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ABSTRACT 

Wiklund, Petri 
Body composition and molecular reflections of obesity related cardio-metabolic 
disorders: A cross-sectional and longitudinal study in women 
Jyväskylä: University of Jyväskylä, 2016, 110 p. 
(Studies in Sport, Physical Education, and Health 
ISSN 0356-1070, 244) 
ISBN 978-951-39-6725-3 (nid.) 
ISBN 978-951-39-6726-0 (PDF) 
Finnish summary. 
Diss. 

Obesity is a major risk factor for the development of cardio-metabolic disease. 
Unfortunately, our understanding of the role of adiposity and the molecular 
mechanisms underlying this relationship is still limited. The purpose of this 
thesis was to investigate and to identify biomarkers that associate with cardio-
metabolic risk in young and middle-aged women and peripubertal girls. The 
thesis was based on two separate studies: EWI study and Calex family study. 
The study subjects were 100 overweight and obese women (mean age 41.7 years) 
from the EWI study, 110 women (mean age 36.1) and 396 peripubertal girls 
(mean age 11.2 years at baseline) from the Calex family study. Body composi-
tion, visceral and ectopic fat, serum metabolomics, and adipose and skeletal 
muscle transcriptomics were assessed. We first assessed metabolic profiles of 
adults with metabolic syndrome, non-alcoholic fatty liver disease and insulin 
resistance using a cross-sectional study design. The study revealed a key dis-
criminatory role of circulating branched amino acids for individuals with meta-
bolic disorders. Not only was elevated serum branched-chain amino acid level 
associated with poor metabolic health, but this was also reflected in subcutane-
ous adipose tissue gene expression profiles. We then explored whether in-
creased cardio-metabolic risk in adulthood associated with adiposity originates 
from childhood, and whether the key discriminatory role of serum branched 
amino acids found in adults exists already in children. We found that children 
who were of normal weight but had high body fat percent were susceptible to 
increased cardio-metabolic risk in adulthood. Furthermore, high levels of 
branched chain amino acids in childhood were predictive of increases in tri-
glycerides and cardio-metabolic risk later in life. Overall, these results suggest 
that branched-chain amino acids are viable biomarkers to assess cardio-
metabolic health, and thus provide a rationale for continued investigation of the 
relationship between branched-chain amino acid metabolism, adipose tissue 
function, and metabolic health. 

Keywords: body composition, biomarkers, cardio-metabolic disorders, 
metabolomics, obesity  
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1 INTRODUCTION 

Until the first decades of the 20th century, food shortages and malnutrition were 
major public health problems and a great socio-economic burden on societies 
(Caballero 2007). However, with the advent of industrialized agriculture and 
the forces of globalization, food supplies of today are nothing less than profuse, 
providing unprecedented quantities of affordable, easily accessible, energy-
dense foods (Eknoyan 2006). Simultaneously, mechanization has impinged up-
on our modes of living in such profound ways that the energy expenditure re-
quired for daily living has decreased considerably (Church, Thomas et al. 2011). 
Together these changes have created an environment that encourages people to 
eat too much and not do enough physical activity (Swinburn, Egger et al. 1999). 
This contemporary way of living has spread inexorably across societies in all 
parts of the world in recent decades. As a result, the number of overweight and 
obese people in the world today is greater than ever before in the history of 
human evolution; over 2 billion adults are currently considered to be over-
weight or obese (Ng, Fleming et al. 2014), and all indications are that these 
numbers are only going to increase in the foreseeable future (Finkelstein, 
Khavjou et al. 2012).   

The concern surrounding obesity as a public health epidemic lies in the far 
reaching negative effects it has on health (Pi-Sunyer 2002). The conventional 
wisdom is that obesity leads to high blood pressure (Kotsis, Nilsson et al. 2015), 
insulin resistance and glucose intolerance (Kahn, Hull et al. 2006), fattening of 
the liver (Fabbrini, Sullivan et al. 2010) and lipid disorders such as hypertriglyc-
eridemia (Subramanian and Chait 2012). For these reasons, obesity increases the 
risk of cardiovascular disease and type II diabetes (Boden and Salehi 2013). As 
research aims to improve our understanding of the ways in which obesity in-
fluences cardio-metabolic health, it has become clear that not all obese individ-
uals develop these metabolic disorders (Badoud, Perreault et al. 2015). Paradox-
ically, a good number of people with normal body weight have signs of cardio-
vascular disease or metabolic dysfunction (Ruderman, Chisholm et al. 1998; 
Conus, Rabasa-Lhoret et al. 2007). This suggests that obesity-related metabolic 
complications are not attributable to excess body weight alone. Consequently, 
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the underlying molecular mechanisms of obesity-related metabolic disorders 
remain incompletely understood.  

Cardio-metabolic diseases tend to develop gradually over time; therefore, 
subclinical signs of their presence can be observed long before clinical manifes-
tations occur. Early and accurate identification of high-risk individuals who are 
seemingly healthy but have underlying illness would provide an optimum 
window for preventive treatments (Soininen, Kangas et al. 2015). Thus, bi-
omarkers that accurately predict diseases are of particular importance (Roberts 
and Gerszten 2013). Metabolomics is nowadays increasingly applied in bi-
omarker discovery because it can provide highly reproducible, high-
throughput quantitative data on systemic metabolism in a very cost-effective 
manner (Ala-Korpela, Kangas et al. 2012). Such comprehensive systemic data is 
well suited for cardio-metabolic risk research because it can simultaneously ex-
plore multiple metabolic pathways. Therefore, serum metabolite profiling is an 
attractive approach with which to obtain a broad understanding of the molecu-
lar perspectives for disease progression 

In this thesis I provide a summary of our five original research articles that 
focus on typical interrelated cardio-metabolic disorders associated with obesity. 
The purpose is to explore the relationship between adiposity and cardio-
metabolic risk, and through metabolomic and transcriptomics approaches to 
identify biomarkers that associate with common obesity-related metabolic dis-
orders in children and adults.  



2 REVIEW OF THE LITERATURE 

2.1 Obesity 

2.1.1 Definition 

Obesity is generally defined as an abnormal or excessive accumulation and 
storage of fat in the body to the extent that health may be impaired (WHO 2000). 
However, determining the level and location of adipose tissue when it is likely 
to affect health is a challenging task and requires accurate assessment of the 
body fat content. The fat content of the body can be measured in a number of 
ways. It can be measured by hydrostatic weighing (underwater weighing) or 
air-displacement plethysmography (Fields, Goran et al. 2002), which give a 
measure of the body density or volume that can be used to calculate body fat 
percentage. Or it can be assessed using simple field methods like skinfold 
thickness measurement or by bioelectric impedance assessment (BIA), which is 
based on the electrical conductivity of the body. The most accurate measures of 
the fat content and its distribution in the body are provided by contemporary 
imaging techniques such as dual-energy X-ray absorptiometry (DXA), comput-
erized tomography (CT) and magnetic resonance imaging (MRI) (Fosbol and 
Zerahn 2015). In terms of percent body fat, obesity has been defined as 25% or 
greater in men and 35% or greater in women (Grundy 2004). However, as-
sessing percent body fat using imaging techniques is inconvenient and costly. 
Furthermore, neither the world health organization (WHO) nor any other major 
society involved in obesity research has defined a normal value for percent 
body fat (Romero-Corral, Somers et al. 2010). For these reasons, percent body 
fat is rarely used to define obesity in clinical practice and large scale population 
studies.  

In epidemiological surveys and clinical/public screening in adult popula-
tions, anthropometric measures such as body weight and height are the most 
frequently used method for assessing adiposity. Obviously, excessive adiposity 
cannot be defined solely from body weight, since a short, firmly-built person 
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may have the same body weight as a tall slim person. However, indices of body 
weight adjusted for stature are frequently used to estimate body fat content. 
Different combinations of weight and height are used to defined these indices 
(Colliver, Frank et al. 1983), but Body Mass Index (BMI), calculated as the 
weight in kilograms divided by the height in meters squared (Keys, Fidanza et 
al. 2014), is the most widely used anthropometric measure of adiposity (Heo, 
Kabat et al. 2013). The popularity of this method is due to its simplicity, repro-
ducibility, and the relatively good correlation it has with body fatness 
(Gallagher, Visser et al. 1996; Blew, Sardinha et al. 2002; Flegal, Shepherd et al. 
2009). Overweight is commonly defined as a BMI between 25 and 29.9, and 
BMI >30 indicate obesity (TABLE 1) (WHO 2000). These cut-off values are se-
lected based on their approximate risk related to disease, and they apply for 
both men and women. However, a significant limitation of BMI is that it does 
not distinguish between fat and fat-free mass, nor does it provide any infor-
mation about the location of fat in the body (Garn, Leonard et al. 1986). Thus, in 
essence BMI is a measure of excess weight, not necessarily of excess fat.  

TABLE 1 Weight status based on Body Mass Index in adults and children (WHO 
2000).  

Weight status category   BMI range in adults BMI percentile range in children 

Underweight less than 18.5 less than 5th percentile 

Normal weight  18.5 to 24.9 5th percentile to 85th percentile 

Overweight 25 to 29.9 85th to 95th percentile 

Obese  30 or greater above 95th percentile  

In children and adolescents anthropometric measures are also the most com-
monly used methods to assess adiposity. However, determining the level of 
adiposity using these measures is slightly more problematic in children than 
adults because of rapid growth and development. During growth height in-
creases and body composition undergoes considerable changes (Cheng, Volgyi 
et al. 2009), thus classification of overweight or obesity using a single measure is 
difficult. To overcome this problem many countries have developed national 
growth reference charts that indicate the normal changes in weight and height 
in children (Lahti-Koski 2004). These charts are constructed by observing the 
growth of large numbers of normal children over time. The changes in weight 
and height of a child can be compared to the expected values of children of the 
same sex and age, and to evaluate whether the child is growing appropriately 
(Saari, Sankilampi et al. 2011). Childhood and adolescent obesity has typically 
been defined based on these charts using specific cut-offs. A commonly used 
cut-off to classify obesity is ≥ 120% of the median weight for age, height and sex 
(Lahti-Koski 2004). Another way to classify obesity in children is to use certain 
percentiles in the reference growth curves. In this approach, the 85th percentile 
has often been used as the cut-off for overweight and the 97th percentile for obe-
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sity (Lahti-Koski 2004). A more precise measure of weight status can be ob-
tained by calculating the Z-score by subtracting the reference value from the 
measured weight and dividing by the standard deviation of the reference popu-
lation. Using this method, obesity is usually defined as Z-score + 2 or more 
standard deviations. This approach is often used in research because it provides 
a comparable measure of weight status that is not influenced by gender and age 
(Lahti-Koski 2004).  

BMI is also widely used to assess adiposity in children and adolescents 
(Chinn 2006). Whereas, in adults, the BMI cutoffs are based on fixed values re-
lated to health risk, in children finding risk related cutoffs is difficult because, in 
general, children are free from cardiovascular disease (Flegal and Ogden 2011).  
Therefore, statistical definition of BMI using the 85th and 95th percentiles for age 
and gender are commonly used cut-offs to classify overweight and obesity in 
childhood (TABLE 1) (Cole, Bellizzi et al. 2000; Cole and Lobstein 2012). In ad-
dition, WHO has defined overweight as a BMI Z-score greater than 2 and obesi-
ty as greater than 3 (WHO 2008). As with adults, the relationship between BMI 
and adiposity varies according to body composition in children (Pietrobelli, 
Faith et al. 1998), and therefore the diagnostic performance of BMI is not opti-
mal to identify excessive adiposity in children either. 

2.1.2 Prevalence 

The prevalence of obesity in adults has increased substantially across the globe 
during the last three decades (FIGURE 1). Using the BMI criteria, over 1.9 bil-
lion adults, 18 years or older are currently considered overweight and over 600 
million are obese (WHO 2015). The prevalence of obesity is highest in United 
States and lowest in Asian countries such as Japan. In the European region, the 
highest obesity rates are found in England, where one in four adults is obese 
(Doak, Wijnhoven et al. 2012). In Finland, BMI has continuously increased dur-
ing the past three decades in adults (Vartiainen, Laatikainen et al. 2010), and 
currently, 20.7% of men and 24.1% of women are considered obese (Lahti-Koski, 
Seppanen-Nuijten et al. 2010). All indications are that the prevalence of over-
weight and obesity will continue to increase in the years to come (Finkelstein, 
Khavjou et al. 2012). 
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FIGURE 1 Percent changes in adult obesity prevalence over time in selected countries 
around the world (Trends in Global obesity  2016). 

The prevalence of overweight in children has also increased considerably in 
recent decades (FIGURE 2) (Cunningham, Kramer et al. 2014; Lobstein, Jackson-
Leach et al. 2015; Trends in Global obesity  2016). The prevalence has increased 
rapidly since the 1980s and 1990s in the United States and Europe, including 
Finland (Kautiainen, Rimpela et al. 2002; Vuorela, Saha et al. 2011), where the 
prevalence of overweight is currently high, particularly among children in low-
er social and economic groups (Kautiainen, Koivisto et al. 2009; Knai, Lobstein 
et al. 2012). It has been estimated that the worldwide prevalence of childhood 
overweight and obesity will increase in the following years (de Onis, Blossner et 
al. 2010), although recent data suggest that in some countries such as Germany 
childhood overweight and obesity may be leveling off (Olds, Maher et al. 2011).   
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FIGURE 2 Percent changes in child overweight prevalence over time in selected countries 
around the world (Trends in Global obesity  2016). 

2.2 Etiology of overweight and obesity 

2.2.1 Physical inactivity and reduced energy expenditure  

The growing obesity epidemic is occurring against the background of a contin-
uous decline in the energy expenditure required for daily living (Brownson, 
Boehmer et al. 2005). A recent study estimated that in the United States, daily 
energy expenditure due to work related physical activity has decreased by 
more than 100 kcal during the last 50 years in both men and women, and this 
reduction was associated with the increase in mean body weight during this 
time frame (Church, Thomas et al. 2011). Similar trends have been observed 
also in other countries including Finland, where daily energy expenditure dur-
ing work reportedly decreased by more than 50 kcal between 1982 and 1992, 
while the average body weights relentlessly crept upwards (Fogelholm, 
Männisto et al. 1996) Substantial reductions in daily energy expenditure have 
likely occurred also in developing countries such as China and Brazil, which 
have the highest absolute and relative rates of decline in total physical activity 
due to reductions in movement at work (Ng and Popkin 2012). For this reason, 
it is believed that the obesity epidemic has penetrated also the low-income 
countries, particularly in the urban areas, and will continue to spread for the 
foreseeable future (Prentice 2006).     

There is also reason to believe that advances in transportation (motorized 
vehicle, elevators and escalators) and domestic mechanization (e.g. washing 
machines, dishwashers and vacuum cleaners) have reduced energy expenditure 
in physical activities over the years (Lanningham-Foster, Nysse et al. 2003). A 
recent study estimated that, in women, daily housework-related energy ex-
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penditure has decreased by 360 kcal in the United States since the 1960s (Archer, 
Shook et al. 2013). The authors of the study concluded that such reductions in 
housework-related energy expenditure might be a substantial contributor to the 
rise in prevalence of obesity in women in the last five decades. Because such 
labor-saving devices are habitually used in affluent societies, their contribution 
to population energy balance in high-income countries has been considered 
substantive (Lanningham-Foster, Nysse et al. 2003). Domestic mechanization 
has also contributed to increased sedentariness, as time spent in house work has 
been replaced by sedentary activities such as watching television and use of 
other screen-based media (Archer, Lavie et al. 2013). According to recent stud-
ies, a third of the world´s adult population is currently physically inactive 
(Hallal, Andersen et al. 2012). More than 40% of middle-aged people spend 
over 4 hours per day sitting, and these numbers increase with age (Hallal, 
Andersen et al. 2012). Increased sedentariness is not limited to adults, as the 
majority of children and adolescents do not achieve the recommendations of 
daily physical activity (Kalman, Inchley et al. 2015). Consistent with this, stud-
ies indicate that participation in leisure-time physical activity (LTPA) has con-
tinuously declined in children and adolescents (Dollman, Norton et al. 2005; 
Huotari, Nupponen et al. 2010; Hills, Andersen et al. 2011). By contrast, in 
adults LTPA has progressively increased over the years (Bruce and Katzmarzyk 
2002; Craig, Russell et al. 2004; Steffen, Arnett et al. 2006; Stamatakis, Ekelund et 
al. 2007; Knuth and Hallal 2009; Aadahl, Andreasen et al. 2013). However, it 
may be that on the secular basis the increase in LTPA has not been enough to 
offset increased sedentary behavior, as total physical activity has declined rap-
idly across the globe (Ng and Popkin 2012).  

Based on the data presented above, it would seem intuitive that a decrease 
in daily energy expenditure is a major driver of the ongoing obesity epidemic. 
However, on closer scrutiny, this idea seems improbable, and there is fair 
amount of evidence to support that contention. Although, total physical activity 
has indisputably decreased over the years, doubly-labelled water studies 
(which provide the optimal method to measure energy expenditure in free-
living individuals) show that daily energy expenditure has not declined be-
tween 1980 and 2005 in Europe or North America (Westerterp and Speakman 
2008). Similarly, a recent meta-analysis of nearly 100 doubly-labelled water 
studies indicated that populations in industrialized countries do not have lower 
rates of daily energy expenditure compared with populations in developing 
countries (Dugas, Harders et al. 2011). This seeming paradox may be explained 
by the fact that obese individuals tend to have higher habitual energy expendi-
ture compared with normal weight people (James, Davies et al. 1978; Ravussin, 
Burnand et al. 1982) (TABLE 2). Indeed, Leibel et al. demonstrated that a 10 per-
cent weight gain (by overfeeding) increases daily energy expenditure (adjusted 
for metabolic mass) from 370 to 530 kcal, depending on the baseline weight 
(Leibel, Rosenbaum et al. 1995). In that study, weight gain resulted from a sig-
nificant increase not only in fat but also in fat-free mass, suggesting that the 
higher energy expenditure in the obese is probably attributable to their greater 
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body size. Since a larger body requires more energy to move around, the obvi-
ous implication is that the rate of energy intake must also increase accordingly, 
otherwise weight loss will ensue. Thus, it appears unlikely that the obesity epi-
demic is attributable to decreases in daily energy expenditure alone. 

TABLE 2 Twenty-four-hour energy expenditure (kcal/day) in lean, moderately  
obese and obese individuals measured in a respiration chamber, adapted 
from (Ravussin, Burnand et al. 1982). 

Weight status Resting metabolic rate Total metabolic rate 
Lean        1461        2016 
Moderately obese       1588        2292 
Obese       1813        2399 

 

2.2.2 Physical activity, energy intake and weight management  

Although decreases in daily energy expenditure may not be the primary cause 
of obesity that is not to say that physical activity or exercise has no role in ener-
gy balance. One theory holds that energy balance may be easier to achieve 
when energy flux is high. This concept was originally developed by (Mayer, 
Roy et al. 1956), and has subsequently been described (Blundell and King 1999) 
and (Hill, Wyatt et al. 2012). According to this theory, a threshold for physical 
activity exists above which people are in the so called “regulated zone” of ener-
gy balance (FIGURE 3). Those who are in the regulated zone are able to meet 
high energy expenditure needs with energy intake, thus maintaining body 
weight. However, those who are below the physical activity threshold have 
lower energy expenditure, and thus are in the “unregulated zone” without the 
matching decrements in energy intake. In other words, this theory suggests that 
appetite may not be appropriately regulated at low levels of physical activity. In 
support of this theory, Shook et al. examined the relationship between energy 
intake, physical activity, appetite, and weight gain during a 1 year follow-up, 
and found that individuals with low physical activity had higher levels of crav-
ings for foods compared with those who had high levels of physical activity 
(Shook, Hand et al. 2015). Furthermore, the authors of that study noted that a 
threshold for achieving energy balance occurred at an activity level correspond-
ing to 7116 steps per day. Thus, it may be that an increase in sedentariness al-
lows for a much steeper trajectory in population weight gain than would have 
been otherwise possible. 
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FIGURE 3 Schematic hypothesis  that energy balance may be easier to achieve at higher 
levels physical activity and energy expenditure, adapted from (Hill, Wyatt et al. 
2012). 

Voluntary exercise is the most important discretionary component of total daily 
energy expenditure and therefore it has the potential to influence energy bal-
ance. This has been illustrated in many longitudinal studies. For example, a 
prospective study with 20 years of follow-up showed that maintaining high 
levels of physical activity mitigates weight gain significantly, particularly in 
women (Hankinson, Daviglus et al. 2010). Similar findings have been reported 
from the Finnish Twin Cohort (Leskinen and Kujala 2015). These studies show 
that twins who have been consistently discordant in LTPA for over 30 years 
differ significantly from each other in terms of body weight and fatness; physi-
cally active co-twins have lower body weight and smaller waist circumference 
(Waller, Kaprio et al. 2008), and they also have lower BMI (Piirtola, Kaprio et al. 
2016) and much less (50%) visceral and hepatic fat compared with their inactive 
co-twin (Leskinen, Sipila et al. 2009). These findings indicate that a persistently 
higher physical activity level is associated with a lower rate of weight gain even 
after controlling for genetic susceptibility and childhood environment. There is 
also a wealth of evidence from controlled trials that exercise (or physical activi-
ty) carried out over longer periods of time can generate an energy deficit and 
thereby induce weight loss (Jakicic, Marcus et al. 2008; Rosenkilde, Auerbach et 
al. 2012; Donnelly, Honas et al. 2013). A series of reviews (Ballor and Keesey 
1991; Catenacci and Wyatt 2007), including a Cochrane Review (Shaw, Gennat 
et al. 2006) (which is considered the gold standard in assessing evidence) indi-
cate that exercise can induce weight loss, and the weight loss is greater when 
coupled with energy restriction. Thus, both diet and exercise are important 
components in programs intended for weight loss. 
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2.2.3 Food availability and energy intake 

As physical labor has been technologically engineered out of the Western life-
style, the food environment has also changed drastically. Powered agricultural 
machinery, improvements in cultivation techniques, fertilizers and agricultural 
subsidies have increased crop yields substantially (Cohen 2008). Consequently, 
food has become abundant and relatively inexpensive. Increased availability of 
food has most likely contributed to the obesity epidemic, because today people 
can eat many times a day and virtually as much as they want (Grundy 1998). 
Not only has food become abundant and readily available, the quality has also 
changed; the food and beverage industries produce highly-processed palatable 
foods and drinks that have high energy contents. Because these foods tend to be 
inexpensive, easily available and are often served in large portion sizes in fast 
food and other restaurants, they have most likely accelerated the increase in 
energy intake over the years.  

Consistent with the increased availability of energy-dense food and bever-
ages, Swinburn et al. showed that the estimated daily energy intake in adults 
increased on average by 500 kcal in the United States between 1970 and 2000 
(Swinburn, Sacks et al. 2009). Subsequent studies using the national food avail-
ability data concur with these findings by showing that daily energy intake in 
the U.S increased slowly until the early 1980s, and then started to increased rap-
idly (Levitsky and Pacanowski 2012). Similar findings have been reported in 
several European countries (Silventoinen, Sans et al. 2004; Balanza, Garcia-
Lorda et al. 2007). Moreover, a recent global analysis showed that increases in 
food-energy supplies is congruent with the dynamics of the population weight 
gain, particularly in high-income countries (Vandevijvere, Chow et al. 2015), 
suggesting that increased food intake is a major driver of the obesity epidemic.  

2.2.4 Genetic susceptibility and heritability 

Although food is now abundantly available in all affluent societies, not every-
one develops obesity, thus obesity is likely a consequence of the complex inter-
play between the environment, behavior and genetic factors (Higginson, 
McNamara et al. 2016). In 1962 James Neel proposed that the prevalence of obe-
sity is on the rise because human metabolism runs on ancient genes that are ill 
equipped for contemporary food environment (Neel 1999). The thrifty genotype 
hypothesis he put forward suggests that conditions of scarcity used to favor 
those with a parsimonious metabolism. In another words, populations that ex-
perienced periods of feast and famine, natural selection favored individuals 
carrying “thrifty alleles” that promote the storage of fat and energy. Barker and 
colleagues developed this hypothesis a little further, and suggested that instead 
of arising from genes, the thrifty metabolism developed as a direct result of the 
environment within the womb during development (Barker 1997). This conjec-
ture was based on their observation of a relationship between low birth weight 
and increased adult cardio-metabolic risk. They attributed the low birth weight 
to fetal undernutrition, and proposed a thrifty phenotype hypothesis, which pos-
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its that the metabolic adaptations adopted as a survival strategy by an under-
nourished fetus would lead to changes that are maladaptive in the affluent en-
vironment later in life. Thus, both hypotheses predict that in certain popula-
tions people are predisposed to eat excessively when food is abundant to pre-
pare themselves for times of need, but in the contemporary environment this 
strategy entails a greater risk for obesity and its metabolic sequelae because 
food is continuously available and famine rarely experienced.   

The Pima Indians, a group of Native Americans living in southern Arizo-
na, are a good example of such a population (Schulz and Chaudhari 2015). For 
centuries, the Pima population practiced a traditional agrarian lifestyle; nearly 
the entire population was lean, and obesity was rare. But as they were forced to 
abandon their traditional way of living at the turn of the 19th century and adopt 
a modern way of life (characterized by a constant food supply and little physi-
cal labor), they quickly started to gain weight. By the mid-1970s the prevalence 
of obesity and type II diabetes among the Pima population was higher than in 
the Caucasian population (Knowler, Pettitt et al. 1991). Today, this tribe is noto-
riously famous for being among the fattest people in the world, with over 75% 
of the adults being obese (BMI >30) (Schulz and Chaudhari 2015). Given the 
low degree of admixture and high heritability of obesity in the Pima Indians, 
the population should represent a good source for genetic discovery. However, 
no convincing candidates for these thrifty genes have been discovered 
(Speakman 2006), thus the thrifty genes hypothesis remains little more than a 
nebulous concept, and obesity in the Pima appears to be determined mostly by 
environmental circumstances (Schulz, Bennett et al. 2006).  

While obesity results mostly from changes in environment and the conse-
quent change in lifestyle, it is also a highly heritable trait.  This is evidenced by 
the fact that obese parents often have obese children, and the risk of a child be-
coming obese in adulthood is about two to three times higher if either the 
mother or the father is obese (Allison, Faith et al. 1996; Whitaker, Wright et al. 
1997). Studies have shown heritability estimates varying between 25% and 60% 
for BMI and 25% and 40% for total body fat (Rankinen, Sarzynski et al. 2015). 
Twin studies have indicated that genetics and non-shared environment explain 
the variation in BMI to a significant degree (Schousboe, Willemsen et al. 2003), 
but common environmental factors seem to affect BMI only in mid-childhood, 
not later in life (Silventoinen, Rokholm et al. 2010). This is consistent with adop-
tion studies, which have shown that the BMI of the adoptees is more closely 
related to their biological parents than to their adoptive parents (Stunkard, 
Sorensen et al. 1986; Sorensen, Price et al. 1989). Controlled feeding studies in 
monozygotic twins have shown that the tendency towards weight gain is com-
parable between twins, which supports the role of genetic factors in body 
weight regulation (Bouchard, Tremblay et al. 1990; Bouchard, Tremblay et al. 
1996); and the fact that monozygotic twins discordant for obesity are relatively 
rare, underscores this notion (Pietiläinen, Naukkarinen et al. 2008).  

Despite the high heritability of obesity, the genes that contribute to obesity 
are not well defined. Genome-wide studies (GWAS) have identified many gene 
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variants associated with BMI (Speliotes, Willer et al. 2010; Locke, Kahali et al. 
2015). The first single nucleotide polymorphism (SNP) associated with in-
creased BMI was mapped to a gene called FTO (Frayling, Timpson et al. 2007; 
Scuteri, Sanna et al. 2007). This gene acts by regulating appetite and energy ex-
penditure. A number of other genetic variants have been identified to associate 
with risk of obesity and fat distribution (Loos and Yeo 2014), and although 
common allelic variants explain only a small proportion of the variance in BMI 
(<2%), these risk alleles contribute to obesity in a polygenic manner (Hofker 
and Wijmenga 2009). Only very rarely is obesity due to single gene mutations 
(e.g. leptin deficiency, leptin-receptor defects), and in these cases massive obesi-
ty in observed already in early childhood (Montague, Farooqi et al. 1997).  

2.3 Metabolic disorders associated with obesity  

2.3.1 Metabolic syndrome  

Metabolic syndrome is defined by a constellation of interconnected physiologi-
cal and metabolic abnormalities that increase the risk of cardiovascular disease 
and type II diabetes (Grundy 2015). From the historical point of view, the con-
cept of metabolic syndrome originates from the 1920s when Eskil Kylin, a Swe-
dish physician, noted the association of hypertension, hyperglycemia and gout 
(Nilsson 2001). Two decades later, Jean Vague, a physician from France, linked 
abdominal obesity with the metabolic abnormalities observed in type II diabe-
tes and cardiovascular disease (Vague 1996). However, it was Gerald Phillips in 
1978 who first suggested that aging, obesity and other metabolic disorders (that 
we now call metabolic syndrome) are associated with cardiovascular disease 
(Phillips 1978). In 1988, Gerald Reaven noted that dyslipidemia, hypertension 
and hyperglycemia commonly cluster together, and called it syndrome X 
(Reaven 1988). He further proposed that individuals who displayed this cluster 
of abnormalities tended to exhibit insulin resistance and compensatory hyper-
insulinemia, hence the term insulin resistance syndrome is also used for this 
cluster of clinical manifestations. However, the term metabolic syndrome is 
commonly used in the literature because it avoids the implication of insulin re-
sistance as the primary cause of the associated metabolic abnormalities. Differ-
ent diagnostic criteria have been proposed for this condition (TABLE 3) (Alberti 
and Zimmet 1998; Executive Summary of The Third Report of The National 
Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, 
And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III)  
2001; Alberti, Eckel et al. 2009), but the most recent version by the International 
Diabetes Federation (IDF) defines MetS as the presence of abdominal obesity 
and two or more of the following: elevated serum triglyceride or glucose, re-
duced high-density lipoprotein cholesterol and elevated blood pressure 
(Zimmet, Alberti et al. 2005).   
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MetS is common throughout the world, and its prevalence ranges between 
10% and 40% depending on the criteria used (Grundy 2008). These rates are 
similar to those reported in middle aged Finnish men and women (Ilanne-
Parikka, Eriksson et al. 2004; Hu, Lindstrom et al. 2008). In general, MetS seems 
to affect men and women at a similar rate, though in some countries a greater 
number of women than men meet the criteria of MetS (Cornier, Dabelea et al. 
2008). This might be due to gender-specific cut-off points set for waist circum-
ference and HDL-C (Regitz-Zagrosek, Lehmkuhl et al. 2006). Clustering of met-
abolic abnormalities is not limited to adults as the prevalence of MetS appears 
to be relatively high also in children and adolescents, particularly among those 
who are overweight or obese (Bokor, Frelut et al. 2008). A recent review indicat-
ed that 11.9% of overweight and 29.2% of obese children have MetS (Friend, 
Craig et al. 2013). However, the major problem with identifying children and 
adolescents with MetS is that there are no widely accepted criteria for the defi-
nition of pediatric metabolic syndrome (Kassi, Pervanidou et al. 2011). The rap-
id growth patterns in childhood and the effects of hormonal changes on glucose 
and lipid metabolism during puberty make such criteria difficult to establish 
(Zimmet, Alberti et al. 2007). Therefore, many studies in children have used 
metabolic risk scores, calculated from continuous variables of the constituent 
traits of MetS to represent clustering of metabolic risk factors (Andersen, Harro 
et al. 2006; Eisenmann 2008; Pandit, Chiplonkar et al. 2011). Using such contin-
uous risk scores has been considered a valid tool for epidemiological research 
evaluating cardio-metabolic risk, not only in children but in all age groups, in-
cluding older men and women (Viitasalo, Lakka et al. 2014). 

Generally speaking, the prevalence of MetS increases with age (Park, Zhu 
et al. 2003; Ogbera 2010), and it is more common in obese than non-obese peo-
ple (Park, Zhu et al. 2003). This suggests that excess adiposity and aging are 
among the primary risk factors for this condition. However, genetic susceptibil-
ity is also an important factor in the development of MetS (Bouchard 1995; 
Abou Ziki and Mani 2016). Studies have shown that children who have at least 
one parent with MetS are more likely to develop obesity and insulin resistance 
than children for whom neither parent has MetS (Pankow, Jacobs et al. 2004). 
Similarly, children of parents with premature coronary heart disease are more 
likely to be overweight in childhood and develop an adverse cardio-metabolic 
risk profile in early adulthood (Bao, Srinivasan et al. 1997). Other family and 
twin studies further support the contribution of genetics to the clustering of 
metabolic factors (Mitchell, Kammerer et al. 1996; Edwards, Newman et al. 1997; 
Hong, Pedersen et al. 1997). The heritability estimates of the different compo-
nents of MetS range between 40% and 70%, with obesity and HDL cholesterol 
being most strongly heritable traits (Lusis, Attie et al. 2008). In addition to ge-
netics, excess energy intake (Grundy 2015), low levels of physical activity and 
poor cardiorespiratory fitness (Laaksonen, Lakka et al. 2002; Lakka, Laaksonen 
et al. 2003; Laaksonen, Niskanen et al. 2004) are also important factors in the 
development of MetS. 



27 
 
TABLE 3 Different definitions of the metabolic syndrome.  

      
 World health Organization 

 
Adult Treatment Panel III 

International Diabetes 
Federation 

 
Type II diabetes, impaired 
fasting glucose, impaired glu-
cose tolerance, or insulin re-
sistance plus any 2 of the fol-
lowing: 

 
 
 
 
Any 3 of the following: 

Waist circumference 
≥94 cm in men, >80cm 
in women  
plus any 2 of the fol-
lowing: 

BMI >30 and /or  
waist-to-hip ratio:   
>0.9 in men  
>0.85 in women 

Waist circumference: 
 >102 cm in men 
 >88 cm in women 

 

Blood pressure ≥140/90 
mmHg and/or antihyperten-
sive medication  

Blood pressure ≥130/85 mm Hg Blood pressure 
≥130/85 mmHg and/ 
or antihypertensive 
medication 

Triglycerides ≥1.7 mmol/l  Triglycerides ≥1.7 mmol/l,  Triglycerides ≥1.7 
mmol/l or lipid lower-
ing medication 

HDL cholesterol (mmol)l) 
<0.9 in men  
<1.0 in women  
 

HDL cholesterol (mmol/l) 
<1.04 in men  
<1.3 in women 

HDL-C (mmol/l) 
<1.03 in men 
<1.29 in women 

Urinary albumin excretion rate 
≥20   μg/min or albu-
min:creatinine ratio ≥3.4 
mg/mmol 

fasting glucose ≥6.1 mmol/l fasting glucose ≥5.6 
mmol/l or diagnosed 
type II diabetes 

Adapted from (Alberti and 
Zimmet 1998) 

Adapted from (Adult Treatment 
Panel III)  2001)  

Adapted from 
(Zimmet, Alberti et al. 
2005) 

 
 

The pathogenesis of MetS remains incompletely understood (Simmons, Alberti 
et al. 2010). To date, there is no universally accepted single underlying mecha-
nism, although insulin resistance (Reaven 1988), abdominal and ectopic fat ac-
cumulation (Rasouli, Molavi et al. 2007) have been suggested in this role. For 
this reason, the concept of MetS has been the subject of considerable criticism 
(Gale 2005; Kahn, Buse et al. 2005) and has sparked debate (Davidson 2006; 
Grundy 2006; Oda 2006). Nonetheless, studies show that individuals affected 
with MetS are at increased risk for cardiovascular disease and type II diabetes 
(Laaksonen, Lakka et al. 2002; Grundy, Cleeman et al. 2005; Grundy 2015), and 
the risk appears to be relatively higher in women compared with men (Galassi, 
Reynolds et al. 2006; Gami, Witt et al. 2007). Having MetS also doubles the risk 
for stroke (Ninomiya, L'Italien et al. 2004; Kurl, Laukkanen et al. 2006) and in-
creases risk for myocardial infarction and premature mortality (Isomaa, 
Almgren et al. 2001). For these reasons, the definition of MetS is considered a 
useful tool in cardiovascular risk assessment in both public health screening 
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and clinical practice (Wijndaele, Beunen et al. 2006). Thus, the primary value of 
MetS should not be considered in pathophysiological terms, but as a pragmatic 
approach to identify individuals who are at increased risk for cardiovascular 
disease (Reaven 2005).  

2.3.2 Abdominal obesity 

Several prospective population studies have shown that abdominal obesity, 
defined as a large waist circumference (≥ 102 cm in men and ≥88 cm in women) 
is associated with increased risk for coronary heart disease (Rexrode, Carey et al. 
1998; Canoy, Cairns et al. 2013; Hotchkiss, Davies et al. 2013; Klingberg, Mehlig 
et al. 2015). However, although waist circumference closely reflects both total 
and abdominal adiposity (Bouchard 2007), it cannot distinguish visceral from 
subcutaneous adiposity. Because of this, some researchers have claimed that 
measuring waist circumference provides little additional value over BMI in 
cardio-vascular risk prediction (Kiernan and Winkleby 2000; Farin, Abbasi et al. 
2005; Bouchard 2007). Nonetheless, studies using computed tomography (Fox, 
Massaro et al. 2007; Rosito, Massaro et al. 2008; Liu, Fox et al. 2010; Preis, 
Massaro et al. 2010) and magnetic resonance imaging (Sironi, Petz et al. 2012; 
Chandra, Neeland et al. 2014; Gast, den Heijer et al. 2015) have consistently 
shown that excess visceral adiposity associates with various cardio-metabolic 
abnormalities independently of total fat mass, thus confirming that intra-
abdominal fat carries more health risk than general fat accumulation. 

The propensity to store fat inside the peritoneal cavity is highly variable 
among individuals, and several factors are known to contribute to this phe-
nomenon (Tchernof and Despres 2013). However, gender and age are the most 
important determinants of fat distribution in the body (St-Onge and Gallagher 
2010; Palmer and Clegg 2015). In men, fat is preferably stored in the upper body 
(trunk and abdomen), whereas in women fat tends to accumulate in the lower 
body (hips and thighs) (Blaak 2001). In women, accumulation of visceral fat ac-
celerates after menopause (Toth, Tchernof et al. 2000), suggesting that the rela-
tive distribution of the fat in the body is influenced by sex hormones (Fried, Lee 
et al. 2015). This notion can be exemplified by transsexuals who have been 
treated with sex-hormones. Male-to-female transsexuals treated with estrogen 
show increased fat deposition in subcutaneous sites (Elbers, Asscheman et al. 
1999), whereas females who receive testosterone treatment in order to become 
male show increases in the amount of visceral fat (Elbers, Asscheman et al. 
1997).  

Visceral fat increases also with age, and the increase is greater in men than 
in women (Lemieux, Prud'homme et al. 1993; Kotani, Tokunaga et al. 1994; 
Shen, Punyanitya et al. 2009). The reason for this is not well understood, but it 
may be attributable to loss of lean mass, the consequent decrease in resting en-
ergy expenditure (Hunter, Weinsier et al. 2001; Manini 2010), and to the inabil-
ity of the body to develop and maintain adequate subcutaneous adipose tissue 
with age (Kuk, Saunders et al. 2009). The latter has been referred to as the adi-
pose tissue overflow hypothesis (Sniderman, Bhopal et al. 2007) or the adipose 
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tissue expandability hypothesis (Virtue and Vidal-Puig 2010). These are two 
closely related features of one idea, which in essence, posit that all individuals 
have a maximum capacity for adipose tissue expansion. According to these hy-
potheses, once the adipose tissue expansion limit is reached, adipose tissue 
ceases to store energy efficiently, and (under conditions of positive energy bal-
ance) this leads to partitioning of fat away from subcutaneous adipose tissue, 
and accumulation of lipids in the visceral compartment and other ectopic sites. 
However, whether adipocytes lose their ability to expand in response to over-
feeding with age remains to be confirmed. The capacity of subcutaneous adipo-
cytes to sequester triglyceride may dwindle also because of decreased for-
mation of new adipocytes. Spalding et al. investigated this phenomenon and 
demonstrated that there is a steady, maintained formation of new adipocytes in 
adulthood and that the lifespan of adipocytes is approximately 10 years on av-
erage (Spalding, Arner et al. 2008). Interestingly, however, and in support the of 
the adipose tissue expandability hypothesis, their data showed that the number 
of adipocytes in the subcutaneous adipose tissue depots decreased by 30% be-
tween the ages of 20 and 65 in obese individuals (Spalding, Arner et al. 2008). 
Such decrease in adipocyte number could well be expected to limit the triglyc-
eride sequestering capacity of subcutaneous adipose tissue and thus contribute 
to increased fat deposition in the viscera.  

