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We consider superconducting properties of a two-dimensional Dirac material such as graphene under strain that
produces a flat-band spectrum in the normal state. We show that in the superconducting state, such a model results
in a highly increased critical temperature compared to the case without the strain, inhomogeneous order parameter
with two-peak shaped local density of states and yet a large and almost uniform and isotropic supercurrent. This
model could be realized in strained graphene or ultracold atom systems and could be responsible for unusually
strong superconductivity observed in some graphite interfaces and certain IV-VI semiconductor heterostructures.
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In conventional superconductors, the superconducting crit-
ical temperature Tc depends exponentially on the electronic
density of states ν at the Fermi level, Tc ∼ e−1/(gν), where
g describes the strength of attractive interaction. Thus, when
engineering materials for higher critical temperatures, it is
natural to aim to increase the density of states. In two-
dimensional systems such as graphene, a traditional approach
for this is to utilize doping [1], which recently lead to a
breakthrough as strongly doped graphene was found to be
superconducting with Tc of a few Kelvin [2]. An extreme
case of increased density of states is the flat-band state, where
the electrons within some momentum regime are completely
dispersionless, leading to diverging density of states at the
corresponding energy. In various different models, this has
been shown to result in a parametrically enhanced critical
temperature that is linear in the electron-phonon coupling
constant, Tc ∼ g [3,4]. It has also been shown that this type
of an approximate flat-band state is realized in graphene and
other Dirac materials under periodic strain [5,6].

Besides straining Dirac electrons, there have been several
propositions for realizing systems with a flat band and possibly
promoting superconductivity [7]. Such models include surface
states of topological semimetals with an approximate chiral
symmetry [8]. If the energy scale characterizing the deviation
from the exact symmetry is weaker than that characterizing
superconductivity, the mean field theory predicts flat-band
superconductivity [9]. An example system belonging to
this class is rhombohedral graphite. However, this type of
superconductor is prone to fluctuations [10].

The most often encountered models leading to flat bands
result from large magnetic fields and the associated Landau
levels [11]. However, magnetic fields also break the time
reversal symmetry and typically suppress (singlet) supercon-
ducting order, so they cannot directly be utilized. A recent
approach was hence to study superconductivity in a time-
reversal invariant attractive Harper-Hubbard model defined on
a two-dimensional square lattice [12], with the most direct
realization in ultracold gases.

Here we present a BCS-like model for superconductivity
of Dirac electrons under the type of strain that produces a
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flat-band normal state. This model has quite possibly been
already realized in interfaces between IV-VI semiconductor
heterostructures where the strain is naturally created between
a topological insulator and a trivial insulator due to lattice mis-
match [5,13,14]. Another possible realization for this model is
in graphene with a strain field, created either artificially or at an
interface inside graphite [15]. The latter suggestion also builds
on the recent experimental evidence that graphene can become
superconducting under heavy doping [1,2]. Our proposal could
potentially be used to increase the superconducting critical
temperature much higher in the absence of external doping.
Besides, our model can be studied in ultracold gases in optical
lattices where transforming Dirac points with adjustable
geometry has already been demonstrated [16] and where the
interaction between the electrons can be tuned via Feshbach
resonances [17,18].

To achieve the flat-band state, the strain field experienced by
the Dirac electrons should be such that the resulting effective
vector potential is of the form A ∝ (0,Ay(x),0), where Ay(x),
the vector potential in the y direction in the 2D lattice,
changes sign periodically in x, the direction perpendicular
to the vector potential. A strict periodical variation is not
entirely necessary for this effect, but it allows for a more direct
theoretical description of the effect. Here we follow Ref. [5]
and use Ay(x) = β

L
cos(2πx/L), where β is a dimensionless

parameter describing the strength of the strain and L is
the strain period. In graphene, this vector potential could
be produced for example by an in-plane strain field of the
form uy(x) = aβ

4π
sin(2πx/L) (assuming graphene Grüneisen

parameter = 2 [6], see Fig. 1(a)) or out-of-plane strain field
of the form h(x,y) = y + aβ

4π
sin(2πx/L), where a = 1.42 Å

is the graphene lattice constant. As a result, the low-energy
Hamiltonian describing the Dirac electrons is given by

Ĥ0 = �vF p̂xσx + �vF (p̂y + Ay(x))σy, (1)

where vF is the Fermi velocity of the Dirac material.
In condensed-matter systems, Dirac points appear in pairs
(valleys in graphene physics). Equation (1) describes the
physics at one valley, say K, whereas the sign of Ay is reversed
for the partner valley (K′). The dispersion relation of this
model has an approximate flat band for px ∈ [−π/L,π/L] and
py ∈ [−β/(2L),β/(2L)]. Inside the flat band, it has a weak
dispersion of the form Ep = �c|p|, where c = vF /I0(β/π )
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FIG. 1. (a) Schematic, highly exaggerated picture of a honey-
comb lattice in strain field of the form uy(x) = aβ

4π
sin(2πx/L), L

being the strain period. (b) The profile of �(x) for β = 20 (blue),
β = 30 (green), and β = 40 (red) and g/(�vF L) = 0.01.

and In(x) is the modified Bessel function of the first kind [19].
For β � π , the speed becomes exponentially small, and the
bands become asymptotically flat. This dispersion, along with
the width of the flat band, determines the energy scale above
which the model can be considered to have a flat band. The
eigenstates of this Hamiltonian are localized at the points
where the potential changes sign so that one sublattice is
occupied at one sign change and the other sublattice at the
opposite sign change. This can be seen in the density of states
of the normal state shown in Fig. 2(a).

