
O(ft) > (1) for B>1 and t>0.
Since ® is convex, it satisfies the following Jensen’s inequality.

Lemma 4.2. Let ® be conver on R.
(i) Let ty,--- ,t, € R and let ay,- -, ay, be positive numbers. Then

o (Ollh + apty + -+ + Oéntn) < a1D(t1) + ax®(ts) + -+ - + a, (1)
artagtota, )T ar+ag+-c oy '
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(ii) Let Q@ C R™ be a domain and let « = «o(x) be defined and positive almost
everywhere on ). Then

o Jo u(@)o(x) dz - Jo @(u(x))a(z) dx
Joa(x)dx - Joa(z)dx
for every monnegative function u provided all the integrals in the above inequality

are meaningful.
Then (1) is called Jensen’s inequality and (i1) is called Jensen’s integral inequality.

For any Young function ®, we can define the complementary function.

Definition 4.2. Let ® be a Young function generated by the function ¢, i.e.,

We put

and
\If(t):/o Y(s)ds.

It is easy to check that ¥ is also a Young function. The function ¥ is called
the complementary function to ®. We call &, U a pair of complementary Young
functions.

We now introduce Young’s inequality.

Lemma 4.3. Let &,V be a pair of complementary Young functions. Then for all
a,b € [0,00), we have that
ab < ®(a) + ¥ (b).

Equality holds if and only if

b=y(a) or a=1(b).

Moreover, if u(x) and v(x) are measurable functions on ), we get

[luw-vldn< [ atudn+ [ wiil)dn

Equality occurs if

(@) = p(lu(@)]) or  |ulz)] = ¢(|v(@)).
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There is a special class of Young functions which is very important.

Definition 4.3. A Young function ® is said to be doubling if there exists a constant
k > 0 such that
O(2t) < k®(t) forall t>0.

Combining convexity and the doubling property, we can easily get the following
property:

Proposition 4.1. If a Young function ® is doubling, then for any constant ¢ > 0,
there exist c1,co > 0 such that

a1 ®(t) < P(ct) < ®(t) forall t>0,
where ¢y and co depend only on ¢ and the doubling constant k.
Now we introduce an ordering in the class of Young functions.

Definition 4.4. Let &, ®5 be two Young functions. If there exist two constants
k > 0 and ¢ > T such that

(I)l(t) S (I)Q(Ct) for ¢ Z T,

we write
P, < Py

Remark 4.1. If we have ®; < ®,, then their complementary functions ¥y, ¥,
satisfy Wy < Uy,

Example 4.1. Let p > 1. Then the function ®(¢) = #*/p is a Young function and
the complementary function is W(t) = t?/q where 713 + % = 1. Moreover, ¢ satisfies
the doubling condition, where we can put k = 2P.

Let ®(t) = t?log*(e 4 t), where 1 < p < 0o and X € R. Then

7 < D(t) < tPte,
forp>land 0<e<p—1.
Next, we introduce Orlicz spaces.

Definition 4.5. Let ® be a Young function and u be a measurable function defined
almost everywhere on €2 C R". The space

L2 p) :={u € LL (Qp) : / O (slu(z)|) dp < oo for some s > 0}
Q

is called an Orlicz space.
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Let ¥ be the complementary Young function of ®. We define the Orlicz norm
of u € L*(Q; i) by setting

e = 51> [ fule)o(a)]d

where the supremum is taken over all the measurable functions v such that

/ T (Jo()]) dp < 1.
Q

Since the above norm requires the knowledge of the expression for the comple-
mentary Young function ¥, we define another norm which is expressed only in terms
of ®. Define the Luzemburg norm of u € L*(£2; 1) by setting

|]quq>(Qm:inf{k:>0:/Q (' ’) d,u<1}

The following proposition tells us that the two norms || - || 1oy, and || - [|F Lo ()
are equivalent (see [2, Theorem 3.8.5]).

Proposition 4.2. For each v € L*(Q; ),
ullZa @ < lull e < 2lullfagq,)-
To prove the above proposition, we need the following lemma:

Lemma 4.4. Let ® be a Young function and let w € L*(; ) be such that ||ul| Lo (0., #
0. Then we have

(4.1) /<I> (|u—|) dp < 1.
Q HUHUD(Q;;L)

Proof. For u € L®(Q; i), we claim that

for |, \IJ(] ])du<1
4.2 w(@)o(a)] dp < 4 1Pler @ 2
02 [ @< e o s

The first part of inequality (4.2) follows from the definition of the Orlicz norm. For
the second part, we use the convexity of U, i.e., U(at) < a¥(t) for ¢ > 0 and
a € [0,1]. Hence we obtain that

L (otan) < pagoyan [, H0eehan=1
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By the definition of the Orlicz norm,

o(s) "
S g = s

which gives the proof of the second part of inequality (4.2).
Let us first suppose that u € L*(Q; 11) is bounded and that u(z) = 0 for z € 2\ Qg
with p(€) < co. If we take

(x) = ¢ (%) 7

then also the functions ® (M) and V(|v(z)|) are bounded and integrable over

HUHL@(Q;M
Qp; furthermore, they belong to L*(£2; 1) because they are zero outside of €.
Using the Young’s inequality in Lemma 4.3, and we check that the equality
occurs, i.e.,

Lm\u(@vwdu:/gé(%> du+/Q\If(\v(x)Ddu-

Then using inequality 4.2 and we get that

mase [ w(oap ) > [ (O g o)) d
. o \Tule @ .

If [, ¥(Jv(x)|) dp > 1, then necessarily

Q HuHL‘P(Q;,u)
/ o (M) <1,
Q 1wl Lo ) o

Hence we proved inequality (4.1) when w is bounded.
Now, let u € L®(Q; i) be arbitrary. We pick a sequence of subsets €, C €,

n € N such that Q, C Qp1, u(Q,) < co and Q@ = J7~, Q,. Then we define the
functions u,, n € N by

If [ ¥(|v(x)])dp < 1, then

u(z) for x€Q, and |u(z)| < n,
up(r) =< n for x € Q, and |u(z)| > n,
0 for x € Q\ Q,.
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It follows From the first part of the proof that (4.1) holds for every function u,,,

ie.,
/¢<_EAQL)dHSL
Q ||unHL‘I>(Q;u)

Moreover, as |u,(7)| < |u(z)| for all z € 2, we can easily check that [Ju,[ze@q,) <
|||,y for all n € N. Thus, we have

o)l By g () g () ),
1) )

HU”L‘I)(Q;M) - HunHL‘i’(Q;u) HUHL@(QM |Un|\L*1>(Qu

/¢(J@@l0dugl
Q HuHL‘I’(Q;u)

The sequences {|u, ()|}, and {CID (M)} are nondecreasing. Hence,
n=1

HUHL@(Q;M
using the Monotone Convergence Theorem, we get that

/@(l—l”) dp = lim @(M> dp <1,
Q ||u||L4’(Q;u) n—oo Jo ||u||L‘1>(Q;M)

and inequality (4.1) follows. O

Consequently,

Proof of Proposition 4.2. Using Lemma 4.4, it follows that if u € L®(2; i), we have
HUwaQ;u) < HUHL‘I’(Q;M)-
For the other inequality, define w = u/||ul/%s (- Then we have
Jwllzeagy = sup [ fute)ote)] d < /Q<I><rw|> ot 1,

where we used the Young inequality in Lemma 4.3 and that the supremum is taken
over all the measurable functions such that

/Q U (o)) dp < 1.