In addition to sex steroids and age, regional fat distribution is also influ-
enced by genetic factors. The role of genetics is supported by studies which 
have shown that the relative distribution of lower and upper body fat differs 
significantly between individuals of the same sex and age (Bouchard 1997).  
Segregation analyses have suggested that 51% of the variance in visceral adi-
pose tissue accumulation is accounted by genetic factors (Bouchard, Rice et al. 
1996). Consistent with this, overfeeding studies in twins have shown that the 
variance in abdominal visceral fat accumulation is about six times higher be-
tween twin pairs than within twin pairs (Bouchard, Tremblay et al. 1990; 
Bouchard, Tremblay et al. 1996). Although these findings provide compelling 
evidence for genetic regulation of body fat distribution under positive energy 
balance, the evidence for the contribution of specific genes to variation in vis-
ceral fat levels is not strong. This is probably due to the fact that visceral obesity 
is a polygenic trait caused by interactions of multiple genes and non-genetic 
factors (Schleinitz, Bottcher et al. 2014). Covering all the DNA sequence variants 
(most of which have a small effect size by themselves) requires very large sam-
ple sizes. In fact, recent large scale genome-wide meta-analysis identified 49 loci 
associated with waist-to-hip ratio, even after adjusting for BMI (Shungin, 
Winkler et al. 2015). This is consistent with earlier studies, which showed that 
multiple loci modulate body fat distribution independent of overall adiposity 
(Heid, Jackson et al. 2010).  

The reason why fat stored in the viscera is much more detrimental to 
health than fat stored beneath the skin is not entirely clear (Wajchenberg 2000). 
Visceral adipocytes are smaller than abdominal subcutaneous adipocytes, and 
have greater transmembrane fluxes of fatty acids compared with subcutaneous 
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adipocytes (Marin, Andersson et al. 1992). Thus, from the metabolic point of 
view, subcutaneous adipose tissue is relatively inert, whereas visceral adipose 
tissue with its high fatty acid flux may contribute to dyslipidemia and impaired 
glycemia (Mathieu, Boulanger et al. 2014). Visceral adipose tissue may also con-
tribute to systemic inflammation as it produces and secretes increased amounts 
of pro-inflammatory cytokines such as tumor necrosis factor- α (TNF-α) and 
interleukin-6 (IL-6) (Gustafson 2010). A recent metabolomics study in twins dis-
cordant for obesity found that increased visceral fat was associated with ather-
ogenic lipoproteins and more saturated fatty acid profile as well as higher levels 
of branched-chain and aromatic amino acids, and inflammatory-related glyco-
protein (Bogl, Kaye et al. 2016). This suggests that the unfavorable metabolic 
profile associated with visceral fat is partly explained by shared genes, but also 
reflects mechanisms independent of genetic make-up. However, what these 
mechanisms are is not well defined.   

2.3.3 Increased liver fat content 

Increased accumulation of fat in the liver is a manifestation of the complex met-
abolic derangements associated with obesity (Fabbrini and Magkos 2015). The 
increase in liver fat (not due to alcohol or other known causes of steatosis e.g. 
viruses and drugs) is referred to as non-alcoholic fatty liver disease (NAFLD) 
(Yki-Jarvinen 2014). NAFLD represents a wide histological spectrum of disease 
from simple steatosis with no evidence of hepatocellular injury to nonalcoholic 
steatohepatitis (NASH) with hepatocyte injury with or without fibrosis 
(Kotronen and Yki-Jarvinen 2008). In the early phase NAFLD is usually asymp-
tomatic, benign and reversible, whereas NASH can lead to a more severe form 
of liver disease, such as cirrhosis and hepatocellular carcinoma (Adams and 
Lindor 2007).  

Definitive diagnosis of NAFLD requires a liver biopsy (which is consid-
ered the gold standard), but ultrasonography, computed tomography or mag-
netic resonance imaging (MRI) assessment are also frequently used to deter-
mine liver fat content. NAFLD is diagnosed if the proportion of hepatocytes 
containing fat droplets is greater than 5% (Chalasani, Younossi et al. 2012). The 
prevalence of NAFLD has increased considerably in recent years, currently af-
fecting up to 30% of the adult population (Smith and Adams 2011; Younossi, 
Koenig et al. 2015). The prevalence of NAFLD increases with age (Bertolotti, 
Lonardo et al. 2014) and is more common in men than in women (Pan and 
Fallon 2014). In children and adolescents the prevalence of NAFLD varies be-
tween 3% and 10% (Della Corte, Mazzotta et al. 2016). However, estimation of 
the true prevalence of NAFLD in the general population is limited by the low 
accuracy of non-invasive tools feasible for large-scale population studies and 
the reliability of self-reported ethanol ingestion histories (Lidofsky 2008).  

Family studies have shown that fatty liver is more common in children, 
whose siblings or parents have fatty liver, suggesting a genetic component to 
NAFLD (Schwimmer, Celedon et al. 2009). In a study of individuals with genet-
ic dyslipidemia, the heritability of NAFLD as determined with plasma alanine 
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aminotransferase (ALT) was between 20% and 37% (Brouwers, Cantor et al. 
2006), whereas in a study of twins the heritability of ALT was 55% (Makkonen, 
Pietilainen et al. 2009). Recent genome-wide association studies have shown 
that the rs738409 variant (single nucleotide polymorphism) of the adiponu-
trin/patatin-like phospholipase-3 (PNPLA3) gene is a major factor in the de-
termination of liver fat content (Romeo, Kozlitina et al. 2008). Forty percent of 
Europeans carry this gene variant, which increases susceptibility to NAFLD, 
cirrhosis and hepatocellular carcinoma, independent of obesity and insulin re-
sistance (Yki-Jarvinen and Luukkonen 2015; Luukkonen, Zhou et al. 2016). 
However, the exact mechanisms through which this gene variant contributes to 
the development NAFLD are not entirely clear.  

The pathophysiology of NAFLD is complex and incompletely understood, 
but the traditional “two-hit” theory has been widely accepted (Day and James 
1998).  The “first hit” involves lipid accumulation in the hepatocytes, which 
predisposes the liver to the “second hit” of oxidative stress and subsequent li-
pid peroxidation, which, in turn, promotes progression of steatosis to steato-
hepatitis, and fibrosis (FIGURE 4).  However, this pathophysiological theory 
has been criticized for being over simplistic (Tilg and Moschen 2010). New find-
ings suggest that intrahepatic lipid accumulation results from lipid metabolism 
abnormalities such as increased whole body lipolysis, increased uptake of free 
fatty acids in the liver, synthesis of VLDL, and reduced fatty acid oxidation. In 
addition, abnormal adipokine production, such as leptin, adiponectin, resistin 
and visfatin, is associated with NAFLD  (Katsiki, Mikhailidis et al. 2016). These 
metabolic alterations may be linked to dysfunctional adipose tissue (Cheng, 
Wiklund et al. 2015), increased muscle insulin resistance (Flannery, Dufour et al. 
2012), impaired muscle mitochondrial activity (Szendroedi, Kaul et al. 2014), 
intestinal dysbiosis (Munukka, Pekkala et al. 2014; Jiang, Wu et al. 2015) and 
elevated plasma branched-chain amino acids (BCAA) (Iwasa, Ishihara et al. 
2015; Rodriguez-Gallego, Guirro et al. 2015; Sunny, Kalavalapalli et al. 2015), 
which are also associated with NAFLD. However, causality has not been prov-
en and mechanistic links require further study. Nonetheless, a new model has 
been proposed, which considers that multiple parallel hits are likely to cause 
NAFLD in genetically susceptible individuals (Buzzetti, Pinzani et al. 2016).  

NAFLD is closely associated with MetS (Hamaguchi, Kojima et al. 2005; 
Kotronen, Westerbacka et al. 2007). This association is probably due to the fact 
that the liver is centrally involved in the production of two key components of 
MetS: fasting serum glucose and very-low density lipoprotein (VLDL), the latter 
containing most of the triglyceride present in serum. Under normal fasting 
conditions, insulin inhibits hepatic gluconeogenesis and lipogenesis. However, 
once the liver accumulates fat, the ability of insulin to suppress hepatic gluco-
neogenesis and triglyceride synthesis is impaired. This leads to overproduction 
of glucose and VLDL, leading to development of hyperglycemia, hyperinsu-
linemia and dyslipidemia (Yki-Jarvinen 2014). This may also be the primary 
reason why NAFLD predicts cardiovascular disease and type II diabetes 
(Anstee, Targher et al. 2013; Choi, Rhee et al. 2013; Park, Seo et al. 2013).   
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FIGURE 4 The “two-hit hypothesis” of NAFLD. Reproduced from (Xu, Kitade et al. 2015). 
Increased fat intake and obesity lead to increased flux of free fatty acids, which 
accumulate in the liver as triglycerides. The accumulation of fat predisposes 
the liver to oxidative stress, which activates inflammatory responses leading to 
development of NASH. 

2.3.4 Dyslipidemia 

Dyslipidemia is a well-established risk factor for cardiovascular disease (Rana, 
Visser et al. 2010). Dyslipidemia is generally characterized by high levels of se-
rum triglyceride, and low-density lipoprotein (LDL) cholesterol, with low level 
of high-density lipoprotein (HDL) cholesterol (Grundy 2006; Musunuru 2010). 
A recent meta-analysis demonstrated that elevated serum triglyceride levels, in 
particular, are associated with increased risk of coronary heart disease (Sarwar, 
Danesh et al. 2007). In addition, lipoprotein particle subfractions have been 
proposed as potential risk factors of subclinical heart disease (Krauss 2010). In 
particular, alterations in LDL and HDL particle size and density have been as-
sociated with future cardiovascular events (Blake, Otvos et al. 2002; Cromwell, 
Otvos et al. 2007; Arsenault, Lemieux et al. 2009).  

The reason why dyslipidemia is so closely associated with cardiovascular 
events is because dyslipidemia is a significant risk factor for atherosclerosis 
(Falk 2006; Nofer 2011). Atherosclerosis is a disease in which fat and cholesterol 
are deposited in the inner lining of arteries forming atherosclerotic plaques. 
These plaques may cause stenosis restricting blood flow, which can lead to is-
chemia or trigger thrombotic occlusion of coronary artery causing myocardial 
infarction, or a stroke, if the blood clot develops in the brain (Falk 2006). From 
the clinical point of view, serum triglyceride concentrations higher than 1.7 
mmol/l are considered by many to be the point beyond which risk for coronary 
artery disease begins. Concomitantly with elevated triglycerides, LDL choles-
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terol (in excess) tends to get trapped in the vessel wall, and this retention with 
subsequent oxidation is considered to be an important event in the early stages 
of an atherosclerotic lesion. The oxidized LDL promotes the recruitment of 
monocytes and lymphocytes (and conversion to macrophages) and increases 
the production of cytokines. HDL is also a key element in atherosclerosis be-
cause of its role in reverse cholesterol transport (Singh, Mengi et al. 2002). Ath-
erosclerosis is a chronic disease that develops gradually over time. Both patho-
logical and epidemiological studies suggest that atherogenesis begins early in 
life. Fatty streaks and fibrous plaque lesions, for example, have been found in 
young children and adolescents (McGill, McMahan et al. 2000).  

Dyslipidemia can be due to hereditary factors (e.g. familial hyperlipidemia) 
(Brouwers, van Greevenbroek et al. 2012) or result from secondary causes such 
as diet, sedentary lifestyle, medical conditions (e.g., hypothyroidism, insulin 
resistance and type II diabetes) and use of certain medications, or a combination 
of the above (Vodnala, Rubenfire et al. 2012). Insulin resistance in the adipose 
tissue increases lipolysis and subsequent release of free fatty acids (Gastaldelli, 
Natali et al. 2010). Increased delivery of free fatty acids to the liver increases the 
secretion of triglyceride-abundant very low-density lipoprotein (VLDL) choles-
terol (Lewis, Uffelman et al. 1995; Ginsberg, Zhang et al. 2005). Triglyceride ac-
cumulation in the liver may also increase hepatic insulin resistance and increase 
de-novo lipogenesis (Diraison, Moulin et al. 2003), thereby contributing to de-
velopment of hypertriglyceridemia (Ginsberg, Zhang et al. 2006).  

There has been increased effort to identify biomarkers that would allow 
for early prediction of hypertriglyceridemia. Recent genome-wide association 
studies have found numerous loci associated with triglyceride levels in adults 
(10). However, the predictive value of these gene variants is limited since they 
can only explain around 10% of the variation in lipid levels within the popula-
tion. Recent metabolomic studies have revealed alterations in several circulat-
ing amino acid concentrations associated with obesity and dyslipidemia (Cheng, 
Rhee et al. 2012; Boulet, Chevrier et al. 2015). A longitudinal study in middle-
aged and elderly men and women showed that increased levels of plasma 
branched-chain amino acids (BCAA: isoleucine, leucine and valine), were asso-
ciated with an increased risk of hypertriglyceridemia after 7-year follow-up 
(Mook-Kanamori, Romisch-Margl et al. 2014). Another study in elderly men 
and women demonstrated that branched-chained amino acids and alanine pre-
dicted development of dyslipidemia after 4 years, even after controlling for BMI 
and HOMA-IR (Yamakado, Nagao et al. 2015).  Furthermore, branched-chained 
amino acids and related metabolites have been associated with coronary artery 
disease (Bhattacharya, Granger et al. 2014; Yang, Wang et al. 2015) and found to 
predict cardiovascular events in individuals with cardiovascular disease (Shah, 
Bain et al. 2010). It is well established that serum lipid and lipoprotein levels 
continue to track from childhood into early adulthood (Webber, Srinivasan et al. 
1991), and are associated with dyslipidemia, obesity and hypertension later in 
life (Nicklas, von Duvillard et al. 2002). A follow-up study in Finnish children 
revealed that dyslipidemia in childhood predicted increased carotid artery in-
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tima-media thickness (IMT) in adulthood (Juonala, Viikari et al. 2008). Moreo-
ver, studies have shown that elevated triglyceride concentrations in childhood 
predict clinical cardiovascular events several decades later (Morrison, Glueck et 
al. 2009). However, it is not known if amino acid profiles in childhood predict 
the development of dyslipidemia in adulthood.  

2.3.5 Insulin resistance and type II diabetes 

Insulin is a hormone produced and secreted by the beta cells of pancreatic islets 
of Lagerhans in response to changes in plasma glucose concentration (Gastaldelli, 
Natali et al. 2010). Insulin affects metabolism in many ways, but its main physio-
logic effects are to facilitate glucose uptake in skeletal muscle and to suppress 
hepatic glucose and VLDL production and inhibit the release of free fatty acids 
from adipose tissue (lipolysis) (Gastaldelli, Natali et al. 2010; Samuel and 
Shulman 2012) (TABLE 4). Insulin resistance is a term that describes the condi-
tion when muscle, liver and fat cells do not respond properly to insulin (Laakso 
and Kuusisto 2014). Insulin resistance is not a disease as such, but a central meta-
bolic defect that underlies development of many cardio-metabolic diseases. In a 
nondiabetic state, the impaired action of insulin is compensated by increased in-
sulin secretion from the pancreas. But when the pancreas fails to secrete enough 
insulin to compensate for the impaired action of insulin, hyperglycemia ensues 
(Kahn and Porte 1988). Untreated insulin resistance and hyperglycemia can cause 
long-term complications, including type II diabetes, neuropathy, nephropathy 
and kidney failure, dyslipidemia, atherosclerosis and cardiovascular disease 
(Howard, O'Leary et al. 1996; Jellinger 2007; DeFronzo and Tripathy 2009; Reaven 
2011). Thus, the primary value of the concept of insulin resistance is that it pro-
vides a conceptual framework with which to place a group of seemingly unrelat-
ed metabolic disorders into a pathophysiological construct (Reaven 2005).  

TABLE 4 The main physiological effects of insulin in different target tissues,   
adapted from Samuel and Shulham (Samuel and Shulman 2012). 

Target tissue Normal condition Insulin resistance 

Muscle increases glucose uptake 
stimulates protein synthesis 

decreased glucose up-
take/impaired glycogen synthe-
sis/ stimulation of the process by 
which amino acids are incorpo-
rated into protein 

Liver increases lipogenesis, glycogen 
synthesis, inhibits gluconeogen-
esis 

increases  lipogenesis, impaired 
glycogen synthesis, impaired glu-
coneogenesis 

Adipose cells inhibits lipolysis inhibition of lipolysis is attenuat-
ed 

Blood vessels dilation of blood vessels, anti-
atherogenic effects in endotheli-
al cells 

impaired dilation of blood ves-
sels, impaired anti-atherogenic 
effects in endothelial cells 
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It is believed that many of the metabolic abnormalities are more common in 
obese than lean individuals because obesity has the ability to engender insulin 
resistance (Kahn and Flier 2000). Therefore, studies on the etiology of insulin 
resistance have predominantly focused on lipid-induced mechanisms (Savage, 
Petersen et al. 2007). A commonly held view is that accumulation of lipids (free 
fatty acids) in skeletal muscle and liver impair insulin signaling and thereby 
contribute to whole body insulin resistance and deterioration of glucose toler-
ance (Galgani, Moro et al. 2008). Because only adipocytes can release free fatty 
acids into the circulation, elevated fatty acid concentrations are believed to be 
attributable to increased adipose tissue mass. It is also believed that the process 
of fatty acid mobilization from adipose tissue, which is normally suppressed by 
insulin, becomes insulin resistant, and thus, lipolysis is further increased, which 
can lead to a vicious cycle. However, the fatty acid theory of insulin resistance 
has recently been called into question. Karpe and colleagues reviewed over 40 
studies where free fatty acid levels had been compared in obese/overweight 
versus lean subjects (Karpe, Dickmann et al. 2011). They found that the average 
increase in circulating free fatty acids in obesity was only around 0.07 mmol/l. 
Sophisticated tracer studies of free fatty acid turnover in lean and obese have 
also shown that the rate of fatty acid release per unit of fat mass is nearly 
halved in obese compared with lean individuals (Campbell, Carlson et al. 1994). 
Moreover, obese Pima men do not have elevated plasma free fatty acid levels 
like Caucasian obese men, despite having similar upper body obesity (Howard, 
Zech et al. 1980). They also have lower plasma triglyceride concentrations than 
obese Causasian men. In fact, obese Pima men have similar hepatic secretion 
rates for VLDL-TG and plasma triglyceride levels than non-obese Caucasians 
(Howard, Zech et al. 1980). Despite having lower plasma plasma free fatty acids 
and triglycerides, majority of obese Pima are insulin resistant and develop type 
II diabetes (Lillioja and Bogardus 1988). These findings cast doubt on the fatty 
acid theory of insulin resistance. 

Insulin-mediated glucose uptake by muscle varies considerably in seem-
ingly healthy, non-diabetic individuals (Yeni-Komshian, Carantoni et al. 2000). 
Approximately half of the variability in insulin action results from differences 
in physical fitness and degree of adiposity (Bogardus, Lillioja et al. 1985). The 
remaining half is likely to be of genetic origin. This supported by studies, which 
have shown that diabetes risk is three times higher for individuals whose either 
parent is diabetic and 6-fold higher if both parents are diabetic compared with 
offspring whose neither parent have diabetes (Meigs, Cupples et al. 2000). A 
meta-analysis of nearly 35,000 twin pairs data from the Discordant Twin (DIS-
COTWIN) consortium showed that monozygotic twins are more concordant for 
type II diabetes than dizygotic twins, with heritability estimates up to 70%, 
which provides compelling support for the role of genetics in the etiology of 
diabetes (Willemsen, Ward et al. 2015). Recent genome-wide association studies 
have identified many of common variants associated with type II diabetes; 
however, these explain only a fraction of the heritability of this disease, which 
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probably reflects the polygenic nature of this disease (Fuchsberger, Flannick et 
al. 2016).   

Comprehensive metabolic profiling has also been increasingly applied to 
biomarker discovery in relation to insulin resistance and type II diabetes and 
the results have demonstrated amino acid-related metabolic signatures associ-
ated with these conditions (Wang, Larson et al. 2011; Wurtz, Makinen et al. 2012; 
Floegel, Stefan et al. 2013). These studies have consistently shown that 
branched-chain amino acids and aromatic amino acids are associated with insu-
lin resistance (Wurtz, Makinen et al. 2012; Wurtz, Tiainen et al. 2012; Wurtz, 
Soininen et al. 2013) and predict development of type II diabetes (Wang, Larson 
et al. 2011).  It is not clear whether these amino acids are associated with insulin 
resistance in a mechanistic manner. The seminal study of Newgard et al. 
showed that branched-chain amino acids contribute to development of obesity-
associated insulin resistance in the context of a high fat diet through activation 
of the mechanistic target of rapamycin (mTOR) (Newgard, An et al. 2009). Ear-
lier experimental studies in humans have suggested that elevated plasma amino 
acids induce insulin resistance in skeletal muscle by inhibiting glucose 
transport/phosphorylation (Krebs, Krssak et al. 2002; Tremblay, Brule et al. 
2007). Despite these observations, the evidence that branched-chain amino acids 
cause or exacerbate insulin resistance is not yet conclusive (Adams 2011).  

2.3.6 Elevated blood pressure 

Elevated blood pressure is a significant risk factor for cardiovascular complica-
tions, such as stroke and ischemic heart disease (Kannel 2000; Black 2003). The 
association between obesity and elevated blood pressure has been recognized 
for decades (Kannel, Brand et al. 1967; Stamler, Stamler et al. 1978). Increased 
abdominal fat, in particular, is associated with elevated blood pressure (Siani, 
Cappuccio et al. 2002; Poirier, Lemieux et al. 2005). The mechanisms that under-
lie these associations are not entirely clear (Davy and Hall 2004). Studies have 
indicated that activation of the sympathetic nervous system plays an important 
role in the etiology of obesity-related hypertension (Kotsis, Stabouli et al. 2010). 
Physiological hyperinsulinemia stimulates the central nervous system, but does 
not increase arterial pressure (Rowe, Young et al. 1981; Anderson, Hoffman et 
al. 1991; Anderson, Balon et al. 1992). However, hyperinsulinemia increases so-
dium retention in the kidneys (DeFronzo 1981; Salonen, Lakka et al. 1998) and 
contributes to endothelial dysfunction (Deedwania 2004). Together with in-
creased free fatty acids and leptin, insulin may synergistically stimulate sympa-
thetic activity and promote vasoconstriction, thereby contributing to develop-
ment of obesity-related hypertension (Montani, Antic et al. 2002).  
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2.4 Metabolic heterogeneity of obesity  

2.4.1 Metabolically unhealthy obesity 

Clearly, obesity is associated with adverse consequences for health. To suggest 
otherwise would seem counterintuitive since by definition obesity is a condition 
that is detrimental to health (WHO 2000). The detrimental effects of obesity on 
health are supported by a number of studies. The seminal Framingham Heart 
Study with 26 year follow-up, for example, showed that obesity is independent-
ly associated with development of heart disease (Hubert, Feinleib et al. 1983), 
and subsequent studies have provided evidence for the close connection be-
tween excess adiposity, cardiovascular disease (Kenchaiah, Evans et al. 2002) 
and mortality (Calle, Thun et al. 1999; Peeters, Barendregt et al. 2003). Further-
more, obesity is so closely associated with type II diabetes that the term “diabe-
sity” has been coined (Golay and Ybarra 2005). The relationship between obesi-
ty and cardio-metabolic disease is most likely causal. This is supported by evi-
dence that weight loss lowers disease risk; lifestyle interventions aimed at body 
weight control through physical activity and or diet modification significantly 
improve diabetes risk factors in healthy normoglycemic adults as shown in a 
recent meta-analysis (Appuhamy, Kebreab et al. 2014). The Finnish Diabetes 
Prevention Study (Tuomilehto, Lindstrom et al. 2001) and the U.S Diabetes Pre-
vention Program (Knowler, Barrett-Connor et al. 2002) both showed significant 
reduction in diabetes incidence during a mean intervention period of about 3 
years, and further analyses indicated that this was mostly attributable to weight 
loss (Hamman, Wing et al. 2006). The fact that bariatric surgery (and the weight 
loss that follows) reverses type II diabetes in most patients and improves other 
cardio-metabolic risk factors further supports the case for a causal relationship 
between obesity and cardio-metabolic disease (Buchwald, Estok et al. 2009; 
Brethauer, Aminian et al. 2013).  

2.4.2 Metabolically healthy obesity  

Despite the well-established link between obesity and cardio-metabolic disease, 
there appears to be considerable metabolic heterogeneity of obesity, suggesting 
that obesity is not synonymous with poor health (McLaughlin 2012). In fact, 
approximately 10 to 25% of obese individuals appear to be at least partially pro-
tected from the development of metabolic abnormalities that frequently accom-
pany excessive adiposity (Bluher 2010). This phenomenon was first observed in 
1965 when Albrink and Meigs noted studed the health of factory workers, and 
observed that many obese men had normal serum triglyceride levels (Albrink 
and Meigs 1965). Subsequently, Keyes in 1973 (Keyes 1973) and Andres in 1980 
(Andres 1980) analyzed epidemiological data and concluded that for some peo-
ple, obesity was not a risk factor for cardiovascular disease and mortality. 
Shortly after, Ethan Sims included the “healthy obese” phenotype as a subtype 
of obesity in his classification of obesity in 1982 (EAH 1982). Since then, much 



38 

research has been devoted to characterize this phenotype that in the current 
literature is collectively referred to as metabolically healthy obesity (MHO) 
(Karelis 2008).  

In general terms, MHO describes an obese individual (BMI ≥ 30) with ab-
sence of any metabolic disorders, including insulin resistance, type II diabetes, 
dyslipidemia and hypertension (Bluher 2010). However, various, less strict cri-
teria with precise definitions to classify healthy obesity have been suggested in 
the literature. These criteria are not considered here in detail, but the available 
definitions and specific cut-off values for each parameter have been reviewed 
elsewhere (Bluher and Schwarz 2014). Until very recently (van Vliet-
Ostaptchouk, Nuotio et al. 2014) there has been a lack of consensus how to de-
fine metabolically healthy obese (Stefan, Haring et al. 2013; Plourde and Karelis 
2014). This is probably the main reason why the reported prevalence of MHO 
has varied from 7% to 51% in different obese populations (Rey-Lopez, de 
Rezende et al. 2014; Wang, Zhuang et al. 2015). On the other hand, considerable 
variability in the prevalence of healthy obesity was reported between cohorts 
from different European regions despite the use of the same diagnostic criteria 
(van Vliet-Ostaptchouk, Nuotio et al. 2014). Thus, the range in prevalence may 
also be attributed in part to differences in ethnicity, genetics and lifestyle factors 
(Berezina, Belyaeva et al. 2015; Navarro, Funtikova et al. 2015). In Finland, met-
abolically healthy obesity was observed in 9.2% of obese men and in 16.4% of 
obese women (Pajunen, Kotronen et al. 2011). Importantly, it has been shown 
that the prevalence of MHO is higher when obesity is defined by percent body 
fat mass compared with BMI (Velho, Paccaud et al. 2010), suggesting that the 
true prevalence MHO may have been underestimated (Shea, Randell et al. 2011). 
Available data related to the MHO phenotype are mainly for adults as there are 
very limited studies that have assessed MHO in children. As in adults, there is 
considerable variety in MHO definitions for the pediatric population. Suggest-
ed definitions include BMI >95th percentile and quartiles of HOMA-IR 
(Vukovic, Mitrovic et al. 2013), or BMI z-score > 95th percentile and ≤ one car-
dio-metabolic risk factor based on age and gender-specific cut points of diastol-
ic blood pressure, fasting plasma glucose, serum triglyceride and HDL choles-
terol (Camhi, Waring et al. 2013; Senechal, Wicklow et al. 2013; Weghuber, 
Zelzer et al. 2013). The prevalence of MHO in these studies varied between 16% 
and 68%, depending on the criteria applied.  

What accounts for the preserved metabolic function of MHO individuals 
is not well understood. Intra-abdominal fat is generally lower in MHO individ-
uals compared to their unhealthy obese counterparts. Similarly, ectopic fat ac-
cumulation in the liver and skeletal muscle is lower in MHO compared with 
unhealthy obese (Karelis, St-Pierre et al. 2004). These findings support the no-
tion that abdominal obesity and ectopic fat accumulation might be key deter-
minants of metabolic health. Level of physical activity and cardio-respiratory 
fitness may also contribute to healthy obesity (Ortega, Cadenas-Sanchez et al. 
2015). Higher cardiorespiratory fitness is associated with lower risk of type II 
diabetes in obese individuals (Lee, Sui et al. 2009), and attenuation of subclinical 
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carotid atherosclerosis is observed with increasing levels of cardiorespiratory 
fitness in MHO individuals (Jae, Franklin et al. 2015). It may be that the benefits 
of higher physical activity and fitness are mediated partly through lower vis-
ceral fat mass and liver fat (O'Donovan, Thomas et al. 2009).  

As in the adult population, it is unclear why some obese children do not 
develop the metabolic abnormalities that typically accompany obesity, while 
others do. One explanation could be in the early-life growth characteristics and 
in particular in age at adiposity rebound. The adiposity rebound is the second 
rise in body mass index that occurs between 5 and 7 years of age (Rolland-
Cachera, Deheeger et al. 2006). Recent studies have shown that early adiposity 
rebound (before the age of 5 years) predicts higher metabolic risk later in child-
hood and adulthood (Gonzalez, Corvalan et al. 2014; Peneau, Gonzalez-
Carrascosa et al. 2016). The mechanism for this association is not clear, but it 
might be explained by increased adipose tissue dysfunction, which could arise 
from a rapid increase in fat mass that outpaces the normal adipose tissue devel-
opment.   

To date, few metabolomic studies, including one from our laboratory 
(Wiklund, Pekkala et al. 2014), have aimed to elucidate the molecular basis for 
metabolically healthy and unhealthy obese individuals. Batch et al. (Batch, Shah 
et al. 2013) identified several clusters of metabolites comprising branched-chain 
amino acids and acyl carnitines that distinguished metabolic health independ-
ent of BMI. Subsequently, Badoud et al. (Badoud, Lam et al. 2014) also showed 
lower levels of amino acids (including branched-chained amino acids) in MHO 
compared to metabolically unhealthy individuals. In that study adipose tissue 
gene expression profiling showed that genes related to branched-chain amino 
acid catabolism and the tricarboxylic acid cycle were less down-regulated in 
MHO individuals compared to metabolically unhealthy individuals, suggesting 
that increased circulating branched-chain amino acids may be attributable to 
reduced ability of adipose tissue to catabolize these amino acids.  Recently, a 
metabolomics study in cultured human adipocytes collected from MHO and 
metabolically unhealthy subjects showed reduced intracellular levels of aspar-
tate in metabolically unhealthy (insulin resistant) subjects, suggesting  either a 
relative depletion of the TCA cycle or reduced aspartate uptake (Bohm, Halama 
et al. 2014). Taken together, these studies indicate that amino acid homeostasis 
is an important factor in cardio-metabolic health.   

It is unclear whether obese people who are metabolically healthy will re-
main so over time. Several studies have suggested that the risk of type II diabe-
tes (Meigs, Wilson et al. 2006; Appleton, Seaborn et al. 2013), cardiovascular 
disease and all-cause mortality (Kip, Marroquin et al. 2004; Song, Manson et al. 
2007; Calori, Lattuada et al. 2011; Hosseinpanah, Barzin et al. 2011; Voulgari, 
Tentolouris et al. 2011; Hamer and Stamatakis 2012; Ogorodnikova, Kim et al. 
2012) are not greater in MHO compared with metabolically healthy normal 
weight individuals in the long-term. Consistent with these reports, a recent 
Norwegian longitudinal population study with over 60,000 people found that 
the risk of myocardial infarction was not increased among MHO compared 
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with normal-weight, metabolically healthy subjects after 12 years follow-up, 
although the risk of heart failure was significantly increased (Morkedal, Vatten 
et al. 2014). However, a recent study  with over 17 years follow-up showed that 
although individuals with MHO are at decreased risk for developing type II 
diabetes compared with unhealthy obese subjects, they are at increased risk for 
developing cardiovascular disease and type II diabetes compared with metabol-
ically healthy normal weight individuals (Hinnouho, Czernichow et al. 2015). 
Other longitudinal studies have also reported that, regardless of their metabolic 
status, obese individuals have an increased risk for cardiovascular events and 
mortality (Meigs, Wilson et al. 2006; Song, Manson et al. 2007; Kuk and Ardern 
2009; Arnlov, Ingelsson et al. 2010). Recent meta-analyses showed that MHO 
will eventually develop into unhealthy obesity if the follow-up period is long 
enough (Kramer, Zinman et al. 2013; Bell, Kivimaki et al. 2014; Eckel, Meidtner 
et al. 2015). This suggests that MHO may represent a snapshot in the time line 
of metabolic health; MHO might simply be a transient state.  

2.4.3 Normal weight obesity 

It is assumed that individuals with normal BMI have low body fat content, and 
thus are not at increased risk for cardio-metabolic diseases. However, as men-
tioned earlier, a major limitation of BMI is that it cannot differentiate lean mass 
from body fat. Therefore, people with low lean mass but high body fat content 
may have a low BMI. Indeed, recent meta-analysis suggested that half of the 
people with high body fat percentage may be misclassified as normal weight by 
BMI (Okorodudu, Jumean et al. 2010). These individuals are referred to as nor-
mal weight obese (NWO). Most studies define NWO as BMI<25 with body fat 
percent >30% for women and >25% for men. However, there is no consensus 
how to define excessive adiposity based on body fat percent, and thus the pro-
posed cut-off points for obesity vary between 20 and 25% for men and 30 to 37% 
for women in different studies (Oliveros, Somers et al. 2014). In Finland, 34 % of 
men and 45 % of women have been reported to have NWO (Männistö, Harald 
et al. 2014). The lack of standardized definition may partly explain why the 
prevalence of NWO ranges from 3% to 34 in men and 2% to 45% in women 
(Marques-Vidal, Pecoud et al. 2008; Marques-Vidal, Pecoud et al. 2010; 
Männistö, Harald et al. 2014). Without such standardized definition, the true 
prevalence of NWO is difficult to quantify.    

Despite the ambiguity of definitions, growing evidence indicates that in-
dividuals with NWO are at increased risk for cardio-metabolic dysregulation 
(Shea, King et al. 2012) and subclinical atherosclerosis (Kim, Kyung et al. 2015). 
They also have more cardio-metabolic risk factors (De Lorenzo, Martinoli et al. 
2006; De Lorenzo, Del Gobbo et al. 2007; Marques-Vidal, Pecoud et al. 2010; 
Romero-Corral, Somers et al. 2010), coronary heart disease (Romero-Corral, 
Somers et al. 2007; Kosmala, Jedrzejuk et al. 2012), and they have a higher risk 
for cardiovascular and all-cause mortality (Coutinho, Goel et al. 2013; Sahakyan, 
Somers et al. 2015) compared to normal weight lean individuals. There are also 
individuals who are not obese based on any measure, but who are, like the un-
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healthy obese,  hyperinsulinemic and insulin resistant, and thus have the same 
risk for developing cardio-metabolic diseases (Ruderman, Schneider et al. 1981; 
Ruderman, Chisholm et al. 1998). Such individuals are common in the general 
population and it is likely that they represent a subset of all individuals with 
NWO. These observations conflict with the widely held belief that maintaining 
a normal body weight protects against cardio-metabolic diseases. Whereas 
NWO is known to associate with increased risk for cardio-metabolic disease in 
adults, there is considerable paucity of data in children and adolescents. A re-
cent systematic review and meta-analysis indicated that more than 25% of chil-
dren and adolescent with high percent body fat may be misclassified as normal 
weight when using only BMI to diagnose obesity (Javed, Jumean et al. 2015). 
However, to date, no study has evaluated whether NWO in early childhood 
tracks into adulthood, and whether it increases risk for cardiovascular disease 
later in life.  

  



3 PURPOSE OF THE STUDY 

Understanding the relationship between obesity and its metabolic sequelae is 
important because it may help to develop more tailored strategies to combat 
cardio-metabolic diseases. The aim of this study was to assess the relationship 
between adiposity and cardio-metabolic risk, and to identify biomarkers that 
associate with common obesity-related metabolic disorders in children and 
adults. More specifically, the objectives were the following:   

1. To identify circulating biomarkers that discriminate middle-aged over-
weight and obese women with metabolic syndrome from those who are
metabolically healthy using a cross-sectional study design (Study I).

2. To identify circulating biomarkers and gene expression profiles of adi-
pose tissue and skeletal muscle that discriminate middle-aged women
with and without NAFLD using a cross-sectional study design (Study II).

3. To identify circulating biomarkers and gene expression profiles of adi-
pose tissue and skeletal muscle that are associated with insulin resistance
in women with varying degrees of adiposity using cross-sectional study
design (Study III).

4. To depict the development of relative body weight and body composi-
tion, and to assess the relationship between adiposity and cardio-
metabolic risk among peripubertal girls with different body weight sta-
tus using a longitudinal study design (Study IV).

5. To explore the patterns of longitudinal changes of serum amino acids
and triglyceride, and to assess whether amino acid profiles in childhood
predict triglyceride levels in early adulthood using a longitudinal study
design (Study V).



4 MATERIAL AND METHODS 

4.1 Subjects and study design 

The original articles presented in this thesis are based on two separate studies: 
the EWI study and the Calex study. The recruitment of the study populations is 
presented schematically in FIGURE 5. In 2009, a short-term (6 weeks) aerobic 
exercise and weight control intervention (EWI) in overweight and obese women 
was performed in the University of Jyväskylä. The study participants were in-
vited from Jyväskylä Central Finland Health District/Health Promotion Hospi-
tal initiative program. One hundred and sixty-one women (all hospital staff) 
responded to the invitation. One hundred met the screening criteria and were 
invited to participate in baseline measurements. After the baseline measure-
ments, eligible participants were randomized into parallel exercise (EX) or diet 
intervention (DI) groups. Only the data obtained from baseline measurements 
was used in study I.   

A description of the Calex study and participant recruitment is described 
in more detail elsewhere (Cheng, Lyytikainen et al. 2005). In brief, the Calex-
study is a longitudinal study in girls with the aim of understanding how bone, 
fat, and muscle develop through childhood, puberty, and adolescence. The girls, 
(9-13 years old) were initially contacted in local schools via class teachers. Of 
396 girls eligible, 258 (mean age at baseline 11.2 years) participated in meas-
urements over a period of 8 years (mean duration of total follow-up was 7.5 
years). Among the 258 girls, 200 participated in 1-year, 221 at 2-year, and 101 at 
7-year follow-up. In addition, 135 girls from the original cohort were re-invited
to participate in measurements in 2007 and 2008, thus resulting in 236 partici-
pants (mean age 18.3 years) at 7-year follow-up measurement.   This data was
used in studies IV and V.

