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Abstract. We propose to probe both the CPT and CP violation together with the search for 
sterile neutrinos in one do-it-all experiment. This omnibus experiment would utilize neutrino 
oscillometry with large scintillator detectors like LENA, JUNO or RENO-50 and manmade 
radioactive sources similar to the ones used by the GALLEX experiment. Our calculations 
indicate that such an experiment is realistic and could be performed in parallel to the main 
research plan for JUNO, LENA, or RENO-50. Assuming as the starting point the values of the 
oscillation parameters indicated by the current global fit (in 3 active + 1 sterile scenario) and 
requiring at least 5 sigma confidence level, we estimate that with the proposed experiment we 
would be able to detect CPT mass anomalies of the order of 1% or larger. 

1.  Introduction 
Determination of the phase of the CP violation in the leptonic sector is the main goal of the two largest 
and most ambitious neutrino experiments proposed so far: LAGUNA-LBNO [1] in Europe and DUNE 
[2] in the USA. Discovery of CPT violation would be of even more fundamental importance but there 
are currently no coordinated plans to search for it. Equally significant is verification of the sterile 
neutrino hypothesis and, if confirmed, determination of the relevant oscillation parameters. We 
propose to probe both the CPT and CP violation together with the search for sterile neutrinos in one 
do-it-all experiment. Such omnibus experiment would utilize neutrino oscillometry with large 
scintillator detectors like LENA [3], JUNO [4], or RENO-50 [5].  

A very strong argument to consider such an experiment already now is the fact that construction of 
JUNO has started (in January 2015) and the expected commissioning date is 2020 [4]. It would 
naturally be naïve to expect that a single experiment would answer the key questions of neutrino 
physics. However, since the 20 kton liquid scintillator detector is now firmly on the horizon and is 
likely to deliver the first data well ahead of the long baseline experiments, we propose to widen its 
research program to include oscillometry with strong radioactive sources similar to the ones used by 
the GALLEX experiment [6]. 

 

2.  Neutrino oscillometry 
Oscillometric approach has been explained in details in our previous publications [7-10]. It is a well-
know fact that oscillation length scales linearly with the neutrino/antineutrino energy. For instance, in 
the well-known case of the mixing angle θ13, the formula may be reduced to a very simple form: 
L13(m)≈Eν(keV). It means that 300 keV neutrinos have the oscillation length of only about 300 m.  
Naturally, there is no need to re-measure θ13, but this example shows that even for active neutrinos a 
large detector with good sensitivity at low energies would be able to register a significant part of the 
oscillation curve instead of measuring only at the near and far location, as it is the case for the 
proposed long- and mid- baseline oscillation experiments.  

Of the three main technologies proposed for giant neutrino observatories [11]: Water Cherenkov, 
Liquid Argon TPC, and Liquid Scintillator (LS) only LS has the required sensitivity in the sub-MeV 
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range. The largest of the currently operating LS detector is KamLAND [12]. It has the fiducial mass of 
1 kton and the inner diameter of 13 m. JUNO [4], scheduled for commissioning in 2020, will have 20 
kton fiducial and 34.5 m diameter while LENA [3] aims at 50 kton inside of a 100 m long cylinder. 
RENO-50 [5] proposes a 30 m diameter, 30 m high cylinder. 

2.1.  Oscillometry with sterile neutrinos 
The existence of sterile neutrinos was proposed as an explanation of anomalies in short baseline 
accelerator experiments: LSND [13], and MiniBooNE [14] as well as in gallium-based solar neutrino 
experiments: GALLEX [6], and SAGE [15]. Anomalies were also reported in the reactor neutrino 
spectra at short distances [16]. There is still no solid evidence for the existence of sterile neutrinos. If 
they do exist, they would have to conform to the constrains imposed by the outcome of the previous 
experiments. As a result, the oscillation parameters used in simulations can, for practical reasons, be 
narrowed down to the phase space indicated by the current global fit [17]. In particular, one of the 
anticipated features is a very short oscillation length as compared to the known neutrino flavors. This 
makes sterile neutrinos very well suited for oscillometric studies.  

2.2.  Neutrino sources 
The linear scaling between neutrino energy and its oscillation length imposes the need to choose a 
source of neutrinos to suite the experiment. As the choice is limited, most experiments propose the use 
51Cr [18] as a source of practically mono-energetic electron neutrinos. 51Cr decays with T½ = 27.7 days 
via electron capture. The ~750 keV neutrinos come from the 90.1% branching ratio to the ground state 
of 51V. The expected activity at the start is of the order of 300 PBq [18]. For the electron antineutrinos 
there are no mono-energetic sources but the continuous spectrum characteristic of the beta decay can 
be “monochromatized” taking advantage of the 1.8 MeV threshold of the inverse beta decay – the 
golden detection channel. In this case the favourite choice [19] is the 144Ce – 144Pr mother – daughter 
combination providing detectable neutrinos with energies in the 1.8 – 3 MeV bin accounting for 
48.5% of the emitted electron anti-neutrinos. The half-life of the source is determined by 144Ce with T½ 
= 258 days. The daughter nucleus decays with T½ = 17 min. The expected activity at the start of the 
measurement is around 4.6 PBq. 
 