Now, let us estimate [, ®(Jw|) dp. From the definition of Luxemburg norm, if we
let k tend to in
Jul
dp <1,
ox () =
Fatou’s lemma gives us

/<I>(|w|)du:/<1> <H H|u| ) duﬁlimﬁnf/@(%) dp < 1.
Q L®(Q;u) Q

el o0,
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Hence we have
||w||Lq’(Q;u) S 2

and the other inequality follows. ]
Example 4.2. (i): When ®(t) = t?, p > 1, we have L®(Q;u) = LP(Q;u) and
I 2oy = I+ Nzr -

(ii): When p = L, ie., u is the Lebesgue measure, we denote L®(Q, 1) by
L*(Q).

(iif): If w is an A,-weight such that u(A) = [, wdx for any measurable set A,
then we denote L®(Q, ) by L2(Q) with

Q
:inf{k >0: / o (%) w(x)dr < 1} = HUHffb(Q)-
Q w

For the Lebesgue LP-spaces, we have the Holder inequality, i.e., if u € LP(2) and
v € L1(Q) with ]—1) + % =1, we have

/|u )| dx < [lull oy - 0]l acey.

The following lemma provides an analogous inequality for Olicz spaces.

Lemma 4.5. Let ®,V be a pair of complementary Young functions. If u € L* ()
and v € LY (), the u-v € LY(Q) and

| el de < s lollzvio

Proof. For ||v||pvq) = 0, inequality is obvious. If |[v|[ ¥y # 0, we apply Lemma
4.4 for the Young function ¥, obtaining

[o(ot)arsn
Q HUHL‘I’(Q)

Then the inequality follows from the definition of the Orlicz norm of u:

| @@ ds = ol

|

dr < [Jullpeq) - [|v]|Lv @)

v
”UHL‘I’(Q)
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For the Lebesgue spaces LP(§2) and L%(£2), if 4(2) < oo and 1 < p < ¢, then
L)) C LP(Q).

We can also obtain a similar result for the Orlicz spaces L®* and L®? making use of
the ordering < introduced in Definition 4.4. We have the following lemma (see [2,
Theorem 3.17.1 and Theorem 3.17.5]):

Lemma 4.6. Let &1, Dy be two Young functions and p(2) < co. If @y < Py, then
there exists a constant k > 0 such that

HUHL%(Q,M) < kHuHL‘I’l(Q,p)
for all u € L*(Q, p).

Proof. Suppose &5 < & holds. If we denote by ¥y, ¥, the complementary functions
to @1, ®,, respectively, then according to Remark 4.1 we have ¥; < W, i.e., there
exist C' > 0 and T > 0 such that

\Ifl(t) S qjg(Ct) for ¢ Z T,

or, equivalently,

Since

‘Pl(t/C) S \Ijl(T) for ¢ S CT,

we have that
Uy (t/C) < Uy (T) + Wa(t) for ¢t >0.

Now, let v satisfy [, Wo(|v|) dpe < 1. Then we have

[ watel/©ydn < wimu@) + [ wallo(e)) <14 0(D)u(@) < .
Q Q

If we denote o = (U1(T)u(Q) + 1)~ <1 and k = C'/a, then we conclude from the
convexity of Uy that

/qul(ym/k)duz/ﬂqfl (J”g”) duga/ﬂ% ('”g”) dp<aa~t =1,

Thus, we have that [, Ua(|v])dp < 1 implies [, Wa(|v|/k)dp < 1. Hence our
claim follows from the definition of the Orlicz space:

v\
s =50 [ JuCooo)] = bsup [ Juo) 2| di
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v(@)
k

Sk:sup/ du:k‘sup/ lu(z)w(z)| du
v/k JQ w JQ

:k“uHL‘I’l(Q,u)?

where the supremum of v is taken over all v such that [, Us(Jv|)dp < 1 and the
supremum of v/k is taken over all v/k such that [, Wy(|v|/k)dp < 1. O

Next, we will introduce Orlicz-Sobolev spaces. Here, we consider the case when
w=L" ie., puis the Lebesgue measure.

Definition 4.6. Let ® be a Young function and suppose that €2 is a nonempty
open subset of R"™. The Orlicz-Sobolev space WH®(Q) is defined to be the set of all
functions u € L*(Q2) whose distributional derivative Du also belongs to the space
L*(Q2). Then Wh®(Q) is the linear set

{ue L*(Q): Duec L*(Q)}
equipped with the norm
HUHWW(Q) = HUHUI’(Q) + ”DUHL‘I’(Q)~
Similarly, we can also give the definition of weighted Orlicz-Sobolev spaces.

Definition 4.7. Let ® be a Young function and suppose that €2 is a nonempty
open subset of R". The weighted Orlicz-Sobolev space with weight w, W1®(Q) is
the linear set

{ue L*(Q): Due L2(Q)}

equipped with the norm
[ullype ) = llullze@) + | DullLg )

Example 4.3. Let Q be the unit disk D and w(x) = dist (z, S*)?~2. We have that
w(x) is an A,-weight. Let p stand for the measure whose Radon-Nikodym derivative
w(x) is,

Then we can also define the Orlicz space L®(D,p) with respect to measure pu,

equipped with the norm
Jullisco = n(h >0 [ @ (%) < 1.
D

Then L*(D,p) = Ly 5(D). The definition of Wpl’_q;(D) is obtained via Definition
4.7.
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Example 4.4. Let 2 be the unit disk D and wg(z) be the weight in Example 3.2
which is an A,-weight. Then we can define a new weighted Orlicz-Sobolev-type
space W P(D) by setting:

WoP(D) = {u € L*(D): /D | DulPwe (x) do < oo}

with norm
1/p
lellvzgor = Vil + [ 1DuPusi)ar)
D
where ®(t) = t?log*(e + t) with p > 1 and A € R.

We give an example to show that WZ}’_%(D) # WLP(D) for ®(t) = t?log*(e +t)
with p > 1 and A € R.

Remark 4.2. When \ # 0, we have W% (D) # WL?(D).
Define a function u by setting

! 1
u(;p) — / t—Q/p log_%_ﬁ (6 -+ ;) dt.
||

1 A

1
|Vu(z)| = |z|"2/Plog % 2 (e+ H) :
T

Then

Moreover, we have the estimate

1
()] < /| R d < (14 [l ),

z|

for some € small enough. For p > 1 and € small enough, we check that
[ dllut@)do s [ (@0)+ @(la] T de < x,
D D

and hence u € L*(D).

Now, we divide the unit disk D into two parts: Dy = {z € D : [z| < i}
and Dy = {zx € D : 1 < |z| < 1}. Then we have |[Vu(z)| ~ 1 for z € D, and
we(x) ~ 1 ~ dist (z,S')P~2 = w(x) for x € D;.

For A > 0, we have

-

/DCD(\Vu(:c)Dw(x)d:cZ/ q>(|vu<x)y)w(x)dx~/2tllog1+3(e+z1)dt:oo

D1 0
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and

/D|Vu(:17)|pw¢,($)d:£: |Vu(93)|pw¢,(x)dx+/ |Vu(x)|Pwe(z) dx

Dy Do

~/ w(x) de + 12| 21log M2 (e + |z ) dx
D2 Dl

Jun

3
<C+ / t~Hog M2 (e + t7Y) dz < oo
0

Hence, u € WLP(D) but u ¢ W,"%(D) .
For A < 0, using a similar argument, we have

/ VulPwe(z) de > / VulPwa(z) dz ~ / " og M2 (e + 1Y) di = oo
D Dy 0

and

/D<I>(|Vu|)w(:v)dx:/D <I>(|Vu|)w(:v)dx+/ O(|Vu|)w(x) dx

Dy

N/ w(a:)d:)s+/ |VulPlog(e + |Vu|) dz
D1 D2

1
3
sC +/ t log_”%(e +t7 1) dt < 0.
0

Hence, u € W;’_CI;(D) but u ¢ W,?(D).