 In 2008-2009 an extension of the Calex study was performed to explore in-
trinsic linkages between adipose tissue, muscle, and bone in relation to systemic 
low-grade inflammation. For the purpose of this study, a subgroup of girls from 
the original cohort (n = 74) and their biological mothers (n=74) and fathers 
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(n=74) were invited to participate in the study. A total of 184 individuals re-
sponded to the invitation, of whom 163 (53 fathers, 53 mothers and 57 daugh-
ters) attended the laboratory tests. In study II, all the daughters were excluded 
from the analysis owing to the low number with NAFLD (n = 5), leaving only 
the mothers and fathers (n = 106). Valid measurements of liver fat were una-
vailable for two men. In addition, two men reported recent alcohol consump-
tion of >21 drinks on average per week and one woman reported >14 drinks on 
average per week. These individuals were therefore excluded. Hence, the final 
numbers of participants were 49 men and 52 women. Thirty (n = 30) partici-
pants had NAFLD, as defined by the cut-off liver fat content value of >5.56% 
(Szczepaniak, Nurenberg et al. 2005). The remainder, with a liver fat content 
value of <5.56%, were assigned to the healthy control group (n = 71). However, 
this thesis focuses on body composition and obesity related cardio-metabolic 
disorders in women; therefore the results of the study II include only women. 
In study III, all the fathers were excluded from the analysis in order to reduce 
the variability in genetic architecture, leaving only the mothers and daughters 
(mothers = 53 and daughters = 57).   
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4.2 Measurements  

4.2.1 Questionnaires 

All variables assessed and methods used in the studies included in this thesis 
are presented in the TABLE 5. In studies I-V, health history and lifestyle charac-
teristics were collected via self-administered questionnaires. Dietary intake of 
total energy and energy-yielding nutrients were assessed from three-day food 
(2 week days and 1 weekend day) records. Dietary intakes of energy, energy 
yielding nutrients were analyzed using Micro-Nutrica software (Social Insur-
ance Institution, Turku, Finland). Leisure time physical activity (PA), including 
walking, jogging, running, gym fitness, ball games, swimming, etc., expressed 
as hours/week and times/week, was evaluated using a validated self-
administered physical activity questionnaire, as previously described (Volgyi, 
Lyytikainen et al. 2010).   

4.2.2 Anthropometry and body composition 

In studies I-V, body height and weight were measured by using a stadiometer 
and an electronic scale, to the nearest 0.1 kg and 0.1 cm respectively, with sub-
jects wearing light clothes and without shoes. BMI was calculated by dividing 
body weight in kilograms by the square of the body height in meters. In study I, 
waist circumference was measured on bare skin with a tape measure, midway 
between the top of the iliac crest and the bottom of the rib cage. Two independ-
ent measurements were performed and the mean value was used. Blood pres-
sure (BP) in the right arm was recorded using an automated oscillometric de-
vice (OMRON M3 Intellisense, OMRON Healthcare, Co., Ltd, Kytoto, Japan) in 
a sitting position in the morning after a 10 minute rest. Two consecutive meas-
urements were performed, and the mean of the measurements was used. In ad-
dition, growth charts of each participant in the Calex study were obtained from 
Finnish School Health Care System from birth to 17-20 years of age. The data 
obtained from growth charts was used in the study IV.  



47 
 

TABLE 5 Variables assessed in the studies and methods used. 

Variable         Method  Study 
Basic information  

Health history Questionnare I, II, III, IV, V 

Growth chart Official document IV 

Food records Questionnare I, II, III, IV, V 

Physical activity Questionnare I, II, III, IV, V 

Maximum oxygen uptake Bicycle ergometer I, III 

Resting energy expenditure                Respiratory gas analysis I 

Anthropometry  

Body height Stadiometer I, II, III, IV, V 

Body weight Electronic scale I, II, III, IV, V 

Waist circumference Tape measure I 

Blood pressure Automated oscillometric device  I, IV 

Body composition  

Body fat mass DXA (bioimpedance in study I) I, II, III, IV,V 

Body lean mass DXA (bioimpedance in study I) I, II, III IV,V 

Visceral fat MRI spectroscopy                                           II, III 

Liver fat MRI spectroscopy II, III 

Myocellular lipids MRI spectroscopy II, III 

Serum biochemistry II, III 

Glucose  Photometric assay I, II, III, IV, V 

Triglycerides Photometric assay I, II, III, IV, V 

Total cholesterol Photometric assay I, V 

HDL cholesterol Photometric assay I, IV 

Free fatty acids Photometric assay II, III 

S-ALAT Photometric assay I, II 

S-ASAT Photometric assay I, II 

GGT Photometric assay I, II 

Insulin immunofluorescence I, II, III, V 

hsCRP ELISA II, III 

Leptin ELISA II, III 

Adiponectin ELISA II, III 

Biomarkers   

Metabolomics NMR spectroscopy I, II, III, IV, V 

Adipose tissue gene expression Microarray/qPCR II, III 

Muscle gene expression Microarray/qPCR II, III 

Muscle protein expression Western blot II, III 
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In study I, body composition was assessed using bio-impedance (Inbody 720, 
Biospace Co. ltd Seoul, South Korea). Fat mass (FM) and fat-free mass (FFM) 
were used in this study. The coefficient of variation (CV) of two repeated meas-
urements on the same day was on average 0.6 % for FM and 0.8% for FFM. In 
studies II, III, IV and V, body composition was assessed using dual-energy x-
ray absorptiometry (DXA) (Prodigy; GE Linar Corp., Madison, WI, USA). 
Whole body FM and FFM  were used in these studies. In study I, FM in android 
(abdominal region) and gynoid region (hips and thighs) was also determined 
(FIGURE 6). The CV of two repeated measurements on the same day was on 
average 2.2% for FM and 1.0% for FFM.   

Intra-abdominal and liver fat content were assessed in studies II and III. 
The abdominal region and liver were scanned using a 1.5 Tesla MR-scanner (GE 
Sigma CV/i, General Electric Healthcare, Waukesha, WI, USA). Abdominal vis-
ceral adipose tissue (VAT) was quantified from a single slice image at the level 
of the L2-L3 intervertebral disc using the OsiriX software (OsiriX Foundation, 
Geneva, Switzerland). The results were converted into tissue fat mass in kilo-
grams, taking into account slice thickness and an adipose tissue density of 
0.9196 g/ml (Martin, Daniel et al. 1994; Ojanen, Borra et al. 2014). Liver fat con-
tent was assessed by 1HMRS with a PRESS sequence and was analyzed using 
the Linear Combination of Model spectra software which is generally consid-
ered to be the gold standard for in-vivo spectroscopy analysis (Borra, Salo et al. 
2009). In study II, NAFLD was defined by the cut-off liver fat content value 
of >5.56% (Szczepaniak, Nurenberg et al. 2005). 

Muscle intra-myocellular lipid (IMCL) and extra-myocellular lipid (EMCL) 
from the tibialis anterior muscle were measured using a similar 1H MRS meth-
od with a surface coil placed over the middle part of the muscle (Furuyama, 
Nagarajan et al. 2014). In order to obtain maximal IMCL and EMCL separation 
the tibialis anterior muscle was aligned as optimally as possible with the direc-
tion of the magnetic field and the voxel was placed parallel to the muscle fibers 
(Furuyama, Nagarajan et al. 2014). 

4.2.3 Resting energy expenditure 

Resting energy expenditure (REE), expressed as kcal per day, was assessed by 
respiratory gas exchange analysis (GEA) using a ventilated-hood system (VI-
ASYS Healthcare, Yorba Linda, CA, USA) in study I. Calibration of the GEA 
was carried out before each measurement according to the manufacturer’s in-
structions. The subjects were instructed to avoid any strenuous physical activity 
and large, energy and protein rich meals for 24 h before the measurement. The 
subjects arrived at the laboratory in the morning after an overnight fast. After 
relaxing in a measurement bed for 30 min, a ventilated hood was placed over 
their heads. Oxygen consumption and carbon dioxide production were record-
ed for 20 min at 1 min intervals, in a supine position and in a thermoneutral 
(22–24 °C) environment. The first 5 min of the data were discarded as artefacts. 
The REE was calculated using the modified Weir equation (Weir 1990). 
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FIGURE 6 Android and gynoid regions obtained by DXA based on bony landmark. An-
droid: Base located at top of pelvis. Height (H) = 20% of distance from top of 
pelvis to base of skull. Gynoid: Top located at 1.5 x height below base of an-
droid region, height = 2 x H. 

4.2.4 Cardiorespiratory fitness 

Maximal oxygen uptake (VO2max, ml/kg/min) was measured by using a bicycle 
ergometer under physician’s supervision in studies I and III. The test began 
with a 5-minute warm-up at an intensity of 50W. After that, the intensity was 
increased by 25W every second minute until exhaustion. Heart rate was meas-
ured using electrocardiograph. Blood pressure was monitored before, during 
and after the test to estimate cardiovascular risk. Oxygen uptake was measured 
using respiratory gas analyzer VIASYS (Healthcare Inc. USA). VO2max was 
reached when the measured VO2 reached a plateau or began to decrease, res-
piratory exchange ratio was over 1.0 or when the subject wanted to stop the 
tests because of exhaustion.  

4.2.5 Biochemical analyses 

In studies I-V, venous blood samples for biochemical analyses were drawn in 
standardized fasting conditions in the mornings between 7 am and 9 am. In the 
Calex study and the Calex extension study, the samples were collected 2 to 5 
days after menstruation among girls and women with regular menses. Serum 
samples were stored frozen at -80ºC until analyzed. Glucose was analyzed us-
ing the KONELAB 20XTi analyzer (Thermo Fischer Scientific inc. Waltham, MA, 
USA) and insulin was determined by immunofluorescence using the IMMU-
LITE Analyzer (Diagnostic Products Corporation, Los Angeles). The inter- and 
intra-assay CVs were 2.0% and 3.7% for glucose, 11% and 3.4% for insulin, re-
spectively. In study III, an oral glucose tolerance test with 75 g glucose solution 
was performed. Blood samples were drawn at fasting state and at 60 min and 
120 minutes after glucose ingestion. Insulin sensitivity index (Matsuda index) 
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was calculated according to Matsuda and DeFronzo (Matsuda and DeFronzo 
1999) using the following equation: 10000/sqrt(FPG x FPI x (mean PG x mean 
PI)), where 10,000 is a constant, FPG and FPI represent the fasting plasma glu-
cose and serum insulin concentrations, PG represents the mean plasma glucose 
concentrations (60min +120min), and PI is the mean plasma insulin concentra-
tion (60min and 120 min), sqrt is the mathematical function to calculate the 
square root. HOMA-IR index (homeostatic model assessment of insulin re-
sistance) was calculated as (fasting glucose x fasting insulin/22.5) in studies I-V. 

Serum total cholesterol, high-density lipoprotein cholesterol, triacylglyc-
erol, non-esterified fatty acids (NEFA), alanine amino transferase (S-ALAT), 
aspartate amino transferase (S-ASAT) and gamma glutamyltransferase (GGT) 
were analyzed using the KONELAB 20XTi analyzer (Thermo Fischer Scientific 
Inc. Waltham, MA, USA) in studies I and II. Serum leptin was assessed using 
human leptin (ELISA; Diagnostic Systems Laboratories, Inc., Webster, TX), and 
total adiponectin was measured by an enzyme immunoassay method using the 
Quantikine human total adiponectin/Acrp30 immunoassay (R&D Systems, 
Minneapolis, MN) in studies  II and III.  Inter- and intra-assay coefficients of 
variation (CVs) were 2.2% and 2.7% for leptin, 3.3% and 4.3% for adiponectin, 
respectively. In study II and III, serum high-sensitivity C-reactive protein 
(hsCRP) was assessed using an ELISA DuoSet (R&D Systems and Diagnostic 
Systems Laboratories, Inc.). The intra- and inter-assay CVs were 4.6% and 6.9%. 

4.2.6 Definition of obesity subtypes and metabolic syndrome  

In study IV, the participants were categorized based on their BMI and body fat 
percent at the age 18 as overweight or obese (OWOB, BMI >25 with fat% >30), 
normal weight obese (NWO, BMI; 18.5-24.9 with fat% >30), normal weight lean 
(NW, BMI; 18.5-24.9 with fat% <30) and Underweight (UW, BMI <18.5 with fat% 
<30). In study I, the metabolic syndrome was defined according to a “harmo-
nized” definition (Alberti, Eckel et al. 2009) as the presence of at least three of 
the following five criteria: waist circumference ≥88 cm, fasting serum triacyl-
glycerol ≥1.7 mmol/L, high density lipoprotein cholesterol (HDL-C) <1.30 
mmol/L, glucose ≥5.6 mmol/L) and resting blood pressure ≥130/85 mmHg. In 
addition, in study I, subjects who were overweight or obese (BMI >25) but had 
no metabolic syndrome or any of the constituents of the syndrome (except waist 
circumference ≥88 cm) were categorized as metabolically healthy overweight 
and obese (MHO). 

4.2.7 Cardio-metabolic risk score 

In study IV, cardio-metabolic risk was assessed by constructing a standardized, 
continuously distributed variable for clustered metabolic risk similarly to pre-
viously published risk scores (Ekelund, Anderssen et al. 2007; Viitasalo, Lakka 
et al. 2014). The risk score was calculated by standardizing and then summing 
the following continuously distributed metabolic traits to create a z score: mean 
arterial pressure ([(2 x diastolic blood pressure)+systolic blood pressure]/3), 
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android fat mass, fasting plasma glucose, serum HDL cholesterol x -1, and fast-
ing serum triglyceride z score. A higher score indicates a less favorable cardio-
metabolic risk profile. The purpose of using such continuously distributed risk 
score was to maximize statistical power (Ragland 1992) because average differ-
ences in metabolic traits tend to be relatively small in children and adolescents. 

4.2.8 Serum metabolomics 

In studies I-V, serum samples were analyzed using a high-throughput serum 
NMR metabonomics platform; the experimental protocols including sample 
preparation and NMR spectroscopy have been described in detail elsewhere 
(Soininen, Kangas et al. 2009). This methodology combines two molecular win-
dows that contain the majority of the metabolic information available by 1H 
NMR from native serum such as serum lipids, lipoprotein subclasses as well as 
various low-molecular-weight metabolites, including various amino acids, ke-
tone bodies and glycolysis intermediates (Soininen, Kangas et al. 2009).  

4.2.9 Tissue biopsies and RNA extraction and microarray analyses 

Subcutaneous adipose tissue and skeletal muscle biopsies were obtained in 
studies II and III. Twenty-four participants agreed to donate subcutaneous adi-
pose tissue biopsies, which were obtained under local anesthesia after over-
night fasting. A region 5 cm lateral from the umbilicus either to the left or right 
side was sterilized. A small intracutaneous injection was made, and 2 ml of a 
local anesthetic agent (lidocaine) was injected. After 5 min, anesthesia was con-
firmed, skin was sterilized again and 16 G, 40 mm needle, was then adapted to 
a 50-ml syringe and 10ml of 0.9% sodium-chloride was aspirated. Approximate-
ly two-third of the length of the needle was inserted into the subcutaneous fat, 
and 5 ml of 0.9% sodium chloride was injected. The needle piston was then 
pulled back maximally and released until it was locked by a stopper, thereby 
creating a vacuum. Tissue resistance was created by gripping the abdominal 
skin with one hand while the other hand rotated the needle throughout the tis-
sue in back and forth motion. Once the tissue was aspirated by the syringe, the 
needle was withdrawn, and the piston was removed. The adipose tissue sam-
ples were washed with saline solution, and were immediately frozen in liquid 
nitrogen and stored at - 80°C.  

Twenty-four participants agreed to donate skeletal muscle biopsies, which 
were obtained under local anesthesia after overnight fasting. Biopsies were ob-
tained from the vastus lateralis dx muscle with a 5-mm Bergström biopsy nee-
dle, midway between the patella and greater trochanter. The region and the 
optimum depth for muscle biopsy were confirmed by ultrasound imaging. The 
skin of the identified location was sterilized and 4 ml of local anesthetic agent 
(lidocaine) was injected into the procedure area. A cooling pack was then ap-
plied on the location. After 10 minutes, anesthesia was confirmed, skin was 
sterilized again and a small stab incision was made with a surgical scalpel. Sub-
sequently, the biopsy needle attached to a syringe was introduced perpendicu-
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larly into the incision. The piston was then pulled back maximally creating a 
vacuum and sample was obtained. The muscle sample was cleaned of any visi-
ble connective and adipose tissue, as well as blood, and was frozen immediately 
in liquid nitrogen and stored at −80°C. 

Total RNA was extracted from biopsies using the FastPrep system (MP Bi-
omedicals, France) and the RNeasy Lipid Tissue Mini Kit (QIAGEN, 
Gaithersburg, MD, USA) according to manufacturer’s instructions. Total RNA 
was digested on column with the RNase-free DNase set (QIAGEN) during RNA 
isolation. The quality of the total RNA was studied using a 2100 Bioanalyzer 
(Agilent, Santa Clara, CA, USA) and Experion Automated Electrophoresis Sta-
tion (BioRad, Hercules, CA, USA). The total RNA was amplified and processed 
using the Gene Chip 3´ IVT Express Kit (Affymetrix, Santa Clara, CA, USA) and 
hybridized on Affymetrix Human Genome U219 Array Plates. Total RNA was 
amplified and processed using the GeneChip 3´IVT Express Kit (Affymetrix, 
Santa Clara, CA, USA) and hybridized on Affymetrix Human Genome U219 
Array Plates. Microarray data was pre-processed by the Robust Multiarray Av-
eraging (RMA) algorithm in the R package affy (Gautier, Cope et al. 2004). Dif-
ferentially expressed genes (DEG) were identified with the limma R package 
utilizing linear modeling and empirical Bayes methods. P-values were adjusted 
using the Benjamini and Hochberg multiple adjustment method (Benjamini and 
Heller 2008).  

4.2.10 Gene enrichment analyses 

The enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways for a given gene set were calculated using the R 
packages GOStats and KEGG.db. In the enrichment analysis, all human EN-
SEMBL genes were used as a background gene group and categories with a p-
value lower than 0.05 were considered significantly enriched. Genes related to 
HOMA-IR were identified using the following two criteria:  Genes were differ-
entially expressed in our DEG – analysis between the low HOMA-IR and high 
HOMA-IR groups with adjusted p-value <0.05 or genes with a fold change >= 2 
between the low and high HOMA-IR groups. For the gene pathways derived 
from KEGG enrichment analysis, the mean-centroid value representing the “ac-
tivity” of the regulated part of the pathway was computed by normalizing the 
expression levels of all subset genes to a mean of zero and a variance of 1 across 
all individuals. 

4.2.11 Protein extraction from muscle samples and Western blot analysis 

Muscle biopsies were homogenized in ice-cold lysis buffer [20 mM Tris-HCl 
(pH 7.4), 1 mM EDTA, 150mM NaCl, 100 mM β-glycerophosphate, 1 mM 
Na3VO4, 1 mM DTT, 1% Triton-X-100], supplemented with protease and phos-
phatase inhibitors inhibitors (Sigma Aldrich, St Louis, MO, USA). Thirty to sixty 
micrograms of muscle lysate samples were separated by SDS-Page using 4-20% 
gradient gels on Criterion electrophoresis cell (Bio-Rad Laboratories, Richmond, 
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CA). Proteins were transferred to nitrocellulose membranes at 300-mA constant 
current on ice at 4ºC. Membranes were blocked in TBS containing 5% nonfat 
dry milk for 1 hour at room temperature (RT), and then probed overnight at 4ºC 
with primary antibodies purchased from Cell Signaling Technology (Danvers, 
MA, USA) (p-Akt, p-IRβ and p-AS160), Sigma-Aldrich (anti-GAPDH) and 
Abcam (MitoProfile® Total OXPHOS Rodent WB Antibody Cocktail, Abcam, 
Cambridge, MA, USA). All antibodies were diluted 1:1.000 (except anti-
GAPDH (housekeeping, which was diluted 1:40.000) in TBS containing 5% non-
fat dry milk. Membranes were then washed with TBS containing 0.1% Tween-
20 (TBS-T) followed by 1 hour incubation with the secondary antibody. Odys-
sey anti-rabbit IRDye 800 and Odyssey anti-mouse IRDye 600 (LI-COR Biosci-
ences, Lincoln, NE, USA) were used as a secondary antibody.  Blots were visu-
alized and quantified using Odyssey CLX Infrared Imager of Li-COR and man-
ufacturer's software. When reprobing was needed, the membranes were incu-
bated in 0.2 M NaOH for 10 min at RT, washed with TBS and reprobed with 
appropriate antibodies. All samples were run in the same gel to minimize the 
variability and the quantitative results for each protein were normalized to 
GAPDH. 

4.3 Statistical analysis 

All data were checked for normality using the Shapiro-Wilk’s W-test (PASW 
Statistics 18). If data were not normally distributed, their natural logarithms 
were used. Nominal statistical significance was defined as p<0.05.  For all anal-
yses, the variables for adjustments were chosen based on their known relation-
ships with either the dependent or independent variables.  

In study I, clinical characteristics and serum metabolites were compared 
between MetS and MHO using an independent-samples t-test. To ensure that 
significant differences in metabolite levels between the groups were not con-
founded by age, waist circumference or BMI, analysis of covariance (ANCOVA) 
was used adjusting for the above-mentioned variables. Metabolites were denot-
ed significant if the p-value was lower than 0.0005 to account for multiple test-
ing of 100 independent tests. The metabolomics data was further clustered uti-
lizing a hierarchical clustering algorithm. First, the metabolite and other values 
were standardized to have 0 as a mean and 1 as standard deviation. Second, the 
missing values within the data were imputed with k-nearest neighbor algo-
rithm (k = 3). The resulted data values were clustered using correlation distance 
and average linkage methods.  

Given the expected multicollinearity of metabolites, principal component 
analysis (PCA) was used to reduce the large number of correlated variables into 
fewer uncorrelated factors. PCA was performed on fasting levels of amino acids, 
fatty acids, phospholipids, glycoproteins, ketone bodies, and glycolysis and 
gluconeogenesis intermediates. Varimax rotated factors with an eigenvalue ≥ 1 
were identified and metabolites with a factor load ≥ 0.4 were reported as com-
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posing a given factor. Metabolomic factor scores were calculated for each indi-
vidual based on the constructed scoring coefficients. Mean metabolite factor 
levels were compared between MHO and MetS groups with and without ad-
justing for age, BMI and waist circumference. Further, we assessed whether fac-
tor levels were predictors for MetS using logistic regression models in all sub-
jects adjusted for age, waist circumference and BMI. Finally, the networks be-
tween the metabolite factors and clinical risk factors were computed with the 
Spearman correlation and illustrated using Himmeli software (Makinen, 
Forsblom et al. 2009).  

In study II, clinical characteristics and serum metabolites were assessed in 
men and women with and without NAFLD. Since the data were from a family 
study, shared environmental (household) similarity was controlled for in the 
analysis. The linear mixed model was used to compare levels of the outcome 
variables between the NAFLD and healthy control groups. In addition, contrast 
tests were used in mixed models to assess the effect of gender while controlling 
for dependency among family members with random effects. Because this the-
sis focuses on body composition and obesity related cardio-metabolic disorders 
in women, the following results of study II included only women. 

The metabolomics data was clustered utilizing a hierarchical clustering al-
gorithm and p-values were adjusted to control for the false discovery rate (FDR) 
using the method of Benjamini and Hochberg when comparing metabolites be-
tween the groups (Benjamini and Heller 2008). Similarly to study I, PCA was 
used to reduce a large number of correlated variables to fewer uncorrelated fac-
tors and metabolite factor scores were calculated and compared between the 
groups. To exclude the possibility of misclassification, subjects were divided 
into quintiles based on their liver fat content and compared their mean metabo-
lite factor levels adjusting for HOMA-IR, BMI and visceral fat mass. Pearson 
correlation analyses were performed to determine the relationship between the 
gene pathways and clinical characteristics.  

In study III, clinical characteristic and serum metabolites were compared 
between insulin resistant and insulin sensitive women. The degree of insulin 
resistance was determined by the HOMA-IR index. According to their HOMA-
IR values (median = 1.57), the subjects were divided into low (n = 55) and high 
(n = 55) groups. Since the data were from a family study, the familiarity (genetic 
and environmental (household) similarity) was controlled by using linear 
mixed model to compare levels of the outcome variables between the low and 
high HOMA-IR groups. Contrast tests were used in mixed models to assess the 
effect of generation while controlling for dependency among family members 
with random effects. P-values were adjusted to control for the false discovery 
rate (FDR) using the method of Benjamini and Hochberg when comparing me-
tabolites between groups (Benjamini and Heller 2008). Pearson correlation anal-
ysis was used to determine the relationship between clinical characteristics, se-
rum metabolites and adipose tissue gene expression.   

In study IV, body composition and cardio-metabolic risk was compared 
between the OWOB, NWO, NW and UW groups at each time point using anal-



55 
 

ysis of variance (ANOVA) with the Least Significant Difference post hoc test. In 
addition, for each single metabolite predictor and measure of fat mass (outcome) 
a path model was constructed linking the predictor measurements to the out-
come measurements in three time-points (FIGURE 7). The model consists of 
outcome covariances (a-c), predictor effects (d-i) and predictor covariances (j-l). 
Fat mass and each predictor variable (metabolites), if necessary, were log-
transformed to remove excess kurtosis and skewness. Due to varied ranges of 
measurement scales, all variables were standardized prior to modelling and 
modelled separately. For each model we grouped the predictors into 11 groups, 
each including measures from the same metabolic group, and included each 
group of variables in the same model. We report predictor path coefficients and 
their 95 % confidence intervals for each predictor in the model. Parameter esti-
mation was conducted in Mplus, version 7. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

FIGURE 7 Path model for single metabolite predictor. The model consists of outcome 
covariances (a-c), predictor effects (d-i) and predictor covariances (j-l) for fat 
mass and each predictor variables. BM = before menarche (age 11), AM = after 
menarche (age 14), 84 = follow-up at 84 months (age 18). 

In study V, longitudinal changes of serum amino acids and triglycerides across 
pubertal growth in girls were examined using hierarchical models. The data for 
different time points were compared with each other using the general linear 
model. A hierarchical (multilevel) non-linear model with random effects 
(MLwin2.20 software, Multiple Project, Institute of Education, University of 
London, London, United Kingdom) was used to explore the patterns of longi-
tudinal changes of amino acids, triglyceride and HOMA-IR from pre-puberty to 
early adulthood. The hierarchical model allows inclusion of the data from every 
subject despite irregularity of temporally spaced follow-up or missing data 
(Goldstein 1986). Time relative to menarche was entered as the explanatory var-
iable in the form of polynomial spline functions to explain the change of target 
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variables over time, as described in detail elsewhere (Cheng, Volgyi et al. 2009). 
The best model was determined by three criteria: the largest reduction in devi-
ance test (2log likelihood by iterative generalized least squares), the lowest 
within-individual variance, and the necessary parsimony of the model. 

To determine the associations of longitudinal changes in triglycerides with 
fat mass, HOMA-IR and amino acids before and after menarche, hierarchical 
models were used in which the outcome variable was triglyceride and the in-
dependent variables were amino acids. In this model, the time of menarche was 
selected as a shift knot for the model, which means that the coefficients of inde-
pendent variables could be different before and after menarche. Thus, the asso-
ciations between amino acids and triglyceride were assessed by regression coef-
ficients before and after menarche, respectively. A t-test was used to assess 
whether the β coefficients were statistically different from 0. Furthermore, we 
divided subjects into quartiles based on their triglyceride levels at baseline and 
at 2-year and at 7 year follow-up and compared amino acid levels adjusting for 
fat mass, HOMA-IR and protein intake. Finally, we used receiver operating 
characteristics (ROC) curve analyses to determine the predictive effect of varia-
bles to identify hypertriglyceridemia in early adulthood. The area under the 
curve (AUC) is considered a measure of the usefulness of the predictor variable 
and represents the trade-off between the correct identification of individuals 
with hypertriglyceridemia (sensitivity) and the correct identification of normo-
lipidemic individuals (specificity). 



5 RESULTS 

Characteristics of the subjects in separate studies are presented in TABLE 6.  

TABLE 6 Characteristics of the study participants. 

Study I  MHO   MetS 
   (n=42)  (n=36) 

Mean   95%CI Mean    95%CI 
Age (years) 39.7 (37.3, 42.0) 44.1 (42.1, 46.1) † 
Height (cm) 165.5 (163.7, 167.2) 164.7 (162.5, 166.8) 
Weight (kg) 79.1 (76.0, 82.3) 83.1 (79.6, 86.6) 
BMI (kg/m2) 28.9 (27.9, 29.8) 30.6 (29.5, 31.7) * 
FM (kg) 29.0 (26.5, 31.4) 32.2 (29.5, 34.9) 

Study II  Healthy controls    NAFLD 
 (n=40)  (n=12) 

Mean    95% CI Mean    95% CI 
Age (years) 50.1 (48.5, 51.6) 51.9 (48.6, 55.3) 
Height (cm) 165.8 (164.2, 167.5 167.3 (163.6, 171.1) 
Weight (kg) 67.1 (63.8, 70.5) 83.0 (75.9, 90.1) ‡ 
BMI (kg/m2) 24.5 (23.4, 25.5 29.7 (27.4, 32.0) ‡ 
FM (kg) 22.1 (19.7, 24.6) 35.1 (30.0, 40.3) ‡ 

Study III   Low HOMA-IR    High HOMA-IR 
  (n=55)   (n=55) 

Mean   95%CI Mean   95%CI 
Age (years) 35.1 (35.9, 36.3) 36.0 (35.0, 36.9) 
Height (cm) 165.7 (163.9, 167.7) 166.1 (164.5, 167.6) 
Weight (kg) 61.3 (58.4, 64.1) 67.3 (65.1, 69.5) † 
BMI (kg/m2) 22.3 (21.4, 23.2) 24.4 (23.7, 25.1) † 
FM (kg)    17.8       (15.5, 20.1)   23.0    (21.9, 25.5) †

Study IV & V     Baseline   7-year follow-up
  (n=230)  (n=220)

Mean   95% CI Mean   95% CI 
Age (years) 11.2 (11.1, 11.5) 18.10 (17.8, 18.4) ‡ 
Height (cm) 146.3 (145.0, 147.6) 165.10 (163.7, 166.5) ‡ 
Weight (kg) 39.7 (38.4, 41.1) 60.30 (59.0, 61.6) ‡ 
BMI (kg/m2) 18.4 (18.0, 18.9) 21.90 (21.5, 22.3) ‡ 
FM (kg) 10.7 (10.0, 11.4) 19.5 (18.4, 20.7) ‡ 
*p<0.05, †p<0.01, ‡p<0.001
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5.1 Serum biomarkers and cardio-metabolic risk (Study I) 

To improve understanding of the association between excess adiposity and car-
dio-metabolic risk, we sought to describe and compare serum metabolic profiles 
in metabolically “healthy” and “unhealthy” overweight and obese women. 
Metabolically healthy (MHO) women were defined as (BMI>25) with no cardio-
metabolic abnormalities (except increased waist circumference), and metaboli-
cally unhealthy (MetS) individuals were defined as having metabolic syndrome. 

Metabolomics analysis showed higher levels of several fatty acid species, 
VLDL lipoprotein subclasses, and glycoprotein and branched-chain amino acids 
in subjects with MetS (p<0.05 for all). Principal component analysis of serum 
metabolites revealed eight metabolite factors composed of correlated metabo-
lites. Metabolite factor 1 (branched-chain amino acids, phenylalanine, tyrosine 
and orosomucoid) and factor 2 (total fatty acids, omega-6 fatty acids, omega-7 
and omega-9 fatty acids, linoleic acid, mono-unsaturated fatty acids, total phos-
phoglycerides, total phosphocholines) were significantly different between the 
metabolically healthy and unhealthy groups (p<0.01 for both). In a logistic re-
gression analysis adjusted for age, waist circumference and BMI both factors 
increased the risk for metabolic syndrome with a similar magnitude (OR 2.90 vs. 
2.67, p<0.01 for both).  

Metabolite factor 2 correlated significantly with serum triglycerides (r = 
0.533, p<0.001) and systolic, blood pressure (r = 0.290, p = 0.36), whereas me-
tabolite factor 1 correlated significantly with serum triglycerides, fasting insulin, 
HOMA-IR, S-ALAT, systolic blood pressure and inversely with HDL cholester-
ol (p<0.001 for all), (FIGURE 8). 

FIGURE 8 Associations between serum metabolite factor 1 (leucine, isoleucine, valine, 
tyrosine, phenylalanine, orosomucoid) and metabolic traits. TG (triglycerides), 
HDL (high-density lipoprotein cholesterol), INS (fasting insulin), ALAT (serum 
alanine amino transferase), SBP (systolic blood pressure). 
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 TABLE 7 shows the correlations of individual metabolites of metabolite factor 1 
with triglyceride, HDL-C, fasting insulin, HOMA-IR, S-ALAT and systolic 
blood pressure. Isoleucine, leucine and orosomucoid were strongly associated 
with serum triglyceride even after adjusting for age, BMI and waist circumfer-
ence (p<0.001 for all). These metabolites displayed significant associations also 
with S-ALAT, insulin and HOMA-IR (p<0.05 for all). Phenylalanine and tyro-
sine correlated with S-ALAT and tyrosine with systolic blood pressure.  

TABLE 7 Associations between individual metabolites in factor 1 and metabolic 
traits adjusted for age, BMI and waist circumference.  

 
 
Metabolites 

 
  
TG 

 
 
HDL-C 

 
 
fs-insulin 

 
 
HOMA-IR 

 
 
S-ALAT 

 
 
SBP 

Isoleucine 0.676‡ -0.300* 0.240* 0.285* 0.293†  ns 

Leucine 0.572‡ ns 0.211* 0.303* 0.400‡  ns 

Valine ns ns ns ns ns  ns 

Phenylalanine ns ns ns ns 0.357‡  ns 

Tyrosine ns ns ns ns 0.251*  0.279* 

Orosomucoid 0.558‡ ns 0.281* 0.323* 0.385‡  0.280* 

TG (triglycerides), SBP (systolic blood pressure), S-ALT (serum alanine*p<0.05, †p<0.01, 
‡p<0.001, ns = statistically not significant  

    

5.2 Metabolic alterations associated with NAFLD (Study II) 

The metabolites that distinguished metabolically unhealthy overweight and 
obese women from those who were metabolically healthy in study I displayed 
significant associations with triglycerides and liver enzymes. Since fatty liver is 
the most common cause of persistent elevation of liver enzyme levels, the results 
suggested that fatty liver might be a key determinant of metabolic abnormalities. 
Therefore, in study III we set out to identify systemic metabolic alterations asso-
ciated with NAFLD.  

The mean liver fat content in the NAFLD and healthy control groups was 
15.6% vs. 1.7% respectively (p<0.001). Serum metabolomics analysis showed 
increased levels of VLDL subclasses, mono-unsaturated fatty acids, gluconeo-
genic substrates, orosomucoid and branched-chain amino acids, and decreased 
levels of HDL subclasses in participants with NAFLD (p<0.05 for all). Principal 
component analysis of serum metabolites revealed six metabolite factors com-
posed of correlated metabolites. Each factor and their constituent metabolites 
are shown in the original article (table 2, page 9). Factor 1 (omega 7 and 9 and 
saturated fatty acids, total fatty acids and mono-unsaturated fatty acids), factor 
2 (isoleucine, leucine, valine, phenylalanine, tyrosine and orosomucoid) and 
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factor 3 (acetate, alanine, lactate, pyruvate) were significantly higher in the 
NAFLD group compared with the healthy control group (p = 0.004 to p<0.001).  

We further searched for signs of early changes in metabolic pathways in 
the adipose tissue and skeletal muscle. Gene expression analyses revealed 709 
differential expressed genes in the subcutaneous adipose tissue of subjects with 
NAFLD, but no differentially expressed genes were found in the skeletal mus-
cle. Gene enrichment analysis of the differentially expressed genes in the adi-
pose tissue identified 6 down regulated pathways in NAFLD (TABLE 8). 

TABLE 8 Pathways downregulated in subjects with NAFLD. 

p-value Count Size Pathway name 

4.6x10-9 18 44 Valine, leucine and isoleucine degradation 

3.0x10-7 13 30 Citrate cycle (TCA cycle) 

3.3x10-5 13 43 Fatty acid degradation 

7.1x10-3 20 132 Oxidative phosphorylation 

1.9x10-2 11 65 Glycolysis / Gluconeogenesis 

3.5x10-2 12 80 Glycerophospholipid metabolism 

Count = number of differentially expressed genes that map in pathways, Size= total 
amount of genes involved in pathway. 

Liver fat content in NAFLD was significantly associated with BCAA catabolism 
pathway, fatty acid degradation, TCA cycle, oxidative phosphorylation 
(p<0.001 for all) and serum metabolite factor 2 (p<0.05) (FIGURE 9). In a multi-
ple linear regression analysis, only the serum metabolite factor 2 remained sig-
nificantly associated with liver fat content (β = 0.552, p = 0.046). 

FIGURE 9 Associations for liver fat content with mean centroid of the down-regulated 
pathways in the adipose tissue and serum metabolite factor 2 (isoleucine, leu-
cine, valine, phenylalanine, tyrosine and orosomucoid). 
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5.3 Metabolic alterations associated with insulin resistance 
(Study III) 

Because metabolic syndrome and NAFLD are suggested to have common path-
ophysiological mechanisms, with a focus on insulin resistance and hyperinsu-
linemia as central factors, in study III we determined to investigate and identify 
systemic biomarkers associated with insulin resistance in women with varying 
degrees of adiposity. 

Serum metabolite profile analysis revealed elevated levels of branched-
chain amino acids (isoleucine, leucine and valine), aromatic amino acids (phe-
nylalanine and tyrosine), glycerol and orosomucoid in the high HOMA-IR 
group compared with the low HOMA-IR group (p<0.05 for all). Differences in 
branched-chain amino acids and orosomucoid were also consistently present in 
normal weight individuals (Appendix 1). The associations for serum metabo-
lites with fasting insulin, HOMA-IR and insulin sensitivity are shown in TABLE 
9. Branched-chain amino acids, tyrosine and phenylalanine, orosomucoid and 
glycerol were associated with insulin and HOMA-IR (p<0.05 for all). Leucine, 
valine, orosomucoid and glycerol were associated with insulin sensitivity index 
(p<0.05 for all). Free fatty acids were not associated with insulin, HOMA-IR or 
insulin sensitivity index.  

TABLE 9 Associations for serum metabolites with measures of insulin resistance 
and insulin sensitivity. 

 fs-insulin HOMA-IR Insulin sensitivity index 

Isoleucine 0.215* 0.210* ns 

Leucine 0.245* 0.276† -0.396* 

Valine 0.311† 0.321† -0.395* 

Total BCAA 0.388† 0.305† -0.431† 

Phenylalanine 0.211* 0.219* ns 

Tyrosine 0.237* 0.212* ns 

Orosomucoid 0.279† 0.329† -0.444† 

Glycerol 0.309† 0.357† -0.429† 

FFA ns ns ns 

*p<0.05, †p<0.01, ns=statistially not significant 
 

To elucidate the metabolic pathways characterizing or contributing to insulin 
resistance, we studied global transcript profiles of adipose tissue and skeletal 
muscle. Gene expression analyses revealed 1 093 differentially expressed genes 
in the adipose tissue of subjects with high HOMA-IR, but no differentially ex-
pressed genes in the skeletal muscle was found. Gene enrichment analysis of 
the differentially expressed genes (p<0.05) identified 15 up-regulated pathways 
and 9 down-regulated and pathways (TABLE 10). Associations between gene 
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expression pathways and insulin sensitivity (Matsuda index) are shown in 
FIGURE 10. Lysine biosynthesis, propionate metabolism, TCA cycle and BCAA 
degradation pathways were positively associated with insulin sensitivity, 
whereas inflammatory-related pathways displayed negative associations (all 
p<0.001). The BCAA catabolism pathway correlated closely with mitochondrial 
respiration 0.947 and biogenesis, i.e., with the TCA cycle (r = 0.947, p<0.001) 
and VO2max (r = 0.543, p<0.05).  The chemokine signaling pathway displayed 
significant associations with the TCA cycle and BCAA catabolism (r = -0.812 
and r = -0.788, respectively, p<0.001 for both). 