The Hamiltonian (1) is closely related to the Su-Schrieffer-
Heeger (SSH) model for polyacetylene chains [20]. When
the y-directional momentum py in (1) is zero, the model is
exactly the SSH model with a domain wall and the associated
topological zero energy state at each point where the potential
changes sign. For finite py the domain walls move closer to
each other and the zero energy states start to overlap until they
are effectively destroyed at py ≈ β/(2L).

When we add an attractive interaction of coupling strength
g to the model (1) (we assume here s-wave type coupling
for simplicity [21]), the material has the possibility to enter a
superconducting state described by the Bogoliubov-de Gennes

FIG. 2. Spectral properties of Dirac electrons in a periodic strain
in normal and superconducting states with β = 40 and g/(�vF L) =
0.005. (a) Local density of states in the normal state. (b) Local density
of states in the superconducting state. (c) Total density of states for
the normal (green) and superconducting (blue) states. (d) The energy
spectrum in both states.

equation (
H0 �(x)

�∗(x) −H0

)(
un(r)
vn(r)

)
= En

(
un(r)
vn(r)

)
. (2)

The two degrees of freedom in the matrix are the Dirac
particles, described by H0 given in (1) with spinor wave
functions un(r), and Dirac holes, described by the Hamiltonian
for holes, −H0 with spinor wave functions vn(r). The form of
the hole Hamiltonian follows from the fact that the hole partner
for a particle in valley K is a conjugated particle at valley −K so
that H holes

0 (K) = H ∗
0 (−K) = −H0(K). Below we suppress the

subvalley indices and consider only K subvalley except when
otherwise mentioned. The coupling between the particles and
holes is described by a superconducting order parameter �(x),
which, because of the periodic potential in the Hamiltonian,
has a periodic dependence on the x coordinate. It can be found
by solving the self-consistency equation

�(x) = gL2

4π2

∫ 2π/L

0
dpx

∫ pc

0
dpy

∑
i

∑
n

×v∗
i,n,p(x)ui,np(x) tanh

[
En(p)

2kBT

]
, (3)

where we have summed over the two valleys which leads to
both sublattices, labeled by i, contributing to the same �. The
sum over the band index n can be restricted to those bands
with energy below some cutoff energy, say the Debye energy
due to the electron-phonon interaction.

With qualitative analysis of the energy scales of the model,
we find three different regimes: (i) When g 	 �cL, the small
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(a) (b)

FIG. 3. (a) Dependence of �ave on superconducting coupling
with β = 20 (blue), β = 30 (green), and β = 40 (red). (b) �ave as a
function of temperature for g/(�vF L) = 0.02.

linear slope of the spectrum is visible and superconductivity is
of the type found in pure Dirac materials [22,23] (for example,
graphene). In particular, there is a quantum critical point at g =
π2

�cL/β below which superconductivity does not take place.
(ii) When �cL 	 g 	 �vF L/β, the system is in the pure flat-
band superconductivity regime, only the lowest energy band
contributing to the superconductivity. The critical temperature
is enhanced and � is localized. This is the interesting regime
where we focus below. (iii) When g � �vF L/β, also higher
(nonflat) bands contribute to superconductivity. A model
resembling the one here in this third limit was considered
in Ref. [24] in strained graphene where an inhomogeneous
superconducting state was also found.

Because the density of states is peaked at the locations
of the vector potential sign change, we expect that the
superconducting order parameter is also localized close to
these points. To demonstrate this, we calculate �(x) in the
model (2) from the self-consistency calculation [19]. The
resulting profile of �(x) is shown in Fig. 1(b).

In Fig. 3(b) we also plot the average of �(x) as a function
of the coupling constant. For small couplings, where � is
small and can “see” the small linear slope of the spectrum,
there is a quantum critical point at g ≈ π2

�cL/β below
which there is no superconductivity. In the figure, this point
is only visible for β = 20 because for larger β the linear
regime of the spectrum becomes exponentially smaller. For
larger g, the system enters the flat-band regime. A simple
constant � estimate yields for the order of magnitude estimate
� ≈ βg/(2L2). This expression also shows the strong linear
relationship between � and g that is apparent in the numerical
calculation. From the numerics, we can also find that the
critical temperature Tc is approximately given by the average
value of �, i.e., kBTc ≈ (1/L)

∫ L

0 dx�(x). This behavior is
shown in Fig. 3(b). Due to the linear dependence between Tc

and g we can therefore expect a high critical temperature in
this parameter regime.