Most of the results in this section are from the monograph [2] except for Remark
4.2 which is due to us. However, we have generalized the results from the Lebesgue
measure to a Radon measure which comes from an A,-weight.

5 Mean continuity and Density Property

first , we discuss mean continuity in LP(2) for 1 < p < 0.

Definition 5.1. Let 1 < p < 0o and u € LP(2). Then the function w is said to be
p-mean continuous if for every e > 0 there exists a 6 = d(e) > 0 such that

||uh — u“LP(Q) < €
for h € R™ with |h| < §, where

(z) = u(x+h) if v€Q and x4+ h e Q,
Ut =190 otherwise in R™.



30 Z. Wang

A basic result for p-mean continuity is the following lemma (see [2, Theorem
2.4.2)):

Lemma 5.1. Let Q C R™ be a bounded domain. Then any function u € LP(Q) is
p-mean continuous.

Proof. Let € > 0. Using the absolute continuity of integration, we have that there
exist an ) > 0 such that for each E C 2 for which £™(E) < 4n, we have

(5.1) (LJM@PM?UP<6

For this 7, there exists a o such that £"(H,) < n, where
H,={x € Q: dist (z,00) < o}.

Put 2, = Q\ H,. Clearly f is a measurable on €2, and thus Luzin’s theorem implies
the existence of a closed set FT} C 2, such that the restriction of the function u to
F, is continuous, £"(€, \ F,)) < n and thus

LMQ\F,) < 2n.

Since F' is closed and bounded, it is compact. Then f is uniformly continuous
on F,. Hence there exists a 0 € (0, g) such that

€

(5.2) £G4 ) = 50| < ey

for all z, 2 + h € F, with |h| <.

Let [h| < 8, F} ={z € Q:x+h € F)}. Then L*(F}) = L"(F]), according
to the translation invariance of Lebesgue measure. Hence £*(Q\ F?) < n. Let
F, = Fnl N F772 Then we have

LMQ\F) < LY(Q\E)) + LMQ\ F2) < 4n.

Using inequality (5.1) we obtain

1/p 1/p
(/ |f(m+h)]dx> —|—</ |f(:1c)|dx> < 2e,
O\F, O\F,

and since inequality (5.2) holds for arbitrary = € F, we have

1/p
( ; |f(ff+h)—f(:r)|dx> <e.
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Hence

(/Uw+h <>mﬁms (Aﬁf@+mmﬁw+(ﬁwf@dQM)

1/p
+< : |f(:1:+h)—f(ac)\dx> < 3e.

Then the claim follows. O
For Orlicz spaces, we have the following definition of ®-mean continuity.

Definition 5.2. Let w € L*(Q;u). Then the function v is said to be ®-mean
continuous if for every € > 0 there exists a 0 = §(e) > 0 such that

Huh — UHDP(Q;;L) <€
for h € R™ with |h| < d, where

(z) = u(lz+h) if v€Q and r+h e Q,
Ut =90 otherwise in R™.

Using the same idea as in the proof of Lemma 5.1, we can get the following
result of ®-mean continuity. The main point in the proof below is to take care of
the measure 1 which is not as good as Lebesgue measure.

Lemma 5.2. Let u € L*(Q,u) with ® doubling, @ C R"™ bounded. Then u is
d-mean continuous.

Proof. Let u € L*(;u) and € > 0. Let us first prove that there exists a § = §(¢)
such that for any h € R™ with |h| < 6 we have

(5.3) /Q<I>(|uh —u|)du < e.

Since u € L*(2; i), there exists s > 0 such that

/ P (s|u]) du < oo.
Q

Since ® is doubling, ®(s|u|) ~ ®(|u|) according to Proposition 4.2. Hence

[ @ul) i < .



32 Z. Wang

i.e., ®(|u|) is integrable. Using the absolute continuity of integration, we have that
there exist an 7 > 0 such that for each £ C € for which u(F) < 5n, we have

[Ecp(yu\) dp < e.

For this 7, since p is absolutely continuous with respect to Lebesgue measure
L™, there exists a ¢ such that u(H,) <7, where

H,={r e Q: dist (z,00) < o}

Put Q, = Q\ H,. Clearly f is measurable on 2, and thus Luzin’s theorem implies
the existence of a closed set Fnl C 2, such that the restriction of the function u to
F, is continuous, u(€2, \ F,;) <7 and thus

w(Q\ F)) < 2n.

Let |h| < ¢ be small, F? = {z € Q : z+h € F}}. Assume that w is the
Radon-Nikodym derivative of y. Then w € L*(2). Using 1-mean continuity of w,
we have

lw(x + h) —w(x)|de — 0, as |h] — 0.
Ey
Moreover, since F' is closed and bounded, it is compact. Then f is uniformly con-
tinuous on Fnl Hence there exists a § € (0, p) small enough such that

|f(z+h)— flz)] < @7 (H(GQ))

for all z,z +h € F,, and

lw(z+h) —w(x) de <n
Fy

for all || < 6. Hence |u(F,) — u(F})] < 1. Then p(Q\ F}) < 3n. Letting
F, = Fnl N FHQ, we get that

PO\ Fy) < p(Q\ F) + p(@\ F2) < 51,
Using the same argument as the one in the proof of Lemma 5.1, we have
[ @+ 1) - ) du
Q
é/ O(|f (2 + h)[ + [ f(2)]) dp +/ O(|f (2 +h) = f(x)]) dp
O\F, Py
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gc/w B\ f(x+ h)[) dp + O/Q (4] (2)]) dyu + ¢

\Fy
<(2C +1)e.

Here we used the doubling property of ®, and C'is a constant that depends only on
the doubling constant. Hence we get the claim (5.3).

Now, let us prove that u is ®-mean continuous. Let k = €/2 be fixed, and let us
denote v = u/k. Then v, = uy/k, v € L*(Q; p). By applying claim (5.3) to v, we
get that there exists a 0 = d(¢) such that for h € R™ with |h| < J, one has

/Q B ((un — v]) dyi = / D (o, — vl/k) dyp < 1.

From the definition of Luxemberg norm, we have

1
lup, — u|£¢(9;u) < 3&

From Proposition 4.2, we immediately obtain
Jun — vl (@ < 20un — ulfeq,) <€
Hence u is ®-mean continuous. O
Denote by S the set of all functions 7 satisfying
n € CE(R™),
n(x) >0 forall x € R",

fRn n(z)dz =1,
supp(n) = {z € R"; |z| < 1}.

(5.4)

S is not an empty set, since we have the following classical example of a function in

S.
Example 5.1. Define a C°-function 7 : R" — R by setting
1 .
n(z) = cexp (W—_J ?f lz| <1
0 if |z] > 1,

where the constant ¢ > 0 is adjusted so that

/n n(x)de = 1.

Then it is easy to check that n € §. Write

1 =z
ne(x) == e_"n(z) (e >0,z € R");

7 is called the standard mollifier.
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Now, for any € > 0, write
Q= {z € Q| dist (z,00) > €}.

Given f € Ll (9), define
fo=mex [
that is,

fé() = / nele — ) f(y) dy = / ne(®)f(x — y) dy

(2€)

for x € Q..
Mollification provides us with a systematic technique for approximating Orlicz-
functions by C*°-functions.

Lemma 5.3. (i): If f € Ll _(Q), then for each € > 0, f¢ € C>®(£,).
(ii): Let ® be doubling. If f € L®(Q;u) N LL_(Q) and Q is bounded, then

loc
fo—= foin L*(Vip),

whenever V- C ) is compact.
(iii): Let ® be doubling. If f € WY(Q: ) N WLH(Q) and Q is bounded, then

loc
v =Ne* fo;, (i=1,---,n) on U.

and
fe= [ in WH(Vip),

whenever V-C € is compact.