FIGURE 10 Associations for insulin sensitivity with mean centroids of the up and down-
regulated pathways in adipose tissue. 
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TABLE 10 Up and down-regulated pathways in the adipose tissue of the high 
HOMA-IR group. 

p-value Count Size Pathway name 
Up-regulated pathways  

5.6x10-13 36 121 Lysosome 

2.2x10-5 28 156 Phagosome 

2.0x10-4 32 189 Chemokine signaling pathway 

7.4x10-4 21 117 Leukocyte transendothelial migration 

2.5x10-3 16 95 Fc gamma R-mediated phagocytosis 

1.9x10-3 17 102 Toll-like receptor signaling pathway 

2.8x10-3 10 65 Glycolysis / Gluconeogenesis 

7.8x10-3 5 17 Renin-angiotensin system 

3.3x10-3 6 17 Other glycan degradation 

1.3x10-2 12 75 B cell receptor signaling pathway 

1.3x10-2 5 19 Glycosaminoglycan degradation 

1.1x10-2 9 48 Amino sugar and nucleotide sugar metabolism 

1.7x10-2 11 69 Complement and coagulation cascades 

3.5x10-2 17 136 Natural killer cell mediated cytotoxicity 

1.2x10-2 25 200 Focal adhesion 

Down-regulated pathways  

1.1x10-7 17 44 Valine, leucine and isoleucine catabolism 

3.7x10-4 10 32 Proprionate metabolism 

2.9x10-3 6 17 Phenylalanine metabolism 

4.4x10-3 10 43 Fatty acid degradation 

1.2x10-2 9 42 Tryptophan metabolism 

1.6x10-2 7 30 Citrate cycle (TCA cycle) 

2.9x10-2 8 41 Tyrosine metabolism 

1.7x10-2 2 3 Lysine biosynthesis 

4.7x10-2 4 18 Glyoxylate and dicarboxylate metabolism 

1.9x10-2 12 68 Adipocytokine signaling pathway 

Count = number of differentially expressed genes that map in pathways, Size= total 
amount of genes involved in pathway. 

5.4 Body composition and cardio-metabolic risk (Study IV) 

Studies I, II and III revealed underlying factors in both blood and adipose tissue 
that distinguished adults who differ in metabolic status. A particularly notable 
feature in all three studies was the key discriminatory role of serum branched 
amino acids for individuals with metabolic disorders. These studies raised new 
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questions that stimulated us to further explore whether increased cardio-
metabolic risk in adulthood associated with adiposity originates from child-
hood, and whether the association between serum branched amino acids and 
cardio-metabolic risk found in adults exists already in children (Study IV and 
V).  

In study IV, we investigated development of relative body weight and 
body composition and the relationship between adiposity and cardio-metabolic 
risk among individuals with different body weight status. The study subjects 
were first categorized as OWOB, NWO, NW and UW based on the combination 
of their BMI and body fat percent at the age of 18. Development of relative body 
weight between the groups was then compared retrospectively from birth to 
early adulthood using growth charts.   

Longitudinal changes in relative body weight are shown in FIGURE 11.  It 
can be seen that the relative body weight was higher in the OWOB group al-
ready at the age of four years compared with the NWO, NW  and UW groups 
(p<0.05 for all). While the difference in relative body weight between the 
OWOB and the other weight groups continued to increase towards early adult-
hood, the NWO subjects were virtually indistinguishable from their NW peers 
throughout childhood and adolescence.  

FIGURE 11 Longitudinal changes of relative body weight to height from birth to age of 18 
years. Weight groups were defined by the combination of BMI and fat % at of 
18 years and the comparison of relative body weight between the groups from 
birth to early adulthood were done retrospectively. OWOB = overweight and 
obese (BMI>25 and fat % >30), NWO = normal weight obese (BMI 18.5 - 24.9 
and fat % >30), NW = normal weight lean (BMI 18.5 - 25 and fat% <30), UW = 
underweight (BMI<18.5). 

Longitudinal changes in body composition are shown in FIGURE 12. At the age 
of 11, there was about a 10kg difference in total FM between the OWOB and 
NW group (p<0.001), and about 7kg between the NWO and NW group 
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(p<0.001) (FIGURE 12A). From age 11 to age 18, total and regional adiposity 
increased in all groups. The most rapid gain in FM was between the ages of 11 
and 14 (FIGURE 12, A, C and D. In terms of FM distribution, the increase was 
greatest in the gynoid region in all groups (FIGURE 12 D). FM in the android 
region increased significantly only in the OWOB group (p<0.001) (FIGURE 12 
C). Increase in LM was also greatest between the age of 11 and 14, the relative 
accrual being similar in all groups (FIGURE 12 E). The LM/FM ratio decreased 
in the NW and UW groups through childhood and adolescence, whereas in the 
OWOB and NWO groups the LM/FM ratio was relatively constant from child-
hood to early adulthood (FIGURE 12 F).  
 
 
 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 12 Longitudinal changes in total FM (A), fat percent body (B), android FM (C), 
gynoid FM (D), total LM (E), and LM to FM ratio (F) from age of 11 to age of 18. 
OWOB = overweight and obese (BMI>25 and fat % >30), NWO = normal 
weight obese (BMI 18.5 - 24.9 and fat % >30), NW = normal weight lean (BMI 
18.5 - 25 and fat% <30), UW = underweight (BMI<18.5).  

To estimate and compare cardio-metabolic risk between the body weight 
groups, constituent traits of the metabolic syndrome i.e. blood pressure, fasting 
plasma glucose and serum triglycerides and HDL cholesterol were assessed. 
Longitudinal changes in these metabolic traits are shown in FIGURE 13. In gen-
eral, the OWOB group showed a tendency to have worse values in most traits, 
e.g., HDL cholesterol, systolic blood pressure and glucose (FIGURE 13, A, B and 
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C) compared with the other weight groups; however, statistical significance
was not reached in all time points because of the relatively small differences.
Similarly, the NWO group tended to have worse values in systolic blood pres-
sure, glucose and triglycerides  compared to the NW and UW groups (FIGURE
13, B, C and D), but mostly these differences were not statistically significant.

FIGURE 13 Longitudinal changes in serum HDL cholesterol (A), systolic blood pressure 
(B), fasting plasma glucose (C), and serum triglycerides (D) from age of 11 to 
age of 18. OWOB = overweight and obese (BMI>25 and fat % >30), NWO = 
normal weight obese (BMI 18.5 - 24.9 and fat % >30), NW = normal weight lean 
(BMI 18.5 - 25 and fat% <30), UW = underweight (BMI<18.5). 

To be able to better compare cardio-metabolic risk between the groups, a con-
tinuously distributed variable for clustered metabolic risk was constructed. The 
MetS score was calculated using z scores for mean arterial pressure, android fat 
mass, fasting plasma glucose, serum triglycerides and HDL-cholesterol. Longi-
tudinal changes in MetS scores are shown in FIGURE 14. The OWOB group had 
significantly higher MetS score compared with all other groups at all time 
points (p<0.001 for all). Similarly, the NWO group had higher MetS score com-
pared with the NW and UW groups (p<0.01 for all), whereas, no difference in 
MetS score was found between the NW and UW groups.   
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FIGURE 14 Longitudinal changes in MetS score from age of 11 to age of 18. Higher score 
indicates greater risk. OWOB = overweight and obese (BMI>25 and fat % >30), 
NWO = normal weight obese (BMI 18.5 - 24.9 and fat % >30), NW = normal 
weight lean (BMI 18.5 - 25 and fat% <30), UW = underweight (BMI<18.5). 
***p<0.001 OWOB compared to NWO, NW and UW, and **p<0.01 NWO com-
pared to NW and UW. 

To identify biomarkers that predict fat mass and cardio-metabolic risk in adult-
hood, we constructed a path model that links the predictor measurements to the 
outcome measurements at three time-points. FIGURE 15 shows the pre-
menarche (age 11) serum metabolites predicting cardio-metabolic risk score at 
age 18. We found that levels of medium size VLDL particles, isoleucine and py-
ruvate were positively and valine was inversely associated with MetS score at 
age of 18 years (p<0.05 for all). 
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FIGURE 15 Prospective associations of serum metabolites at age 11 with MetS score at age 
18. Associations magnitudes are in standardized units of 1 SD MetS per 1 SD
difference in metabolite concentration. Error bars indicate 95% confident inter-
vals, *p<0.05.

5.5 Relationship between amino acids and triglyceride (Study V) 

The association of the amino acids with triglycerides and NAFLD in studies I 
and II led us to hypothesize that amino acid profiles in childhood could predict 
triglyceride levels in early adulthood.  This hypothesis was tested in Study V.  

We first assessed longitudinal change patterns of serum triglycerides and 
amino acid concentrations. Triglycerides increased steadily from pre-menarche 
into early adulthood, whereas amino acids tended to increase before menarche 
and peaked around menarche, and then decrease into early adulthood. The on-
ly exception was alanine, which plateaued around age of 15. Glutamine, isoleu-
cine, and leucine levels were relatively constant before menarche and decreased 
gradually after menarche, whereas glycine, valine, phenylalanine, tyrosine, and 
histidine decreased steadily from pre-puberty until early adulthood (p<0.05 for 
all). 

Triglyceride was positively associated with alanine (r = 0.247), isoleucine 
and (r = 0.261) leucine (r = 0.235) (p<0.05 for all), but no associations with other 
amino acids were found. Triglyceride levels at baseline (age of 11 years) pre-
dicted subsequent triglyceride levels at 2 year (r = 0.386) and at 7-year follow-
up (r = 0.703, p<0.01 for both), but after adjusting for baseline leucine and iso-
leucine level, baseline triglyceride level was no longer associated with either 2 
year or 7 year triglyceride levels (FIGURE 16). By contrast, baseline isoleucine 
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predicted 7-year triglycerides    (r = 0.278, p = 0.026) and baseline leucine pre-
dicted 2-year triglycerides (r = 0.279, p = 0.01) even after adjusting for baseline 
triglyceride level. 

 

 

 

 

 

FIGURE 16 Correlations between earlier and subsequent triglyceride levels after adjusting 
for either baseline or 2-year leucine and isoleucine level. 

In early adulthood (at age of 18 years), alanine and isoleucine were significant 
predictors of hypertriglyceridemia (AUC: 0.683 and 0.774, respectively, p<0.01 
for both). Leucine was the most significant predictor of hypertriglyceridemia 
with an AUC of 0.822 (p<0.001) (FIGURE 17). By comparison, the AUCs for 
predicting hypertriglyceridemia were 0.528 for fat mass, 0.536 for fs-insulin, 
0.542 for HOMA-IR (all p>0.05), respectively.  

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

FIGURE 17 Receiver Operating Characteristic curve for leucine to predict hypertriglycer-
idemia. 



6 DISCUSSION 

The purpose of this thesis was to investigate and identify biomarkers that pre-
dict cardio-metabolic risk in children and adults. The study revealed a discrim-
inatory role of circulating branched amino acids for adults with metabolic syn-
drome, NAFLD and insulin resistance. Not only were elevated serum branched-
chain amino acid levels associated with poor metabolic health, but this was also 
reflected in subcutaneous adipose tissue gene expression profiles. These studies 
also showed for the first time that those children who have normal weight but 
high body fat percent are susceptible to increased cardio-metabolic risk in 
adulthood. Moreover, high levels of branched chain amino acids in childhood 
were predictive of increases in fat mass, triglycerides and cardio-metabolic risk 
later in life. Overall, this thesis provides evidence that support the view that 
branched-chain amino acids are viable biomarkers to assess cardio-metabolic 
health both in children and adults, and thus provides a rationale for continued 
investigation of the relationship between branched-chain amino acid metabo-
lism, adipose tissue function, and metabolic health.  

6.1 Metabolic profiles of healthy and unhealthy obese 

Obese individuals often present a set of comorbidities such as hypertension, 
dyslipidemia, insulin resistance and hyperglycemia, which predisposes them to 
increased risk of type II diabetes and cardiovascular disease (Grundy 2015). 
Obesity is a condition brought about by chronic positive energy balance, but it 
is often defined in terms of excess body weight for height (Heo, Kabat et al. 
2013). In reality, that excess weight usually reflects excess fat accumulation in 
adipose tissues, and therefore it is reasonable to assume that the increased risk 
of cardio-metabolic disease is a consequence of the excess fat. However, 
growing evidence indicates that not all obese individuals develop type II 
diabetes or cardiovascular disease; and conversely, not all lean people are 
metabolically healthy (Karelis, St-Pierre et al. 2004). This paradox allowed us to 
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hypothesize there might be specific factors that link obesity and its metabolic 
sequelae, which are not directly related to the amount of body fat per se.  

Comparison between healthy and unhealthy obesity phenotypes represent 
a useful model to study the mechanisms linking obesity to its associated meta-
bolic abnormalities (Bluher 2010). We used this approach in study I, and found 
that elevated serum branched-chain and aromatic amino acids, orosomucoid 
and several species of fatty acids distinguished overweight and obese women 
with MetS from those who were metabolically healthy. Although the number of 
subjects in this study was relatively small, the metabolic signature was highly 
significant, and the results are largely in agreement with other studies conduct-
ed in individuals classified as metabolically healthy and unhealthy obese (Batch, 
Shah et al. 2013; Badoud, Lam et al. 2014; Perreault, Zulyniak et al. 2014; Chen, 
Tseng et al. 2015).  

It remains unclear why branched-chain amino acids and other metabolites 
were present in higher quantities in the circulation of metabolically unhealthy 
subjects. Studies have suggested that impaired metabolic pathways in adipose 
tissue could cause incomplete catabolism of amino acids, which would subse-
quently lead to increased circulating amino acid levels (She, Van Horn et al. 
2007; Lackey, Lynch et al. 2013; Boulet, Chevrier et al. 2015). Skeletal muscle 
degradation may also increase due to sedentary behavior-induced insulin re-
sistance (Dirks, Wall et al. 2016), which can result in a greater release of 
branched-chain amino acids into the circulation. Serum metabolite profile is 
also sensitive to food intake (Badoud, Lam et al. 2015) and physical activity 
(Kujala, Makinen et al. 2013). However, it is important to stress that differences 
in metabolites between the metabolically healthy and unhealthy obese women 
in the present study are unlikely to reflect dietary intake because metabolites 
were determined from the serum samples collected after 12 hour fasting to ex-
clude the influences of immediate dietary intake. The study population was 
also selected to include only participants who were reportedly physically inac-
tive. The fact that there was no difference in cardio-respiratory fitness between 
the healthy and unhealthy phenotypes suggests that the differences were not 
due to (inherent or acquired) aerobic fitness either. Thus, the metabolic signa-
tures presented here likely represent prevailing metabolic status, and thus pro-
vides insight into differences in amino acid homeostasis between the metaboli-
cally healthy and unhealthy individuals.    

When exploring the associations between metabolites and metabolic traits, 
we found that the metabolite factor 1, comprising branched-chain and aromatic 
amino acids and orosomucoid, was associated with all clinical risk factors for 
MetS, independent of body weight, fat mass and level of leisure-time physical 
activity. A closer analysis of the individual metabolites in factor 1 showed that 
isoleucine and leucine were positively associated with fasting insulin and 
HOMA-IR. This agrees with the seminal study of Felig et al. (Felig, Marliss et al. 
1969) who discovered that elevated branched-chained amino acids in obesity 
correlated directly with serum insulin levels. Subsequently, several studies have 
reported associations between branched-chained amino acids and insulin re-
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sistance in obese individuals (Huffman, Shah et al. 2009; Newgard, An et al. 
2009; Cheng, Rhee et al. 2012; McCormack, Shaham et al. 2013; Wurtz, Soininen 
et al. 2013) and with the risk for future diabetes, suggesting that branched-chain 
amino acids might be important regulators of glucose metabolism. However, 
we noted that isoleucine and leucine were associated not only with insulin re-
sistance, but also with serum triglyceride and liver enzymes (ALAT), suggest-
ing that the relationship between branched amino acids and metabolic health is 
not confined to glucose metabolism alone.  

6.2 Metabolic alterations associated with NAFLD  

Since fatty liver is the most common cause of persistent elevation of liver en-
zymes (after excluding hepatitis C and other known causes of chronic liver dis-
ease) (Sonsuz, Basaranoglu et al. 2000), and because isoleucine and leucine are 
known to mediate activation of several important hepatic metabolic signaling 
pathways (Adeva, Calvino et al. 2012), we determined to identify systemic met-
abolic alterations associated with NAFLD. In study II, we found that the same 
cluster of serum metabolites as in study I (branched-chain and aromatic amino 
acid and orosomucoid) was significantly higher in subjects with NAFLD com-
pared with healthy controls. Further analysis indicated that this metabolite clus-
ter was significantly elevated at mean liver fat content levels of 2.4%, suggest-
ing that systemic metabolic alterations associated with hepatic fat accretion can 
be observed early, well below the diagnostic clinical cut-off value for NAFLD. 
These results are largely in agreement with earlier studies, which have also 
found associations between elevated circulating branched-chained amino acids 
and NAFLD (Kalhan, Guo et al. 2011; Iwasa, Ishihara et al. 2015; Rodriguez-
Gallego, Guirro et al. 2015).     

Concomitantly with the increased serum branched-chain amino acids, we 
found that the genes involved in branched-chain amino acid degradation, TCA 
cycle and oxidative phosphorylation were significantly downregulated in the 
adipose tissue of subjects with NAFLD. The branched-chain amino acids deg-
radation pathway was inversely associated with the serum branched-chain 
amino acids, insulin resistance and hepatic fat content. Similar findings have 
been reported in earlier studies which have shown that in obese individuals, the 
branched-chain amino acids degradation pathway is inversely associated with 
serum branched-chain amino acids, insulin resistance and hepatic fat content 
(Pietiläinen, Naukkarinen et al. 2008; Badoud, Lam et al. 2014). In the present 
study, TCA cycle, oxidative phosphorylation and fatty acid degradation path-
ways were also inversely associated hepatic fat content, suggesting that im-
paired adipose tissue function might play a role in the development of NAFLD.  

The reason for down-regulation of energy metabolism-related genes in the 
adipose tissue is not clear, but it may be attributable to inflammation induced 
either by excessive enlargement of adipocytes or reduced adipocyte differentia-
tion (Goossens 2008). Although a widespread induction of the inflammatory 
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cascade was not observed, the two most up-regulated genes in the adipose tis-
sue were chitinase-3-like protein 1 (CHI3L1) and matrix metallopeptidase 9 
(MMP9). These genes are related to cytoskeleton re-organization and degrada-
tion of the extracellular matrix, respectively and have been suggested to cause 
inflammatory cell infiltration, resulting in persistent inflammation in adipose 
tissue. However, we did not determine the stroma vascular fraction of the adi-
pose tissue samples and therefore the evidence for the presence of low-grade 
inflammation in adipose tissue of subjects with NAFLD remains inferential.  

We also found elevated intramuscular lipid content in subjects with 
NAFLD. Unexpectedly, however, no differentially-expressed genes in skeletal 
muscle were found. Similarly, there were no differences in the phosphorylation 
levels of several signaling proteins related to glucose metabolism. This may be 
explained by the fact that tissue samples were obtained after 12 hour fasting 
when subtle impairments in skeletal muscle metabolism are not observable. An 
earlier study with healthy, normal weight subjects demonstrated with high-
carbohydrate feeding that skeletal muscle insulin resistance alters the distribu-
tion pattern of postprandial energy storage, promoting hepatic steatosis 
(Flannery, Dufour et al. 2012). Thus, our findings by no means suggest that 
skeletal muscle insulin resistance is not involved the development of systemic 
metabolic disorders. However, they do suggest that in the early stages of 
NAFLD, fasting skeletal muscle metabolism may not be altered irrespective of 
increased intra-myocellular lipid content.  

6.3 Metabolic alteration associated with insulin resistance  

Many of the adverse metabolic alterations, including NAFLD and metabolic 
syndrome are themselves mostly related to a reduction in insulin sensitivity 
(Reaven 2011). Insulin resistance is closely associated with obesity (Muoio and 
Newgard 2008), but the means by which excessive adiposity induces insulin 
resistance and glucose intolerance remain controversial. In study III, we aimed 
to identify systemic biomarkers associated with insulin resistance in women 
with varying degrees of adiposity. 

We found that plasma free fatty acids were not associated with indices of 
insulin resistance in women with varying degree of adiposity. In addition, there 
was no difference in intramuscular lipids or liver fat content between the low 
and high HOMA-IR groups. These findings disagree with the widely accepted 
view that increases in plasma free fatty acids and accumulation of ectopic lipids 
are linked with the onset of peripheral and hepatic insulin resistance (Shulman 
2014), but are in  agreement with recent studies that have questioned the role of 
elevated free fatty acids in insulin resistance (Karpe, Dickmann et al. 2011; 
Arner and Ryden 2015). 

Elevated serum branched-chain amino acids have long been implicated 
with obesity and insulin resistance (Felig, Marliss et al. 1969; Newgard, An et al. 
2009).  In our study, significant differences in these amino acids were found be-
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tween the high and low HOMA-IR groups not only in overweight, but also in 
normal weight individuals. This suggests that perturbations in branched-chain 
amino acid homeostasis acids are related to insulin resistance rather than to 
obesity per se. Although the average difference in branched-chain amino acids 
between the low and high HOMA-IR groups was relatively small (~14% in 
whole study population and ~10% in normal weight individuals), a recent 
study suggested that such small but chronic increases in plasma branched-chain 
amino acids can disrupt signaling events in the mitochondria of the muscle and 
liver, thereby contributing to mitochondrial dysfunction and exacerbating insu-
lin resistance (Sunny, Kalavalapalli et al. 2015).  

The positive correlation of branched-chain amino acids with insulin con-
centration in our study suggests these amino acids may stimulate insulin secre-
tion. This agrees with earlier studies, which have shown that branched-chain 
amino acids, leucine in particular, are potent stimulators of insulin secretion 
from the pancreas (Yang, Dolinger et al. 2012). On the other hand, elevated in-
sulin may increase circulating branched-chain amino acids, possibly by decreas-
ing degradation of these amino acids in adipose tissue, as suggested by earlier 
studies (Sunny, Kalavalapalli et al. 2015). Consistent with this notion, the 
branched-chain amino acid degradation pathway was downregulated in the 
adipose tissue of subjects with high insulin resistance in our study. The fact that 
there was no difference in average BMI or percent body fat between the low 
and high HOMA-IR groups suggests that down-regulation of the BCAA catabo-
lism pathway was not attributable to increased adiposity. Thus, the decrease in 
the BCAA catabolism can probably be ascribed to reduced mitochondrial respi-
ration and biogenesis (as indicated by the close correlation of the BCAA catabo-
lism with the TCA cycle). It is possible that differences in aerobic fitness may 
have amplified the observed differences in gene expression since close correla-
tion was found for VO2max with branched-chain amino acid degradation path-
ways and the TCA cycle. Our study also complements the widely accepted idea 
that adipose tissue contributes to the development of insulin resistance 
(Masoodi, Kuda et al. 2015)  by showing that up-regulated inflammation-related 
genes were closely associated with indices of insulin resistance and serum adi-
ponectin. Furthermore, the chronic inflammation may also, in part, explain the 
observed impairments in adipose tissue energy metabolism (as indicated by the 
close inverse correlation of chemokine signaling genes with BCAA catabolism 
and the TCA cycle genes). 

In contrast to earlier studies, we found no differently expressed genes in 
the skeletal muscle in individuals with high HOMA-IR. In addition, no signifi-
cant differences in the phosphorylation levels of insulin receptor β and its 
downstream target Akt were found, nor was there any difference in the level of 
phosphorylated AS160, which promotes translocation of glucose transporters to 
the cell membrane. Also, whereas earlier studies have reported reduced muscle 
transcript levels related to oxidative metabolism in diabetic individuals com-
pared to healthy controls (Patti, Butte et al. 2003), no difference in mitochondri-
al respiratory chain complex subunits between the low and high HOMA-IR 
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groups was found in our study. This may be explained by the fact that muscle 
biopsies were obtained in fasting condition when muscle metabolism is rela-
tively inactive and alterations in glucose uptake are difficult to observe. Since 
both acute hyperinsulinemia and hyperglycemia have been shown to induce 
transcriptional and translational regulation of glucose and energy metabolism 
in the skeletal muscle (Rome, Clement et al. 2003; Meugnier, Faraj et al. 2007), it 
may be that significant differences could have existed during hyperinsulinemic-
euglycemic clamp, glucose challenge or mixed meal feeding. 

6.4 The relationship of adiposity and cardio-metabolic risk in  
children  

Studies I, II and III investigated and identified biomarkers that discriminate 
adult individuals with metabolic perturbations. In study IV, we shifted our fo-
cus to children in an attempt to assess whether adiposity-related cardio-
metabolic risk in adulthood originates from childhood, and whether serum me-
tabolite levels in childhood predict fat mass and cardio-metabolic risk in adult-
hood. 

We found that subjects who were overweight or obese in adulthood had 
higher relative body weight to height already at the age of four compared with 
those who were normal weight. Moreover, overweight and obese subjects had a 
worse cardio-metabolic risk profile than normal weight subjects in childhood, 
and this difference persisted through puberty into early adulthood. These find-
ings suggest that the cumulative burden of excess adiposity and its adverse 
consequences may originate early in life. Supporting this view, Simmonds et al. 
reviewed large prospective cohort studies and showed that overweight and 
obese children defined by BMI were five times more likely to be obese in adult-
hood than those who were not obese (Simmonds, Llewellyn et al. 2016). Similar-
ly, higher BMI during childhood have been shown to associate with an in-
creased risk of cardiovascular disease in adulthood (Baker, Olsen et al. 2007; 
Franks, Hanson et al. 2010; Juonala, Magnussen et al. 2011; Tirosh, Shai et al. 
2011). 

Because the diagnostic performance of BMI is not optimal to identify ex-
cessive adiposity (Prentice and Jebb 2001), it has been suggested that a signifi-
cant number of children might be at risk being misdiagnosed as lean if obesity 
is defined solely based on BMI (Javed, Jumean et al. 2015). Indeed, we showed 
that children who have normal body weight but high body fat percent are vir-
tually indistinguishable from their normal weight lean peers in terms of relative 
body weight throughout childhood and adolescence. Moreover, we showed for 
the first time that these normal weight but obese children have a higher cardio-
metabolic risk compared with their normal weight lean peers at all times points 
from childhood to early adulthood. These results conflict with the widely held 
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belief that maintaining a normal body weight in childhood protects against car-
dio-metabolic abnormalities later in life.  

Direct comparison of our results with earlier studies is difficult, because 
normal weight obesity has not been studied before in children transiting from 
pre-puberty into early adulthood. Although there are few reports that describe 
children and adolescents with cardio-metabolic risk factors who are not obese 
according to BMI, most of the children with metabolic abnormalities in these 
studies had a family history of hypertension, atherogenic serum lipid profile or 
type II diabetes; however, whether they had low or high body fat percent is not 
clear because body composition was not assessed (Mahoney, Clarke et al. 1991; 
Burns, Moll et al. 1992; Gilliam, Liese et al. 2007; Rodriguez-Moran, Guerrero-
Romero et al. 2013). In our study, normal weight obese children had no signifi-
cant history of cardio-metabolic disease in their immediate family, suggesting 
that the increased cardio-metabolic risk is due to relatively high body fat con-
tent. Supporting this contention, studies in adults have shown that normal 
weight obesity is associated with abnormal serum lipid profile and metabolic 
syndrome (Conus, Allison et al. 2004), higher cardio-metabolic dysregulation 
(Shea, King et al. 2012), coronary heart disease (Romero-Corral, Somers et al. 
2007) and cardiovascular mortality (Coutinho, Goel et al. 2013; Sahakyan, 
Somers et al. 2015). Taken together these findings indicate that elevated body 
fat content conveys increased cardio-metabolic risk, irrespective of body weight. 

Four serum metabolites in childhood – pyruvate, isoleucine, valine and 
medium size VLDL particles - were prospectively associated with MetS score in 
early adulthood. These four biomarkers are implicated in metabolic homeosta-
sis and can be interpreted as a reflection of mitochondrial dysfunction. Py-
ruvate is the end product of glycolysis, and it is either catabolized in the cytosol, 
or it enters into mitochondria to promote oxidative phosphorylation 
(Vanderperre, Bender et al. 2015). Mitochondrial metabolism of pyruvate plays 
an important role in energy production, and is essential for regulating glucose-
stimulated insulin secretion (Patterson, Cousteils et al. 2014). In states of mito-
chondrial dysfunction or insufficient oxygen supply pyruvate is not imported 
into the mitochondria but is converted to lactate and alanine. Obesity is often 
associated with decreased fatty acid oxidation; therefore obese individuals tend 
to be more dependent on the glycolytic pathway for energy production, which 
results increased pyruvate production (Rogge 2009). Simultaneously, obesity is 
also associated with reduced mitochondrial biogenesis (Demine, Reddy et al. 
2014) and diminished respiratory chain activity (Kelley, He et al. 2002). 

 Consistent with the above, it has been suggested that elevated levels of 
branched-chain amino acids in the circulation are due to their reduced mito-
chondrial oxidation (Lackey, Lynch et al. 2013). Elevated circulating levels of 
these amino acids are known to predict poor metabolic health in adults (Lynch 
and Adams 2014), and recent studies indicate that they are also elevated in 
obese children (Perng, Gillman et al. 2014; Butte, Liu et al. 2015) and  future in-
sulin resistance in adolescents (McCormack, Shaham et al. 2013). Interestingly, 
in the present study isoleucine was positively associated with future MetS score, 
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whereas valine displayed inverse association. Since valine is a strictly glucogen-
ic amino acid, lower serum valine concentrations may reflect increased gluco-
neogenic activity, with valine being channeled to fuel gluconeogenesis through 
conversion to pyruvate. Finally, triglyceride-mediated lipoprotein metabolism 
is an important risk factor for cardiovascular disease (Do, Willer et al. 2013), 
and over production of VLDL is one of the characteristic features of 
dyslipidemia and MetS (Adiels, Olofsson et al. 2008). Experimentally-induced 
mitochondrial dysfunction was found to promote VLDL secretion in human 
hepatocytes (Mailloux, Lemire et al. 2007), suggesting a role of mitochondrial 
dysfunction as a further link between dyslipidemia and thus increased cardio-
metabolic risk. Together, our results might suggest that mitochondrial dysfunc-
tion and metabolic inflexibility associated with cardio-metabolic risk start to 
develop already in childhood. 

6.5 Relationship between amino acids and triglycerides 

Following the clues provided by our earlier studies, we determined to explore 
the patterns of longitudinal changes of serum amino acids and triglyceride and 
examine whether serum amino acid profiles associate with triglyceride concen-
trations during pubertal growth and predict hypertriglyceridemia in early 
adulthood.  

In general, the levels of amino acids were highest before menarche and 
then decreased after menarche until early adulthood (except alanine which in-
creased from pre to post menarche). The decrease in amino acid concentrations 
after menarche is probably a reflection of somatic growth during puberty and 
adolescence, as well as changes in proteolysis and protein oxidation. Our re-
sults disagree with earlier studies, which have suggested that plasma amino 
acid levels tend to increase throughout childhood and adolescence (Gregory, 
Sovetts et al. 1986; Lepage, McDonald et al. 1997; Hammarqvist, Angsten et al. 
2010). There may be several factors that could have contributed to these diver-
gent observations, but we believe they may be due study design; other studies 
assessing amino acid levels in youth have been mainly cross-sectional, while 
our study is the first that has used longitudinal data from pre-puberty to early 
adulthood. Moreover, whereas in our study blood samples were drawn at 
standard phases of the menstrual cycle in girls with regular cycles, no previous 
study has taken into account the menstrual cycle in their analyses, although it 
has been demonstrated to affect plasma amino acid levels (Wallace, Hashim et 
al. 2010). 

There was a positive association for serum triglyceride with isoleucine, 
leucine and alanine both before and after menarche. Further analysis showed 
that isoleucine and leucine (but not alanine) predicted future triglyceride level, 
even after adjusting for baseline triglyceride level. In contrast, earlier triglycer-
ide level did not predict subsequent triglyceride levels after adjusting for base-
line isoleucine and leucine level. Moreover, these amino acids were elevated in 
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subjects with high triglyceride throughout growth, and predicted hypertriglyc-
eridemia in early adulthood, even after adjusting for fat mass and HOMA-IR. 
These results are in line with earlier longitudinal studies in middle-aged and 
elderly men and women showing a positive association between triglyceride 
and branched-chain amino acids (Mook-Kanamori, Romisch-Margl et al. 2014; 
Yamakado, Nagao et al. 2015). Thus, our findings substantiate the idea that 
amino acids are associated with development of hypertriglyceridemia and indi-
cate that this relation may exist already in childhood and adolescence. There-
fore these amino acid indices could be considered as biomarkers to identify in-
dividuals at high risk for developing hypertriglyceridemia and cardiovascular 
diseases later in life.  

As with our earlier studies, the mechanisms underlying these associations 
cannot be clearly defined. Obesity or insulin resistance is unlikely to explain 
these associations as the association between amino acids and hypertriglycer-
idemia was not confounded by these variables. Physical activity level did not 
change considerably during the follow-up period so that is unlikely to explain 
the associations either. Interestingly, a recent animal study suggested that ami-
no acids may be functionally involved in the development of obesity-related 
hypertriglyceridemia (Uno, Yamada et al. 2015). In that study, the authors 
demonstrated that elevated circulating amino acids activate the intracellular 
target of rapamycin complex-1 (mTORC1)/S6kinase (S6K) pathway in the liver, 
which modulates systemic lipid metabolism through neuronal inter-tissue 
communication (Uno, Yamada et al. 2015). However, whether branched-chain 
amino acids contribute to the development hypertriglyceridemia in a mechanis-
tic manner also in humans remains to be established.  

6.6 Implications and future directions 

Obesity has reached epidemic -like proportions worldwide, and this has trans-
lated into mounted health care costs and increased mortality rates compared to 
normal weight people. The primary reason for the increases in these costs and 
mortality is cardiovascular disease, which in turn is ascribed to poor cardio-
metabolic profile. This profile includes a constellation of metabolic abnormali-
ties such as insulin resistance, dyslipidemia, fatty liver, and hypertension. 
However, the underlying mechanisms that trigger and exacerbate these meta-
bolic disorders remain elusive.  

In this thesis, I have described a comprehensive metabolic signature of 
obesity-related metabolic disorders. The overarching finding was the clear dis-
criminatory role of branched-chain amino acids in adults with metabolic syn-
drome, NAFLD and insulin resistance. Moreover, the levels of branched-chain 
amino acids in young children were predictive of elevated triglycerides and 
increased cardio-metabolic risk adulthood. This metabolic signature is in ac-
cordance with the growing appreciation that obesity and many of the associated 
cardio-metabolic disorders are conditions of a broad perturbation not only in 
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glucose and lipid, but also in amino acid metabolism (Batch, Hyland et al. 2014; 
Lynch and Adams 2014).  The results of the present study also support the idea 
that reduced expression of genes related to mitochondrial branched-chain ami-
no acid catabolism and TCA cycle in the adipose tissue could underlie the pat-
terns of circulating essential amino acids observed in obesity and insulin re-
sistant states (Adams 2011), thus highlighting the possible contribution of adi-
pose tissue in the development cardio-metabolic disorders (Badoud, Lam et al. 
2014). Further research is needed to determine the clinical utility of branched-
chain amino acid profiling, and the extent to which the observed associations 
reflect causal pathways in the adipose tissue.  

Since branched-chain amino acids are essential amino acids and are not 
catabolized directly by the liver, their appearance in the bloodstream must be 
related to dietary intake. Therefore, one may consider whether diet rich in 
branched-chain amino acids is detrimental or beneficial to health. Population-
based studies show that higher dietary branched-chain amino acid intake is as-
sociated with lower prevalence of overweight and obesity in Asian and Western 
populations (Qin, Xun et al. 2011). Supporting these findings, studies in animals 
and humans suggest that branched-chain amino acid supplementation has ben-
eficial effect on health in terms in terms of improved glucose tolerance and low-
er adiposity (Balage and Dardevet 2010; Adams 2011). Animal studies have also 
shown that enzymes involved in branched-chain amino acid catabolism are re-
duced by low protein diets and increased by high-protein diets (Adams 2011). If 
this scenario is true also in humans, increased protein intake could in theory 
increase branched-chain amino acid oxidation, which would lead to lower 
blood branched-chain amino acid concentrations. However, Newgard et al. 
showed that branched-chain amino acids supplementation in the context of 
high fat diet leads to significant increase in isoleucine, valine and leucine con-
centrations and increased insulin resistance (Newgard, An et al. 2009). No nega-
tive effect on insulin sensitivity was observed when branched-chain amino ac-
ids were supplemented with low-fat diet, indicating interaction between 
branched-chain amino acids and high fat diet. These results highlight the need 
for further research to understand how dietary interventions alter the branched-
chain amino acids oxidation and their circulating levels in humans, and wheth-
er they can improve mitochondrial function and metabolic health in obesity and 
states of insulin resistance and other metabolic disorders.  

Finally, a commonly held belief is that excess adipose tissue is detrimental 
to health. However, an opposing view is that adipose tissue protects against 
metabolic consequences of over nutrition (Grundy 2015). If this is true, the pro-
tective capacity of adipose tissue probably lies in the fat storage capacity. The 
adipose tissue expandability hypothesis states that a failure in the capacity of 
adipose tissue to expand and accommodate excess energy rather than adipose 
tissue per se is the key factor linking obesity and positive energy balance to insu-
lin resistance and other cardio-metabolic disorders (Virtue and Vidal-Puig 2010). 
This idea is intriguing and it could explain many of the findings presented in 
this thesis. For example, it could explain the differences in serum metabolite 
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profiles in metabolically healthy and unhealthy subjects with similar level of 
adiposity. Most certainly it could also explain the aberrant gene expression pro-
files in subcutaneous adipose tissue of subjects with NAFLD and insulin re-
sistance. And perhaps the reason why normal weight obese subjects are at in-
creased risk for cardio-metabolic disease is also attributable to insufficient fat 
storage capacity. These considerations suggest that there are aspects in adipose 
tissue function that could be targets for pharmacological manipulation. Howev-
er, it I believe that for prevention or treatment of cardio-metabolic risk factors 
priority should be given to energy balance. This can be achieved either by re-
stricting energy intake or enhancing its expenditure. Best outcome is probably 
achieved by combining both strategies.  

6.7 Limitations 

Studies presented in the current thesis are not without limitations. In general, 
due to their observational nature, studies presented in this thesis cannot deter-
mine causality, but rather serve to generate hypothesis for future studies. In all 
studies the number of study participants was relatively small and this limits the 
extent to which the results can be generalized beyond these groups. Further-
more, the fact that study participants were all women warrant cautions if seek-
ing to generalize the results to men. However, the results were in line with find-
ings reported in earlier reports. Therefore, I believe that the results are not bi-
ased. 

There are also some limitations to biomarker discovery that requires con-
sideration. The metabolites in circulation integrate the inputs of multiple organ 
systems, which make the source of a given signal difficult to ascertain. Alt-
hough analysis of a serum metabolome can generate a snapshot of the metabol-
ic status of an organism, it does not provide information on pathway flux. This 
means that it is practically impossible to determine whether a metabolite is in-
creased because it is being produced in excess or because of decreased degrada-
tion. The number of subjects with adipose tissue and muscle tissue samples was 
also relatively small and replication cohorts are considered a requirement for all 
omics-studies nowadays. Despite this were able to get statistically significant 
results. Besides, both metabolic and transcriptomic signatures and their associa-
tions with cardio-metabolic risk factors were similar in all studies. Moreover, 
the results were in agreement with earlier reports and therefore I believe the 
results can be viewed with confidence.   