3.  Proposed experiment 
To generate multiple oscillation patterns within the active volume of the detector the proposed 
experiment assumes the existence of sterile neutrinos. Lack of such patterns would allow us to set new 
stringent limits for the existence of right-handed neutrinos but it would also exclude the possibility to 
probe CPT violation. The main goal of the proposed experiment is to measure and compare oscillation 
parameters obtained for electron neutrinos (51Cr source) and antineutrinos (144Ce – 144Pr). If there are 
differences, the CPT symmetry has been clearly violated. However, if no differences are observed, the 
opposite conclusion cannot be derived, as there are many ways to break that symmetry. In fact, most 
current theories concerning CPT violation do not anticipate particle/antiparticle mass asymmetries 
[20]. Nevertheless, this is exactly the point that we propose to verify. It is also worthwhile to notice 
that finding asymmetry in the survival probability between electron neutrinos and antineutrinos would 
indicate not only CPT violation, but also CP violation [10].  

Experimental details are described in [10]. We have considered two scenarios: (i) placing of a 
strong radioactive source in the center of JUNO [4] – a spherical detector, (ii) placing of a source on 
the top of LENA [3] – a cylindrical detector. While the first option is the best as far as detection 
efficiency and symmetry are concerned, the second is considerably easier to realize, as the integrity of 
the LS tank does not have to be compromised.  
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Figure 1. Considered experimental geometries. Left panel: the source is located in the center of a 

spherical detector. Right panel: the source is located on the top of a tall, cylindrical detector. The 
dimensions and the other key parameters were taken from the specifications provided for JUNO and 
LENA. 

4.  Simulation results 
The proposed experiment will be sensitive to two of the new oscillation parameters associated with the 
sterile neutrinos: θee and Δm41

2.  The former governs the oscillation amplitude. The later determines the 
frequency. The accuracy of amplitude measurements is limited by several factors including the 
uncertainty in the determination of the source activity. For that reasons also the extracted θee will be 
known with a relatively poor accuracy.  Fortunately, since we expect to observe up to 10 oscillation 
minima (for neutrinos) and 3 (for anti-neutrinos), our Δm41

2 sensitivity will be considerably better 
allowing the search for anomalies manifested as mass asymmetry.   

Fig. 2 illustrates the outcome of the simulations. It shows the sensitivity to extract Δm41
2 value at 

the 5σ confidence level as a function of the Δm41
2. At the present stage, we have limited the phase 

space of oscillation parameters used for the calculations to the immediate vicinity of the values 
indicated by the current global fit [17], that is Δm41

2 = 1 eV, and sin22θee = 0.1. The range of Δm41
2 is 

from 0.4 to 5.0 eV2. For the sin22θee we have used two values: 0.1 and 0.05. The calculations were 
made for two detector geometries: a sphere (JUNO) with the source in the center (left panels), and a 
cylinder (LENA) with the source on the top (right panels). The dimensions and the other key 
parameters were taken from the specifications provided by JUNO and LENA publications. The active 
volume for JUNO was a sphere and for LENA a semi-sphere with R = 14 m. The assumed resolution 
in the relevant range of the visible energy (0.4 – 1.2 MeV) was 3.7 – 6.4% for JUNO and 12.6 – 7.3% 
for LENA. The energy dependent position resolution was, respectively, 6 – 4 cm and 13 – 7 cm. 

The simulations were done for two radioactive sources. The top panels summarize the results with 
144Ce-144Pr source. The simulated exposition lasted 300 days and assumed 4.6 PBq activity at the start.
The two bottom panels show the outcome of the simulations for the 51Cr source. The exposition was 
55 days and the activity at the start was 300 PBq. The continuous black lines are to guide the eye only. 

 

d = 34.5 m

551Cr ;  144Ce-
144Pr

R = 14 m

51Cr ;  144Ce-
144Pr
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Fig.2. Outcome of the simulations showing the sensitivity to extract Δm41
2 at 5σ confidence level.  

 

5.  Conclusions 
In view of the ongoing and planned experiments it is expected that within a few years the existence of 
the sterile neutrinos will be clarified. Especially relevant would be the outcome of the proposed 
Borexino SOX experiment [21] as it would use, albeit on a considerably smaller scale, the same 
sources and the same detection method. Clearly, if the sterile neutrinos do exist, the Omnibus 
experiment would be of a fundamental importance to the study of their properties and the physics 
behind it. The cost of such an experiment would be relatively modest and it would not compromise the 
main research goals proposed for the new large-scale liquid scintillator detectors. For that reason, even 
if Borexino SOX would yield a negative result, it would be still worthwhile to perform the 
oscillometric measurements on a large scale using detectors like JUNO, LENA, or RENO-50. 

Our results show that in a favorable case (51Cr) one may expect sensitivity of a few per-mille in the 
determination of Δm41

2. In the case of 144Ce-144Pr source the sensitivity is just over one percent. It may 
not be sufficient to detect subtle effects but it would provide an independent probe in the search for the 
symmetry violations in the leptonic sector. 

While it is clear that placing the source in the center of a spherical detector yields the best results, 
the case of a cylindrical detector with the source outside of the active volume is only slightly worse. In 
any case, the Omnibus approach should be considered already during the planning and construction 
stage of JUNO, LENA, and RENO-50. 
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