Proof. (i): Fix any point on « € Q. and choose ¢ € {1,--- ,n}. We let e; denote the
i-th coordinate vector (0,---,1,---,0). Then for |h| small enough, x + he; € €,
and thus

[ (x + hei) = [(x)
h

Z;H Q% {n(—erhfi_y) —n(x;y)}f(y)dy
—Ein V% {n(@) —n(xzy)lf(y)dy

for some V' CC (). The difference quotient converges as h — 0 to

1 r—y n
—Ta, = " Nea; (T —Y)
€ €
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for each y € V. Furthermore, the absolute value of the integrand is bounded by
1 1
YDl ] € L),

Hence the Dominated Convergence Theorem implies

C o S he) = fo(@)

Ti h—0 h

exists and equals to
/ New: (@ —y) [(y) dy.
Q

Using a similar argument, we conclude that partial derivatives of f¢ of all orders
exist and are continuous at each point of .. Hence f¢ € C*(Q,).

(ii) Given a compact set V' C 2, let ¥ be the complementary function of ® and
v satisfy [, W(Jv|)dp < 1. Then let € < dist (V,02). We have

(/” 2)\lo(@)) du

—[_Amyuwuw—w—f@ﬂ@ywunw
g/[é@em<n\ﬂx—w—f@nwwwmﬂdu

/“ U F@=y) = ()"’”(@!du} ne(y) dy

g2/ 1) = F @)z vage(w) dy
B(z,e€)

Here, we denoted f,(z) = f(z—y) and used Fubini’s theorem. In the last inequality,
we used the Holder inequality and the inequality

lollss < [ W(ehdu+1 <2
1%
From the definition of the Orlicz norm we obtain
Hfﬁ(x) - f(x)HLq)(V;u) < 2\/3( | ny<.1‘) - f(x)HLq’(V;u)ne(y) dy

Using Lemma 5.2, when € small enough, for any y € B(x, €) we have

£y (@) = f(@) Loy < [[fa(2) = F(@) |2 @y = 0,
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for |h| <e.
Hence for any V' C €2 compact, we have

fe— fin L*(V;p).
(ifi) As computed in (i), we have
v (T) = /Q New: (@ —y) f(y) dy = — /Q New: (T = y) f(y) dy
= [l =) )y = (5 £)(@)
for z € Q.. Using (ii), we can get
fo= foin WV p)

immediately, where V' C 2 is compact. O

When ®(t) = t?log*(e +t) for p > 1, X € R, we can get the following density
property.

Proposition 5.1. Let D C R? be the unit disk. Then C*°(D) is dense in W;’};(D)
for ®(t) = t?log(e +t) and p > 1, A € R. Moreover, C=(D) is also dense in
WLP(D). Here W, (D) and WLP(D) are the spaces in Example 4.3 and 4.4.

Proof. First, let us check W,"%(D) € WLY(D). Since for u € W,"5(D), we have
u € L®(D), and it follows that u € L'(D). Now it is enough to prove that the
distributional derivative Du € L ,(D) is in L'(D). Let w(z) = dist (z, S')?"2. We
have the estimate

/|Du(az)]dx:/ | Du(z)|w(z)Y P~ w(z) =1 P9 dg
D D
p—e—1

< ( /D | Du(@)l"“w(z) dx> e ( /D w(z) YD) dm) T

When e is small enough, [, w(z)~"/?=*") dz < co. Using Lemma 4.6 and Example
4.1, we know that

1/(p—e)
</ | Du(z)P~“w(z) dx) < K| Dull e < oo
D P2

Hence |Du(z)| € L'(D) and we get W,"%(D) C WL(D).
Let Ry ={z € Ry: 5 < |z| <1} and Ry = {x € Ry : 1 < || < 2}. Define a map

F: Ry — Ry by setting
x

R

F(z)
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Then we know that F~! = F and that F is a bi-Lipschitz map between R; and R..
For any function u € W;’_q;(D), we extend u to u which is defined on D' =
{z € Ry : |z| < 2} by setting u(z) = u(z) for x € D and u(x) = u(F(zx)) for
x € Ry. Since u € WH(D), there exists a function v with v(z) = u(z) for a.e
x € D such that the functions g(¢,6) = v(tcos,tsin@) are absolutely continuous
on almost all lines L = {tew t € (0,1),0 € [0,27)}. In addition, ¢'(t,0) € L'(D).
Hence ¢(1,60) = g(3,0) + f '(t,0) dt exists a.e. § € [0,27). Then we can define
u(cosd,sinf) = g(l,&). Define g(t,0) = v(tcosh,tsinf) for 0 <t < 1, 0 € [0, 2m);
g(t,0) = v(F(tcosf,tcosh)) for 1 <t < 2,6 € [0,2r). Then we can check that
g(t,0) = u(tcosh, tsinf) almost everywhere. Moreover, since I is bi-Lipschitz, we
can check that for a.e. 0 € [0,27), §(¢,0) is absolutely continuous on almost all
lines Ly = {te” : t € (0,2)}; and that for a.e. t € (0,2), g(¢,0) is absolutely
continuous on almost all lines L, = {te : § € [0,2%)}, and that |Vg| € L'(D).
Hence u € Wh1(D").
Next, let us show that u € WI}’_CI;(D’ ). Since F' is bi-Lipschitz map, we have

/R & ()] dz < / & (Ju(F(x)]) dz
and |Du(zx)| ~ |Du(F~*(z))| for z € Ry. Hence, we have
/R &(\Dia(x) Ju(z) dz < / &(|Du(F(2))|)w(F(z)) d,

where we used w(z) ~ w(F(x)) which is from

1— 1
ol _ 1 for all z € Ry.

o el

1= fz] ~

Then we have
// (I>(|ﬂ(:n)|)dx+/l O(|Du(z)])w(x) de < /D(I)(|u(:)s)|)dx+/D O(|Du(z)]|)w(x) dr < oo,

which means that u € Wpl’_q;(D’ ).

By Lemma 5.3, for a compact set V' O D, we can find a sequence f; € C*°(V') with
fi—uin W;g(\/). Now, define u; = f;|p. Then u; € C*°(D) and w; — u|p = u in
W;;%(D). Hence, we get the density property for W;’:I’Q(D). Using a similar proof as
above, we can also get the density property for Wul}(f (D). Thus the proof is complete.

O

The results regarding p-mean continuity and ®-mean continuity are from the
monograph [2]. The ideas for the density properties, i.e., Lemma 5.3 and Proposition
5.1 are from the monograph [6], but we generalized the results from Sobolev spaces
to weighted Orlicz-Sobolev spaces.
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6 Energies and the trace spaces

We begin by recalling the definitions of our dyadic decomposition and the three
energies. Fix a dyadic decomposition of S', such that for a fixed i € N, {I;; : j =
1,---,2'} is a family of arcs of length 27/2" with |J; I; ; = S'. The next generation
is constructed in such a way that for each j € {1,---,2"1} there exists a unique
number k£ € {1,---,2}, satisfying Iiy1; C I;,. We denote this parent of Iy ;
by IC\Z-HJ and fl,j = St for j = 1,2. By g4, A C S, we denote the mean value
ga = f,9dH" = H%WngdHl.
Then we define three energies as follows:

0o 2"
(61) g(g;p, )‘) = ZZ/\ ‘gli,j - gf” p;
i=1 =1
o] 21
i=1  j=1 k

(6.3) E(g;®)=> > Y 2770 (L’”é—j%s

=1 j=1 k
where [k € {[LjJrl’ [iyjfl, [17]} Here [i70 = Ii,Qi and [i,2i+1 = 1.

