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Abstract

Shape optimization of a duct system with respect to sound transmission loss
is considered. The objective of optimization is to maximize the sound transmis-
sion loss at multiple frequency ranges simultaneously by adjusting the shape
of a reactive muffler component. The noise reduction problem is formulated
as a multiobjective optimization problem. The sound attenuation for each con-
sidered frequency is determined by a hybrid method, which requires solving
Helmholtz equation numerically by finite element method. The optimization is
performed using non-dominated sorting genetic algorithm, NSGA-II, which is a
multi-objective genetic algorithm. The hybrid numerical method is flexible with
respect to geometric shapes, material parameters and boundary conditions. Its
combination with multiobjective optimization provides an efficient method to
design muffler components.

1 Introduction

Physical phenomena encompass many forms of wave propagation and thus bring
a great interest to understand wave propagation and its interaction with the envi-
ronment. Acoustical applications reside in many disciplines, and often the goal is
to reduce undesired acoustic noise. Sound propagation especially in waveguides is
a fundamentally interesting topic. Ventilation ducts are an example of waveguide
where noise reduction is of a special interest.

There are several methods to reduce noise in ducts. The noise reduction is achieved
by mufflers, that are of either passive or active type. Passive mufflers fall into two
categories: dissipative and reactive. Dissipative mufflers employ noise absorbing
material and they are best suited for high frequency noise. Reactive mufflers exploit
the shape of muffler component to obtain useful wave reflections and they are best
suited at low frequencies. Active mufflers, for one, implement noise reduction by
creating antinoise of the same amplitude but opposite phase to the original noise,
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see for example Egena et al.[1] and Lee et al[2]. They are effective at low frequency
noise cancellation.

The study of acoustical sound propagation in ducts is possible by several means.
Experimental acoustical study is often not feasible, whereas analytical or numerical
methods can often be considered. There is a introduction to one dimensional duct
acoustic modeling in Munjal[3]. Four-pole transfer matrix method, that is based on
plane wave theory, offers an approximative way to make a one-dimensional model
of muffler acoustics. This approach has been used for transmission loss optimization
in duct system in Yeh et al[4]. However, the method is limited to simple geometries
and boundary conditions.

The finite element method (FEM) is a general approach to solve approximately
partial differential equations. By FEM, it is possible to obtain approximate, yet ac-
curate solution of Helmholtz equation with appropariate boundary conditions. It
is also possible to consider problems with complex geometry and varying material
properties. By using suitable preconditioner, such as one introduced in Airaksinen
et al.[5], it is possible to solve effectively large Helmholtz problems.

In this article, the modelling of an acoustic reactive muffler is based on a hybrid
numerical method[6]. This method provides realistic modelling of acoustics in a
muffler component, which is located between uniform inlet and outlet ducts. In the
uniform parts, acoustic solution can be obtained by modal analysis, where individ-
ual propagating modes are solved numerically or in special cases, analytically. For
example in circular ducts, solution of the Helmholtz equation can be represented
in terms of Bessel functions. Finite element method is used to solve the Helmholtz
equation in the non-uniform muffler part of the ductwork. Mode matching[7] is
used to couple the different solutions in the muffler and inlet/outlet ducts. The
generality of finite element method is thus provided to the acoustics simulation and
complicated shapes and configurations can be treated accurately.

The objective of optimization here is to maximize the sound transmission loss
(STL) of the muffler by utilizing shape optimization at two frequency ranges simul-
taneously. In book by Haslinger and Mäkinen[8], an introduction to shape opti-
mization has been given. In addition to shape optimization, material parameters,
especially absorption of the boundary material could also be optimized by applying
the method of this paper.

As an optimization method, a genetic algorithm (GA) is considered, which is a
stochastic optimization algorithm that mimics genetic drift and the Darvinian strife
for survival. Unlike traditional gradient-based optimizers that need the derivatives
and a good starting point, GA has a good opportunity to locate the global optimum
in a near optimal manner. In Mäkinen et al. [9], a genetic algorithm approach to
multiobjective aircraft wing shape optimization has been proposed. Here, the opti-
mization is made with the non-dominated sorting genetic algorithm, NSGA-II [10],
which is an optimizer well suited for multi-objective problems.

The article is organized as follows. In Section 2, the mathematical formulation of
the acoustics in the muffler component is given. Hybrid numerical method is de-
scribed in Section 3. In Section 4, numerical experiments are performed and results
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are reported. In Section 5, the concluding remarks are given.