Each study has also its own specific limitations. Considering the results of 
study I, it is important to note that there can be considerable heterogeneity of 
metabolic syndrome in terms of combination of constituent traits. For example, 
using the current criteria for metabolic syndrome, the syndrome can be diag-
nosed in ten different ways. However, the metabolic syndrome (no matter 
which way it is defined) is generally accepted as a sign of impaired metabolic 
health. Therefore, this concept can be used to study the molecular differences 
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between metabolically unhealthy and healthy individuals. In the study II, the 
interval between the different data collection points for each study participant 
varied to some extent, ranging from a few days to several months. However, 
there was no difference between the healthy control and NAFLD groups in the 
sampling time window. Further, no change in body weight or body composi-
tion was observed during the study period, nor was there any change in diet. In 
study III, homeostatic model of insulin resistance (HOMA-IR) is derived from 
fasting insulin and it has been shown that is not a strong estimate of what can 
be considered “true insulin resistance”, especially among normoglycemic indi-
viduals. In study IV and V, the subjects were normoglycemic and hence the ob-
servations may not be applied to diabetic population. However, considering 
that the subjects in these studies are all Finnish girls, we believe that this cohort 
is appropriate for studying the relationships between amino acids and triglycer-
ide metabolism and cardio-metabolic risk during growth from childhood to ear-
ly adulthood. Strength of these studies was also the rigor exhibited in collecting 
blood samples in a strictly defined period of the menstrual cycle in girls with 
regular cycles. 

 



7 MAIN FINDINGS AND CONCLUSIONS 

On the basis of the results presented in this thesis, it can be concluded that: 

1) Metabolically healthy and unhealthy obese individuals show distinct
serum metabolic profiles. Metabolically unhealthy individuals have higher
levels of branched-chain and aromatic amino acids and inflammatory-
related glycoprotein. These findings imply that amino acid homeostasis is
an important factor in cardio-metabolic health.

2) NAFLD is associated with elevated branched-chain amino acids, and
this can be observed already well below the diagnostic cut-off value.
NAFLD is also accompanied by down regulation of genes related to
branched-chain amino acid degradation, TCA cycle and oxidative phos-
phorylation in the adipose tissue. These findings suggest that adipose tis-
sue dysfunction and perturbed amino acid homeostasis may contribute to
accumulation of fat in the liver.

3) Insulin resistance is associated with elevated branched-chain amino ac-
ids, downregulation of genes related to branched-chain amino acid catabo-
lism and energy metabolism and up-regulation of wide range of inflam-
mation related genes. These findings suggest that adipose tissue dysfunc-
tion and altered amino acid homeostasis are early events in the develop-
ment of systemic insulin resistance.

4) Excess adiposity starts to develop early in life and this may be difficult
to observe using traditional assessment methods such as relative body
weight or BMI. High body fat percent in childhood, even when body
weight is normal, is associated with poor cardio-metabolic profile in early
adulthood. Serum metabolite profiles in childhood suggest that mito-
chondrial dysfunction and metabolic inflexibility associated with cardio-
metabolic risk start to develop already in childhood.
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5) Branched-chain amino acids isoleucine and leucine are elevated in sub-
jects with high triglyceride and predict hypertriglyceridemia even after 
adjusting for fat mass and HOMA-IR. These findings indicate that amino 
acids are associated with development of hypertriglyceridemia, and there-
fore may serve as biomarkers to identify individuals at high risk for de-
veloping dyslipidemia and cardiovascular diseases later in life. 
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YHTEENVETO (FINNISH SUMMARY) 

Ylipaino ja lihavuus ovat lisääntyneet merkittävästi viimeisen kolmen vuosikym-
menen aikana. Lihavuudesta on tullut merkittävä kansanterveydellinen on-
gelma, koska se altistaa muun muassa metaboliselle oireyhtymälle, tyypin II dia-
betekselle sekä sydän- ja verisuonisairauksille. Vaikka lihavuuden tiedetään ole-
van epäedullista terveydelle, viimeaikaiset tutkimukset ovat osoittaneet, että 
kaikki lihavat eivät sairastu tyypillisiin lihavuuden liitännäissairauksiin. Toi-
saalta monet normaalipainoiset ihmiset sairastuvat tyypin II diabetekseen ja sy-
dän- ja verisuonitauteihin. Tämä paradoksaaliselta vaikuttava ilmiö viittaa sii-
hen, että lihavuus on heterogeeninen tila. Ylipainon ja lihavuuden liitännäissai-
rauksien syntymekanismeja tunnetaankin vielä verrattain vähän.  

Tämän tutkimuksen tarkoituksena oli selvittää lihavuuden ja sen tavalli-
simpien aineenvaihdunnanhäiriöiden taustalla olevia molekulaarisia muutoksia 
nuorilla ja keski-ikäisillä naisilla. Lisäksi selvitettiin kehon koostumuksen ja sy-
dän- ja verisuonisairauksien riskitekijöiden kehittymistä lapsuudesta aikuisuu-
teen sekä arvioitiin kehon koostumuksen ja riskitekijöiden välistä yhteyttä. En-
simmäisessä artikkelissa tarkasteltiin seerumin molekulaarisia eroja keski-ikäi-
sillä ylipainoisilla ja lihavilla naisilla, jotka olivat joko terveitä tai joilla oli meta-
bolinen oireyhtymä. Toisessa artikkelissa selvitettiin ei-alkoholiperäiseen rasva-
maksaan liittyviä seerumin molekulaarisia ja rasva- sekä lihaskudoksen geenien 
ilmentymisprofiilien muutoksia. Kolmannessa artikkelissa käsiteltiin muutoksia 
seerumin molekulaareissa sekä rasva- ja lihaskudoksen geenien ilmentymispro-
fiileissa, jotka ovat yhteydessä insuliiniresistenssiin. Neljännessä artikkelissa sel-
vitettiin miten kehonkoostumuksen muutokset kasvuiässä liittyvät sydän- ja ve-
risuonisairauksien riskitekijöiden esiintyvyyteen aikuisiällä. Viidennessä artik-
kelissa arvioitiin, miten seerumin aminohappojen pitoisuudet lapsuudessa en-
nustivat triglyseridien pitoisuutta aikuisuudessa.    

Tutkimukseen osallistui 396 10–13-vuotiasta tyttöä, joista 258 osallistui 8 
vuoden seurantatutkimukseen. Tutkimukseen rekrytoitiin lisäksi 74 tyttöä alku-
peräisestä tutkimuskohortista sekä heidän biologiset vanhempansa, sekä 100 
keski-ikäistä ylipanoista ja lihavaa naista. Tutkittavien kehonkoostumus määri-
tettiin matalaenergiseen röntgensäteilyyn perustuvalla tekniikalla (DXA) ja li-
haksen sekä vatsaontelon sisäisen rasvan määrä arvioitiin magneettiresonans-
sispektroskopian avulla. Seerumin metabolomiikan määrittämiseen käytettiin 
magneettiresonanssispektroskopiaa. Lisäksi osalta tutkittavista tutkittiin geenien 
ilmentymistä rasva- ja lihaskudoksesta.  

Tutkimukset osoittivat, että nuorilla ja keski-ikäisillä naisilla kohonneet see-
rumin haaraketjuisten aminohappojen pitoisuudet olivat yhteydessä metaboli-
seen oireyhtymään, ei-alkoholiperäiseen rasvamaksaan sekä insuliiniresistens-
siin. Ihonalaisessa rasvakudoksessa havaittiin samanaikaisesti muutoksia näiden 
aminohappojen aineenvaihduntaan liittyvien geenien ilmentymisessä.  Tutki-
mustulokset viittasivat myös siihen, että nämä aineenvaihdunnan muutokset al-
kavat kehittyä jo lapsuudessa. Lisäksi havaittiin, että normaalipainoisilla lapsilla 
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voi olla liikaa rasvakudosta, joka lisää riskiä sairastua sydän- ja verisuonisairauk-
siin aikuisuudessa. Seerumin haaraketjuisten aminohappojen pitoisuudet lap-
suudessa olivat myös yhteydessä korkeampiin seerumin triglyseridien pitoi-
suuksiin aikuisuudessa.  

Yhteenvetona voidaan todeta, että nämä tutkimustulokset lisäävät ymmär-
rystä ja tukevat jo olemassa olevaa tietoa niiden aineenvaihduntahäiriöiden syn-
nystä, joiden yleisesti ajatellaan liittyvän ylipainoon sekä lihavuuteen. Tätä tietoa 
voidaan käyttää lähtökohtana uusia tutkimuksia suunniteltaessa.  
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APPENDICES 

Appendix 1 
 

General characteristics and serum metabolites in normal weight individuals 
stratified by low and high HOMA-IR groups (MIXED model estimated margin-
al means with 95% confidence intervals are given taking into account genetic 
similarity and shared environment (daughter and mother) and contrast esti-
mates’ p-values were used to localize the significant differences between the 
two groups and group by generation interaction). 

FM = fat mass; FFF = fat-free mass; VAT = visceral adipose tissue; HOMA-IR = homeostatic 
model assessment of insulin resistance.  

 Low HOMA-IR 
         n=20 
 
Mean        95% CI 

High HOMA-IR 
         n=20 
 
Mean         95% CI 

 
 
 
p-value 

 
 
Group by 
generation 

Age 35.6  (34.2, 37.1) 36.9 (35.3, 38.5) 0.245 0.192 
Height (cm) 168.1 (165.4, 170.8) 166.0 (163.1, 168.8) 0.267 0.163 
Weight (kg) 59.2 (56.3, 62.2) 58.8 (55.7, 61.9) 0.826 0.301 
BMI (kg/height2) 21.0 (20.2, 21.8) 21.3 (20.4, 22.1) 0.580 0.907 
Percent body fat 23.5 (21.4, 25.2) 25.7 (23.7, 27.7) 0.471 0.927 
FM (kg) 16.9 (14.8, 19.0) 21.2 (19.1, 23.3) 0.006 0.227 
FFM (kg) 40.9 (39.5, 42.3) 40.5 (39.1, 42.0) 0.968 0.599 
VAT (kg) 0.55 (0.47, 0.62) 0.60 (0.53, 0.67) 0.328 0.056 
Liver fat (%) 2.5 (1.0, 4,0) 1.9 (0.4, 3.4) 0.440 0.766 
HOMA-IR 0.9 (0.7, 1.2) 2.4 (2.1, 2.7) <0.001 0.234 
Metabolites (mmol/l)       
Betahydroxybutyrate  0.049 (0.028, 0.069) 0.071 (0.053, 0.089) 0.115 0.057 
Acetate  0.040 (0.036, 0.043 0.041 (0.038, 0.045) 0.186 0.788 
Acetoacetate  0.038 (0.031, 0.045) 0.035 (0.029, 0.042) 0.876 0.926 
Alanine  0.380 (0.355, 0.405) 0.400 (0.377, 0.423) 0.218 0.494 
Citrate  0.100 (0.093, 0.107) 0.104 (0.097, 0.111) 0.300 0.191 
Creatinine  0.050 (0.045, 0.054) 0.051 (0.047, 0.055) 0.222 0.853 
Glutamine  0.512 (0.492, 0.532) 0.540 (0.522, 0.557) 0.091 0.881 
Glycerol  0.058 (0.048, 0.068) 0.069 (0.060, 0.078) 0.089 0.065 
Glycine  0.256 (0.237, 0.276) 0.279 (0.261, 0.296) 0.508 0.486 
Orosomucoid 1.221 (1.155, 1.288) 1.299 (1.238, 1.360) 0.026 0.845 
Histidine  0.050 (0.040, 0.054) 0.056 (0.053, 0.059) 0.089 0.933 
Isoleucine  0.035 (0.032, 0.045) 0.043 (0.038, 0.044) 0.010 0.598 
Leucine 0.061 (0.056, 0.065) 0.067 (0.063, 0.071) 0.016 0.887 
Valine  0.154 (0.145, 0.168) 0.170 (0.160, 0.181) 0.046 0.472 
BCAA_sum 0.255 (0.236, 0.275 0.282 (0.262, 0.298) 0.029 0.714 
Tyrosine  0.042 (0.038, 0.046) 0.046 (0.042, 0.049) 0.121 0.109 
Phenylalanine  0.062 (0.058, 0.065) 0.064 (0.061, 0.067) 0.275 0.192 
Pyruvate  0.067 (0.060, 0.075) 0.074 (0.067, 0.081) 0.147 0.703 
Lactate  0.888 (0.796, 0.980) 0.936 (0.850, 1.022) 0.333 0.259 
Urea  0.052 (0.045, 0.060) 0.050 (0.043, 0.057) 0.408 0.065 
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Appendix 2 

General characteristics of the participants with adipose tissue biopsies 

Data are given as mean ± SD. FM = fat mass; VAT = visceral adipose tissue; HOMA-IR = 
homeostatic model assessment of insulin resistance; Matsuda index = insulin sensitivity 
index; FFA = free fatty acids; E% = percentage of total energy intake. 

Low HOMA-IR 
  n= 12 

Mean   95% CI 

High HOMA-IR 
   n=12 

Mean     95% CI p-value
Group by 
generation 

Anthropometry
Age (years) 34.5 (31.8, 37.3) 36.5 (34.2, 38.9 ) 0.257 0.077 
Height (cm) 162.4 (158.2, 166.6) 164.3 (160.7, 168.0) 0.484 0.033 
Weight (kg) 59.4 (51.3, 67.6) 66.2 (59.1, 73.3) 0.201 0.966 
BMI (kg/height(m)2) 22.5 (19.8, 25.2) 24.5 (22.2, 28.7) 0.263 0.308 
Percent body fat 34.8 (29.2, 40.4) 37.1 (30.8, 43,4) 0.567 0.189 
Body composition 
FM (kg) 19.6 (13.0, 26.2) 24.7 (18.9, 30.5) 0.233 0.423 
FFM (kg) 37.4 (34.8, 40.0) 38.6 (36.3, 40.8) 0.473 0.070 
VAT (kg) 0.51 (0.34, 0.67) 0.67 (0.52, 0.81) 0.141 0.809 
Liver fat (%) 4.3 (-5.6, 14.2) 4.9  (-2.1, 11.9) 0.912 0.714 
Metabolic biomarkers 
Glucose (mmol/l) 5.3 (4.8, 5.8) 6.2 (5.7, 6.6) 0.011 0.112 
Insulin (IU/l) 3.3 (-1.9, 6.9) 11.0 (7.9, 14.0) 0.003 0.372 
HOMA-IR 0.8 (-0.4, 1.9) 3.1 (2.2, 4.1) 0.004 0.253 
Matsuda index 155 (63, 248) 134 (63, 204) 0.694 0.162 
Lipids
FFA (mmol/l) 5.2 (4.1, 6.3) 3.8 (2.6, 4.8) 0.051 0.053 
Triglyceride (mmol/l) 1.3 (0.8, 1.8) 1.1 (0.7, 1.6) 0.607 0.398 
Adipokines
Leptin (ng/ml) 18.2 (3.4, 33.0) 31.5 (18.8, 44.2) 0.168 0.443 
Adiponectin (μg/ml) 12.9 (7.1, 18.7) 15.0  (9.9, 20.1) 0.571 0.834 
Diet
Energy (kcal) 1490  (1121, 1860) 1717 (1342, 2091) 0.374 0.235 
Protein (E%) 17.7 (14.9, 20.7) 18.8 (15.8, 21.8 ) 0.600 0.796 
Fat (E%) 36.5 (30.6, 42.5) 34.4 (28.4, 40.4) 0.604 0.304 
Carbohydrates (E%) 45.8 (44.5, 49.6) 46.8 (45.6, 50.5) 0.574 0.227 
Aerobic fitness 
LTPA (hours/week) 4.8 (3.4, 6.3) 4.0 (2.7, 5.2) 0.350  0.624 
VO2max (ml/kg/min) 38.9 (32.8, 44.9) 37.7 (31.5, 43.8) 0.771 0.497 
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Abstract

Objective: To identify serum biomarkers through metabolomics approach that distinguishes physically inactive
overweight/obese women with metabolic syndrome from those who are metabolically healthy, independent of
body weight and fat mass.

Methods: We applied nuclear magnetic resonance spectroscopy-based profiling of fasting serum samples to
examine the metabolic differences between 78 previously physically inactive, body weight and fat mass matched
overweight/obese premenopausal women with and without MetS. MetS was defined as the presence of at least
three of the following five criteria: waist circumference ≥88 cm, serum triacylglycerol ≥1.7 mmol/L, and high density
lipoprotein cholesterol (HDL-C) <1.30 mmol/L, blood pressure ≥ 130/85 mmHg and fasting glucose ≥5.6 mmol/L).
Principal component analysis was used to reduce the large number of correlated variables to fewer uncorrelated
factors.

Results: Two metabolic factors were associated with MetS independent of BMI, fat mass, waist circumference and
physical activity/fitness. Factor comprising branched-chain amino acids (BCAA) and aromatic amino acids (AAA) and
orosomucoid was associated with all clinical risk factors (p < 0.01 for all).

Conclusion: Two metabolic factors distinguish overweight/obese women with metabolic syndrome from those
who are metabolically healthy independent of body weight, fat mass and physical activity/fitness. In particular,
factor comprising BCAA, AAA and orosomucoid seems auspicious biomarker determining metabolic health as it was
associated with all clinical risk factors. Further research is needed to determine the public health and clinical
significance of these results in terms of screening to identify those at greatest cardio-metabolic risk for whom
appropriate intervention strategies should be developed.

Keywords: Obesity, Metabolic syndrome, Metabolomics, Women

Background
Excess fat mass is often seen in conjunction with a con-
stellation of other cardiovascular risk factors such as
hypertension, dyslipidemia and hyperglycemia, so-called
metabolic syndrome (MetS) [1]. In recent years the
prevalence of MetS has increased directly with the epi-
demic of obesity [2]. Comparisons of obese and lean
subjects have evoked several hypotheses to explain the

pathophysiological pathways of obesity associated meta-
bolic disorders including insulin resistance, systemic
low-grade inflammation [3], abdominal and ectopic fat
accumulation [4], and intestinal microbiota composition
[5]. Experimental evidence show that dysfunctional adi-
pose tissue have an unfavorable effect on metabolism
and thereby seem to underlie some of the obesity associ-
ated metabolic morbidities such as insulin resistance and
type 2 diabetes [6]. Furthermore, nutritional factors [7],
poor aerobic fitness [8] and physical inactivity [9] may
also contribute to the development of MetS.
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However, not all obese people develop metabolic dis-
orders. In fact, preliminary evidence suggests that 16%
of the Finnish obese women [10] and ~ 20% of the gen-
eral obese population [11,12] are free from metabolic
disorders. Discovery of specific biomarkers in the blood
associated with MetS may reveal etiological pathways
and help to identify obese individuals at risk for disease.
In this study, we applied nuclear magnetic resonance
(NMR) spectroscopy to analyze circulating metabolites
to identify biomarkers that distinguish individuals who
are metabolically healthy from individuals with MetS,
independent of fat mass and physical activity/fitness.

Materials and methods
Study subjects
One hundred and three participants were recruited from
the city of Jyväskylä and its surroundings to participate
in EWI-study (Exercise and weight control intervention
to study aerobic exercise intervention for improving
physical fitness and weight control in overweight and
obese women, ISRCTN87529813). A study physician ex-
amined the physical condition of the subjects and ensured
that they met the inclusion criteria: 25–50 year old pre-
menopausal woman with a body mass index between 25
and 40 kg/m2, with a history of physically inactive life-
style (participating in regular exercise ≤ 2 times/wk
and ≤ 45 min/time), and without diagnosed musculo-
skeletal, hypertensive or cardiovascular conditions or
type I/II diabetes and without any medication affecting
glucose or lipid metabolism. The study protocol was
approved by the ethics committee of Central Finland
Health Care District. An informed consent was obtained
from all subjects prior to the assessments.
From those subjects who fulfilled the basic inclusion

criteria we identified individuals who had MetS defined
as the presence of at least three of the following five criteria
[13]: waist circumference ≥88 cm, fasting serum triacylglyc-
erol ≥1.7 mmol/L, high density lipoprotein cholesterol
(HDL-C) <1.30 mmol/L, glucose ≥5.6 mmol/L) and resting
blood pressure ≥ 130/85 mmHg. Women who had none of
the above (except waist circumference ≥88 cm) were cate-
gorized as metabolically healthy overweight/obese (MHO).
Thirty-six out of 103 overweigth/obese women were
characterized as MetS and forty-two as MHO. Twenty-
five had one of the above (in addition to waist circum-
ference ≥88 cm) and were discarded from the analysis.

Background information
Background information including medical history and
current health status was collected via self-administered
questionnaires. Food consumption and intakes of total en-
ergy and energy-yielding nutrients were assessed from
three day food records and analyzed using Micro-Nutrica
software developed by the Social Insurance Institution of

Finland and updated with data for new foodstuffs by the
study nutritionist [14]. Leisure time physical activity
(LTPA) of hours/week (participating in exercise such as
walking, jogging, running, gym fitness, ball games, swim-
ming, etc.) and physical inactivity hours per day (PIA, in-
cluding lying down and sitting time) were evaluated using
a validated self-administrated physical activity question-
naire described previously [15].

Fitness test
Maximum oxygen uptake (VO2max, ml/kg/min) was
assessed by bicycle ergometer. During tests, heart rates
were assessed using ECG and respiratory gases and ventila-
tion was measured using respiratory gas analyzer VIASYS
(Healthcare Inc. USA). A specialist physician was respon-
sible for monitoring ECG and blood pressure responses
during the test and recording subject’s signs and symptoms
throughout the test.

Respiratory gas exchange analysis
The REE (kcal/day) was assessed by respiratory gas ex-
change analysis (GEA) using a ventilated-hood system
(VIASYS Healthcare, Yorba Linda, CA, USA). Calibra-
tion of the GEA was carried out before each measure-
ment according to the manufacturer’s instructions. The
subjects were instructed to avoid any strenuous physical
activity and large, energy and protein rich meals for 24 h
before the laboratory visit. The subjects arrived at the la-
boratory in the morning after an overnight fast. After
relaxing in a measurement bed for 30 min, a ventilated
hood was placed over their heads. Their oxygen con-
sumption and carbon dioxide production were measured
for 20 min at 1 min intervals, in a supine position and in
a thermoneutral (22–24°C) environment. The first 5 min
of the data were discarded as artefacts. The REE was cal-
culated using the modified Weir equation [16].

Anthropometrical and body composition assessments
Body height (cm) was measured by using standardized
protocols (a wall-fixed measuring device). Body weight
(kg) and fat mass (FM, kg) were assessed using bio-
impedance (Inbody 720, Biospace Co. ltd Seoul, South
Korea). Precision of the repeated measurements expressed
as coefficient of variation was, on average, 0.6% for FM.
Body mass index (BMI) was calculated as weight/height2

(kg · m−2). Blood pressure (BP) was measured twice by
manual oscillometric methods in the morning after sitting
for 10 minutes after the subjects arrived at the laboratory.
Standing waist circumference was measured twice with a
tape measure and the mean value was used.

Blood samples
Venous blood samples for biochemical analyses were
taken in standardized fasting conditions in the mornings
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between 7 am and 9 am. Serum samples were stored frozen
at -80°C until analyzed. Serum glucose, total cholesterol,
HDL, triacylglycerol, alanine amino transferase (S-ALAT);
aspartate amino transferase (S-ASAT) and gamma gluta-
myltransferase (GGT) were analyzed using the KONELAB
20XTi analyzer (Thermo Fischer Scientific inc. Waltham,
MA, USA). Insulin was determined by immunofluores-
cence using the IMMULITE Analyser (Diagnostic Prod-
ucts Corporation, Los Angeles). The homeostasis model
assessment of insulin resistance (HOMA-IR) index was
calculated as (fasting insulin concentration × fasting glu-
cose concentration)/22.5. The inter- and intra-assay CVs
were 2.0% and 3.7% for glucose and 11% and 3.4% for in-
sulin, respectively.

Serum metabolomics
All serum samples were analysed using a high-throughput
serum NMR metabolomics platform; the experimental
protocols including sample preparation and NMR spec-
troscopy have been described in detail elsewhere [17,18].
This methodology has recently been applied in various
large-scale epidemiological and genetic studies [19,20].
The NMR metabolomics methodology provides compre-
hensive quantitative information on various amino acids,
glycolysis intermediates, fatty acid composition and degree
of saturation and lipoprotein subclass distributions.

Data analyses
All data were checked for normality using the Shapiro-
Wilk’s W-test (PASW Statistics 18). If data were not
normally distributed, the natural logarithms were used.

Clinical characteristics and serum metabolites were com-
pared using an independent-samples t-test. To ensure that
the significant differences in metabolite levels between the
groups was not confounded by age, waist circumference
or BMI, analysis of covariance (ANCOVA) was used
adjusting for the above-mentioned variables. Metabolites
were denoted significant if the p-value was below 0.0005
to account for multiple testing of 100 independent tests.
All assayed metabolites are shown in Additional file 1:
Table S1 and Additional file 2: Table S2.
The metabolomics data was clustered utilizing hierarch-

ical clustering algorithm. First, the metabolite and other
values were metabolite-wise standardized to have 0 as a
mean and 1 as standard deviation. Second, the missing
values within the data were imputed with k-nearest neigh-
bour algorithm (k = 3). The resulted data values were clus-
tered using correlation distance and average linkage
methods (Figure 1).
Given the expected multicollinearity of metabolites,

we used principal component analysis (PCA) to reduce
the large number of correlated variables into fewer un-
correlated factors. PCA was performed on fasting levels
of amino acids, fatty acids, phospholipids, glycoproteins,
ketone bodies, and glycolysis and gluconeogenesis inter-
mediates. Varimax rotated factors with an eigenvalue ≥ 1
were identified and metabolites with a factor load ≥ 0.4
were reported as composing a given factor. Metabolomic
factor scores were calculated for each individual based
on the constructed scoring coefficients. Mean metabolite
factor levels were compared between MHO and MetS
groups with and without adjusting for age, BMI and

Figure 1 Hierarchical clustering of metabolomics data values in MHO and MetS groups. The heat map shows changes of x-fold standard
deviation from the overall mean concentration of the metabolite in each individual belonging to either MHO or MetS group. Green squares
represent a decrease, and red squares an increase. Metabolite names are shown on x-axis and individual subjects with adherent groups on
(right) y-axis.
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waist circumference. Further, we assessed whether factor
levels were predictors for MetS using logistic regression
models in all subjects adjusted for age, waist circumfer-
ence and BMI. Finally, the networks between the metab-
olite factors and clinical risk factors were computed with
the Spearman correlation and illustrated using Himmeli
software [21]. Nominal statistical significance was de-
fined as p < 0.05.

Results
Clinical characteristics
The general characteristics of the study subjects are
given in Table 1. MetS group were older (p < 0.005), and
had higher BMI (p = 0.018) but no significant differences
in other anthropometric measures, REE, VO2max, LTPA
or dietary intakes of total energy and energy-yielding
nutrients between the groups were found. Systolic and
diastolic blood pressure, glucose, insulin, HOMA-IR,
triacylglycerol, HDL, total cholesterol, S-ASAT and S-
ALAT were all higher in MetS compared to MHO (p < 0.05
for all). After controlling for age, BMI and waist circumfer-
ence, the statistical significance remained for all.

Serum metabolites
A cluster analysis of serum metabolites implicated accu-
mulation of several fatty acid species, VLDL lipoprotein
subclasses, and glycoprotein and branched-chain amino
acids in subjects with MetS (Figure 1). All metabolite and
lipoprotein subclass quantities and statistics are shown in
Additional file 1: Table S1 and Additional file 2: Table S2.
To further identify relevant biomarkers associated with

Mets, we used principal component analysis. Eight meta-
bolic factors were identified composed of correlated me-
tabolites (Additional file 3: Table S3). Mean metabolite
component levels are shown in Table 2. There were sig-
nificant differences between MHO and MetS for factor 1
(branched-chain amino acids, phenylalanine, tyrosine
and orosomucoid) (p = 0.001) and factor 2 (total fatty
acids, omega-6 fatty acids, omega-7 and omega-9 fatty
acids, linoleic acid, mono-unsaturated fatty acids, total
phosphoglycerides, total phosphocholines) (p = 0.003).
After adjusting for age, waist circumference and BMI, the
level of statistical significance remained for both factors.
To verify that the association between metabolite factors

with MetS was not confounded by differences in age and
body fat, we performed a logistic regression analysis ad-
justed for age, waist circumference and BMI with MetS as
the dependent (outcome) variable. The results showed
that both factors were significantly associated with MetS
(p < 0.01 for both).
Finally, we performed a network analysis to explore

relationships between metabolite factors and clinical
risk factors (Figure 2). When examining all subjects to-
gether, factor 1 was associated with HOMA-IR, insulin,

triacylglycerol, SBP, VLDL, BMI, waist circumference,
S-ALAT and inversely with HDL (p < 0.01 for all). Fac-
tor 2 and factor 3 were associated with IDL, LDL and
VLDL, while factor 2 was also associated with SBP and
triacylglycerol (p < 0.01 for all). Factor 7 was inversely
associated with BMI and waist circumference, while
factors 5 and 8 were inversely associated with insu-
lin and triacylglycerol, respectively (p < 0.01 for all).
All correlation coefficients and p-values are given in
Additional file 3: Table S3.

Discussion
In this study, we aimed to identify metabolite profiles
that distinguish physically inactive individuals who are
metabolically healthy from those who have MetS inde-
pendent of fat mass. We found that two metabolite factors
composed of 1) branched-chain amino acids (BCAAs),
aromatic amino acids (AAAs), orosomucoid and 2) several
species of fatty acids and phospholipids were associated
with MetS. Factor 1 was associated with all clinical risk
factors suggesting that serum amino acids and orosomu-
coid may be relevant biomarkers of obesity associated car-
diometabolic disorders.
The risk for developing metabolic disorders is propor-

tional to the degree of obesity [22]. However, a subset of
obese individuals seems to be protected from metabolic
disorders, despite having excess fat mass [23]. Conse-
quently, factors or mechanisms that explain the develop-
ment of MetS remain poorly understood, and are under
intense investigation since their understanding may help
design novel therapeutic strategies. The large variation
in susceptibility and age of onset in individuals with a
similar risk profile, suggests both genetic and environ-
mental factors contribute to development of metabolic
disorders [24]. Emerging evidence suggests several po-
tential mechanisms contributing to MetS including dys-
regulation of the hypothalamic-pituitary-adrenal (HPA)
axis due to chronic stress [25], dysregulation of the adi-
pose tissue and increased cytokine production [26], the
consequent systemic low-grade inflammatory state [27]
and increased cellular oxidative stress [28]. Recent stud-
ies suggest that all of these mechanisms may be acting at
different time during gestation, permanently reprogram-
ming the structure and physiology of the offspring to-
ward the development of metabolic disorders gradually
progressing into a constellation of metabolic disorders in
adulthood [29].
Recent studies have found that and elevated serum

BCAAs [30,31] are associated with metabolic disorders in-
dependent of body weight. Our results are in agreement
with the above-cited studies by showing that two factors
(factor 1: BCAA, AAA and orosomucoid and factor 2: sev-
eral species of fatty acids and phospholipids) were signifi-
cantly different between MHO and MetS, independent of
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age, waist circumference and BMI. The two factors in-
creased the risk for MetS with similar magnitude (OR 2.90
vs. 2.67, Table 3) in the present study. However, the net-
work analysis (Figure 2) showed that factor 2 correlated
only with systolic blood pressure and serum lipids and li-
poproteins, whereas factor 1 was associated with all risk

determinants, with most pronounced associations with tri-
acylglycerol, insulin, HOMA-IR, S-ALAT and HDL. These
findings indicate that elevated serum BCAAs and AAAs
are not only associated with insulin resistance as shown in
prior studies [32-34] but that they are also closely related
with lipid metabolism. This notion is in agreement with a

Table 1 General characteristics of the study population

MHO
n = 42

MetS
n = 36

p-value

Anthropometry

Age (years) 39.7 (7.6) 44.1 (6.1) 0.005

Height (cm) 165.5 (5.8) 164.7 (6.4) 0.565

Weight (kg) 79.1 (10.3) 83.1 (10.5) 0.095

BMI (weight (kg)/height (m)2) 28.9 (3.2) 30.6 (3.4) 0.018

Fat mass (kg) 29.0 (7.9) 32.2 (8.1) 0.071

Fat free mass (kg) 50.2 (5.5) 50.8 (5.5) 0.596

Waist circumference (cm) 95.7 (9.2) 99.2 (6.5) 0.061

Metabolic

SBP (mmHg) 122.0 (7.4) 136.4 (11.3) <0.0001

DBP (mmHg) 77.7 (6.1) 84.4 (6.7) <0.0001

GLUC (mmol/l) 5.1 (0.3) 5.5 (0.7) 0.0001

Insulin (μIU/l) 6.4 (2.9) 9.5 (3.6) 0.0001

HOMA-IR 1.6 (1.0) 2.3 (0.9) 0.002

HDL-C (mmol/l) 1.6 (0.3) 1.4 (0.3) 0.001

TRIGLY (mmol/l) 1.0 (0.3) 2.0 (0.9) <0.0001

CHOLtot (mmol/l) 4.7 (0.6) 5.6 (0.9) <0.0001

ALAT (IU/l) 13.3 (5.4) 18.8 (8.9) 0.003

ASAT (IU/l) 16.5 (5.6) 19.3 (6.8) 0.038

GGT (IU/l) 22.3 (13.8) 31.5 (13.6) 0.098

Energy expenditure and physical fitness

RMR (kcal/day) 1547 (200) 1505 (113) 0.337

VO2max (ml/kg/min) 31.7 (4.8) 31.3 (5.6) 0.758

LTPA (≤ ½ h/wk, %) 16 11 0.250

LTPA (1 h/wk, %) 62 46 0.671

LTPA (2 h/wk, %) 22 43 0.399

PIA (h/day) 16.1 (2.9) 16.1 (3.5) 0.965

Diet

Energy (kcal) 1791 (526) 1811 (555) 0.896

Protein (E%) 18.7 (3.9) 19.1 (3.9) 0.704

Carbohydrate (E%) 44.1 (11.2) 44.5 (8.7) 0.906

Fat (E%) 33.0 (6.4) 34.5 (11.4) 0.551

Saturated fat (E%) 12.4 (3.3) 13.0 (3.1) 0.537

Monounsaturated fat (E%) 11.1 (2.5) 11.2 (4.8) 0.914

Polyunsaturated fat (E%) 6.0 (2.2) 7.1 (4.7) 0.317

Data are given as mean (SD). P-values are for 2-tailed t-tests. MHO = healthy overweight/obese; MetS =metabolic syndrome; SBP = systolic blood pressure; DBP =
diastolic blood pressure; HOMA-IR = homeostatic model assessment of insulin resistance; S-ALAT = alanine amino transferase; S-ASAT = aspartate amino transferase;
S-GGT = gamma glutamyltransferase; RMR = resting metabolic rate, VO2max (maximum oxygen uptake); LTPA = leisure time physical activity, PIA = physical
inactivity, E% = percentage of total energy intake.
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recent animal study, which showed that oral administra-
tion of BCAAs increased lipogenic gene expression and
synthesis of triacylglycerol in the liver [35]. Furthermore,
the association of Factor 1 with S-ALAT also suggest po-
tential relationship for BCAAs and AAAs with fatty liver
[36], which is an important predictor of several compo-
nents of metabolic syndrome [37]. However, whether the
amino acids are causally implicated with increased serum
lipids and fatty liver in humans remains uncertain and
warrants further investigation.
It is unclear why factor 1 and its various components

are present in higher concentrations in individuals with

MetS. The acute phase protein (orosomucoid) is induced
by infection and inflammation, and elevated plasma
levels have been found in patients with type 2 diabetes
[38]. Although the role of orosomucoid in the circula-
tion is not well understood, it has been suggested to
modulate immune responses to protect adipose tissue
from inflammation and metabolic dysfunction [39]. As
glucose [40] and lipid metabolites [41] are potential
stimulants for inflammatory pathways in both adipocytes
and macrophages, it is possible that the higher serum
orosomucoid concentration in MetS group is attributed
to higher level of these metabolic risk factors.

Figure 2 A pruned visualization of the correlation network from un-adjusted Spearman correlation analysis. Each variable was converted
to a surrogate linear predictor before computations. The color of the edges indicate the association magnitude as shown in the legend. The
vertices are colored as red and blue if all edges of the vertex are positive or negative correlations, respectively. In the cases where the vertex has
both negative and positive correlations with its neighbor, the vertex is colored orange. Abbreviations: SBP = systolic blood pressure;
DBP = diastolic blood pressure; VLDL = triacylglycerol and cholesterol in very-low density lipoprotein particles; LDL = triacylglycerol and cholesterol in
low density lipoprotein particles; IDL = triacylglycerol and cholesterol in intermediate-density lipoprotein particles; Factor 1 (leucine, isoleucine, valine,
tyrosine, phenylalanine, orosomucoid); Factor 2 (total fatty acids, omega-6 fatty acids, omega7 and 9 fatty acids, linoleic acid, mono-unsaturated fatty
acids, total phosphoglycerides, total phosphocholines); Factor 3 (docosahexaenoic acid, polyunsaturated fatty acids, omega-3 fatty acids); Factor
5 (glutamine, glycine, pyruvate); Factor 6 (acetate, histidine); Factor 7 (creatinine, citrate); Factor 8 (urea).

Table 2 Mean metabolite factor levels in MHO and MetS groups

Factor
MHO
n = 42

MetS
n = 36

p-value adj p-value

1) Amino acids and glycoproteins −0.34 (0.98) 0.43 (0.86) 0.001 0.001

2) Fatty acids and phospholipids −0.31 (0.82) 0.39 (1.08) 0.003 0.002

3) PUFA −0.16 (1.06) 0.21 (0.89) 0.120 0.631

4) Ketone bodies 0.07 (1.05) −0.09 (0.94) 0.497 0.377

5) Gluconeogenic intermediates 0.06 (0.97) −0.08 (1.04) 0.555 0.944

6) Miscellaneous 0.04 (0.97) −0.05 (1.05) 0.726 0.464

7) Miscellaneous 0.08 (0.99) −0.10 (1.01) 0.431 0.700

8) Miscellaneous 0.15 (0.75) −0.18 (1.23) 0.167 0.228

MHO =metabolically healthy overweight/obese; MetS =metabolic syndrome. Values are given as mean (SD); Factor 1(leucine, isoleucine, valine, tyrosine,
phenylalanine, orosomucoid); Factor 2 (total fatty acids, omega-6 fatty acids, omega7 and 9 fatty acids, linoleic acid, mono-unsaturated fatty acids, total
phosphoglycerides, total phosphocholines); Factor 3 (docosahexaenoic acid, polyunsaturated fatty acids, omega-3 fatty acids); Factor 4 (acetoacetate, 3-hydroxybutyrate);
Factor 5 (glutamine, glycine, pyruvate); Factor 6 (acetate, histidine); Factor 7 (creatinine, citrate); Factor 8 (urea). P-values are for the difference in mean metabolite
factor levels between MHO and MetS groups with and without adjustment for age, fat mass and waist circumference.
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Recent omics-studies have shown that increased long-
term leisure-time physical activity is associated with low
BCAA concentration [42], and high muscle BCAA deg-
radation [43]. Furthermore, it has been shown that high
intrinsic aerobic endurance capacity is associated with
higher resting metabolic rate, improved signature of
muscle BCAA degradation and lower risk for MetS [44].
In the current study, all participants were physically in-
active, had similar aerobic fitness and resting metabolic
rate. Furthermore, although VO2max was inversely asso-
ciated with triacylglycerol, HOMA-IR, BMI and waist
circumference, no associations with metabolite factors
were found. Dietary patterns are also significant determi-
nants of the circulating levels of metabolites during fast.
In the current study, no differences were found in diet-
ary energy or energy yielding nutrient intakes. Thus, it is
unlikely that the higher level of factor 1 and it various
components can be explained by low level of physical
activity or poor cardiorespiratory fitness or dietary in-
take. However, it could be that some biological/genetic
difference in BCAA catabolism reflects the circulating
BCAA concentrations in the present study. Since tissue
biopsies were not obtained in the present study, we were
unable to measure genetic variations of the genes encod-
ing BCAA catabolic enzymes in skeletal muscle or adi-
pose tissues, and thus we cannot verify whether the
differences in amino acid concentrations between the
groups were attributable to subtle alterations in expres-
sion of the genes in BCAA catabolic pathway.
Although, the biological basis and clinical feasibility of

MetS are still debatable [45], in the present study serum
metabolite profiles were significantly different between
the MHO and MetS. Consequently, our results tend to
suggest that serum BCAA, AAA, orosomucoid and fatty
acids may be relevant determinants of metabolic health

independent of fat mass and physical activity. However,
our results must be interpreted in the light of the study
limitations. First, the cross-sectional study design does
not show temporal relationship between the studied
clinical risk factors and serum metabolites and therefore
causal relationship cannot be deduced but rather serves
to generate hypotheses. It is also important to note that
in general population, all individuals with the MetS do
not necessarily have all the features described in the
present study. Moreover, this study is also limited by the
relatively small number of participants and the fact that
the study participants only consist of Finnish women. Fi-
nally, although HOMA-IR is a widely accepted measure of
insulin resistance, other methods such as hyperinsulinemic-
euglycemic clamp technique is considered more robust
method to measure insulin resistance [46].
In summary, our results showed that two metabolite

factors were associated with MetS independent of BMI,
fat mass, waist circumference and physical activity/fitness.
Especially factor comprising BCAA, AAA and orosomu-
coid seems auspicious biomarker determining metabolic
health as it was associated with all clinical risk factors.
Further research is needed to determine the public health
and clinical significance of these results in terms of
screening to identify those at greatest cardio-metabolic
risk for whom appropriate intervention strategies should
be developed.
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6) Miscellaneous 0.80 0.46 - 1.40 0.437

7) Miscellaneous 0.93 0.53 - 1.63 0.804

8) Miscellaneous 0.70 0.39 - 1.25 0.227
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Abstract

Background

Fatty liver is a major cause of obesity-related morbidity and mortality. The aim of this study

was to identify early metabolic alterations associated with liver fat accumulation in 50- to 55-

year-old men (n = 49) and women (n = 52) with and without NAFLD.