Remark 6.1. Let ® be doubling. In the definition of (6.2) and (6.3), we can replace
I € {1 j41, Lij, fw} with I, € {[; j11,1; j—1}. we claim that the new energies are
equivalent to the original ones.

First, we know that I ; is equal to I, ;| Ii j41 or Iy U Lij 1. 161, = LU Tijia,

then we have
g dH! + / g dH!
I j11

1
95 . = f gdM'=—— /
T L, HY(Li ) I

1 / . 1 / .
=——— | gdH'+ i gdH
QMY (1) )1, M (Lij1) Jii

1 1 1
— —f gd’Hl + —f gd”HI = _(gli,j + gfi,j+1>‘
27 2 T

2
‘gfi,j - gfi,j

2J

Hence we obtain .

- 5 ‘gli,j - in,j+1} .
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Similarly, if _/f;j = 1; ;UL -1, we obtain

1
_§’

g[@j - gf . g[,‘,j - g[¢7j71| .
¥

Since ® is doubling, we have

P P P
~ ‘gfi’j - g[¢7j+1 + gIz’,j - gli,jfl

‘gh,j - 'gfi,j

91, — 91, 91, — 91,54 91,.; = 91,5441
@ v, ' .7 < @ .7 . i,j—1 @ i,] / i,7+1 ]
(gt o (gt o (1 gined

Then the claim follows.

and

The above remark tells us that there is no difference if I is only from the set
{li j+1,1; j—1}. Then let us consider the connections between these three energies.

Proposition 1.1 gives us the connection between E(g; p, A) and E(g; ®). Now, let
us consider £(g; p, ) and E(g;p, \). It is obvious that £(g;p, \) < E(g;p, A). From
the proof of [5, Theorem 3.1], we obtain a sufficient condition for E(g;p, \) < occ.

Remark 6.2. Let g : S — R, be bounded. Let A € R and p > 1. If
_ P _
st Jst |z =y [z =y

then £(g;p, A) < E(g;p, \) < co. Moreover, if the function g is Hélder continuous
with exponent a > %, i.e., there exists a constant C' > 0 such that

l9(z) — g(y)| < Clo —y|*®

for any z,y € S, then the condition (6.4) is satisfied, and hence £(g;p,\) <
E(g;p,\) < 0.

The following example tells us that there exists a function g such that £(g;p, \) <
oo but E(g;p, \) = oo for a fixed dyadic decomposition.

Example 6.1. Let A > —1. Fix a dyadic decomposition {;; : i € N,j =
1,2,---,2}. Define

g9(x) = xn, = {1’ z € Dy,
Lt O, S 1172.

Then, we have

p

%) 2°
E(g;p, N) = Z i Z |91, — 97,

i=1  j=1
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= |gf1,1 - gfo,1|p + |911,2 - gIO,1|p = 21—p.

and
00 2
E(g;p,A) > Z i Z 195, = 91,7
=1 =1

o
222% = 0.
=1

Moreover, we can also see that condition (6.4) is not satisfied.

If we do not fix the dyadic decomposition, we could consider the supremum of
the energies over all the dyadic decompositions of S*. Then for the fixed function g
in the above example, we have

sup{&E(g;p, \)} = sup{E(g;p, \)} = oo,

where the supremum is taken over all the dyadic decompositions of S*. Hence we
have the following open question.

Question 6.1. If we have sup{€(g;p,\)} < 0o, do we have sup{E(g;p,\)} < 0o?
Here the supremum is taken over all the dyadic decompositions of S!.

Now, let us focus on the spaces T®(S') and T®(S?) defined via
T*(S") = {g € L*(S") : |lglle < o0}; T®(S") :={g € L*(S") : llgll3 < oo},

where
lglle = lgllzesn + lglless  Nglle = llgllLesy + llglls,,
and g
lgllm, = inf {k > 0.B (2:0) <1}: gl = (Blg.p, )"
The following lemma tells us that 7%(S') and Tq’(S 1) are Banach spaces.

Lemma 6.1. || - || and || - ||5 are well-defined norms and T®(SY) and T®(SY) are
Banach spaces, i.e., complete normed vector spaces.

Before the proof, we first give the following lemma (see [7, Theorem 1.3.9]).

Lemma 6.2. A normed space X is a Banach space if and only if each abso-
lutely convergent series in X converges, i.e., for each sequence (x,)>%, C X, if
Yo zallx < oo, then Y707 x, converges in X.
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Proof of Lemma 6.1. The first issue is to check that || - ||¢ is a norm.

(i) llglle > 01is obvious. If g = 0, then [|g|l¢ = 0. If ||g[|s = O, then ||g||p#s1) = 0.
Hence g = 0. Thus, ||g|]le =0« g =0.

(ii) For any o € R, [|ag|le = |a|||lg||s is obvious from the definition.

(iii) In order to prove the triangle inequality, it suffices to prove the triangle
inequality of || - [|g,. Assume g, h satisfy ||g||g, = k1 and ||h||g, = ko. If kika =0,
using (i), we have that

lg + hlles = k1 + ko,

which satisfies the triangle inequality. If kiks # 0, it suffices to prove that

g+ hlles < K1+ ko

Using Jensen’s inequality in Lemma 4.2, we obtain

g+ h —ip g+ h)li,j - (g + h)fk’
E(kfl-i-kz ZZZQ ® ( (k1 + ko)277 )

zl]l

- _ 91, — 9r,| + |h1,; — bz,
< 2P (
D RITIEEE s

21]1

- - |gl"_glk|) ko <|h1"_h1k|
< i o () o[
; ]Zl Z (/{71 + ]{72 < ]{712_z /{71 + ]{72 k22_l

ka ko
< +
- kl + kg ]{71 + /{ZQ

<1

Hence ||g + h||g, < k1 + k2 = ||h||gs + ||9]|Es- Thus, || - ||¢ is a norm.

In order to prove that T®(S!) is a Banach space, from Lemma 6.2, it suffices to
show that for any sequence (g,)52; C T®(S%), if 307 [|gnlle < oo, then Y 07 g,
converges in T®(S"). Since Y >7, ||gnlle < co implies Y o7, ||gnllre < oo and L®(S')
is a Banach space, then Y>° g, converges in L*(S') by using the above lemma
again. Moreover,

N0l < 3 llgalle =0, as m - oo,
n=1 ) n=m+1
Hence Y 7 | g, converges in T®(S').
Using a similar argument, we can prove the same results for || - ||5 and T®(S').
Thus, the proof is finished. O

The energy (6.1) is from the paper [5]. The modified energies (6.2) and (6.3)
may be new. Most of the results in this section have been obtained by ourselves,
except for the ones that we gave references for.
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7 Whitney-type decomposition of unit disk and
associated partition of unity

Let {Q;;:1€N,j7=1,2,---,2} be the set of all Q;; such that

, 1 1 (j—Dm Jm
— i0 .

fori € N;j =1,2,---,20 If P: B(0,1) — S! is the radial projection map, then
P(Qz,j) = ]Z,j for all 7 € N,j = 1,2, s 72i, where {I’L,j 11 E N,] = 1,2,' . 722} is a
dyadic decomposition of S?.

