Do nuclei go pear-shaped? Coulomb excitation of $^{220}$Rn and $^{224}$Ra at REX-ISOLDE (CERN)


doi:10.1051/epjconf/20159301038

All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Do nuclei go pear-shaped? Coulomb excitation of $^{220}$Rn and $^{224}$Ra at REX-ISOLDE (CERN)


$^1$School of Engineering, University of the West of Scotland, Paisley, PA1 2BE, UK
$^2$SUPA, Scottish Universities Physics Alliance, Glasgow G12 8QO, UK
$^3$Oliver Lodge Laboratory, Liverpool University, Liverpool L69 7ZE, UK
$^4$Instituut voor Kern- en Stralingsfysica, KU Leuven, Leuven B-3001, Belgium
$^5$Dept. of Physics & Astronomy, University of Rochester, Rochester, NY 14627-0171, USA
$^6$ISOLDE, CERN, Geneva CH-1211, Switzerland
$^7$Institut für Kernphysik, Universität zu Köln, Köln D-50937, Germany
$^8$GANIL, Caen, BP 55027, F-14076, France
$^9$Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt D-64289, Germany
$^{10}$Department of Nuclear Physics, Lund University, Lund PO Box 118, 221 00, Sweden
$^{11}$Department of Physics, University of Michigan, Ann Arbor, Michigan 48104, USA
$^{12}$School of Physics & Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, UK
$^{13}$Department of Physics, University of Jyväskylä, Jyväskylä FI-40014, Finland
$^{14}$Helsinki Institute of Physics, PO Box 64, FI-00141 Helsinki, Finland
$^{15}$Department of Physics, University of York, York YO10 5DD, UK
$^{16}$Heavy Ion Laboratory, University of Warsaw, Warsaw 02-093, Poland
$^{17}$Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
$^{18}$Maier-Leibnitz-Laboratorium, Ludwig-Maximilians-Universität, Garching D-85748, Germany
$^{19}$Physik Department E12, Technische Universität Muenchen, Garching D-85748, Germany
$^{20}$Departamento de Fisica Teorica, Universidad Autonoma de Madrid, Madrid 28049, Spain
$^{21}$DSM/IRFU/SPHn, CEA Saclay, Gif-sur-Yvette F-91191, France

Abstract. The IS475 collaboration conducted Coulomb-excitation experiments with post-accelerated radioactive $^{220}$Rn and $^{224}$Ra beams at the REX-ISOLDE facility. The beam particles ($E_{\text{beam}}$: 2.83 MeV/u) were Coulomb excited using $^{60}$Ni, $^{114}$Cd, and $^{120}$Sn scattering targets. De-excitation $\gamma$-rays were detected employing the Miniball array and scattered particles were detected in a silicon detector. Exploiting the Coulomb-excitation code GOSIA for each nucleus several matrix elements could be obtained from the measured $\gamma$-ray yields. The extracted $\langle 3^-||E_3||0^+\rangle$ matrix element allows for the conclusion that, while $^{220}$Rn represents an octupole vibrational system, $^{224}$Ra has already substantial octupole correlations in its ground state. This finding has implications for the search of CP-violating Schiff moments in the atomic systems of the adjacent odd-mass nuclei.
1 Introduction

There is manifold experimental evidence for nuclei within specific regions of the nuclear landscape to have strong octupole correlations [1]. Possibly, some nuclei possess these correlations even in their ground state. In a geometrical picture these correlations lead to a pear-shape distortion of the nuclear surface. The experimental evidence comprises of low-lying 3⁻ states in near-spherical and 1⁻ band heads of the K=0 octupole band in deformed nuclei, odd-even staggering of positive and negative parity yrast bands at comparably low spins, parity doublets in the neighbouring odd-mass systems and most important enhanced B(E3) strength for stretched E3 transitions.

Strong octupole correlations occur in nuclei for which the Fermi level for protons as well as for neutrons is situated between the unique-parity subshell and the subshell having an orbital (l) as well as total (j) angular momentum difference of Δl = 3ℏ and Δj = 3ℏ. These particular subshell combinations are realized near the neutron (N) and proton (Z) numbers N or Z = 36, 56, 88, and 136. Supported by theoretical investigations using various approaches (e.g., see Refs. [1,2] and references therein), especially ²²⁴Ra is a promising candidate for a nucleus with strong octupole correlations. Prior to this work a Coulomb excitation measurement on ²²⁶Ra already exhibited strong B(E3, J⁻ → (J + 3⁻)) transition probabilities in this nucleus [3]. The reflection asymmetric pear-shape associated with strong octupole correlations leads to an asymmetric charge distribution in the nucleus. This asymmetric charge distribution would result in an enhancement of a CP-violating nuclear Schiff moment [4,5,6] in the neighbouring odd-mass nuclei, which would induce an electric-dipole moment (EDM) in the atomic system. Upper limits on EDMs have been measured to date constraining models, which propose physics beyond the standard model.