2 Mathematical formulation

Figure 1: The crosscut illustration of a duct system in a general case: inlet pipe ΩA,
muffler component of arbitrary shape ΩB and outlet pipe ΩC .

Sound propagation is governed by the acoustic wave equation

c2∇ · 1
ρ
∇p̃− 1

ρ

∂2p̃

∂t2
= 0, (1)

where p̃ (x, t) is the pressure field at location x and time t, ρ (x) is the density of
the material, c (x) is the speed of sound. Assuming time-harmonic pressure field
p̃ (x, t) = p (x) e−iωt, where ω is angular frequency and i =

√−1, Eq. (1) leads to the
Helmholtz equation

−∇ · 1
ρ
∇p− k2

ρ
p = 0, (2)

where k = ω/c is the angular wavenumber.
The duct system is illustrated in Fig. 1. It consists of three parts: inlet duct

domain ΩA, muffler component domain ΩB and outlet duct domain ΩC . Inlet and
outlet ducts must have uniform but arbitrary cross-section. Inlet and outlet ducts
are connected to a general, arbitrarily shaped muffler component on interfaces ΓA

and ΓC . The wall of the muffler is denoted by domain Γn, thus ∂ΩB = ΓA ∪ Γn ∪ ΓC .
Non-absorbing sound-hard boundary is considered on Γn, and it is modelled by
Neumann boundary condition

n ·∇p = 0 on Γn, (3)

where n is the outer normal vector on boundary Γn.
The solution of Helmholtz equation Eq. (2) in muffler component domain ΩB is

obtained by finite element method, which is described later in Section 3. In duct
domains ΩA and ΩC , Helmholtz solution can be obtained by modal analysis. In cer-
tain special cases such as circular or rectangular duct, analytical form of the solution
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can be derived, whereas in general shaped duct, eigenfunctions have to be solved
numerically. The expansion of the acoustic pressure in duct domains ΩA and ΩC is
represented in cylindrical coordinates as a sum over the eigenmodes

pA (r, θ, z) =

mA∑
j=0

AjΦj (r, θ) e
−iλjz +

mA∑
j=0

FjΦj (r, θ) e
iλjz and

pC (r, θ, z) =

mC∑
j=0

BjΨj (r, θ) e
−iγjz +

mC∑
j=0

CjΨj (r, θ) e
iγjz, (4)

where Φj (r, θ) and Ψj (r, θ) are transverse duct eigenfunctions corresponding to the
cross-section of the pipe, Fj, Aj, Bj and Cj are the modal amplitudes correspond-
ing to eigenfunctions Ψj , Φj , and λj , γj are axial wavenumbers along z-axis. As the
evanescent modes can be truncated, sums in Eq. (4) have only finite number propa-
gating modes, denoted by mA, mC . Coordinate systems in uniform ducts are chosen
such that z-coordinate gives the axial direction of the duct with positive direction
away from the nonuniform domain ΩB. The origin of coordinate system in domain
ΩA is located on the interface ΓA, and the origin of ΩC is located on ΓC .

Coefficients Fj determine the incoming sound from inlet pipe. The equal modal
energy density (EMED) assumption, i.e. |Fn|2 In = |Fm|2 Im for all m, n, has been
chosen for the inlet as incident sound source, as it is a good representation of the
sound field emanating from a fan in a ventilation system; see Kirby and Lawrie[11].
For EMED, the incoming modal amplitudes can be calculated from the formula

|Fn|2 =
I0

In
∑nF

m=0 λm

. (5)

Modal amplitude coefficients Aj correspond to the sound that is reflected back from
the muffler, Bj correspond to the sound propagating to the outlet pipe and Cj cor-
respond to the sound that is reflected back from outlet pipe. By setting Cj = 0 for
all j, a perfectly non-reflecting boundary is imposed on ΓC .

The sound transmission loss function is defined as the ratio of the transmitted to
incident sound powers

TL (x, f) = −10 log10
ρA

∑nB

m=0 γmHm |Bm|2
ρC

∑nB

m=0 λmIm |Fm|2
, (6)

where In =
∫
ΓA

|Φn|2 dx and Hm =
∫
ΓB

|Ψm|2 dx. By considering the EMED assump-
tion Eq. (5), we can write the ratio the transmission loss in a simpler form

TL (x, f) = −10 log10
ρA

∑nB

m=0 γmHm |Bm|2
ρCI0

. (7)

Next, function τ (x, f) is defined as

τ (x, f) = min (TL (x, f) , TLmax) . (8)
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Here, parameter TLmax is a limiting value for transmission loss, which is necessary
due to possible narrow infinite peaks in transmission loss function that inhibit good
convergence of the optimizer.