Now, {Q;;:1€N,j=1,2,---,2'} is a Whitney-type decomposition of unit disk
D = B(0,1), since we have that

2i

(1) D= UiEN Uj:l Qi

(2) Q;; are pairwise almost disjoint;
(3) there exist ¢; and ¢y such that

C1 diam (Qi,j) S dist (Qi,ja DC> = dist (Qi,ja Sl) S Co diam (Qz,j);
(4) there exist a constant C' such that for any @, ; with center z; ;, we have
(71) B(ZEZ'J‘, C_l diam (QZ,])) C Qi’j C B(fL’i’j, C diam (Qz,j))
Associated to this decomposition, there exists a partition of unity, that is, there
exists a family of smooth functions {; ;}i jen such that
; i— 5\ i+ L)
(i) supp(pi;) C 2Qi; :={re” 11— F=<r<1- 2 U—m g < Uta) -}

4 iy 9i—1 2i—1
(i) There exists a constant L > 0 such that [V, ;| < —L-— ~ 27,

m (Q;,5)
(ii) Zz] @i () = XD-
For the existence of such functions {¢;;}i jen, see [9, pp. 168-171]. For any
r € D, let J, be the collection of all (7,7) such that = € gQM. Then from the
properties of Whitney-type decomposition, we know that

#T. <1, YreD.

More precisely, if © € Q; ;, then {Iy, k = (', 5') € T} € {Ligy L1, Ligins Ligy Lo, Lo YU
{Ik,jk = ]i,j or ]i,j—l or ]i,j+1}~ Hence #jx S 12.

8 Proof of Proposition 1.1

Proof. When X\ = 0, there is nothing to prove since E(g;p, A) = E(g; ®).
When A\ > 0, first we estimate the logarithmic term from above. Since g € L?,
we have

/ gl dH? < / 9P log (e + |g]) dH: < oo,
S1 S1
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Hence ||g[z» < 0.
Then, using the Holder inequality and H'(I; ;) ~ H'(I) ~ 27", we have

‘gli,j - glk‘ < ‘gli,j

ol =1 gam 1 gan]
]i,j Ik

< f lg| dH, + f lg| dH,,
I . I

i,j

1/1’ 1/p
g(/ |g|pcm;> +(]/ |g|de;>
I’L,j Iy

S Qi/pHgHLP(Sl)-
Hence M < 20510 gl 1o(s1). Moreover, we get
log/\ (e + MWQ—;‘QI’“') N log/\ (e + 2(1+1/P)z'Hg||LP(Sl)) < O,

where C' = C(||g||tr(s1), p, A). Now, we can estimate E(g; ®) as follows:

ZZZQ v (\91” - glk\)

i=1 j=1
SEs |91, — 91|
:Z Z ‘gfw — g, log ( le>
i=1 j=1 &k
o  2°
<CY D> o, — il = CE(g:p, ),
i=1 j=1 &

where C' = C({|g||r(s1), P A)-
In order to estimate the logarithmic term from below, we define

) 2
(8.1) X k) = 4 b 1 lgn, = gn | > 270
0, otherwise.

Then we have

i

[\

o
E(gip,\) = > i
i—1 g
o
>

i=1

Z |in,j - glk|p
k

1

N
S

> X k)lgr, — gl
1 k

43
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0 21

+ 3PS (= xR, — 9n )
=1 j=l k

= Pl + PQ.

If g1, — 91, > 2*?%, since p > 1 and A > 0, we have

log™ <e + w> > log? <e + 2%’) > O,

where C' = C'(A, p). Hence we have

co 20
91, — 91|
<O S lon, - o Plog? (e + P42 ) OB,
i=1 j=1 Fk
For P, since for |g7,, — g1,| < 2_%,

lOg)\ (6 + |gIz,j2jngk‘) S log)\ (6 + 22%1) S C'i)\,

we have that

co 20

PSS (1 (i, k)2 e

i=1 j=1

A - DNy 2Pt i = A izP;
§522P+1-225221+P <C.
1=1 1=1

Therefore, we obtain P, + P, < CE(g; ®) + C.
Hence we obtain that for A > 0 we have

(8.2) %E(g; ®) < E(g;p,A) < CE(g; @)+ C

where C' depends on ||g||z»(s1), p and .
When A\ < 0, in order to estimate the logarithmic term from above, using defi-
nition (8.1), we obtain the estimate

ZZZ|QI” — g1, P log* ( %)

11]1

_ZZZXkalm—ngplog ( %)

21]1

+zzzl— Rl — an P 1og? e+ 221

i=1 j=1
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=: P/ + Py.

If g1, — 91, > 2*%, since p > 1 and A < 0, we have

where C' = C'(\, p). Hence we have

P < CZZZ g1, — g1 "1 = CE(g; p, ).

i=1 j=1
For P} we use the definition of y and log*(e 4 t) < 1 to obtain

o0

P55ZZ (1= x(i, k)2 v 1<22 G L 22T <C
=1 j5=1
Therefore, we obtain P| + Py < CE(g;p, A\) + C.
Next, we estimate the logarithmic term from below. Since ¢ € L?, using Lemma
4.6 and Example 4.1, we know that g € LP7¢ for 0 < e < p—1. Fix e.
Using the same argument as in the case A > 0, we can get that

|91i,j2—' 91| < o(1+52)

).

Hence we have
log? <e + |‘%72—;g]k|) > log? (e 49U+

where C' = C(]|g||Lr—<(s1), P, A). Now we get the estimate via

o) = O,

91

o0
E(gp, =Y Y o, —gnl”

=1 j=1 k

oo 2°
. |91, — 91|
<CY DTS Al Rlan, — g Plog® (e 2= 0]

i=1 j=1 k
< CE(g; ?).
Hence we obtain that for A < 0, we have
1
(83) oE(o:p, ) S E(g; @) < CE(g;p, A) + C

where C' depends on [|g||r—<(s1), p and .

Combining the inequalities (8.2) and (8.3) and the finiteness of ||g||r»(s1)and
|9l p—<(s1) with respect to A > 0 and A < 0, we obtain that E(g;p, ) < oo is
equivalent to E(g; ®) < oo. O
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9 Proof of Theorem 1.3

For the proof, we need the following lemma (see [2, Theorem 6.4.1 and 6.4.2]):

Lemma 9.1. Let D C R? be the unit disk. For 1 <p <2, q= (2p—p)/(2—p) or
p > 2,q =1, there exists a unique continuous linear mapping R : Wl?(D) — Li(Sh)
such that Ru = u|g1 for all u € C*(D).

Proof of Theorem 1.3 (i). First, we prove that for any function u € C*°(D), we have
ulstlle < C”“sz}v_‘g(D)

where C' is a constant independent of u.
Fix u € C®(D), and let ¢ = u|s1. Let z € [;; and y € I, where [} €

{Zi 41, [i,jflyfi,j}. Then

l9(z) — g(y)] < / Vulds

C,Y

where 7, , is an arc which is a part of a circle with 7,,15" at « and y. Since
Uyer,Vay C CQi; N D where C' = 27, using the Fubini Theorem, we obtain

o) ~ gl ar < [ [ uldsar
Ilc Ik Y,y

<[ wue
CQ; ;nD

where {Q; ]} is the Whitney decomposition from Section 7.
If ¢ = HY I ;) ~ HY (1)) ~ diam Q; ; ~ 277, then |CQ;; N D| ~ 2. We obtain

. gfk|—|]f v) dH: — fg<y>d%;|
Iy,
f f y)| dH,dH,

< / Vu(z)|d=.
E CQWOD

Let ®(t) = t?log*(e 4+ t) and W(t) = t"log"/P(e + t) with max{l,p — 1} < r <
p where A € R. Then ®(t) = ¥?/7(t) and both ®, ¥ are doubling. Fix ¢ with
max{1,p—1} < ¢ < r. Then U= is also a Young function and doubling. Recall that
p(z) = d(z,S'). Using Jensen’s integral inequality in Lemma 4.2, we obtain