Methods

Hepatic fat content was measured using proton magnetic resonance spectroscopy (1H

MRS). Serum samples were analyzed using a nuclear magnetic resonance (NMR) metabo-

lomics platform. Global gene expression profiles of adipose tissues and skeletal muscle

were analyzed using Affymetrix microarrays and quantitative PCR. Muscle protein expres-

sion was analyzed by Western blot.

Results

Increased branched-chain amino acid (BCAA), aromatic amino acid (AAA) and orosomu-

coid were associated with liver fat accumulation already in its early stage, independent of

sex, obesity or insulin resistance (p<0.05 for all). Significant down-regulation of BCAA

catabolism and fatty acid and energy metabolism was observed in the adipose tissue of the

NAFLD group (p<0.001for all), whereas no aberrant gene expression in the skeletal muscle

was found. Reduced BCAA catabolic activity was inversely associated with serum BCAA

and liver fat content (p<0.05 for all).
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Conclusions

Liver fat accumulation, already in its early stage, is associated with increased serum

branched-chain and aromatic amino acids. The observed associations of decreased BCAA

catabolism activity, mitochondrial energy metabolism and serum BCAA concentration with

liver fat content suggest that adipose tissue dysfunction may have a key role in the systemic

nature of NAFLD pathogenesis.

Introduction
The prevalence of non-alcoholic fatty liver (NAFLD) is on the rise, currently affecting up to
30% of the adult population and an increasing number of children in the developed countries
[1]. In the early phase, NAFLD is asymptomatic, benign and often reversible, but if not con-
trolled, it may progress to non-alcoholic steatohepatitis (NASH), cirrhosis and ultimately liver
failure [2]. Therefore, metabolic perturbations contributing to the development of the disease
should be identified before clinical manifestations occur. The metabolic abnormalities related
to fatty liver are reflected in the level of circulating metabolites. Thus, comprehensive metabolic
profiling holds potential for identifying specific disease-related patterns and non-invasive bio-
markers [3]

Metabolic profiling studies have commonly noted increased free fatty acids and other lipid
species in the plasma or serum of subjects with NAFLD [4]. In particular, acylcarnitines, lyso-
phosphatidylcholines and triacylglycerol with low carbon number and double-bond content,
have emerged as auspicious liver fat biomarkers [5,6]. Recent studies have also demonstrated
increased circulating branched-chain amino acids (BCAAs) and their metabolic intermediates
in subjects with NAFLD [7–9] and NASH[9,10] compared to healthy controls, but the underly-
ing mechanisms of these associations remain to be established. These findings indicate that
metabolic profiling can provide important information about etiology of the development and
progression of NAFLD. However, the influence of extra-hepatic tissues on hepatic steatosis is
incompletely understood.

Since NAFLD is closely associated with obesity, insulin resistance and type 2 diabetes[11–
13], it is suspected that adipose tissue and skeletal muscle may play an important role in the
development of NAFLD. Indeed, growing evidence indicates that adipose tissue dysfunction
[14] and increased secretion of adipokines [15] are implicated in the systemic nature of
NAFLD pathogenesis. Experimental studies have demonstrated that skeletal muscle insulin
resistance promotes liver fat accumulation by altering the distribution pattern of postprandial
energy storage [16]. Skeletal muscle has also been shown to modulate adipose tissue metabo-
lism [17]. The newly discovered myokine, irisin, which has been proposed to convey the inter-
organ signaling between skeletal muscle and adipose tissue, has recently been associated with
NAFLD [18,19]. Furthermore, both skeletal muscle and adipose tissue are significant regulators
of systemic amino acid metabolism, as most of the catabolic activity of BCAAs resides in these
tissues [20]. Therefore, tissue-specific alterations in BCAA metabolism may contribute to the
elevated levels of circulating BCAAs associated with fatty liver [21,22].

The aim of our study was to identify early systemic metabolic alterations associated with
liver fat accumulation in healthy middle-aged men and women with and without NAFLD. In
addition, we studied global gene expression profiles of adipose tissues and skeletal muscle, the
purpose being to describe the early changes in the metabolic pathways that accompany liver fat
accumulation and relate these to the serum metabolite profiles and associated clinically rele-
vant factors.
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Materials and Methods

Study participants
This article is a part of the Calex family study (n = 282 families), which has been described else-
where [23,24]. For the purpose of this report, a subgroup of families (n = 74), comprising 222
individuals (daughter, mother and father) with no history of liver, pancreas or heart disease, or
of heavy drinking, were contacted by letters for an additional study aimed at identifying the
early metabolic alterations associated with liver fat accumulation. A total of 184 individuals
responded to our invitation, of whom 163 (53 fathers, 53 mothers and 57 daughters) attended
the laboratory tests. For this report, all the daughters were excluded owing to the low number
with NAFLD (n = 5), leaving only the mothers and fathers (n = 106). Valid measurements of
liver fat were unavailable for two men. In addition, two men reported recent alcohol consump-
tion of>21 drinks on average per week and one woman reported>14 drinks on average per
week. These individuals were therefore excluded. Hence, the final numbers of participants were
49 men and 52 women. Thirty (n = 30) participants had NAFLD, as defined by the cut-off LFC
value of>5.56% [25]. The remainder, with a LFC value of<5.56%, were assigned to the
healthy control group (n = 71). Of these 101 subjects, 32 (11 with NAFLD and 21 healthy con-
trols) agreed to donate subcutaneous and skeletal muscle (vastus lateralis) biopsies.

Health history and current status was checked by the study physician. Nomajor liver (cancer,
hepatitis), pancreas (type I/II diabetes) or cardiac diseases were found. However, five men (3 healthy
controls and 2 NAFLD) and two women (1 healthy control and 1 NAFLD) were using statins, and
thirteen men (6 healthy controls and 7 NAFLD) and four women (3 controls and 1 NAFLD) were
using hypertension medication. In addition, one man and three women were using thyroxine for
hypothyreosis. All the other subjects were clinically euthyreotic. Twenty-two women were in early
post menopause (15 healthy controls and 7 NAFLD), but there was no difference between the two
groups in menopausal age, and none of the women were on hormonal replacement therapy.
Including or excluding these women did not influence the results, and hence they were included
in the final analysis. The study protocol was approved by the ethics committee of the Central Fin-
land Health Care District. A written informed consent was obtained from all participants.

Background information, liver fat content, abdominal fat mass and
myocellular lipid assessment
Body height, weight and body mass index (BMI) were assessed and the results reported else-
where [23,26]. Dietary intake of total energy and energy-yielding nutrients were assessed from
three-day food records and analyzed using Micro-Nutrica software developed by the Social
Insurance Institution of Finland and updated with data for new foodstuffs by the study nutri-
tionist [27]. Leisure time physical activity (PA), including walking, jogging, running, gym fit-
ness, ball games, swimming, etc., expressed as hours/week and times/week, was evaluated using
a validated self-administered physical activity questionnaire, as described previously [28].

Whole body fat mass (FM) was assessed by Dual-energy X-ray absorptiometry (DXA Prod-
igy, GE Lunar Corp., Madison, WI USA). In this study, two repeated measurements of FM
showed a coefficient of variation (CV) of 2.2% [23].

Liver and abdominal regions were scanned using a 1.5 Tesla MR scanner (GE Signa CV/i,
General Electric Healthcare, Waukesha, WI, USA). LFC was assessed by 1HMRS with a PRESS
sequence and was analysed using the Linear Combination of Model spectra software which is
generally considered to be the gold standard for in-vivo spectroscopy analysis [29,30].

Abdominal adipose tissue compartments (subcutaneous = SAT, visceral = VAT, retroperi-
toneal = RAT) were quantified from a single slice image at the level of the L2-L3 intervertebral
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disc using OsiriX software (OsiriX Foundation, Geneva, Switzerland). The results were con-
verted into tissue fat mass in kg taking slice thickness into account and assuming an adipose
tissue density of 0.9196 g/ml [31].

Muscle intra-myocellular lipid (IMCL) and extra-myocellular lipid (EMCL) from the tibialis
anterior muscle were measured using a similar 1H MRS method with a surface coil placed over
the middle part of the muscle[32]. In order to obtain maximal IMCL and EMCL separation,
the tibialis anterior muscle was aligned as closely as possible with the direction of the magnetic
field and the voxel was placed parallel to the muscle fibers[32].

Biochemical assessments
Blood samples were collected in the morning between 7:00 and 9:00 am after overnight fasting.
Among the women with regular menses, the samples were collected between 2 and 5 days after
menstruation onset. Plasma glucose, serum alkaline phosphatase (ALP), alanine aminotrans-
ferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (GGT) and non-esteri-
fied fatty acids (NEFA) were assessed by a KONELAB 20XTi analyzer (Thermo Fischer
Scientific inc. Waltham, MA, USA). Plasma insulin was assessed by chemiluminescent immu-
noassay (Diagnostic Products Corporation, Los Angeles). The intra- and inter-assay CVs were
3.4% and 2.0% for glucose, 11% and 3.4% for insulin, and 7.4% and 8.4% for NEFA. The
HOMA-IR index (homeostatic model assessment of insulin resistance) was calculated as (fast-
ing glucose x fasting insulin/22.5). Serum leptin was assessed using human leptin (ELISA;
Diagnostic Systems Laboratories, Inc., Webster, TX). Total adiponectin was measured by an
enzyme immunoassay method using the Quantikine human total adiponectin/Acrp30 immu-
noassay (R&D Systems, Minneapolis, MN). The inter- and intra-assay coefficients of variation
(CVs) were 2.2% and 2.7% for leptin, and 3.3% and 4.3% for adiponectin. Serum high-sensitiv-
ity C-reactive protein (hsCRP) was assessed using an ELISA DuoSet (R&D Systems and Diag-
nostic Systems Laboratories, Inc). The intra- and inter-assay CVs were 4.6% and 6.9%.

Serum NMR spectroscopy
All serum samples were analyzed using a high-throughput serum NMR metabolomics plat-
form; the experimental protocols, including sample preparation and NMR spectroscopy, have
been described in detail elsewhere [33,34]. Altogether 130 metabolites were assessed.

Subcutaneous adipose tissue biopsies
Subcutaneous adipose tissue biopsies were obtained from 16 men and 16 women under local
anesthesia after an overnight fast. A region 5 cm lateral from the umbilicus either to the left
side or right side was sterilized. A small intracutaneous injection was made, and 2 ml of a local
anesthetic agent (lidocaine) was injected. After 5 min, anesthesia was confirmed. The skin was
then sterilized again and 10ml of 0.9% sodium-chloride was aspirated using a 16 G x 40 mm
needle fitted to a 50-mL syringe. Approximately two-thirds of the length of the needle was
inserted into the subcutaneous fat, and 5 ml of 0.9% sodium chloride was injected. The needle
piston was then pulled back maximally and released until it was locked by a stopper, thereby
creating a vacuum. Tissue resistance was created by gripping the abdominal skin with one
hand while the other hand rotated the needle (back and forth) throughout the tissue (by a back
and forth motion). Once the tissue had been aspirated by the syringe, the needle was with-
drawn, and the piston removed. The adipose tissue samples were washed with saline solution,
and were immediately frozen in liquid nitrogen and stored at—80°C.
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Skeletal muscle biopsies
Vastus lateralis biopsies were taken from 16 men and 16 women under local anesthesia after an
overnight fast. Biopsies were taken from the vastus lateralis dx muscle with a 5-mm Bergström
biopsy needle, midway between the patella and greater trochanter. The location and optimum
depth for the muscle biopsy were confirmed by ultrasound imaging. The skin covering the
identified location was sterilized and 4 ml of local anesthetic agent (lidocaine) was injected into
the subdermal tissue. A cooling pack was then applied to the location. After 10 minutes, anes-
thesia was confirmed, the skin was sterilized again and a small stab incision made with a surgi-
cal scalpel. Next, the biopsy needle, attached to a syringe, was introduced perpendicularly into
the incision. The piston was then pulled back maximally, creating a vacuum, and the sample
was obtained. After this, pressure was applied to the incision site to induce hemostasis. The
muscle sample was cleaned of any visible connective and adipose tissue, as well as blood, and
was frozen immediately in liquid nitrogen (−180°C) and stored at −80°C.

RNA extraction
Total RNA was extracted from the biopsies using the FastPrep system (MP Biomedicals,
France) and a RNeasy Lipid Tissue Mini Kit (QIAGEN, Gaithersburg, MD, USA) according to
manufacturer’s instructions. Total RNA was digested on column with a RNase-free DNase set
(QIAGEN) during RNA isolation. The quality of the total RNA was studied using a 2100 Bioa-
nalyzer (Agilent, Santa Clara, CA, USA) and Experion Automated Electrophoresis Station
(BioRad, Hercules, CA, USA). The total RNA was amplified and processed using a Gene Chip
3´ IVT Express Kit (Affymetrix, Santa Clara, CA, USA) and hybridized on Affymetrix Human
Genome U219 Array Plates. The samples of this study have been submitted to ArrayExpress.

Protein extraction andWestern blot from skeletal muscle biopsies
The muscle biopsies were homogenized in ice-cold lysis buffer [20 mMHEPES (pH 7.4), 1 mM
EDTA, 5 mM EGTA, 10 mMMg2Cl, 100 mM β-glycerophosphate, 1 mMNa3VO4, 1 mM
DTT, 1% Triton-X-100], supplemented with protease and phosphatase inhibitors inhibitors
(Sigma Aldrich, St Louis, MO, USA).

Fifty to sixty micrograms of muscle lysate samples were separated by SDS-Page using
4–20% gradient gels on a Criterion electrophoresis cell (Bio-Rad Laboratories, Richmond, CA).
Proteins were transferred to nitrocellulose membranes at 300-mA constant current on ice at
4°C. Membranes were blocked in TBS containing 5% nonfat dry milk for 1 hour at room tem-
perature (RT), and then probed overnight at 4°C with commercially available primary antibod-
ies. All antibodies were diluted 1:1000 (except anti-GAPDH (housekeeping, which was diluted
1:40,000) in TBS containing 5% nonfat dry milk. Membranes were then washed with TBS con-
taining 0.1% Tween-20 (TBS-T) followed by 1 hour incubation with the secondary antibody.
Blots were visualized and quantified using an Odyssey CLX Infrared Imager of (Li-COR Biosci-
ences) and the manufacturer's software. When re-probing was needed, the membranes were
incubated in 0.2 M NaOH for 10 min at RT, washed with TBS and re-probed with appropriate
antibodies. All samples were run in the same gel to minimize variability and the quantitative
results for each protein were normalized to GAPDH.

Transcriptomics analysis
Analysis of the transcriptomics data have been reported earlier [1]. Briefly, the gene values of
the expression measurements were analyzed by using the Robust Multiarray Averaging (RMA)
algorithm, as implemented in the R package affy. We ran the differentially expressed genes
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(DEG) analysis with the LimmaR package utilizing linear modeling and empirical Bayes meth-
ods. Raw p-values were adjusted using the Benjamini and Hochberg multiple adjustment
method.

Quantitative PCR
The results of the adipose tissue microarray analyses were confirmed by qPCR as described ear-
lier [1]. Briefly, qPCR was performed on MMP9 and VAV1 from the same RNA samples. A
High Capacity cDNA Synthesis Kit (Applied Biosystems, Foster City, CA, USA) was used to
reverse transcribe 230 ng of RNA. Real-time PCR analysis was performed using iQ SYBR
Supermix and CFX96™ Real-time PCR Detection System (Bio-Rad Laboratories, Richmond,
CA, USA).

The primer sequences were as follows:
MMP9 sense: 50-GAGTGGCAGGGGGAAGATGC-30, and antisense 50-CCTCAGGG
CACTGCAGGATG-30
VAV1 sense: 50-AGCAGTGGGAAGCACAAAGTATT-30, and antisense 50-GTCAC
GGGCGCAGAAGTC-30
GAPDH sense: 50-CCACCCATGGCAAATTCC-30 and antisense: 50-TGGGATTTCCAT

TGATGACAA- 30
Relative expression levels for MMP9 and VAV1 were calculated with the DDCt method and

normalized to the expression of GAPDH. The fold changes in each gene between the groups
were similar to those detected in the microarray analysis (data not shown).

Gene enrichment analysis
The enriched Gene Ontology (GO) terms or Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways for a given gene set were calculated by utilizing the R packages GOStats [2].
In the enrichment analysis, all the human ENSEMBL genes were used as a background gene
group. Categories with a p-value lower than 0.05 are considered significantly enriched. We
detected the genes whose expression was related to liver fat content by utilizing the following
two criteria: 1) the DEG analysis with an adjusted p-value of<0.05 identified genes that were
differentially expressed in the healthy control and NAFLD groups, and 2) the genes had a fold
change of> 1 in the NAFLD group compared to the healthy controls. The mean-centroid
value representing the “activity” of the regulated part of the pathway was computed by normal-
izing the expression levels of all the genes in the subset to a mean of zero across all individuals.
Mean centroids have previously been shown to correlate with various metabolic and physio-
logic parameters [22,35], and may therefore be used to assess gene expression patterns that are
associated with metabolic diseases. Correlation analyses with liver fat and serum metabolites
were performed as described the next section.

Statistical methods
Continuous data were checked for normality by Shapiro-Wilk’s test before each analysis using
PASW statistics version 21 (IBM Corporation, USA). If data were not normally distributed,
their natural logarithms were used. Since the data were from a family study, shared environ-
mental (household) similarity was controlled for in the analysis. The linear mixed model was
used to compare levels of the outcome variables between the NAFLD and healthy control
groups. Contrast tests were used in mixed models to assess the effect of gender while control-
ling for dependency among family members with random effects.

The metabolomics data were clustered utilizing a hierarchical clustering algorithm which
has been reported elsewhere [34]. The results are expressed as means with standard deviation
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(SD). P-values were adjusted to control for the false discovery rate (FDR) using the method of
Benjamini and Hochberg when comparing metabolites between the healthy control and
NAFLD groups [36]. To identify relevant metabolites associated with LFC, we used principal
component analysis to reduce a large number of correlated variables to fewer uncorrelated fac-
tors. Metabolite factor scores were calculated for each individual based on the constructed scor-
ing coefficients. The principal component score is a transformation on the values of the
metabolites, which can be considered as a weighted measure of the variability shared by the
variables. Fasting levels of amino acids, fatty acids, phospholipids, glycoproteins, ketone bodies,
and glycolysis and gluconeogenesis intermediates were included in the principal component
analysis. Mean metabolite factor levels were compared between the NAFLD and healthy con-
trol groups. To exclude the possibility of misclassification, we divided the participants into
quintiles based on liver fat content and compared their mean metabolite factor levels adjusting
for HOMA-IR, BMI and visceral fat mass. Pearson correlation analyses were performed to
determine the relationship between the gene pathways and clinical characteristics. Statistical
significance was set at p< 0.05.

Results

Anthropometry, fat depots, lifestyle factors and conventional serum
biomarkers
The mean liver fat content in the NAFLD and healthy control groups were 13.6% vs. 1.9%
(p<0.001). No group by gender interaction was observed in liver fat content. The NAFLD par-
ticipants were heavier and had higher BMI, total, visceral and retroperitoneal FM and IMCL
compared to the healthy controls (p�0.005 for all, Table 1). The NAFLD participants had
higher fasting glucose, insulin, HOMA-IR, triglycerides, hsCRP, NEFA, leptin and liver
enzymes but lower adiponectin and HDL-C levels than the healthy controls. (p<0.05 for all,
Table 1). No differences were found in physical activity, dietary energy or energy yield nutrient
intakes between the NAFLD and healthy control groups.

Serummetabolites
A cluster analysis of serum metabolites is illustrated in S1 Fig. The analysis revealed increased
levels of very-low density lipoprotein (VLDL) subclasses, mono-unsaturated fatty acids, gluco-
neogenic substrates, orosomucoid and branched-chain amino acids, and decreased levels of
high-density lipoprotein subclasses in participants with NAFLD. All essayed metabolites and
lipoprotein subclass quantities and statistics are shown in S1 Table.

To further identify relevant metabolites associated with NAFLD, we used principal compo-
nent analysis. Mean metabolite component levels are shown in Table 2. Factor 1 (omega 7and 9
and saturated fatty acids, total fatty acids and mono-unsaturated fatty acids), factor 2 (isoleucine,
leucine, valine, phenylalanine, tyrosine and orosomucoid) and factor 3 (acetate, alanine, lactate,
pyruvate) were significantly higher in the NAFLD group compared to the healthy control group
(p = 0.008 to p<0.001). No group by gender interaction was found in any of the factors.

The mean metabolite component levels were further compared between the quintiles of
liver fat content adjusting for gender, BMI, visceral fat mass, leptin and adiponectin (S2
Table). Factor 1 was significantly higher in the 5th quintile compared to the 1st and 2nd quin-
tiles. Factor 2 was significantly higher in the 3rd, 4th and 5th quintile compared to the 1st quin-
tile, and factor 4 was significantly higher in the 5th quintile compared to 1st quintile. No
significant difference in the other factors was observed between the highest and lowest quintile
groups.
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Adipose tissue gene expression
To elucidate the metabolic pathways associated with NAFLD, we studied global transcript pro-
files of adipose tissue and skeletal muscle. Microarray analysis revealed 709 differential

Table 1. Physical characteristics, fat mass distribution, glucosemetabolism hormones and liver enzymes in the healthy controls and NAFLD
group (MIXEDmodel estimatedmarginal means with 95% confidence intervals are given taking into account shared environment within family
(husband and wife) and contrast estimates’ p-values were used to localize the significant differences between the two groups and group by gender
interaction).

Healthy controls (n = 71) NAFLD (n = 30)

Mean 95% CI Mean 95% CI p Group by gender

Men/women (n) 31/40 18/12 0.372

Age (years) 51.7 (50.5, 52.9) 52.9 (50.9, 54.8) 0.244 0.479

Height (cm) 171.4 (170.1, 172.8) 171.6 (169.5, 173.8) 0.480 0.382

Weight (kg) 73.2 (70.7, 75.7) 87.3 (83.3, 91.3) <0.001 0.493

BMI 24.9 (24.0, 25.7) 29.6 (28.3, 30.9) <0.001 0.516

FM (kg) 19.8 (18.0, 21.6) 30.8 (27.9, 33.8) <0.001 0.209

SAT (kg) 2.82 (2.49, 3.15) 4.61 (4.08, 5.15) <0.001 0.002

VAT (kg) 0.749 (0.679, 0.818) 1.1 (0.99, 1.21) 0.005 0.293

RAT (kg) 1.13 (0.978, 1.28) 2.2 (2.00, 2.44) <0.001 0.470

IMCL (%) 0.16 (0.142, 0.179) 0.24 (0.212, 0.268) 0.001 0.780

EMCL (%) 0.345 (0.281, 0.409) 0.408 (0.300, 0.515) 0.139 0.216

Energy (kcal/day) 1979 (1963, 2095) 1958 (1759, 2157) 0.674 0.947

Protein (E%) 18.1 (17.4, 18.8) 18.8 (17.5, 20.0) 0.557 0.980

Fattot (E%) 33.5 (31.8, 35.2) 31.7 (28.7, 34.5) 0.256 0.509

SAFA (E%) 12.9 (12.1, 13.7) 12.5 (11.1, 13.8) 0.588 0.766

MUFA (E%) 11.4 (10.6, 12.3) 10.4 (8.96, 11.9) 0.300 0.618

PUFA (E%) 6.00 (5.53, 6.45) 5.43 (4.63, 6.23) 0.100 0.170

Ch (E%) 45.8 (43.9, 47.7) 47.2 (43.9, 50.5) 0.359 0.484

Sucrose (E%) 5.02 (4.09, 5.95) 6.72 (5.12, 8.31) 0.515 0.419

PA (time/week) 2.94 (2.53, 3.35) 2.2 (1.55, 2.86) 0.143 0.806

PA (hour/week) 3.81 (3.36, 4.26) 3.25 (2.54, 3.97) 0.183 0.525

Glucose (mmol/l) 5.46 (5.33, 5.59) 5.71 (5.49, 5.92) 0.030 0.239

Insulin (μIU/ml) 6.22 (5.12, 7.32) 10.3 (8.58, 12.1) 0.001 0.306

HOMA-IR 1.53 (1.24, 1.82) 2.68 (2.21, 3.15) <0.001 0.215

hsCRP (ng/ml) 722 (376, 1068) 1562 (1020, 2103) 0.006 0.709

NEFA (μmol/l) 395 (353, 438) 453 (383, 524) 0.032 0.069

Serum-TG 1.03 (0.93, 1.12) 1.45 (1.30, 1.59) <0.001 0.067

Leptin (ng/ml) 11.9 (7.8, 16.0) 30.9 (24.8, 37.0) <0.001 0.001

Adiponectin (μg/ml) 9.4 (7.8, 11.0) 5.1 (2.6, 7.6) 0.011 0.103

ALP (IU/l) 60.5 (56.9, 64.1) 64.9 (58.9, 70.9) 0.299 0.771

ALT (IU/l) 18.9 (16.0, 21.8) 30.9 (26.3, 35.5) <0.001 0.129

AST (IU/l) 20.1 (18.6, 21.7) 23.0 (20.6, 24.4) 0.003 0.020

GGT (IU/l) 29.6 (25.0, 34.2) 39.4 (32.0, 46.8) 0.009 0.103

NAFLD = non-alcohol fatty liver disease; BMI = body mass index; FM = fat mass of the whole body; SAT = abdominal subcutaneous adipose tissue;

VAT = visceral adipose tissue; RAT = retroperitoneal adipose tissue; IMCL = intra-myocellular lipids; EMCL = extra-myocellular lipids; E = energy;

SAFA = saturated fatty acids; MUFA = monounsaturated fatty acids; PUFA = polyunsaturated fatty acids; Ch = carbohydrate; PA = physical activity;

hsCRP = high-sensitivity C-reactive protein; NEFA = non-esterified fatty acids; TG = triglycerides; ALP = alkaline phosphatase; ALT = alanine

aminotransferase; AST = aspartate aminotransferase; GGT = γ-glutamyltransferase.

doi:10.1371/journal.pone.0138889.t001
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expressed genes (adjusted p<0.05) in the adipose tissue of the NAFLD group. Of these 709
genes, 255 were up-regulated and 454 were down-regulated (S3 Table). Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis of the differentially expressed genes
(p< 0.05) identified 6 down regulated pathways (Table 3). The most down-regulated pathway
was valine, leucine and isoleucine degradation (p = 4.6x10-9). Down-regulated genes in this
pathway included the mitochondrial components (BCKDHB and DLD) that are common to
the degradation of all BCAAs, i.e., isoleucine, leucine and valine. Genes specific for the degra-
dation of leucine (AUH), isoleucine (PCCA and PCCB) and valine (HIBADH) were also
down-regulated in the subjects with NAFLD.

The mean centroid of the BCAA degradation pathway correlated negatively with liver fat
content and serum metabolite factor 2 (Fig 1), serum total BCAA (r = -0.471, p = 0.023) and
fasting insulin concentrations (r = -0.550, p = 0.008) and HOMA-IR (r = -0.542, p = 0.009). In
a multiple linear regression analysis, including total FM, visceral FM, retroperitoneal FM,
HOMA-IR and hsCRP, only the BCAA degradation pathway and serum metabolite factor 2

Table 2. Meanmetabolite component levels stratified by the healthy control and NAFLD groups (MIXEDmodel estimated marginal means with
95% confidence intervals are given taking into account shared environment within family, and contrast estimates’ p-values were used to localize
the significant differences between the two groups and group by gender interaction).

Healthy Controls (n = 71) NAFLD (n = 30)

Mean 95% CI Mean 95% CI p Group by Gender

Factor 1 -0.233 (-0.471, 0.006) 0.640 (0.268, 1.011) <0.001 0.171

Factor 2 -0.235 (-0.450, -0.019) 0.610 (0.277, 0.943) 0.001 0.450

Factor 3 -0.216 (-0.463, 0.031) 0.492 (0.111, 0.874) 0.008 0.368

Factor 4 -0.049 (-0.303, 0.204) -0.051 (-0.446, 0.343) 0.996 0.988

Factor 5 0.015 (-0.260, 0.290) -0.054 (-0.479, 0.371) 0.938 0.879

Factor 6 0.093 (-0.179, 0.365) -0.173 (-0.593, 0.248) 0.753 0.558

NAFLD = non-alcohol fatty liver disease; values are given as mean and 95% confident interval (CI). Factor 1 (Omega 7 and 9 and saturated fatty acids,

total fatty acids, mono-unsaturated fatty acids); Factor 2 (isoleucine, leucine, valine, phenylalanine, tyrosine and orosomucoid); Factor 3 (acetate, alanine,

lactate, pyruvate); Factor 4 (esterified cholesterol, free cholesterol, omega 6 fatty acids, phosphoglycerides, phosphocholines and sphingomyelines);

Factor 5 (beta-hydroxybutyrate, citrate, histidine); Factor 6 (acetoacetate, glutamine)

doi:10.1371/journal.pone.0138889.t002

Table 3. KEGG pathway enrichment analysis of differentially expressed genes in adipose tissue.

P-value Count Size Pathway name Genes

4.6x10-9 18 44 Valine, leucine and isoleucine
degradation

ACADM, ACADSB, ALDH7A1, ALDH9A1, AUH, BCKDHB, DLD, HADH, HADHA,
HADHB, HIBADH, HIBCH, MCCC1, MCEE, MUT, OXCT1, PCCA, PCCB

3.0x10-7 13 30 Citrate cycle (TCA cycle) CS, DLD, DLST, FH, IDH1, IDH3A, IDH3B, PCK1, PDHB, SDHB, SUCLA2, SUCLG1,
SUCLG2

3.3x10-5 13 43 Fatty acid degradation ACADM, ACADSB, ACADVL, ACSL1, ADH1B, ADH5, ALDH7A1, ALDH9A1, DCI,
HADH, HADHA, HADHB, PECI

7.1x10-3 20 132 Oxidative phosphorylation ATP5A1, ATP5B, ATP5G3, ATP5L, ATP6AP1, ATP6V1C1, COX5A, COX5B, CYC1,
NDUFA10, NDUFA12, NDUFA6, NDUFB4, NDUFB5, NDUFB6, NDUFS1, NDUFS2,
NDUFS4, SDHB, UQCRC2

1.9x10-2 11 65 Glycolysis / Gluconeogenesis ADH1B, ADH5, ALDH7A1, ALDH9A1, DLD, ENO1, PCK1, PDHB, PFKP, PGK1, PGM1

3.5x10-2 12 80 Glycerophospholipid metabolism AGPAT6, AGPAT9, CEPT1, CHKA, CHPT1, CRLS1, ETNK2, GNPAT, GPD1L, GPD2,
LPCAT1, PGS1

Count = Amount of differentially expressed genes that mapped on pathway. Size = Total amount of genes involved in pathway.

doi:10.1371/journal.pone.0138889.t003
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remained significantly associated with liver fat (β = -0.791, and β = 0.992, respectively, p<0.05
for both). Non-alcoholic fatty liver was also associated with significant down-regulation of the
energy metabolism in the adipose tissue. Fatty acid degradation, citric acid cycle and oxidative
phosphorylation were associated with liver fat (r values ranged from -0.684 to -0.767, p<0.001
for all, Fig 2). No significant associations were found between the gene pathways and other
serum metabolite factors (data not shown).

Skeletal muscle gene expression and signaling protein phosphorylation
Unexpectedly, no differentially expressed genes were found in the skeletal muscle. However,
since skeletal muscle is the primary site of insulin-stimulated glucose disposal, we further stud-
ied whether there were differences in the phosphorylation levels of several signaling proteins
related to glucose metabolism. No differences in the phosphorylation levels of insulin receptor

Fig 1. Correlations between liver fat content (LFC) assessed by 1H MRS and different adipose tissue gene expression clusters in certain pathways.
The LFC was transformed into a normal distribution by natural logarithms. Each dot represents an individual and the line is a linear regression fit line.

doi:10.1371/journal.pone.0138889.g001

Fig 2. Correlations between serummetabolites factor 2 (isoleucine, leucine, valine, phenylalanine, tyrosine and orosomucoid) and different
adipose tissue gene expression clusters in certain pathways. Each dot represents an individual and the line is a linear regression fit line.

doi:10.1371/journal.pone.0138889.g002
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β and its downstream targets of Akt, ERK1/2, or mTOR and 4EBP1 were found. The level of
phosphorylated AS160, which promotes translocation of glucose transporters to the cell mem-
brane, was also similar between the groups.

Discussion
In this study, we showed that increased serum branched-chain and aromatic amino acids are
already present well-below the clinical cutoff value for NAFLD. In addition, reduced BCAA
catabolism and mitochondrial energy metabolism were observed in the adipose tissue of the
NAFLD group, whereas no significant between-group differences in skeletal muscle gene
expression were found.

The pathophysiology of NAFLD is complex and has not been fully elucidated. However,
there is growing evidence that obesity is an important factor in its causation [37]. Recent stud-
ies suggest that the major basis for this link is the ability of obesity to engender insulin resis-
tance [12]. The current theory suggests that as the adipose tissue mass expands, chronic
inflammation in the adipose tissue ensues [38]. The inflamed adipose tissue becomes insulin
resistant, and the impaired ability of insulin to suppress lipolysis leads to increased flux of non-
esterified fatty acids, which accumulate in the liver as triglycerides [39]. The excessive accumu-
lation of intrahepatic triglycerides gradually attenuates the ability of insulin to suppress hepatic
gluconeogenesis and triglyceride synthesis, resulting in the development of hyperglycemia,
hyperinsulinemia and dyslipidemia [40]. However, studies have suggested that NAFLD can
also develop in the absence of marked insulin resistance and increased adipose tissue lipolysis
[41], and that hepatokines may be involved in the cross-talk between liver and extra-hepatic
tissues [42]. The results of the present study showed that all the measures of adiposity, serum
glucose, insulin and HOMA-IR as well as free fatty acids, triglycerides and CRP were higher in
the NAFLD group compared to healthy controls. Elevated concentrations of gluconeogenetic
substrates, VLDL triglycerides and various species of fatty acids further supported the notion
of increased gluconeogenetic activity and imbalanced lipid metabolism in the subjects with
NAFLD.

Significant increases in serum BCAA and aromatic amino acid concentrations were found
in the subjects with NAFLD compared to those with low liver fat content. These findings dem-
onstrate the perturbations in systemic amino acid homeostasis that accompany liver fat accre-
tion. Recent studies have also shown increased serum BCAA in subjects with NAFLD [7,9,43].
However, these studies were conducted in morbidly obese patients undergoing bariatric sur-
gery [9], or in subjects with type 2 diabetes using non-specific ultrasonography [7], which is
substantially limited by its low sensitivity to mild steatosis and inability to provide reliable
quantitative information on liver fat infiltration [43]. Another study found increased BCAA in
the plasma of subjects with NASH but not NAFLD when compared to healthy controls [44].
However, no significant difference in BCAA was found between NAFLD and NASH, which is
not surprising given that steatosis and steatohepatitis are defects on a continuum. Furthermore,
although biopsy is considered the “golden standard” in comparative studies of fatty liver dis-
ease, sampling errors have been shown to limit its diagnostic accuracy [45]. Thus, one should
bear in mind the possibility of methodological errors when interpreting dichotomized data,
especially when the variable under investigation is a continuous variable such as liver fat [46].
Here, we used 1H magnetic resonance spectroscopy, which provides a highly specific estima-
tion of hepatic fat in vivo [30]. To overcome the possibility of misclassification, we also divided
our participants into quintile groups based on liver fat content. The results showed that the
level of the metabolite factor consisting of BCAA and aromatic amino acids was significantly
elevated at mean liver fat content of 2.4% (S2 Table), which is well below the clinical diagnostic
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cut-off value. This finding suggests that clinically meaningful hepatic steatosis could be present
even at less than 5% liver fat content. Importantly, we have previously demonstrated with
another study cohort that the same metabolites as in metabolite factor 2 (BCAA and tyrosine
and phenylalanine) were auspicious biomarkers determining metabolic health independent of
obesity and physical activity [34]. Other studies have also reported associations between sys-
temic BCAA and metabolic health [47–49]. Although we cannot fully explain the discrepancy
between our study and the other studies in te the state and progression of NAFLD, our results
suggest that perturbations in systemic BCAA homeostasis could be an early event in the devel-
opment of NAFLD. This notion is supported by a recent study which demonstrated that
chronic elevation of circulating BCAA induces hepatic mitochondrial dysfunction in NAFLD
[50].

We further searched for signs of early changes in metabolic pathways in the adipose tissue
and skeletal muscle. We found a significant reduction in the adipose tissue BCAA catabolism
pathway in subjects with NAFLD compared to those with low liver fat content. The decrease in
BCAA catabolism was inversely associated with the serum total BCAA, serummetabolite factor
2, fasting insulin, HOMA-IR and liver fat content. These findings are in line with an earlier
study in monozygotic twins discordant for obesity, which showed that down-regulation of
BCAA catabolism in subcutaneous adipose tissue was associated with increased insulin resis-
tance and liver fat content [22]. In our study, liver fat accumulation was also associated with
significant down-regulation of the energy metabolism in the adipose tissue. Thus it is possible
that decreased BCAA catabolism and impaired mitochondrial function in subcutaneous adi-
pose tissue could link excess adiposity to the development of insulin resistance and liver fat
accumulation [51].

The down-regulation of BCAA catabolism in the present study could be ascribed to reduced
mitochondrial respiration, as indicated by the concurrent significant down-regulation of the
TCA cycle, oxidative phosphorylation and decreased fatty acid degradation in the adipose tis-
sue. These metabolic impairments could also be attributable to local inflammation induced by
excessive enlargement of adipocytes or diminished adipocyte differentiation [52]. A study with
monozygotic twins showed marked inflammation in the subcutaneous adipose tissue concur-
rently with decreased BCAA catabolism in obese subjects [22]. Inflammation-induced regula-
tion of BCAAmetabolism in visceral, but not subcutaneous adipose tissue was also recently
reported [53]. In the present study, inflammatory pathways were not significantly up-regulated
in the adipose tissue of the participants with NAFLD. However, the two most over-expressed
genes in the adipose tissue were chitinase-3-like protein 1 (CHI3L1) and matrix metallopepti-
dase 9 (MMP9) (S3 Table). These genes are related to cytoskeleton re-organization and degra-
dation of the extracellular matrix and have been suggested to cause inflammatory cell
infiltration, resulting in persistent inflammation in the adipose tissue [54]. These results are
consistent with the higher serum hsCRP and orosomucoid observed in subjects with NAFLD,
indicating the presence of subclinical low grade inflammation.