2 Experiments

The experiments were performed at ISOLDE using the Radioactive ion beam EXperiment (REX) accelerator [8]. The REX-ISOLDE facility has the world-wide unique capability to produce and post-accelerate the radon and radium nuclei of interest with a sufficient intensity and energy to perform sub-barrier Coulomb-excitation measurements. Since the latter are sensitive to E2- and E3-matrix elements they represent a tool to measure E3-transition strength which otherwise cannot be observed due the presence of competing fast E1 transitions predominantly depopulating the level of interest. In order to produce the nuclei of interest in a spallation reaction a primary UC was irradiated with 1.4 GeV protons. The radioactive isotopes were mass separated, charge bred (A/q ~ 4.1), post-accelerated to 2.82 and 2.83 MeV/u, respectively, using REX and delivered to the secondary Coulomb-excitation target inside the Miniball setup [9]. The Miniball setup consists of 24 high-purity germanium (HPGe) detectors grouped into eight triple clusters for γ-ray detection and a double-sided silicon strip detector (DSSD) for particle detection and identification. The high granularity of the DSSD and the six-fold segmentation of the individual HPGe detectors guarantee a good angular resolution of the detected γ-rays and particles. Particle-γ coincidences allow for a Doppler correction and background suppression. Examples of spectra of ²²⁰Rn Coulomb excited on ⁶⁰Ni and ¹²⁸Sn secondary targets are shown in Fig. 3. Additionally, ¹¹⁴Cd was used as secondary target. The well-known Coulomb-excitation cross sections of ¹¹⁴Cd [10] in combination with known lifetimes of ²²⁰Rn and ²²⁴Ra were used for the normalisation of the observed Coulomb-excitation cross sections. The use of several secondary targets with a variety of Z was necessary in order to disentangle one-step and multi-step Coulomb excitation paths.

![Figure 1. Excitation energy of the lowest-lying 3⁻ state of nuclei situated in the mass region north-east of ²⁰⁸Pb.](image1)

![Figure 2. Low-energy level scheme of ²²⁴Ra as it is relevant for sub-barrier Coulomb excitation. Data are taken from Ref. [7].](image2)
Figure 3. Particle-γ coincidence gated and Doppler-corrected γ-ray spectra of 220Rn Coulomb excited using secondary 60Ni (bottom) and 120Sn (top) targets. Peaks are labelled corresponding to the transition they represent.

3 Results and Conclusion

The Coulomb-excitation code GOSIA was used to extract the respective matrix elements from the observed γ-ray yields. This analysis resulted amongst others in matrix elements corresponding to a B(E3, 0+ → 3−) value of 33(4) W.u. for 220Rn and 42(3) W.u. for 224Ra [11]. The corresponding values are shown as red points in Fig. 4. Here, it is worthwhile to point out, that the experimental trend of the two radium isotopes opposes the predictions of mean-field based calculations (e.g., see Ref. [2]) as well as cluster models [12].

Figure 4. B(E3, 3− → 0+) strength as function of the neutron number, N. Data are taken from Refs. [11,13].

Assuming axial symmetry, the nuclear shape can be parameterised in terms of deformation parameters, β3,

$$R(\Theta) = c(\beta_3) R_0 \left[ 1 + \sum_{\lambda=2}^{\infty} \frac{2\lambda+1}{4\pi} \beta_\lambda P_{2\lambda}(\cos \theta) \right]$$

and the corresponding Legendre Polynomials, P_{2\lambda}(\cos \theta).

The deformation parameters can be extracted from the measured matrix elements [10]. The shape of 220Rn and 224Ra as resulting from the current experiment are shown in Fig. 5. 224Ra exhibits the pear-shape associated with an octupole correlated nucleus.

Figure 5. Inverse sum rule B(E3, 3− → 0+)/E3− as function of the neutron number, N. Data are taken from Refs. [11,13].

The particular behaviour of the two radium isotopes (224Ra and 226Ra [4]) for which the B(E3) strength is known becomes more evident when the inverse sum rule B(E3)/E3− is plotted (see Fig. 5.).

Figure 6. Surface contour plots showing 220Rn (left) and 224Ra (right). The deformation parameters are given in the upper right corner. Figure is taken from Ref. [11].

In conclusion the presented Coulomb-excitation experiment provided strong evidence that 220Rn is rather an octupole vibrational system, while 224Ra exhibits behaviour associated with an octupole deformed ground state. The associated nuclear Schiff moment [4,5,6] is predicted to result in an enhanced atomic EDM. Consequently, atoms of the odd-mass radium isotopes are favourable cases in the search for CP-violating physics. In order to answer the question, whether Rn isotopes heavier than the investigated 220Rn are also favourable cases in the search for atomic EDMs more spectroscopic data are needed. The collaboration has already further
approved experiments at HIE-ISOLDE, which aim to investigate even-even and odd-mass isotopes near A=224 [14] and isotopes in the octupole-soft mass region near $^{144}$Ba [15].

Acknowledgements

The support of the ISOLDE Collaboration and technical teams is acknowledged. This work was supported by the following Research Councils: STFC (UK), BMBF (Germany; 05P12RC1A, 06DA9036l, 06KY9136I and 06KY2051), HIC for FAIR (Germany), FWO-Vlaanderen (Belgium), Belgian Science Policy Office (IAP-BriX network P7/12), Academy of Finland (contract no. 131665), DOE (US; DE-AC52-07NA27344 and DE-FG02-04ER41331), NSF (US), MICINN (Spain; FPA2009-08958 and FIS2009-07277), Consolider-Ingenio 2010 Programmes (Spain; CPAN CSD2007-00042 and MULTIDARK CSD2009-00064), Polish Ministry for Science and Higher Education (grant no. 589/ N-G-POOL/2009/0), EC via I3-EURONS (FP6 contract no. RIi3-CT-2004-506065), MC Fellowship scheme (FP7 contract PIEF-GA-2008-219175) and IAEENSAR (FP7 contract 262010).

References