\1/ (M) < (wi (f |Vu<z>|d2>)
/ CQi,;ND
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fo

CQi,jf\lD

— f W (
CQiyjﬂD

<(f  wvaeneere) ({0 g
CQiyjﬁD CQi,jﬂD

where we use the Holder inequality in the last inequality. Then we can estimate
that

IN

Vu(z)|)dz>

w<z>|>p<z>”fp<z>2e”dz>

e—1

‘€ e—1
f o ) = e
CQi’jﬂD CQiJ‘ﬁD
1 ce pCU sy e—1
< —/ / te=1 dtdx
2 Jy 0

Se,

since 222 > —1 for max{l,p— 1} < e <r.
Let u(E) = [, p(z)P~? dz for any measurable set E' C R?. We obtain

v (D g [ wva s
g CQL]'OD
:w/ W (|Vu(2)]) d.
CQi,jﬂD
Since ® = UP/" we have that

B B o/ p/r
PP (M) — (grg/ (M)) < =7 / U(|Vu(z2)|) du
g g CQZ'J'QD

g—r.p
r

p/q
< p0-2) ( /C N D\Iff(Nu(z)!)dM) ((CQi; N D))’

where r < ¢ < p and we used the Holder inequality in the last inequality.

From the condition (7.1) in Section 7, we know that for any (); ;, there exists a
ball B;; such that B;; C Q;; C CB,;, where C' is independent of @; ;. Moreover,
since u is doubling, we have that

wW(CQi;ND) = /CQ' - p(2)P 2 dz ~ 0P ~ 1(CQi5) ~ 1(Qig) ~ 1(Bij) ~ u(CB;y).
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Hence we obtain

o <w) < - | e (/CQLM — ))du>p/q
. (f o, (Vu >>><B<z>cm>p/q
% ( f Bi,jM“(F)(Z)d“> " < /B M () (2)du

< [ M) ().

Here
P(2) = U4 ([9u(2))xo(2)
and
M, (F) (2) = sup ][ FW) dr

where the supremum is taken over all ope balls B that contain z.

Since
2—i g )

and p(z)P~% is an A,-weight (see Example 3.1), using Lemma 3.2, we can estimate
E(g; ) as follows:

izz2 g (’91” 9&’)

i=1 j5=1

<§:Z (2)dp

i=1 j5=1 Ql]

< [ MitF)an g / Pl dy
R2

—/D‘I’f(IVU(Z)!)du—/D‘I’(\VH(Z)DP(Z)pQdZ-

In conclusion, there exists a constant C' independent of u and ¢ such that

0.1) E(g;3) < C /D B(Vu(2))p(=) 2 d=.
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Next, we use the above inequality to prove that

(9.2) l9lle, < max{1, C}|Vullps p)-
Assume [|Vul|ze  (p) =t < oo. From the definition of norm || - ||ze_(p), we have
/ P (|V(Z;)(Z)|> p(Z)piZ dz < 1.
D

If C' <1, then (9.1) applied to g/t gives that

E (%;@) < /Dq> (‘v (@) D p(2)P 2 dz = /Dq> (M) p(2)P2dz < 1,

Hence ||g||g, <t. If C > 1, then

E (%; cp) < c/ch <W> p(2)P~2dz < C.

t

Using the convexity of ®, we obtain

1= m(tie) 28(2)

and hence ||g||g, < Ct. Thus we get inequality (9.2).
Now let us prove that

(9.3) lgllzesyy < lullwre p):

Because of Lemma 4.6 and Lemma 9.1, we expect that there exist p—1>6 >0
and ¢ > 1 such that

lgllzesty S Nollosscsy S Nl voms =l s + |Vull pos = Hy + Hi.

(D)

Assume this for a moment. We estimate Hs and Hy. For Hj, using the Holder
inequality and Lemma 4.6, we obtain

H3 S HUHLP*‘S(D) S HU||L<I>(D)-

For H,, we also use the Holder inequality and Lemma 4.6. If 3%11” > —1, we get
p=s p=2 2-p =
Ho=( [ 19005 02)% 0t ¥ a:
D

: (/D [Vl ol dz)plé ( /D p(z>2z”q%) o
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q—1

2y 13
= ||VU”L5:3(D) (/D p(2>q1)

S ||Vu||L5:g(D) S ||Vu||L§,2(D)‘

Hence, what remains is to check the existence of ¢ and ¢ as above, which is equivalent
to both of the following systems of inequalities

(p—1>0>0,¢g>1
p=>2

(p—19)/g>1

-p
-1 > —1.

r
QN

and )
p—1>0>0,g>1

1<p<?
(p—19)/g=1

(p—0)/q
p+f>24wmm
=k > 1
\ q—1

to have solutions for § and ¢. It is easy to check that the above systems of inequalities
have solutions for ¢ and ¢g. Hence we obtain

HQHUI’(SI) SHy+Hy S HVUHL,‘F_Q(D) + HVUHL;}’_Q(D) = HUHw;f;(D),

which gives inequality (9.3).
Together with inequalities (9.2) and (9.3), we have that there exists a constant
C' > 0 independent of u such that

(9.4) Julstlla < Cllullyr

for all u € C*(D). Using the density property from Proposition 5.1, for every

u € W;’_(I;(D), we have a Cauchy sequence wu; such that u; € C*(D) and ||u; —

u||W1,<1>2(D) — 0 as ¢ — o0o. Then, from the norm inequality (9.4), we obtain that
o

u|s1 is a Cauchy sequence in T®(S1), and hence we can define Tu as the limit of

ui]g1 under the norm || - ||¢. Since T®(S') is a Banach space, the limit exists and
is unique. Hence we get the existence and uniqueness of the mapping 7. Thus the
proof is completed. O

Before proving Theorem 1.3 (ii), we give the following lemma:

Lemma 9.2. Using the Whitney decomposition and the associated partition of unity
in Section 7, for any g € T®(S1), we define Eg as

(9.5) Eg=u(x) =) 1 or(®)gr, v€D.
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where {@g(x)} is the partition of unity in Section 7. Then Eg can be extended to
the boundary S* with Eglss = g for a.e. z, i.e., for a.e. x = e € S*, when
{2, = 1,e%}, with x,, € D and r, — 1, we have lim,_,o, Eg(x,) = g(z).

Proof. From the argument in section 7, we know that #7, < 12. Then for z,, we
redefine 7, = {I} : 1 < k < 12,n € N}. Now, we know that for any k, we have
I} = x as n — o0o. Let us prove that

(9.6) nli_}rgogfg = f(z) for ae. .

To prove this, we need the Lebesgue differentiation theorem (see [8, Theorem
1.3, Page 104]), i.e., if g is integrable on S', then for z € I, we have

Hll(igl_}() Ig(y) dH, = g(z) for ae. z.

Fix k. Then there are two cases: (1) z € I}'; (2) x ¢ I}. For the case (1), since
g € L®(S1) is integrable on S!, we may use the Lebesgue differentiation theorem
directly to obtain condition (9.6).