In addition to adipose tissue dysfunction, recent studies have implicated increased intra-
myocellular lipid content [55], increased muscle insulin resistance [16] and impaired skeletal
muscle energy metabolism [56] in hepatic steatosis. In the present study, significantly higher
intramuscular lipid content was observed in the NAFLD group compared to the low liver fat
content group. Unexpectedly, no difference between the groups in gene expression profiles in
the skeletal muscle was found. To confirm these findings with respect to glucose metabolism,
we further studied whether there were differences in the phosphorylation levels of several sig-
naling proteins. No significant differences in the phosphorylation levels of insulin receptor β
and its downstream targets of Akt, ERK1/2, or mTOR and 4EBP1 were found. Nor was there
any difference in the level of phosphorylated AS160, which promotes translocation of glucose
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transporters to the cell membrane. These findings by no means negate the role of skeletal mus-
cle insulin resistance in the development of systemic metabolic disorders. However, these find-
ings do suggest that, at least in the fasting state, skeletal muscle glucose metabolism is not
altered in the early stages of NAFLD, irrespective of increased intra-myocellular lipid content.

Our study is not without limitations. We acknowledge that our approach cannot determine
causality and that the results can indicate only a general pattern. The study was conducted dur-
ing 2009 to 2010. The interval between the different data collection points for each study par-
ticipant varied to some extent, ranging from a few days to several months. However, there was
no difference between the healthy control and NAFLD groups in the sampling time window.
Further, no change in body weight or body composition was observed during the study period,
nor was there any change in diet. The study participants were married couples drawn from a
comprehensive and carefully performed family study. The couples shared the same family envi-
ronment and living conditions. They were carefully selected in order to minimize confounding
factors. For these reasons, we are confident that our results are not biased by background char-
acteristics and health history. However, the narrow age range of the subjects in our study (50–
55 years) may partly explain the lack of agreement between some of our findings and data from
previous studies, and thus suggest that our results should be interpreted in the context of age. It
should also be noted that this study is limited by the fact that adipose tissue and skeletal muscle
biopsies were only available for a relatively small group of subjects (11 with and 21 without
NAFLD). However, we used the state-of-the-art method 1HMRS to quantify the ectopic fat
content and serum metabolites. Furthermore, all the NAFLD subjects were in early or in mod-
erate stage of fatty liver, which gave us the possibility to identify biomarkers associated with
NAFLD in its early stage.

In summary, we demonstrate that already in its early stage liver fat accumulation is associ-
ated with increased serum branched-chain and aromatic amino acids. Significant down-regula-
tion of BCAA catabolism and mitochondrial energy metabolism in the adipose tissue was
found in participants with NAFLD, whereas no aberrant gene expression in skeletal muscle
was observed. The observed associations between decreased BCAA catabolic activity and
serum metabolite factor 2, total BCAA concentration and liver fat content suggest that adipose
tissue dysfunction may play a key role in the systemic nature of NAFLD pathogenesis. How-
ever, whether BCAAs are involved in the development of NAFLD in a functional manner is
unclear and warrants further study.
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Insulin resistance is associated with 
altered amino acid metabolism 
and adipose tissue dysfunction in 
normoglycemic women
Petri Wiklund , , Xiaobo Zhang , Satu Pekkala , Reija Autio , Lingjia Kong , Yifan Yang , 
Sirkka Keinänen-Kiukaanniemi , Markku Alen ,  & Sulin Cheng ,

Insulin resistance is associated adiposity, but the mechanisms are not fully understood. In this study, 
we aimed to identify early metabolic alterations associated with insulin resistance in normoglycemic 
women with varying degree of adiposity. One-hundred and ten young and middle-aged women were 

± ±
composition was assessed using DXA, skeletal muscle and liver fat by proton magnetic resonance 
spectroscopy, serum metabolites by nuclear magnetic resonance spectroscopy and adipose tissue 
and skeletal muscle gene expression by microarrays. High HOMA-IR subjects had higher serum 

<

high HOMA-IR subjects (p <
found. In conclusion, in normoglycemic women insulin resistance was associated with increased serum 

One of the earliest detectable defects in the metabolic continuum leading to type 2 diabetes is insulin resistance1. 
Impaired glucose homeostasis is associated with obesity2, but the means by which excessive adiposity induces 
insulin resistance and glucose intolerance remain controversial. Indeed, only about a quarter of the variance of 
insulin resistance is explained by BMI in the general population3. Studies have shown that increased risk of heart 
disease is independent of central obesity in individuals with metabolic syndrome4, and lean individuals may be 
as insulin resistant as those with type 2 diabetes5. On the other hand, not all overweight and obese individuals 
develop insulin resistance or other metabolic disorders6, suggesting that the quantitative impact of obesity per se 
on insulin sensitivity may not be as large as previously thought7.

Obesity-associated increase in plasma free fatty acids and accumulation of ectopic lipids are linked with 
the onset of peripheral and hepatic insulin resistance8. Dysregulated amino acid metabolism is also associated 
with obesity-related impaired insulin sensitivity9 and increased risk for future diabetes10. We have recently used 
high-through put metabolite quantification to identify metabolic differences between sedentary obese individuals 
with and without metabolic syndrome. We found that branched-chain and aromatic amino acids were strongly 
associated with insulin resistance and other metabolic risk factors, independent of fat mass and waist circumfer-
ence11. This finding suggests that excess fat mass alone does not explain the associations of these amino acids with 
insulin resistance. Thus, the source of increased branched-chain and aromatic amino acids, and the mechanisms 
by which they might contribute to impaired insulin sensitivity remain incompletely understood.

Recent evidence suggests that obesity is associated with altered adipose tissue metabolism, which in 
turn affects systemic glucose homeostasis and induces insulin resistance in skeletal muscle12,13. There is little 
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knowledge on the alterations in systemic, adipose tissue and skeletal muscle metabolism in relation to insulin 
resistance in normoglycemic individuals with varying degree of adiposity. Therefore, we aimed to investigate the 
systemic metabolite and gene expression profiles of subcutaneous adipose tissue and skeletal muscle in (fasting) 
normoglycemic women but differing in insulin resistance.

Results
Clinical characteristics of the low and high HOMA-IR groups. The high HOMA-IR group had higher 
body weight and BMI than the low HOMA-IR group (p <  0.01 for both, Table 1). High HOMA-IR subjects also 
had higher percent body fat, total and visceral fat mass (p <  0.01 for both). No significant difference in hepatic or 
intra-muscular fat was found. Fasting glucose concentrations were within the normoglycemic range in the major-
ity of the subjects (92%). HOMA-IR indices were almost three times higher in individuals in the high HOMA-IR 
group than in those in the low HOMA-IR group. This difference was largely due to the significantly higher fasting 
insulin levels in the high HOMA-IR group (p <  0.001). Serum triglyceride and leptin concentrations were higher 
and physical activity and aerobic fitness was lower in the high HOMA-IR than low HOMA-IR group (p <  0.05 
for all), but no difference in adiponectin was found. Dietary intake did not differ between the groups, nor was 
there a significant difference in plasma free fatty acids. No group by generation interaction was found on any of 
the variables.

low HOMA-IR (n = 55) high HOMA-IR (n = 55)
p-value

Group by 
generationMean 95% CI Mean 95% CI

Anthropometry
 Age (years) 35.1 (35.9, 36.3) 36.0 (35.0, 36.9) 0.269 0.096
 Height (cm) 165.7 (163.9, 167.7) 166.1 (164.5, 167.6 ) 0.837 0.562
 Weight (kg) 61.3 (58.4, 64.1) 67.3 (65.1, 69.5) 0.001 0.604
 BMI (weight(kg)/height(m)2) 22.3 (21.4, 23.2) 24.4 (23.7, 25.1) 0.002 0.497
Body composition
 Percent body fat 29.5 (27.3, 31.6) 35.0 (32.9, 37.1) 0.001 0.209
 FFM (kg) 40.6 (39.3, 42.0) 40.7 (39.6, 41.8) 0.944 0.417
 FM (kg) 17.8 (15.5, 20.1) 23.7 (21.9, 25.5) 0.001 0.266
 VAT (kg) 0.5 (0.47, 0.62) 0.7 (0.59, 0.70) 0.044 0.164
 Liver fat (%) 2.5 (0.9, 4.1 ) 2.7 (1.5, 4.0) 0.787 0.577
 IMCL (%) 0.2 (0.16, 0.25) 0.2 (0.17, 0.23) 0.796 0.261
 EMCL (%) 0.2 (0.15, 0.31) 0.3 (0.27, 0.39) 0.068 0.925
Metabolic biomarkers
 fs-glucose (mmol/l) 5.2 (5.0, 5.4) 5.5 (5.3, 5.6) 0.042 0.982
 fs-insulin (μU/ml) 4.1 (3.0, 5.1) 9.9 (9.0, 10.8) < 0.001 0.110
 HOMA-IR 0.9 (0.6, 1.2) 2.4 (2.2, 2.7) < 0.001 0.112
Lipids
 FFA (mmol/l) 3.6 (3.0, 4.2) 4.0 (3.5, 4.5) 0.308 0.968
 Triglycerides (mmol/l) 0.9 (0.7, 1.0) 1.1 (1.0, 1.2) 0.013 0.250
 Adipokines
 Leptin (ng/ml) 14.6 (9.0, 20.2) 27.4 (23.1, 31.7) 0.001 0.490
 Adiponectin (μg/ml) 10.4 (18.2, 20.6) 10.1 (8.4, 11.8) 0.830 0.375
Diet
 Energy (kcal) 1840.0 (1690, 1990) 1780.0 (1650, 1900) 0.523 0.583
 Protein (E%) 17.7 (16.3, 18.8) 18.3 (17.3, 19.3) 0.324 0.545
 Fat (E%) 34.5 (31.4, 36.0) 32.3 (30.1, 34.0) 0.283 0.564
 Carbohydrates (E%) 47.8 (44.8, 49.5) 49.4 (46.4, 50.3) 0.414 0.868
Physical activity and fitness
 LTPA (hours/week) 4.5 (3.8, 5.2) 3.6 (3.0, 4.1) 0.049 0.466
 VO2max (ml/kg/min) 41.1 (36.8, 45.5) 35.1 (31.3, 38.9) 0.042 0.540

Table 1.  General characteristics in the low and high HOMA-IR groups (MIXED model estimated 
marginal means with 95% confidence intervals are given taking into account genetic similarity and 
shared environment (daughter and mother) and contrast estimates’ p-values were used to localize the 
significant differences between the two groups and group by generation interaction). FFM =  fat-free mass; 
FM =  fat mass; SAT =  subcutaneous adipose tissue; VAT =  visceral adipose tissue; IMCL =  intra-myocellular 
lipids; EMCL =  extra-myocellular lipids; HOMA-IR =  homeostatic model assessment of insulin resistance; 
OGTT =  oral glucose tolerance test; Matsuda index =  insulin sensitivity index; FFA =  free fatty acids; 
E% =  percentage of total energy intake; LTPA =  leisure-time physical activity; VO2max =  maximum oxygen 
uptake.
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Serum metabolites. Serum metabolite profile analysis revealed many similarities but also significant dif-
ferences between the high and low HOMA-IR groups (Table 2). There were no significant differences in the fatty 
acid and phospholipid (Table 2) and lipoprotein subclass concentrations (Supplementary Table S1) between the 
groups. However, concentrations of branched-chain amino acids (BCAA =  isoleucine, leucine and valine), aro-
matic amino acids (AAA =  phenylalanine and tyrosine), glycerol and orosomucoid were significantly higher in 
the high HOMA-IR group than the low HOMA-IR group (p <  0.05 for all). Only phenylalanine showed group by 
generation interaction. The differences between the groups remained significant after adjusting for age, total or 
visceral fat mass, physical activity and aerobic fitness.

To confirm that the circulating metabolite levels were not confounded by difference in adiposity, we inves-
tigated whether the differences in metabolites between the HOMA-IR groups were also consistently present 

low HOMA-IR 
(n = 55)

high HOMA-IR 
(n = 55)

pBH
Group by 

generationMean 95% CI Mean 95% CI
Low-molecular weight metabolites
 betahydroxybutyrate 0.049 (0.033, 0.066 0.061 (0.046, 0.077) 0.357 0.253
 acetate 0.039 (0.036, 0.042) 0.043 (0.040, 0.046) 0.081 0.785
 acetoacetate 0.038 (0.032, 0.044) 0.034 (0.029, 0.040) 0.961 0.793
 alanine 0.374 (0.353, 0.394) 0.399 (0.380, 0.418) 0.261 0.305
 citrate 0.098 (0.092, 0.104) 0.102 (0.096, 0.108) 0.406 0.923
 creatinine 0.049 (0.046, 0.053) 0.051 (0.048, 0.055) 0.197 0.311
 glutamine 0.511 (0.494, 0.529) 0.533 (0.517, 0.550) 0.685 0.174
 glycerol 0.056 (0.047, 0.064) 0.074 (0.066, 0.082) 0.003 0.134
 glycine 0.257 (0.239, 0.276) 0.276 (0.259, 0.292) 0.685 0.211
 orosomucoid 1.225 (1.168, 1.281) 1.344 (1.291, 1.397) 0.045 0.443
 histidine 0.050 (0.047, 0.053) 0.056 (0.053, 0.058) 0.362 0.329
 isoleucine 0.038 (0.035, 0.041) 0.043 (0.040, 0.046) 0.040 0.959
 leucine 0.061 (0.057, 0.064) 0.069 (0.066, 0.073) 0.005 0.813
 valine 0.154 (0.144, 0.163) 0.174 (0.165, 0.183) 0.014 0.351
 BCAAsum 0.253 (0.237, 0.268) 0.288 (0.273, 0.302) 0.009 0.666
 phenylalanine 0.061 (0.058, 0.064) 0.066 (0.063, 0.069) 0.035 0.045
 tyrosine 0.041 (0.037, 0.044) 0.047 (0.044, 0.050) 0.030 0.089
 pyruvate 0.068 (0.061, 0.075) 0.077 (0.070, 0.083) 0.064 0.915
 lactate 0.891 (0.799, 0.984) 0.967 (0.877, 1.057) 0.253 0.101
 urea 0.052 (0.045, 0.058) 0.049 (0.043, 0.055) 0.731 0.131
Lipid extract constituents
 esterified cholesterol 2.691 (2.528, 2.855) 2.831 (2.675, 2.987) 0.147 0.422
 free cholesterol 1.020 (0.952, 0.1087) 1.097 (1.032, 1.161) 0.127 0.386
 omega3 fatty acids 0.361 (0.316, 0.406) 0.369 (0.326, 0.411) 0.699 0.551
 omega6 fatty acids 2.789 (2.626, 2.952) 2.920 (2.824, 3.136) 0.328 0.683
 omega7and 9 fatty acids 4.918 (4.510, 5.325) 5.422 (5.032, 5.812) 0.253 0.446
 total fatty acids 8.068 (7.505, 8.630) 8.770 (8.233, 9.308) 0.259 0.699
 linoleic acid 2.303 (2.157, 2.449) 2.501 (2.362, 2.641) 0.328 0.738
 polyunsaturated fatty acids 1.647 (1.493, 1.801) 1.690 (1.543, 1.837) 0.792 0.747
 docosahexanoic acid 0.143 (0.122, 0.164) 0.145 (0.125, 0.165) 0.716 0.872
 monounsaturated fatty acids 2.183 (1.976, 2.389) 2.429 (2.232, 2.626) 0.253 0.370
 total phosphoglycerides 0.620 (0.567, 0.673) 0.671 (0.620, 0.721) 0.685 0.763
 phosphocholines 1.526 (1.413, 1.639) 1.622 (1.514, 1730) 0.685 0.700
 sphingomyelines 0.202 (0.187, 0.216) 0.207 (0.193, 0.220) 0.685 0.520
 omega3/total fatty acid ratio 4.453 (4.066, 4.840) 4.165 (3.795, 4.536) 0.458 0.173
 omega6/total fatty acid ratio 34.87 (33.80, 35.95) 34.40 (33.36, 35.42) 0.676 0.206
  omega7and9/total fatty acid 

ratio 60.67 (59.61, 61.73) 61.45 (60.43, 62.46) 0.458 0.076

 fatty acid length 17.92 (17.84, 18.00) 17.94 (17.87, 18.01) 0.857 0.264

Table 2.  Serum low-molecular weight metabolites and lipid extract constituents in the low and high 
HOMA-IR groups(MIXED model estimated marginal means with 95% confidence intervals are given 
taking into account genetic similarity and shared environment (daughter and mother) and contrast 
estimates’ p-values were used to localize the significant differences between the two groups and group by 
generation interaction). P-values are adjusted for multiple comparisons using Benjamin-Hochberg correction. 
All metabolites are in mmol/l.



www.nature.com/scientificreports/

4SCIENTIFIC REPORTS

in normal weight individuals. We found that serum BCAAs and orosomucoid were significantly higher in the 
high HOMA-IR group than the low HOMA-IR group (p <  0.05 for all) (Supplementary Table S2). No difference 
between the groups in the other metabolites was found. Total serum BCAA correlated with fs insulin (r =  0.388), 
even after adjusting for age, percent fat mass and visceral adipose tissue. The concentration of plasma free fatty 
acids was not associated with fs insulin (r =  0.108), HOMA-IR (r =  0.168), fat mass (r =  0.093) or visceral adipose 
tissue (r =  0.153) (p >  0.05 for all).

Adipose tissue gene expression. To elucidate the metabolic pathways characterizing or contributing to 
insulin resistance, we studied global transcript profiles of adipose tissue and skeletal muscle. Microarray anal-
ysis revealed 1093 differentially expressed genes (688 up-regulated and 405 down-regulated) in the adipose 
tissue of the high HOMA-IR group (Supplementary Table S4). Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analysis of the differentially expressed genes (p <  0.05) identified 9 down-regulated and 15 
up-regulated pathways.

The up-regulated pathways in the adipose tissue revealed increased activation of immune response involv-
ing both innate and adaptive immune systems (Table 3). Lysosome was the most up-regulated pathway 
(p =  5.6 ×  10−13), with contributions by genes involving all aspects of lysosome biogenesis and function, includ-
ing structural genes (LAMP1, LAMP2 and LAPTM5), several lysosomal acid hydrolases and transport proteins of 
lipids and cholesterol (MCOLN1 and NPC2) as well as proteins required for lysosome acidification (ATP6V0D2 
and ATP6AP1). Several chemokines (e.g., CCL2, CCL3, CCL4 and CCL5), which are produced by innate immune 
cells, and also by pre-adipocytes and mature adipocytes14 were also present in the up-regulated pathways. 
Consistently, leukocyte trans-endothelial migration, Fc gamma R-mediated phagocytosis, toll-like receptor sign-
aling, and the complement system, (complement C1 [C1S, C1QA, C1QB, C1QC]) were up-regulated in the high 
HOMA-IR subjects. Up-regulation of the B cell receptor signaling pathway was also observed, providing further 
evidence for the involvement of the adaptive immune system and infiltration of inflammatory cells to the adipose 
tissue in insulin resistance.

The most down-regulated pathway in the adipose tissue was valine, leucine and isoleucine degradation 
(p =  1.1 ×  10−7, Table 4). The genes that mapped to this pathway encode the cytosolic and mitochondrial com-
ponents of the pathway and included both genes common to the degradation of all BCAAs, namely isoleucine, 
leucine and valine (BCAT1, BCKDHB) and those specific for the degradation of leucine (MCC2, AUH), isoleucine 
(PCCA, PCCB) and valine (HIBADH, ALDH6A1). Further, we found that systemic insulin resistance was also 
associated with significant down-regulation of the genes encoding proteins that play important roles in cellular 
energy homeostasis. These included a master regulator of mitochondrial biogenesis and function, peroxisome 
proliferator-activated receptor-gamma coactivator-1α  (PPARGC1A) and mitochondrial acetyl-coenzyme A car-
boxylase beta (ACACB), which is an important regulator of fatty acid oxidation and synthesis. Further, peroxi-
some proliferator-activated receptor alpha (PPARA), which promotes the uptake, utilization, and catabolism of 
fatty acids, was also down-regulated in the high HOMA-IR group. Accordingly, down-regulation of the fatty acid 
degradation pathway and tricarboxylic acid cycle (TCA cycle) was observed. Other down-regulated pathways 
involved aromatic amino acid (phenylalanine and tryptophan) and short-chain fatty acid (propanoate) metabo-
lism, and lysine biosynthesis.

To ensure our observations were not biased, we validated our results with two other independent experiments 
in obese insulin-resistant subjects by using gene expression omnibus (GEO) and the GSE2663715 and GSE2095016 
and data sets, respectively. The up-regulated inflammation-related genes in the adipose tissue were similar in our 
study than in the study of Soronen et al.15 and Hardy et al.16 (Fig. 1). In addition, the inflammation and energy 
metabolism-related pathways in the adipose tissue were similarly up- and down-regulated than in obese insulin 
resistant women in the study of Soronen et al.15.

We then assessed the associations between adipose tissue gene expressions and clinical traits in non-obese 
individuals. Characteristics of the study participants are presented in Supplementary Table S3. The mean centroid 
of the BCAA catabolism pathway in the adipose tissue was associated with insulin sensitivity (Matsuda index) 
and fs-insulin (p <  0.05 for all) (Fig. 2). These associations remained significant after adjusting for age and percent 
fat mass or visceral fat mass. The BCAA catabolism pathway correlated closely with mitochondrial respiration 
and biogenesis, i.e., with the TCA cycle and PPARGC1A (p <  0.001) (Fig. 3). Maximum oxygen uptake (VO2max) 
correlated with the BCAA catabolism (r =  0.543) and the TCA cycle (r =  0.522) (p <  0.05 for all). Inflammation 
pathways were coordinately up-regulated with insulin resistance and adipokines, e.g., the chemokine signaling 
pathway correlated with insulin sensitivity (Matsuda index) (r =  − 0.807), fs-insulin (r =  0.858), fs-adiponectin 
(r =  − 0.598) and leptin (r =  0.428) (p <  0.001 for all). The chemokine signaling pathway displayed significant 
associations with the TCA cycle and BCAA catabolism (r =  − 0.812 and r =  − 0.788, respectively, p <  0.001 for 
both).

Skeletal muscle gene expression and signaling protein phosphorylation. Unexpectedly, when 
the transcriptomic data of skeletal muscle were studied, no differentially expressed genes were found between 
the low and high HOMA-IR samples. However, since skeletal muscle is the primary site of insulin-stimulated 
glucose disposal, we studied whether there were differences in the phosphorylation levels of several proteins 
related to glucose uptake, insulin signaling and mitochondrial energy metabolism. No differences in the phos-
phorylation levels of insulin receptor β  or its downstream target Akt were found (Supplementary Figure S1). The 
level of phosphorylated AS160, which promotes translocation of glucose transporters to the cell membrane, was 
also similar between the groups. In addition, no differences in the expression of mitochondrial respiratory chain 
complex subunits, namely ATP5A, UQCRC2, MTCO1, SDHB and NDUFF88 between the groups were found 
(Supplementary Figure S1).
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Discussion
In this study with young and middle-aged normoglycemic women, we found that insulin resistance was asso-
ciated with increased serum BCAA levels, independent of obesity. Consistent with this, we found a significant 
down-regulation of genes related to BCAA catabolism and mitochondrial energy metabolism, concurrently with 
increased expression of inflammation-related genes in the adipose tissue.

Plasma free fatty acids are commonly elevated in obese individuals due to increased adipose tissue lipolysis17. 
Elevated circulating free fatty acids may accumulate in other insulin-responsive tissues, such as skeletal muscle 
and liver (where they interfere with insulin signaling and cause insulin resistance)18. However, we found that in 
normoglycemic women with varying degree of adiposity, insulin resistance was not associated with increased 
plasma free fatty acids, but instead with increased serum amino acid concentrations. Our observation partly 
agrees with a recent study in normal weight subjects discordant for insulin sensitivity19, and a meta-analysis by 
Karpe et al.20. It is tempting, therefore, to suggest that the contribution of circulating free fatty acids to insulin 
resistance may be relatively small.

Increased serum BCAA concentrations have been associated with obesity-related insulin resistance in earlier 
studies21–23. Our results suggest that perturbations in systemic BCAA homeostasis are related to insulin resist-
ance rather than to obesity per se, since significant difference in these amino acids was observed between the 
high and low HOMA-IR groups also in normal weight individuals (Table S2). The average difference in total 
BCAA between low and high HOMA-IR groups was ~14% in whole study population and ~10% in normal 
weight individuals. Whether such difference is physiologically meaningful is not clear. However, Sunny et al.24 
recently demonstrated that insulin-stimulated increases (10–20%) in plasma BCAA correlated significantly with 
insulin resistance indices in humans. They concluded that such small but chronic increase in circulating BCAA 
with insulin resistance may be sufficient to disrupt signaling events in the mitochondria of the muscle and liver 
thereby contributing to mitochondrial dysfunction. However, our study cannot show temporal relationships, 
although our results are compatible with previous studies25,26, which have suggested that BCAAs associate with 
insulin resistance.

It is unclear why serum BCAA is elevated in obesity and insulin resistance. Differences in diet23, protein 
turnover (muscle loss)27 or liver fat (fatty liver disease) can affect circulating levels of amino acids. However, in 
our study no difference in diet (protein intake), fat-free mass or liver fat content was observed between the low 
and high HOMA-IR groups. The positive correlation of BCAA with insulin concentration in our study is line 

P-value Count Size Pathway name Gene Names

5.6 ×  10−13 36 121 Lysosome

ACP5, AP1B1, ARSB, ATP6AP1, ATP6V0B, ATP6V0D2, CD68, 
CTSA, CTSB, CTSG, CTSH, CTSS, CTSZ, DNASE2B, FUCA1, GAA, 
GBA, GLA, GLB1, GM2A, GUSB, HEXB, LAMP1, LAPTM5, LGMN, 
MAN2B1, MCOLN1, NAGA, NPC2, PLA2G15, PPT1, PSAP, LAMP2, 
SLC11A2, SMPD1, TCIRG1

2.2 ×  10−5 28 156 Phagosome
ACTB, ACTG1, ATP6AP1, ATP6V0B, ATP6V0D2, ATP6V1B2, C1R, 
CD14, CLEC7A, CORO1A, CTSS, CYBA, FCGR2A, FCGR2B, FCGR3A, 
ITGB2, ITGB5, LAMP1, MARCO, MSR1, NCF2, NCF4, SEC61A1, 
TCIRG1, TUBA1C, TUBB2A, TUBB2B, VAMP3

2.0 ×  10−4 32 189 Chemokine signaling pathway
ADCY6, ADCY7, ADRBK2, ARRB2, CCL13, CCL18, CCL19, CCL2, 
CCL22, CCL3, CCL4, CCL5, CCR1, CXCL10, CXCL16, CXCR4, 
DOCK2, FGR, GNAI1, GNB4, GNG2, GRB2, HCK, PIK3R5, PREX1, 
PRKCB, PRKX, RAC2, STAT2, STAT3, TIAM1, VAV1

7.4 ×  10−4 21 117 Leukocyte transendothelial migration
ACTB, ACTG1, ACTN1, CXCR4, CYBA, EZR, F11R, GNAI1, ICAM1, 
ITGAL, ITGB2, MMP9, MSN, MYL9, NCF2, NCF4, PIK3R5, PRKCB, 
RAC2, THY1, VAV1

2.5 ×  10−3 16 95 Fc gamma R-mediated phagocytosis ARF6, CFL2, DOCK2, FCGR2A, FCGR2B, FCGR3A, HCK, LAT, 
PIK3R5, PPAP2B, PRKCB, PTPRC, RAC2, SCIN, SYK, VAV1

1.9 ×  10−3 17 102 Toll-like receptor signaling pathway CCL3, CCL4, CCL5, CD14, CD86, CXCL10, IRAK1, LBP, LY96, 
MAP2K3, MAPK10, PIK3R5, SPP1, TLR1, TLR5, TLR7, TLR8

2.8 ×  10−3 10 65 Glycolysis/Gluconeogenesis ADH1B, ALDH2, ALDH3B1, ALDH7A1, ENO1, GALM, HK3, PDHB, 
PFKP, PGAM2

7.8.0 ×  10−3 5 17 Renin-angiotensin system AGTR1, ANPEP, CTSA, CTSG, NLN
3.3 ×  10−3 6 17 Other glycan degradation FUCA1, FUCA2, GBA, GLB1, HEXB, MAN2B1

1.3 ×  10−2 12 75 B cell receptor signaling pathway BLNK, DAPP1, FCGR2B, GRB2, NFKBIE, PIK3AP1, PIK3R5, PRKCB, 
PTPN6, RAC2, SYK, VAV1

1.3 ×  10−2 5 19 Glycosaminoglycan degradation ARSB, GLB1, GUSB, HEXB, HPSE

1.1 ×  10−2 9 48 Amino sugar and nucleotide sugar 
metabolism CHI3L1, CHIT1, GNE, GNPDA1, HEXB, HK3, NAGK, NPL, PMM1

1.7 ×  10−2 11 69 Complement and coagulation cascades C1QA, C1QB, C1QC, C1R, C1S, C3AR1, C5AR1, F13A1, PLAU, 
PLAUR, SERPINE1

3.5 ×  10−2 17 136 Natural killer cell mediated cytotoxicity BID, CD48, FCER1G, FCGR3A, GRB2, HCST, ICAM1, ITGAL, ITGB2, 
LAT, PIK3R5, PRKCB, PTPN6, RAC2, SYK, TYROBP, VAV1

1.2 ×  10−2 25 200 Focal adhesion
ACTB, ACTG1, ACTN1, BIRC3, CCND2, COL6A1, COL6A2, COL6A6, 
FLNA, GRB2, ITGB5, LAMB3, MAPK10, MYL9, PDGFA, PIK3R5, 
PPP1CA, PRKCB, PTEN, RAC2, SPP1, TNC, VAV1, VEGFA, ZYX

Table 3.  Up-regulated pathways in the adipose tissue of high HOMA-IR group. Count =  Amount of 
differentially expressed genes that map in pathway. Size =  Total amount of genes involved in pathway.
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with earlier reports, which have suggested that these amino acids may stimulate insulin secretion from the pan-
creas21,28,29. On the other hand, elevated insulin may increase circulating BCAA, possibly by attenuating BCAA 
catabolism in different tissues as suggested by Sunny et al.24. Indeed, obesity-related increases in circulating 
BCAAs have been associated with decreased BCAA catabolism in adipose tissue30. Here, we showed significant 
down-regulation of the BCAA degradation pathway genes in the adipose tissue of normoglycemic subjects with 
high insulin resistance. The fact that there was no difference in average BMI or percent body fat between the low 
and high HOMA-IR groups suggests that down-regulation of the BCAA catabolism pathway was not attributable 
to adiposity alone. Thus, the decrease in the BCAA catabolism can probably be ascribed to reduced mitochon-
drial respiration and biogenesis (as indicated by the close correlation of the BCAA catabolism with the TCA cycle 
and PPARGC1A genes). Since physical activity and aerobic fitness are known to improve insulin sensitivity and 
energy metabolism31, it is possible that differences in physical activity and aerobic fitness may have amplified 
the observed differences in gene expression between the low and high HOMA-IR groups. The close correlation 
between VO2max and BCAA catabolism and the TCA cycle further support this notion.

Growing evidence indicates that obesity-associated low-grade inflammation of adipose tissue contributes 
to the development of insulin resistance32. Our results complement this notion by showing that up-regulated 
inflammation-related genes were closely associated with insulin resistance, serum adiponectin and leptin also 
in normoglycemic individuals, even after adjusting for measures of adiposity. Earlier studies have demonstrated 
that plasma adiponectin and leptin levels are associated with insulin resistance independent of fat mass33–35, and 
they may play a key role in the regulation of inflammation and immunity36. In line with earlier studies37,38, we 
found that the innate inflammatory component related to macrophages was coordinately up-regulated with insu-
lin resistance. The physiological role of macrophages is probably to clear adipose debris through the process of 
phagocytosis and activate the adaptive immune system39. Accordingly, we found that in terms of over-expressed 
genes the most up-regulated pathways in the adipose tissue were lysosome and phagosome pathways. These 
findings, (together with activation and infiltration of lymphocytes, a toll-like receptor signaling pathway, and the 
complement system) suggest a state of chronic low-grade inflammation in the adipose tissue. Furthermore, the 
chronic inflammation may also in part explain the observed impairments in adipose tissue energy metabolism 
(as indicated by the close inverse correlation of chemokine signaling genes with BCAA catabolism and the TCA 
cycle genes).

Impaired insulin-mediated skeletal muscle glucose uptake40 and intramyocellular lipid concentrations41 are 
major contributors to insulin resistance and type 2 diabetes. In our study, intramuscular triglycerides were not 
increased in subjects with high HOMA-IR. Consistent with this, no aberrant gene expression in individuals with 
high HOMA-IR was found. To confirm these findings, we further studied whether there were differences in the 
phosphorylation levels of several signaling proteins related to glucose metabolism. No significant differences in 
the phosphorylation levels of insulin receptor β  and its downstream target Akt, were found, nor was there any 
significant difference in the level of phosphorylated AS160, which promotes translocation of glucose transporters 
to the cell membrane. Previous studies have reported reduced muscle transcript levels related to oxidative metab-
olism in diabetic individuals compared to healthy controls42. We found no difference in mitochondrial respiratory 
chain complex subunits between the low and high HOMA-IR groups. These findings suggest that in the fasting 
state glucose and mitochondrial energy metabolism is not significantly altered in the skeletal muscle in early 
stages of insulin resistance. However, since both acute hyperinsulinemia43 and hyperglycemia44 have been shown 
to induce transcriptional and translational regulation of glucose and energy metabolism in the skeletal muscle, it 
may be that significant differences could exist during hyperinsulinemic-euglycemic clamp, glucose challenge or 
mixed meal feeding.

This study has some limitations. First, the number of participants in our study was relatively small and 
consisted solely of women. Despite this we were able to identify statistically significant differences in serum 

P-value Count Size Pathway name Genes

1.1 ×  10−7 17 44 Valine, leucine and isoleucine 
catabolism

ACADM, ACADSB, ALDH2, ALDH6A1, ALDH7A1, AUH, 
BCAT1, BCKDHB, DLD, HADH, HIBADH, IL4I1, MCCC2, MUT, 
OXCT1, PCCA, PCCB

3.7 ×  10−4 10 32 Proprionate metabolism ACACB, ACADM, ACSS3, ALDH2, ALDH6A1, ALDH7A1, MUT, 
PCCA, PCCB, SUCLG2

2.9 ×  10−3 6 17 Phenylalanine metabolism ALDH3B1, AOC2, IL4I1, MAOB, MIF, PRDX6

4.4 ×  10−3 10 43 Fatty acid degradation ACADL, ACADM, ACADSB, ADH1B, ADH1C, ALDH2, 
ALDH7A1, CPT1A, HADH, PECI

1.2 ×  10−2 9 42 Tryptophan metabolism ALDH2, ALDH7A1, CAT, CYP1B1, HADH, IL4I1, KMO, KYNU, 
MAOB

1.6 ×  10−2 7 30 Citrate cycle (TCA cycle) DLD, DLST, IDH3B, PC, PDHB, SDHB, SUCLG2
2.9 ×  10−2 8 41 Tyrosine metabolism ADH1B, ADH1C, ALDH3B1, AOC2, COMT, IL4I1, MAOB, MIF
1.7 ×  10−2 2 3 Lysine biosynthesis AASS, ALDH7A1

4.7 ×  10−2 4 18 Glyoxylate and dicarboxylate 
metabolism HYI, MUT, PCCA, PCCB

1.9 ×  10−2 12 68 Adipocytokine signaling pathway ACACB, ADIPOQ, ADIPOR1, CPT1A, MAPK10, NFKBIE, 
PPARA, PPARGC1A, PRKAG1, SLC2A4, STAT3, TNFRSF1B

Table 4.  Down-regulated pathways in the adipose tissue of high HOMA-IR group. Count =  Amount of 
differentially expressed genes that map in pathway. Size =  Total amount of genes involved in pathway.
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metabolites and gene expressions in adipose tissue between the groups. In addition, the participants were care-
fully selected in order to minimize confounding factors and genetic variability. Furthermore, gene expression 
in the adipose tissue of participants with high HOMA-IR was validated by two independent experiments with 
non-obese type 2 diabetic and obese insulin-resistant subjects. Thus, we believe that our results are not biased and 
that the gene expression data can be viewed with confidence. Finally, the majority of the participants were within 
the normal fasting glycemic range and exclusion of those with impaired fasting glucose did not change the results. 
This gave us the possibility to identify the biomarkers associated with systemic insulin resistance in its early stage.

Our data demonstrate that serum fatty acids, intra-myocellular lipids and liver fat content were not elevated 
in normoglycemic women with high HOMA-IR. Instead, we show that impaired insulin sensitivity was associ-
ated with a significant increase in serum BCAA concentration, up-regulation of inflammation-related genes and 
down-regulation of genes related to BCAA catabolism and mitochondrial energy metabolism in adipose tissue. 
These findings suggest that adipose tissue inflammation and mitochondrial dysfunction may be early events in 
the development of systemic insulin resistance. Further studies are needed to determine the initial factor(s) that 
trigger the transcriptional changes that lead to these metabolic alterations.

Figure 1. Up-regulated inflammation-related genes in the adipose tissue in insulin resistant compared 
to insulin sensitive group. The y-axis shows the fold change of gene expression of up-regulated genes in high 
HOMA-IR subjects of the present study (A) and obese insulin resistant subjects in the study of Soronen et al. 
(B)15 and Hardy et al.16 (C).



www.nature.com/scientificreports/

8SCIENTIFIC REPORTS

Materials and Methods
Study subjects. This article is part of a large family study with 282 participating families and has been 
described elsewhere45. A subgroup of families (n =  74), comprising 222 individuals (daughter, mother and father) 
with no type I/II diabetes or family history (first degree relative) of diabetes, cardiac diseases, autoimmune dis-
eases or major liver (cancer, hepatitis) diseases were contacted by letter for an additional study aimed at identify-
ing biomarkers associated with insulin resistance and liver fat accumulation. A total of 184 individuals responded 
to our invitation, of whom 163 (53 fathers, 53 mothers and 57 daughters) attended the laboratory tests. For this 
report, all the fathers were excluded in order to reduce the variability in genetic architecture, leaving only the 
mothers and daughters (mothers =  53 and daughters =  57). Mothers and daughters did not differ in measures 
of adiposity, insulin resistance, serum triglycerides, fatty acids or amino acids. Therefore, all data including the 
metabolome and microarray data were pooled before the phenotypic analysis and all results were adjusted for 
age and familiarity. Further, to minimize the metabolic alterations occurring at different stages of the menstrual 
cycle, blood samples were collected from the women with regular menses between 2 and 5 days after (menstru-
ation). Twenty-two participants were in early post menopause but none were on hormonal replacement therapy. 
Including or excluding these participants did not influence the results. All subjects were clinically euthyreotic. 
The study protocol was approved by the ethics committee of the Central Finland Health Care District. A written 
informed consent was obtained from all participants, and all experiments were performed in accordance with 
relevant guidelines and regulations.

Methods. A detailed description of the background information and methods are provided in supplemen-
tary text S1. In short, background information including medical history, current health status and physical 
activity was collected via self-administered questionnaires. Food consumption and intakes of total energy and 
energy-yielding nutrients were assessed from three-day food records. All measurements were performed in 
the morning after overnight fasting. Venous blood samples were obtained for the analyses of glucose, insulin, 

Figure 2. Correlations between the mean centroids of the BCAA catabolism pathway and fs-insulin and 
insulin sensitivity (Matsuda index). The values of fs-insulin and the Matsuda index were transformed to 
normal distribution by natural logarithms. Each dot represents an individual and the line is a linear regression 
fit line.