We also calculate the spectrum and local density of states in
the superconducting state. At zero momentum, the spectrum

has a gap of magnitude |Ep=0| ≈ 2�max which is the expected
result for any superconductor. However, for small momenta,
the slope of the spectrum is negative for excitations with
positive momentum and energy, leading to a local minimum at
ky = kmin ∼ β/(2L). The momentum dependence results from
the localized �(x). In the density of states, the two local min-
ima of the spectrum lead to a peculiar two-peaked shape shown
in Fig. 2(a). This feature could act as a possible experimental
signature for superconductivity described by this model.

For a flat band, the group velocity c of the electrons
becomes very small for both normal and superconducting
state [see Fig. 2(d)]. It would hence be natural to think of the
paired electrons to be localized, unable to carry supercurrent.
However, there are also other contributions to supercurrent
besides those proportional to the group velocity [12]. We
calculate the supercurrent by adding a phase gradient to
the order parameter as �(x) → �(x)eiksx in which case the
supercurrent is given by

J(x) = evF

L

∑
p,n

(fp,nu
†
p,nσup,n + (fp,n − 1)v†

p,nσvp,n), (4)

where fp,n is the number of quasiparticles occupying the nth
band at momentum p. At T = 0, f [En(p)] = 1 for En(p) < 0
and 0 otherwise.

For |ksL| 	 1, we find that the supercurrent is approxi-
mately of the form Ji(x) ≈ ai�maxks,i , where i ∈ {x,y} and
ax = 0.17, ay = 0.19 are fitted constants that describe the
weak anisotropy of the current. This result is shown in Fig. 4.
While current in the x direction must be independent of y

due to translational invariance, it can be inhomogeneous in
the y direction. In the inset of Fig. 4 we show the profile
of current flowing in the y direction. Interestingly, it is
only weakly inhomogeneous even though the superconducting
order parameter varies strongly in space. The reason for
this is that the current is proportional to the overlap of the
wave functions of the two sublattices and the overlap is

FIG. 4. Supercurrent in x and y directions (solid and dashed lines,
respectively) as a function of the superconducting coupling for β =
25 (blue), β = 30 (green), and β = 35 (red). Inset: profile of the
supercurrent in y direction for β = 25 (solid line) and β = 30 (dashed
line) for ksL = 0.01,0.05,0.1.
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almost position independent. This behavior is analogous to
what happens in a model for superconducting rhombohedral
graphite [25].

Let us discuss the possible physical realizations of peri-
odically strained Dirac fermions. So far, graphene has been
shown to be superconducting when doped with calcium and
possibly also with other elements [1,2,26]. In that case doping
of the pure Dirac material is required to increase the density of
states so that the quantum critical point disappears. If this is the
main effect, then the scheme of a periodic strain discussed here
should also make even undoped graphene superconducting
because the flattening of the spectrum greatly lowers the
superconducting coupling required to overcome the quantum
critical point (by the factor c/vF = 1/I0(β/π )). Contrary to
the pristine graphene (or other Dirac material), doping the
strained graphene to move the chemical potential out of the
flat-band regime would act to reduce the critical temperature.

Strain superlattice could explain the observations of the
superconducting-type behavior at interfaces between graphite
regions with different lattice orientations [27–29]. It is possible
that such interfaces stabilize an array of screw dislocations,
which would lead to the presence of periodically strained
graphene at the interfaces.

We can estimate the value of the critical temperature in
periodically strained graphene using the coupling constant
obtained from experiments [2,26]. As shown in Ref. [19], we
would get Tc as large as 420 K for β = 30 and L = 10 nm. In
this estimate, we neglect the effects from the strain superlattice
or the doping in the experiments on g, and therefore it should

be taken only as indicative. Such effects are left for further
work.

Another class of materials where flat-band superconductiv-
ity due to straining has already been suggested is layered struc-
tures made out of IV-VI semiconductors such as PbTe/SnTe,
PbSe, PbS, PbTe/PbSe, PbS/YbS, and PbTe/YbS [13,14]. Our
results here could be used to verify whether models previously
suggested [5] indeed are valid in these materials.

Besides superconductivity, flat bands can promote also
other types of states, such as magnetism [30], depending
on the dominant interaction channel. Moreover, in such
two-dimensional systems the long-range correlations are most
likely suppressed by some mechanism, which would limit the
observation of superconductivity in large samples. Besides
the phase fluctuations leading to Kosterlitz-Thouless physics,
another mechanism for suppressing correlations would be
those affecting the strain lattice. Therefore, on length scales
long compared to such elastic correlation length, the system
would most likely be described by a set of Josephson coupled
superconducting islands. The exact elastic correlation lengths
are materials dependent and therefore out of the scope of
the present work. We also note that in the case of strained
graphene, other pairing symmetries have been considered [31].

We thank Grigori Volovik and Pablo Esquinazi for fruitful
discussions. This work was supported by the Academy of
Finland through its Center of Excellence program Project No.
284594, and by the European Research Council (Grant No.
240362-Heattronics).
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