For the case (2), we need more arguments. Here, we consider one of the cases;
the other cases follow in the same way. For every level n, if x € I; ; and I} =
L, b then x € I;,;, UL, ;.11 = I". Moreover, we have H'(I") = 2H(I;, gn) =
2H(I;, j+1) and

lim g(y)dH, = g(z) for ae. z,

n—00 Fn
and
lim g(y)dH, = g(z) for ae. z.

n—oo Iin,jn
Hence we can get condition (9.6) after a simple calculation.
Now using (9.6), together with » _, -, ¢ (x) = 1 for any z,,, we get lim,, o, Eg(7,) =

g(z) for a.e. x. Hence Egls1 = g for a.e. z. O

Proof of Theorem 1.3 (ii). We define Eg as in Lemma 9.2. Then we know that
Eg|s1 = g for a.e. .
For x € D, we have

Z er(x)gr,

k€T

For any = € Q;;, and any k € J,, we have |Q; ;| ~ 27, H*(I;) ~ 27". Since
is doubling, using Jensen’s inequality, we obtain

/ (Ju)) dx—ZZ/ D (|ul) dx<§222 2@(2@@)

i=1 j=1 =1 j=1 k€T

< Z er()lgr,| < Z er()lglr, < Z |9]1,.-

keTx k€T k€T
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SO 27 (lgl) SO0 27 (gl

07

i=1 j=1 k€T, i=1 j=1
oo 2°

<Yy alairsye [ asa
i=1 j=1

< [ #lshaa

Using the same argument as in the proof of Theorem 1.3 (i), we get
(9.7) HUHL<I>(D) N HQHUP(Sl)-

For any = € Q; j, from the definition of u as in (9.5), we have

— g1, = Y on@an, — g1, = Y er(@) (91, — gn,,),

k€T k€T

since ), ., wr(z) = 1. Hence we obtain

V()| = |V(ux) = g1,,)] <D IVor(@)] g, — 91,1 S Y 2 g1, — a1, -
k€T k€Tx

Then since ® is doubling, we can get the estimate

JRGIE ”dz<zz/ &(Vu(z) )22 d

n=1 j=1

S f: Z 2% (Z Lo, ~ g1, ) 2-ilr=2
i=1 j=1 ez 2

S MWL <Z oo )
i=1 j=1 k€T

i=1 j=1 k€Jy )

5%%22—% (—‘gl’“z zg1”|>

i=1 j=1

SHETTEE=

where Iy € {Ii 41, i1, ;-
Hence we have [, ®(|Vu|)p(2)?"?dz < E(g; @), and using the same argument as

in the proof of Theorem 1.3 (i), we obtain
(9.8) HVUHL;’_@Q(D) S lglles-
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Combing inequalities (9.7) and (9.8), we get the inequality
(9.9 fulhyss o < Cllgls

where C' is a constant independent of g. Hence the extension operator is linear and
continuous with Fg|s1 = g. O

10 Proof of Theorem 1.4

Proof of Theorem 1.4 (i). Using the same idea as in proof of Theorem 1.3 (i), fix
u € C®(D), and let g = u|s:. Fori € Nand j =1,2,---,2". Now { = H'([;;) ~
H(I},) ~ diam Q; ; ~ 27" and |CQ;; N D| ~ ¢*. We have

1
o, -l S [ V@i~ v
CQi;ND CQi;ND

Where Ik € {]i,j-i-la]i,j—l)j;,j}'
Fix max{1l,p — 1} < r < p and € with max{1,p — 1} < e < r. Then we have

o, ol 50 |Vu<z>|dz> sw<f Vu(2) idz>
CQZ'J‘OD CQi’jﬂD

-/ |Vu<z>?<w¢>l/e<w¢>‘”edz>
CQ,L‘J'OD

e—1
< / Vu(z)|"wa dZ) (f (wcb)_el'eil) )
CQi,jﬂD CQLJ‘HD

where we used the Holder inequality in the last inequality. Moreover, using the same
argument as in Example 3.2, we estimate

e—1 e—1
- € 2—p - 4
f (wq))Tl'efl = f p(z) e—1 loge—Al (—> dz
CQ; ;ND CQ; ;ND p(z)
1 ot el , /4 el
< (—2/ / pet loge%1 (—) dtdx)
4

< (*Plogh (—) ~ 2P

ct

notice that 22 > —1 for max{1l,p — 1} <e <r and £ ~ 27"
Set pu(E) = [, we(z) dz for each measurable set £. We obtain that

|Vu(z)|["we dz = i_’\ﬁ_p/ |Vu(z)|" du.

r —\ pr—p
’gli,j - gIk:’ S (4 /
CQLJ‘QD

CQi’ij
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Fix r < ¢ < p. Using the Holder inequality, we obtain that

i

. . - A(1—E _p r
ZA|£IIZ-,]- - glk|p:ZA <|gli,j - 91k| ) N AR =) (/ Vu(z)| d#)
CQi,jﬁD

ﬂ"s

p/q
< A=) (/CQ o |VU(2)|qdﬂ> (1(CQiy N D))

From condition (7.1) in Section 7, we know that for any @);; there exists a ball
B, ; such that B; ; C @);; C CB;;, where C' is independent of (); ;. Moreover, since
i is doubling, we have that

W(CQuyND) = / w0 = (CQu) ~ Q) ~ (Biy) ~ WOB)

Hence we obtain that

p/q
*gr,, — gr, [P SO0 (/ |VU(Z)|qu>
CQZ‘JQD

P/q
<P f Vu(2)[? dﬂ>
CQiyjﬂD

p/q
<P ]/ rwz)m(z)du)
CBw-

p/q
ste( 4 MM(G)(Z)du) s [ miGa

]

<[ Mi(G)dp.
Qi.;

Here
G(z) = |[Vu(2)|"xp(2)
and

M, (G)(2) = sup / )l d

where the supremum is taken over all open balls B that contain z.
Since wg is an Ap-weight (see Example 3.2), using Lemma 3.2, we can estimate
E(g; p, \) as follows:

E(g;p, A Z ZZI9113—91k|p<ZZ dp
Jj=

i=1 j=1 QZJ
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<[ MIG)du< / GE dy = / IVu(2)Pws(2) dz.
R2 D

RQ

Hence we have the inequality

(10.1) o, < ( [ 1vutPuete)a:) "

Using the same idea as in the proof of inequality (9.3), i.e., ||g|[res1) S Hu|]W1,q;(D),
ol
we can also prove that

(10.2) lgllze sty S lullwe -

Combing inequalities (10.1) and (10.2), we have that there exists a constant C
independent of u such that

(10.3) lulstlla < Cllullyir

for all u € C>(D). Using the density property from Proposition 5.1, for every

u € WoP(D), we have a Cauchy sequence u; such that u; € C*(D) and |lu; —

u||W1,p(D) — 0 as i — oo. Then, from the norm inequality (10.3), we obtain that
1[.}@

ui]s1 is a Cauchy sequence in T‘I’(Sl). Hence we can define 7*u as the limit of u;|s

under the norm || - ||3. Since 7%(S?) is a Banach space, then the limit exists and
is unique. Hence we get the existence and uniqueness of the mapping 7*. Thus we
finish the proof. O

Proof of Theorem 1.4 (ii). Using the Whitney decomposition and the associated
partition of unity in section 7, for any g € T®(S'), we define E*g by setting

(10.4) E*g=u(®) = X ieg, wr(z)gr, v €B.

Hence E*g|s: = g for a.e. x by Lemma 9.2. From the proof of Theorem 1.3 (ii), we
know that

(10.5) HUHL<I>(B) N ”9HL<I>(51)-

Moreover, for any x € @); ;, we can also get that

‘Vu(x” 5 Z 2i‘glk — 91,

k€T

Hence we have the estimate

/D Vu(z)Pwe(z)de Y ) / . V() [Pwe () da

n=1 j=1
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where I, € {Ii,j-i-l;]i,j—bfi,j}'
Thus, we have

1/p
([ Ivupuntic) < @) = lolk.
D
Combining with inequality (10.5), we arrive at

HUHWJU»;;(D) < Clglls

where C' is a constant independent of g. Hence the extension operator is linear and
continuous with E*g|s1 = g. O

We have not been able to find the results contained in Proposition 1.1, Theorem
1.3 and Theorem 1.4 in the literature. The proofs of these results were given by us.
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