Figure 3. Correlation between the mean centroids of the BCAA catabolism pathway and the TCA cycle and 
PPARGC1A. Each dot represents an individual and the line is a linear regression fit line.
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non-esterified fatty acids, leptin, and adiponectin. The HOMA-IR index (homeostatic model assessment of 
insulin resistance) was calculated as (fasting glucose x fasting insulin/22.5). According their HOMA-IR values 
(median =  1.57), the subjects were divided into low (n =  55) and high (n =  55) groups. Body composition was 
assessed by DXA, subcutaneous and intra-abdominal adipose tissue by MRI46, and ectopic fat of liver, mus-
cle intra-myocellular lipid (IMCL) and extra-myocellular lipid (EMCL) by 1HMRS47. Serum metabolites were 
assessed by NMR spectroscopy48. Maximum oxygen uptake (VO2max, ml/kg/min) was assessed by a bicycle ergom-
eter test. In addition, superficial abdominal subcutaneous adipose tissue and skeletal muscle (vastus lateralis) 
biopsies were obtained from 24 individuals to assess the differences in global gene expression profiles and muscle 
protein expression between the low and high HOMA-IR groups. Furthermore, a 75-g oral glucose tolerance test 
(OGTT) was performed for subjects with tissue biopsies to assess whole body insulin sensitivity49. Microarray 
measurements were analyzed by using the Robust Multiarray Averaging (RMA) algorithm in the Bioconductor 
R package affy50–52. The Limma R package was used for differentially expressed genes (DEGs). Raw p values were 
adjusted to control for the false discovery rate (FDR) using the method of Benjamini and Hochberg53 (for more 
detailed information on microarray and gene enrichment analysis see supplementary text S1).

Statistical methods. Before each analysis, continuous data were checked for normality by Shapiro-Wilk’s 
test using PASW statistics version 21 (IBM Corporation, USA). If data were not normally distributed, their 
natural logarithms were used. Clinical characteristics and serum metabolites were compared using an 
independent-samples t-test. Since the data were from a family study, the familiarity (genetic and environmental 
(household) similarity) was controlled by using linear mixed model to compare levels of the outcome variables 
between the low and high HOMA-IR groups. Contrast tests were used in mixed models to assess the effect of 
generation while controlling for dependency among family members with random effects. P-values were adjusted 
to control for the false discovery rate (FDR) using the method of Benjamini and Hochberg when comparing 
metabolites between the low and high HOMA-IR groups53. Pearson correlation analysis was used to determine 
the relationship between clinical characteristics, serum metabolites and adipose tissue gene expression. Statistical 
significance was set at p <  0.05.
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Abstract 
 

Background 

Normal weight obesity, defined as the combination of normal body mass index (BMI) 

and high body fat content appears to be highly prevalent in children and adolescents, 

but the long-term consequences for health are still unclear.   

Methods 

This was an 8 year longitudinal study of 236 girls followed from pre-puberty to early 

adulthood. Body composition was assessed by DXA and cardiometabolic risk by 

calculating continuous clustered risk score using abdominal fat mass, glucose, 

triacylglycerols, HDL-cholesterol and blood pressure. Growth chart was obtained 

from birth to 18 years. Subjects were categorized based on body weight status at the 

age 18 as overweight or obese (BMI >25 with fat% >30), Normal Weight Obese 

(BMI; 18.5-24.9 with fat% >30) and Normal Weight lean (BMI; 18.5-24.9 with fat% 

<30). The association of body composition and cardiometabolic risk was examined 

retrospectively for these groups.  

Results  

Continuous cardio-metabolic risk was higher already at the age of 11 years in 

subjects who were overweight or obese at the age of 18 compared with normal 

weight subjects (p<0.001 for all). The cardio-metabolic risk score was also higher in 

the normal weight obese subjets compared with their normal weight lean peers in 

childhood and this difference peristed into early adulthood (p<0.001 for all). 

Conclusion 



children and adolescent with normal BMI and elevated body fat percentage may be at 

increased risk for cardiometabolic morbidity in adulthood. Screening for adiposity in 

children and adolescent with a normal BMI could better identify those at higher risk 

for cardiometabolic morbidities. 

 
 
Introduction 

Obesity in childhood is associated with increased risk for coronary heart disease later 

in life1. Timely recognition of excess adiposity in childhood is therefore highly 

important for prevention of the adverse health consequences. Clinical guidelines for 

diagnosis of childhood overweight and obesity recommend measuring height and 

weight, calculate the body mass index (BMI) and determine the weight status of 

children with based on national reference data2.  

Although BMI has many advantages as a surrogate of body fatness such as simplicity 

and reproducibility3, its diagnostic performance is not optimal to identify excessive 

adiposity because it cannot distinguish between fat mass and fat-free mass4, both of 

which contribute to BMI. Indeed, recent studies suggest that over a quarter of 

children and adolescent with high percent body fat may be misclassified as normal 

weight when using only BMI to diagnose obesity5. However, whether children with 

normal body weight but high percent body fat are at increased risk for 

cardio-metabolic disease in adulthood is not known. The purpose of this study was to 

assess the relationship between adiposity and cardio-metabolic risk among 

peripubertal girls with different body weight status using a longitudinal study design 

from childhood to early adulthood.  



Methods 

Study population 

A total of 396 girls (mean age 11.2 years at baseline) participated in a longitudinal 

study for an average of 7.5 years. Detailed information regarding the participants and 

study design has been reported previously6-8. Briefly, the subjects were first contacted 

via class teachers teaching grades 4 to 6 (age 9 to 13 years old) in 61 schools in the 

city of Jyväskylä and its surroundings in Central Finland (96% of all the schools in 

these areas). Of the eligible samples, a subgroup (n=236) had total body composition 

assessments and serum metabolomics analysis at the age of 18 years and were 

included in this report. The participants provided their written consent in accordance 

with the guidelines laid down by the ethical committees.  

Growth chart and define relative weight groups 

Growth charts of each participant were obtained from Finnish School Health Care 

System from birth to 17-20 years of age (10-41 tests per subjects) in 61 schools from 

the city of Jyväskylä and its surroundings in Central Finland (96% of the total schools 

in these areas). To be able to compare the growth at the certain time points, the 

Weight % and height z-score was extrapolated from the growth chart using the form 

which was created by the Finnish Paediatric Research Association and accepted by 

Finnish National Health Administration (Form No 7466:92). On the basis of their 

growth chart data, participants were classified into under weight (relative weight to 

height from growth chart under -10%), normal weight (relative weight between -10 to 

+20%)，and overweight+obese (relative weight between > +20%).  



In addition, on the basis of their body composition assessment by dual X-ray 

densitometry (DXA) of fat mass % (above or below 30% as obese or normal weight)9 

and combined with growth chart defination, the subjects are classified into 3 groups: 

1) underweight (UW, relative weight to height from growth chart under -10% and fat 

<30% ,n=22), 2) normal weight (NW, relative weight between -10 to +20% and fat % 

<30%, n=87), 3) normal weight obese (NWO, relative weight between -10 to +20% 

and fat % >30%, n=92), and over weight+obese (OWOB, relative weight between > 

+20% and fat % >30%, n=35). The study protocol was approved by the ethical 

committee of the University of Jyvaskyla and the Central Hospital of Central Finland 

(memo 22/8/2008).  

Background information assessment 

Medical history were collected via validated self-administered questionnaire. 

Subjects under 15 years of age filled in the questionnaire with their guardians’ 

assistance, and all the questionnaires were checked by a study nurse. Body weight 

was measured using an electronic scale and height using stadiometer with subjects 

wearing light clothes and without shoes. Body mass index was calculated by dividing 

body weight in kilograms by the square of the body height in meters. Blood pressure 

(BP) in the right arm was recorded using automated oscillometric device in a sitting 

position in the morning after 10 minute rest. Two consecutive measurements were 

performed, and the mean of the measurements were used. Waist circumference was 

measured on bare skin with a tape measure, midway between the top of the iliac crest 

and the bottom of the rib cage. Two independent measurements were performed and 



the mean value was used. The menarche age of girls (the first onset of menstrual 

bleeding) were collected by questionnaire and retrospective by phone call as well as 

during follow-up visits.  

Body Composition Assessments  

Lean tissue mass (LM), and fat mass (FM) of the whole body, android and gynoid 

region were assessed using DXA (Prodigy GE Lunar Corp., Madison, WI USA). The 

precision of the results of the repeated measurements in this study were expressed by 

the percentage coefficient of variation (CV%) which was on average, 1.0% for LM, 

and 2.2% for FM.   

Biochemical analyses 

Blood samples were collected in the morning between 7:00 and 9:00 am after 

overnight fasting. The samples were collected on 2 to 5 days after menstruation 

among those girls with regular menses. Plasma glucose, high-density lipoprotein 

cholesterol (HDL-C) and triglycerides was assessed by KONELAB 20XTi analyzer 

(Thermo Fischer Scientific inc.Waltham, MA, USA).  

Cardiometabolic risk assessment  

To assess cardiometabolic risk we constructed a standardised, continuously 

distributed variable for clustered metabolic risk similarly to previously published 

scores10,11. The risk score was calculated by standardising and then summing the 

following continuously distributed metabolic traits to create a z score: mean arterial 

pressure ([(2 x diastolic blood pressure)+systolic blood pressure]/3); abdominal fat 

mass; fasting plasma glucose; serum HDL cholesterol x -1; and fasting serum 



triglyceride z score. A higher score indicates a less favorable cardiometabolic risk 

profile. The purpose of using such continuously distributed risk score was to 

maximise statistical power12 because average differences in metabolic traits are 

relatively small in children and adolescents.  

 

Statistical analyses 

Continuous data were checked for normality by Shapiro-Wilk’s test before each 

analysis in the SPSS for Windows statistical software package version 18 (SPSS Inc., 

Chicago, IL, USA). If data were not normally distributed, natural logarithm 

transformations were used. ANOVA with the Least Significant Difference post hoc 

test was used to compare differences between OWOB, NWO, NW and UW groups. 

Statistical significance was set at p < 0.05.  

Results 

Longitudinal change of body weight  

Longitudinal change of body weight collected from growth charts from birth to age of 

20 are shown in Figure 1. It can be seen that the relative body weight was higher 

already at the age of four years in subjects who were OWOB at the age of 18 

compared with those who were NWO, NW, or UW. However, the differences in 

relative body weight between the NWO and NW were not significant during growth.    

 

Insert Figure 1 here 



 

Longitudinal change in body composition:  

Total and regional adiposity increased throughout growth in all groups from age of 11 

to the age of 18 (Figure 2). At the age of 11, there was about 10kg difference in total 

FM between the OWOB and NW group (p<0.001) and about 7kg between the NWO 

and NW group (p<0.001), respectively. The most rapid gain in FM was between the 

age of 11 and 14 in all groups. The average increase of total FM was 13kg in the 

OWOB group, whereas the average increase in NWO and NW groups was about 6kg 

from prepubertal to early adulthood. In terms of FM distribution, the increase of FM 

was greatest in gynoid (lower body) region in all groups. Noticeably, in the OWOB 

group FM in the android region (abdominal area) increased significantly compared to 

the other weight groups (p<0.001 for all). The increase in LM was also greatest 

between the age of 11 and 14, the relative accrual being similar in all groups  

(Figure 2).  

Insert Figure 2 here 

Cardio-metabolic risk: 

The OWOB group had higher MetS score compared with all other weight groups 

throughout growth (p<0.001 for all, Figure 3). The MetS score was also higher in the 

NWO group compared with the NW and UW groups at all time points (p<0.001 for 

all), but no difference was found between the NW and UW groups.   

Insert Figure here 3 



 
 
Discussion 
 

This longitudinal study showed that subjects who were overweight or obese in 

adulthood had higher relative body weight to height already at the age of four 

compared with those who were normal weight. Moreover, overweight and obese 

subjects had a worse cardio-metabolic risk profile than normal weight subjects in 

childhood, and this difference persisted through puberty into early adulthood. We 

also showed that children with normal body weight but high body fat percent had 

signficantly higher cardio-metabolic risk compared with normal weight children with 

low body fat percent, but no difference in relative body weight was observed 

throughout childhood and adolesence. These findings suggest that excess adiposity 

starts to develop early in life and it is a significant risk factor for cardio-metabolic 

disease in adulthood regardless of body weight status. 

 

Higher BMI in childhood and adolescence is associated with an increased risk of 

cardiometabolic morbidity and mortality in adulthood13-16. Prevention remains the 

primary goal in the management of obesity, and therefore pediatricians are advised to 

measure BMI regularly and prescribe and support lifestyle modifications to the 

patient and their family17,18. Although BMI is considered a useful tool in assessing the 

weight status19, recent evidence suggest that signifant percentage of children might be 

at risk being misdiagnosed as lean if obesity is defined solely based on BMI5. Indeed, 

our study showed children who had normal body weight but high body fat percent are 



virtually indistinguishable from their normal weight lean peers in terms of relative 

body weight in childhood and adolescence. Moreover, we showed that these normal 

weight but obese children have signifcantly higher cardio-metabolic risk compared 

with their normal weight lean or underweight subjects in childhod and this persisted 

into early adulthood. These results suggest that simply maintaining a normal body 

weight in childhood does not necessarily protect against cardio-metabolic 

abnormalities later in life. 

 

Direct comparison of our results with earlier studies is difficult, because normal 

weight obesity has not been studied longitudinally before in children and adolescents. 

Overall, data on normal weight obesity children is sparse. There are few reports that 

describe cross-sectional data on children and adolescents with cardio-metabolic risk 

factors who are not obese according to BMI, but in these studies body composition 

was not assessed and thus it remains unclear whether these children had low or high 

body fat percent 20. Moreover, most of the children with metabolic abnormalities in 

these studies had a family history of hypertension, atherogenic serum lipid profile or 

type II diabetes, suggesting that family history of cardio-metabolic disease is a 

signficant cardiovascular risk factor in non-obese children. In our study, normal 

weight obese children did not have history of cardio-metabolic disease in their 

immediate family, therefore it seems likely that the increased cardio-metabolic risk in 

these children is attributable to their relatively high body fat content. In supporting 

our findings, studies in adults have shown that normal weight obesity is associated 



with higher cardiovascular risk factors21, cardio-metabolic dysregulation22, coronary 

heart disease23 and cardiovascular mortality24,25. Taken together, our results suggest 

that the cumulative burden of excessive body fat begins at an early age and this is 

irrespective of body weight.  

Our results provide and important message for clinicians and public health officers as 

well as the individual child and their families. Measurements of body composition 

should be included in the screening for cardiovascular risk because evidently BMI 

does not recognize a substential number of children who are at increased risk for 

cardio-metabolic disease later in life. Failure to recognize excess adiposity in 

childhood may translate into missed opportunities to prescribe appropriate lifestyle 

modification to prevent future cardio-metabolic morbidity. These results should also 

encourage research in the field to identify and validate definition of normal weight 

obesity in children because currently there is no universally accepted defintion of a 

normal value for percent body fat.  

 

Our study is not without limitations. The sample size for obese and normal weight 

obese subjects was relatively small. Also, the study subjects included only females, 

so the results may not applied to males. Strengths of this study include 

research-quality measures of body composition and cardiometabolic biomarkers, and 

the data obtained from growth charts. 

 
 
 
 



Conclusion  
 

The results of our study suggest that children and adolescent with normal BMI and 

elevated body fat percentage may be at increased risk for cardiometabolic morbidity 

in adulthood. Screening for adiposity in children and adolescent with a normal BMI 

could better identify those at higher risk for cardiometabolic morbidities.  
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Figure Legends 
 
 
Figure 1. Longitudinal changes of relative body weight from birth to age of 18 years.  
Bodyweight groups are defined by BMI and fat % at the age of 18 years and the 
comparison between groups were done retrospectively. 
 
Figure 2. Longitudinal change in body composition from age of 11 to age of 18. 
OWOB = overweight and obese (BMI>25 and fat % >30), NWO = normal weight 
obese (BMI 18.5 - 24.9 and fat % >30), NW = normal weight lean (BMI 18.5 - 25 
and fat% <30), UW = underweight (BMI<18.5). 
 
Figure 3. Longitudinal change in continuous cardio-metabolic risk (Mets) score from 
age of 11 to age of 18. Higher score indicates greater risk. OWOB = overweight and 
obese (BMI>25 and fat % >30), NWO = normal weight obese (BMI 18.5 - 24.9 and 
fat % >30), NW = normal weight lean (BMI 18.5 - 25 and fat% <30), UW = 
underweight (BMI<18.5). 
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Context: Branched-chain and aromatic amino acids are associated with high risk of developing
dyslipidemia and type II diabetes in adults.

Objective: This study aimed to examine whether serum amino acid profiles associate with triglyc-
eride concentrations during pubertal growth and predict hypertriglyceridemia in early adulthood.

Design: This was a 7.5-year longitudinal study.

Setting: The study was conducted at the Health Science Laboratory, University of Jyväskylä.

Participants: A total of 396 nondiabetic Finnish girls aged 11.2 � 0.8 years at the baseline partic-
ipated in the study.

Main Outcome Measures: Body composition was assessed by dual-energy x-ray absorptiometry;
serum concentrations of glucose, insulin, and triglyceride by enzymatic photometric methods; and
amino acids by nuclear magnetic resonance spectroscopy.

Results: Serum leucine and isoleucine correlated significantly with future triglyceride, indepen-
dent of baseline triglyceride level (P � .05 for all). In early adulthood (at the age of 18 years), these
amino acids were significantly associated with hypertriglyceridemia, whereas fat mass and ho-
meostasis model assessment of insulin resistance were not. Leucine was the strongest determinant
discriminating subjects with hypertriglyceridemia from those with normal triglyceride level (area
under the curve, 0.822; 95% confidence interval, 0.740–0.903; P � .000001).

Conclusions: Serum leucine and isoleucine were associated with future serum triglyceride levels in girls
during pubertal growth and predicted hypertriglyceridemia in early adulthood. Therefore, these
amino acid indices may serve as biomarkers to identify individuals at high risk for developing hyper-
triglyceridemia and cardiovascular disease later in life. Further studies are needed to elucidate the role
these amino acids play in the lipid metabolism. (J Clin Endocrinol Metab 101: 2047–2055, 2016)

Dyslipidemia is a well-established risk factor for car-
diovascular disease in adults (1–3). This atherogenic

disorder of lipid and lipoprotein metabolism is character-

ized with elevated levels of serum triglyceride and small
low-density lipoprotein cholesterol, with low levels of
high-density lipoprotein cholesterol (4). A recent meta-
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analysis demonstrated that elevated triglyceride levels, in
particular, are associated with increased risk of coronary
heart disease (5). Although dyslipidemia is generally not
associated with significant negative health outcomes in
childhood, studies have shown that unfavorable structural
(fatty streaks and fibrous plaque lesions) and functional
changes of the vasculature start to develop early in life.
These vascular findings are associated with disordered se-
rum lipid and lipoprotein profiles (6). A follow-up study
in Finnish children revealed that dyslipidemia in child-
hood predicted increased carotid artery intima-media
thickness in adulthood (7). Moreover, the Princeton fol-
low-up study showed that elevated triglyceride concen-
trations in childhood predicted clinical cardiovascular
events several decades later (8).

Hypertriglyceridemia can be due to hereditary factors
(ie, familial hypertriglyceridemia) or result from second-
ary causes such as diet, sedentary lifestyle, medical con-
ditions (eg, hypothyroidism, insulin resistance, and type II
diabetes) and the use of certain medications, or a combi-
nation of the above (9). For many years, studies have fo-
cused on searching for biomarkers that would allow for
early prediction of hypertriglyceridemia. Recent genome-
wide association studies have found numerous loci asso-
ciated with triglyceride levels in adults (10). However, the
predictive value of these gene variants is limited because
they can only explain around 10% of the variation in lipid
levels within the population (11). Further understanding
of disordered lipid metabolism could be provided by
metabolomics, which can reveal a global overview on
subtle metabolic changes in the body. Metabolomics in
clinical and epidemiological research have revealed alter-
ations in several amino acid concentrations in subjects
with dyslipidemia (12–14). Moreover, a recent longitudi-
nal study in middle-aged and elderly men and women
showed that increased levels of amino acids at baseline,
including branched-chain amino acids (isoleucine, leu-
cine, and valine), were associated with an increased risk of
hypertriglyceridemia after 7-year follow-up (15). How-
ever, little is known about how these amino acids associate
with serum triglyceride during pubertal growth. Consid-
ering future prediction of developing dyslipidemia and
cardiovascular disease, it is important to assess whether
the associations between amino acids and serum triglyc-
eride in adults are already evident in children transitioning
from prepuberty to early adulthood.

Therefore, we explored the patterns of longitudinal
changes of serum amino acids and triglyceride across pu-
bertal growth in girls in a 7.5-year prospective study using
hierarchical models.

Subjects and Methods

Subjects
A total of 396 girls (mean age, 11.2 years at baseline) partic-

ipated in a longitudinal study (main aim was to study the deter-
minants of body composition during growth) for an average of
7.5 years. Detailed information regarding the participants has
been reported previously (16). Briefly, for the purpose of this
report, we included only nondiabetic (type I or type II) girls with
no diagnosed diseases affecting lipid metabolism and who had
valid data for body composition and serum amino acid, glucose,
insulin, and triglyceride concentrations. There were 13 girls who
reported the use of oral contraceptives at the age of 18 years.
Because oral contraceptives can affect lipid metabolism (17), as
well as circulating amino acid concentrations (18), these girls
were excluded from the final analysis. The total number of sub-
jects was 230 at baseline, 213 at the 2-year follow-up, and 220
at the 7.5-year follow-up assessments.

Anthropometric measurement
All information was collected and laboratory tests were per-

formed within a 2-week period during the same month through-
out the 7.5-year follow-up to avoid seasonal effects. Lifestyle and
behavioral characteristics as well as medical history were col-
lected via a validated self-administered questionnaire. Girls un-
der 15 years of age filled in the questionnaire with their guard-
ians’ assistance, and all the questionnaires were checked by a
study nurse. The age at menarche was defined as the first onset
of menstrual bleeding as reported by questionnaire or phone call
during the follow-up. Dietary information was obtained from a
food-intake diary recorded for 3 days as described elsewhere
(19). Leisure-time physical activity (LTPA) of hours per week
(participating in exercise such as walking, jogging, running, gym
fitness, ball games, swimming, etc) was evaluated using a vali-
dated self-administrated physical activity questionnaire de-
scribed previously (20). All measurements were performed after
overnight fasting. Participants’ weight was determined within
0.1 kg for each subject using an electronic scale and was cali-
brated before each measurement session. Height was determined
using a fixed wall-scale measuring device to the nearest 0.1 cm.
Body mass index (BMI) was calculated as weight (kilograms) per
height (meters)2. Dual-energy x-ray absorptiometry) (Prodigy,
with software version 9.3; GE Lunar Corp) was used to measure
whole body fat mass. Precision of the repeated measurements
expressed as a coefficient of variation (CV) was 2.2% for fat
mass.

Serum amino acid, triglyceride, glucose, and
insulin assessments

Blood samples from the antecubital vein were collected be-
tween 7 and 9 AM after an overnight fast. The samples were
collected 2 to 5 days after menstruation among those girls with
regular menses. Serum and plasma were extracted from blood by
centrifugation and stored immediately at �80°C until analyzed.

Circulating amino acid concentrations were analyzed using a
high-throughput serum nuclear magnetic resonance (NMR)
metabolomics platform. The experimental protocols, including
sample preparation and NMR spectroscopy, have been de-
scribed in detail elsewhere (21). This NMR platform has recently
been applied in various extensive epidemiological studies (22).
For amino acids assessment, a proton NMR spectrum was ob-
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tained where spectral signals from the macromolecules and li-
poprotein lipids were suppressed to enhance detection of the
amino acid signals. The current NMR methodology allows ac-
curate quantification of nine amino acids (alanine, glutamine,
glycine, histidine, isoleucine, leucine, phenylalanine, tyrosine,
and valine) expressed in millimoles per liter. Concentrations of
other common amino acids in the serum are below detection level
of the current methodology and therefore were not assessed in
this study. CV for alanine, glutamine, glycine, histidine, valine,
leucine, isoleucine, phenylalanine, and tyrosine were 2.6, 3.2,
3.5, 4.1, 2.7, 3.6, 4.8, 3.9, and 5.3%, respectively. To address
how well leucine was resolved from its isomer isoleucine, leucine
signal was located at 0.974 ppm (ie, 487.3 Hz at 500 MHz NMR
spectrometer). Isoleucine signal was located at 1.022 ppm (ie,
511.3 Hz). Typical line width at half height for leucine and iso-
leucine signals is ca. 1.5 Hz. Thus, isoleucine and leucine signals
were clearly resolved.

Serum triglyceride and glucose were analyzed using the
KONELAB 20XTi analyzer (Thermo Fisher Scientific Inc).
Insulin was determined by immunofluorescence using the
IMMULITE Analyzer (Diagnostic Products Corporation). The
homeostasis model assessment of insulin resistance (HOMA-IR)
index was calculated as follows: (fasting insulin concentration �
fasting glucose concentration)/22.5. The inter- and intra-assay
CVs were 3.4 and 2.9% for triglyceride, 2.0 and 3.7% for glu-
cose, and 11 and 3.4% for insulin, respectively.

Ethics
Written informed consent was obtained from all participants

before the study. If the participant was underage, a written in-
formed consent was obtained from parents or a legal guardian on
behalf of the child. The study protocol was approved by the
ethical committee of the Central Finland Health Care District.

Statistical analysis
Continuous data were checked for normality by Shapiro-

Wilk’s test before each analysis. If data were not normally dis-

tributed, their natural logarithms were used in all analyses. De-
scriptive statistics were presented as means and 95% confidence
interval (CI) for the mean at the follow-ups. Data for the different
time points were compared with each other using the general
linear model. A hierarchical (multilevel) nonlinear model with
random effects (MLwin2.20 software, Multiple Project; Institute
of Education, University of London) was used to explore the
patterns of longitudinal changes of amino acids, triglyceride, and
HOMA-IR from prepuberty to early adulthood. The hierarchi-
cal model allows inclusion of the data from every subject despite
irregularity of temporally spaced follow-up or missing data (23).
Time relative to menarche was entered as the explanatory vari-
able in the form of polynomial spline functions to explain the
change of target variables over time, as described in detail else-
where (16). The best model was determined by three criteria:
the largest reduction in deviance test (2log likelihood by iterative
generalized least squares), the lowest within-individual variance,
and the necessary parsimony of the model.

To determine the associations with longitudinal changes of
triglyceride with fat mass, HOMA-IR, and amino acids before
and after menarche, we used hierarchical models in which the
outcome variable was triglyceride and the independent variables
were amino acids. The time of menarche is selected as a shift knot
for the model, which means that the coefficients of independent
variables could be different before and after menarche. Thus, the
associations between amino acids and triglyceride can be as-
sessed by regression coefficients before and after menarche, re-
spectively. A t test was used to assess whether the � coefficients
were statistically different from zero. Furthermore, we divided
subjects into quartiles based on their triglyceride levels at base-
line and at the 2- and 7 year follow-ups and compared amino acid
levels adjusting for fat mass, HOMA-IR, and protein intake.
Finally, we used receiver operating characteristics curve analyses
to determine the predictive effect of variables to identify hyper-
triglyceridemia in early adulthood. The area under the curve
(AUC) is considered a measure of the use of the predictor variable
and represents the trade-off between the correct identification of

Table 1. General Characteristics at Different Measurement Time Points in Adolescent Girls

Baseline (n � 230)
2-Year Follow-Up
(n � 213)

7-Year Follow-Up
(n � 220)

Mean 95% CI Mean 95% CI Mean 95% CI

Age, y 11.2 11.1–11.5 13.3 13.0–13.5 18.1 17.8–18.4
Height, cm 146.3a,b 145.0–147.6 158.0b 156.9–159.1 165.1 163.7–166.5
Weight, kg 39.7a,b 38.4–41.1 50.1b 48.5–51.6 60.3 59.0–61.6
BMI, kg/m2 18.4a,b 18.0–18.9 20.0b 19.5–20.5 21.9 21.5–22.3
Fat mass, kg 10.7a,b 10.0–11.4 13.8b 12.8–14.8 19.5 18.4 � 20.7
Fat-free mass, kg 26.9a,b 26.4–27.4 33.8b 33.2–33.4 38.1 37.5–38.6
Glucose, mmol/L 5.5a,b 5.4–5.5 5.3 5.2–5.4 5.2 5.1–5.3
Insulin, IU/mL 9.1a,b 7.4–10.8 11.7b 10.5–12.8 8.4 7.4–9.1
Energy intake, kcal/d 1564a,b 1517–1610 1739 1675–1803 1780 1717–1843
Protein, E% 15.5b 15.1–16.0 15.5b 15.0–16.1 17.3 16.8–17.8
Fat, E% 33.5b 32.7–34.2 32.5 31.7–33.4 31.7 30.7–32.7
Carbohydrates, E% 51.0 50.0–51.9 51.9 50.9–53.0 50.2 49.1–51.3
LTPA, h/wk 2.7 2.12–3.28 3.15 2.53–3.78 3.52 2.84–4.20

Abbreviation: E, energy. Natural logarithm transformation data were used for the comparison of different time points. The Sidak method was used
for multiple comparisons.
a P � .05 compared with 2-year follow-up.
b P � .05 compared with 7-year follow-up.
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individuals with hypertriglyceridemia (sensitivity) and the cor-
rect identification of normolipidemic individuals (specificity).
Hypertriglyceridemia was classified using a cutoff of 1.70
mmol/L, as recommended by the American Heart Association
(24). Statistical significance was set at P � .05.

Results

General characteristics measured at different time points
are shown in Table 1. The mean age at menarche was 12.9

years. Body height, weight, BMI,
fat mass, and fat-free mass in-
creased significantly over time, re-
spectively (P � .05 for all). Al-
though glucose was higher at
baseline compared with 2- and
7-year follow-up, insulin was
higher at the 2-year follow-up com-
pared with baseline or 7-year fol-
low-up (P � .05 for all). Dietary
energy and protein intake in-
creased, and fat intake decreased
over time (P � .05 for all). Time
(hours per week) spent in LTPA did

not change significantly over time.
Longitudinal change patterns of serum triglyceride,

HOMA-IR, and amino acids are shown in Figures 1 and
2. Although triglyceride increased steadily throughout the
follow-up period, HOMA-IR increased before and
around menarche and then decreased steadily until early
adulthood (P � .05 for both). In general, amino acid con-
centrations were increased before menarche and peaked
around menarche, except alanine, for which increments

Figure 1. Change patterns of serum triglyceride (A) and HOMA-IR (B). Data for triglyceride and
HOMA-IR are plotted against time relative to menarche (TRM). Gray lines represent longitudinal
change of each individual, and the black lines are the best fitting lines derived from hierarchical
models. The values on y-axis are back-transformed from log triglyceride and log HOMA-IR,
respectively.

Figure 2. Longitudinal change patterns of amino acids. Data for amino acids are plotted against time relative to menarche (TRM). Gray lines
represent longitudinal change of each individual, and the black lines are the best fitting lines derived from hierarchical models. The concentrations
of amino acids on y-axis are back-transformed from natural log values, respectively.
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were ceased around 30 months after menarche (15 years
old). Glutamine, isoleucine, and leucine levels remained
relatively constant before menarche and decreased grad-
ually after menarche, whereas glycine, valine, phenylala-
nine, tyrosine, and histidine decreased steadily from
prepuberty until early adulthood (P � .05 for all).

We further applied longitudinal models to assess
the associations between triglyceride and amino acids
(Figure 3). We found that alanine, isoleucine, and leucine
correlated significantly with triglyceride (P � .05 for all),
but no significant associations for other amino acids with
triglyceride were found. Triglyceride level at baseline pre-
dicted triglyceride level at the 2-year follow-up (r � 0.386)
and the 7-year follow-up (r � 0.703; P � .001 for both).
However, after adjusting for baseline leucine and isoleu-
cine level, the earlier triglyceride level no longer predicted
subsequent triglyceride levels. We further assessed
whether the early level of leucine and isoleucine predicted
future triglyceride level, independent of earlier triglyceride
level. We found that baseline isoleucine predicted 7-year
triglyceride (r � 0.278; P � .026), and baseline leucine

predicted 2-year triglyceride (r � 0.279; P � .01), even
after adjusting for baseline triglyceride level.

Triglyceride was also correlated significantly with fat
mass and HOMA-IR (P � .05 for both; Figure 4). To
assess whether amino acids were associated with elevated
triglyceride independent of fat mass and HOMA-IR, we
divided subjects into quartiles based on their triglyceride
concentrations and compared amino acid levels, adjusting
for these variables (Figure 5). We found that isoleucine,
leucine, and alanine were significantly higher in the high-
est quartile compared to the lowest quartile at each time
point (P � .05 for all).

When examining whether the amino acids may serve as
biomarkers for hypertriglyceridemia in early adulthood, we
found that at the end of the follow-up period when the girls
had reached the age of 18 years, 29 (13%) of them presented
with hypertriglyceridemia (�1.7 mmol/L). The AUC values
for predicting hypertriglyceridemia for the significantly as-
sociated amino acids were as follows: alanine, 0.683 (95%
CI, 0.577–0.789); isoleucine, 0.774 (95% CI, 0.665–0.883)
(P � .01 for both). The strongest determinant was leucine

Figure 3. Longitudinal correlations between serum triglyceride and amino acids. Gray lines represent longitudinal change of each individual’s
values, and the black lines are slopes obtained from the hierarchical regression models. Values on y- and x-axes are natural log-transformed
values. � is the regression coefficient, and ns indicates nonsignificant association.
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(0.822; 95% CI, 0.740–0.903; P � .000001). By compar-
ison, the AUC values for predicting hypertriglyceridemia
were 0.528 for fat mass, 0.536 for fs-insulin, and 0.542 for
HOMA-IR (all P � .05), respectively.

Discussion

This 7.5-year longitudinal study with pubertal girls dem-
onstrates changes in serum amino acids and triglyceride

concentrations during growth. We
found that hydrophobic amino acids
alanine, leucine, and isoleucine were
associated with elevated triglyceride
concentrations and were significant
predictors of hypertriglyceridemia in
early adulthood, independent of fat
mass and HOMA-IR.

Amino acids play central roles in
protein homeostasis and metabo-
lism, promoting normal growth and
development in children (25). In our
study, the average level of most

amino acids was highest before menarche and then de-
creased after menarche until early adulthood (except al-
anine, which increased from before to after menarche).
The decrease in amino acid concentrations after menarche
likely reflects somatic growth during puberty and adoles-
cence, as well as changes in proteolysis and protein oxi-
dation, which are lower during puberty compared to
prepuberty in normal-weight children and adolescents
(26). Nonetheless, earlier reports have suggested that
plasma amino acid levels tend to increase throughout

Figure 4. Longitudinal correlations between serum triglyceride, HOMA-IR, and fat mass. Gray
lines represent longitudinal change of each individual´s values, and the black lines are slopes
obtained from the hierarchical regression models. Values on y- and x-axes are natural log
transformed values. � is the regression coefficient, and ns indicates nonsignificant association.

Figure 5. Comparison of amino acids between groups defined by triglyceride (highest quartile against lowest quartile) at baseline, 2-year follow-
up, and 7-year follow-up adjusted for fat mass, HOMA-IR, and protein intake. The y-axis represents corresponding variables of estimated marginal
means with standard error. Black lines indicate highest quartile, and gray lines indicate lowest triglyceride quartile. *, P � .05; **, P � .01; ***,
and P � .001 indicate significant difference between highest and lowest triglyceride quartiles within each time point.
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childhood and adolescence (27–30). There are several pos-
sible reasons for such divergent observations, but we be-
lieve that they may primarily be due to the study designs
because our study used longitudinal data, whereas other
studies were cross-sectional with relatively small sample
sizes. Interindividual variation and wider range of age in
these studies, as well as differences in methodology, such
as sample preparation and analytical procedures, may also
account for the discrepant results. Furthermore, the phase
of the menstrual cycle, which has been demonstrated to
affect plasma amino acid levels (31), has not been consid-
ered in the earlier studies, whereas in our study measure-
ments were done at standard phases of the menstrual cycle
in girls with regular cycles.

Recent studies have implicated branched-chain amino
acids and other hydrophobic amino acids (eg, alanine and
phenylalanine) with obesity (32), insulin resistance (33),
type II diabetes (34), and dyslipidemia (14) in adults.
These same amino acids have also been associated with
adiposity and insulin resistance in obese children (35, 36).
Our longitudinal study in children and adolescents dem-
onstrates that isoleucine, leucine, and alanine are associ-
ated not only with obesity and insulin resistance, but also
with serum triglyceride both before and after menarche.
Further analysis showed that these amino acids were ele-
vated in subjects with high triglyceride throughout the
follow-up period, even after adjusting for fat mass and
HOMA-IR. This finding is consistent with an earlier lon-
gitudinal study in nondiabetic middle-aged and elderly
men and women, which showed associations of isoleucine
and leucine with the risk of developing hypertriglyceride-
mia after 7-year follow-up, although the adjustment for
BMI in that study did decrease the effect size to some
extent (15). A recent longitudinal study in elderly Japanese
men and women also demonstrated that branched-
chainedaminoacids andalaninepredicteddevelopment of
dyslipidemia after 4 years even after controlling for BMI
and HOMA-IR (13). Furthermore, branched-chained
amino acids and related metabolites have been shown to
associate independently with coronary artery disease (37)
and to predict cardiovascular events in individuals with
cardiovascular disease (38). Thus, our findings substan-
tiate the idea that amino acids are associated with the
development of dyslipidemia and cardiovascular disease
and indicate that this relationship may exist already in
childhood and adolescence. Therefore, these amino acid
indices could be considered as biomarkers to identify
young individuals at high risk for developing hypertriglyc-
eridemia and cardiovascular diseases later in life.

It is unclear why branched-chain and other hydropho-
bic amino acids are elevated in subjects with elevated se-
rum triglyceride level. Differences in adiposity, physical

activity, and insulin sensitivity can affect amino acid levels
in the circulation. In this study, physical activity did not
change significantly over time, and although fat mass and
HOMA-IR varied during the follow-up period, they did
not confound the associations between the amino acids
and triglyceride level. We previously demonstrated that
branched-chain and aromatic amino acids were auspi-
cious biomarkers determining metabolic health indepen-
dent of obesity and physical activity in middle-aged
women (39). We also reported that these amino acids were
elevated in men and women with nonalcoholic fatty liver
disease (40), and this was associated with significant
down-regulation of branched-chain amino acid catabo-
lism in sc adipose tissue, but not in the skeletal muscle.
Thus, it could be that differences in enzyme activities in-
volved in branched-chain amino acid catabolism in the
adipose tissue may have contributed to elevated amino
acid levels in subjects with high triglyceride levels also in
the present study. However, whether elevated amino acids
are functionally involved in the development of hypertri-
glyceridemia has not been established in humans, and
further functional studies are needed to elucidate the un-
derlying mechanisms that link amino acids and the risk of
hypertriglyceridemia.

This study was subject to some limitations. First, only
girls were included in this study; thus, caution should be
taken if seeking to generalize from our results to boys
during pubertal growth. Second, the girls in our study
were normoglycemic, and hence the observations may not
be applied to a diabetic population. However, considering
that the subjects in this study are all Finnish girls, we be-
lieve that this cohort is appropriate for studying the
relationships between amino acids and triglyceride me-
tabolism during growth from childhood to early adult-
hood. The strength of this study is also the rigor exhibited
in collecting blood samples in a strictly defined period of
the menstrual cycle in girls with regular cycles.

In conclusion, this study demonstrated that serum
leucine and isoleucine was associated with future serum
triglyceride level in girls during pubertal growth, inde-
pendent of baseline triglyceride level, and predicted hy-
pertriglyceridemia in early adulthood. Therefore, these
amino acid indices may serve as biomarkers to identify
individuals at high risk for developing hypertriglyceri-
demia and cardiovascular disease later in life. Further
studies are needed to elucidate the role that these amino
acids play in the lipid metabolism and pathogenesis of
the metabolic disorders.
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