The multiobjective optimization problem is defined as a minimization of objec-
tive functions

f1 (x) = − 1

n1

nω∑
i=1

τ (x, ωi) and f2 (x) = − 1

n2

nι∑
i=1

τ (x, ιi) , (9)

where the shape vector x = [x1, . . . , xnvars ] contains parameters that are used to alter
the shape of the muffler component, ω = [ω1, . . . , ωnω ] and ι = [ι1, . . . , ιnι ] are vectors
of frequencies where sound transmission loss is maximized.

2.1 Eigenfunctions in a circular duct

In circular duct, the eigenfunctions Φj (r, θ) and Ψj (r, θ) are represented by modes

Φj (r, θ) = Jmj
(krjr) e

imjθ, (10)

where Jmj
(x) is order mj Bessel function of the first kind and krj is the radial

wavenumber. The radial wavenumber krj is obtained by considering sound-hard
wall boundary condition n ·∇p = 0, which here implicates that at r = a, where a is
the radius of the duct wall,

J ′
mj

(krja) = 0. (11)

Axial wavenumber kzj is evaluated from the effective wavenumber k and the radial
wavenumber krj by

kzj =
√
k2 − k2

rj. (12)

The axial wave propagation is determined by term eikzjz (see Eq. (4)), which im-
plicates that imaginary axial wavenumber kzj leads to exponential decaying of the
wave mode. Thus, the evanescent modes with krj > k are neglected. Modes are
denoted by index j that starts from zero and is ordered according to the radial
wavenumbers krj . The radial wavenumbers are calculated from Bessel derivative
roots krj = bj/a according to Eq. (11) (see Table 1), where bj is the root of Bessel
derivate of order mj and a is the radius of the duct.

Table 1: First roots of Bessel derivative function, J ′
mj

(bj) = 0.

j 1 2 3 4 5
mj 0 1 2 0 3
bj 0.0 1.84 3.05 3.83 4.20
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3 Hybrid numerical method with mode matching

In the hybrid numerical method, the modal representations in ΩA and ΩC are cou-
pled to the finite element representation in ΩB by mode matching. The weak formu-
lation of the Helmholtz equation Eq. (2) is the following: find pB = pr + pii, where
pr ∈ H1 (ΩB), pi ∈ H1 (ΩB), such that∫

ΩB

1

ρ

(∇pB ·∇v − k2pBv
)
dx−

∫
∂ΩB

1

ρ
n ·∇pB v dx = 0 (13)

for any v ∈ H1 (ΩB); n is outward normal vector. Solution pA and pC are coupled to
pB by the boundary conditions

n · ∇pB = n · ∇pA on ΓA, (14)
n · ∇pB = n · ∇pC on ΓC , (15)

pB = pA on ΓA, (16)
pB = pC on ΓC . (17)

The first two conditions Eqs. (14) and (15) and Neumann condition Eq. (3) can be
incorporated in the weak form Eq. (13), leading to the equation

∫
ΩB

1

ρ

(∇pB ·∇v − k2pBv
)
dx−

∫
ΓA

1

ρ
n ·∇pA v dx−

∫
ΓC

1

ρ
n ·∇pC v dx = 0. (18)

In mode matching, the two other conditions Eqs. (16) and (17) are imposed in weak
forms: find pA ∈ ZA, pB = pr + pii, where pr ∈ H1 (ΩB), pi ∈ H1 (ΩB) and pC ∈ ZC

such that ∫
ΓA

(pB − pA) Φ̄idx = 0 and∫
ΓC

(pB − pC) Ψ̄idx = 0 (19)

for any Φ̄i ∈ ZA and Ψ̄i ∈ ZC , where test function spaces are defined as ZA =
spanj=0,...,mA

{Φj (r, θ)} and ZC = spanj=0,...,mC
{Ψj (r, θ)}. In summary, the hybrid

formulation of the acoustic problem in the waveguide is given by the Eqs. (18) and
(19).

Finite element discretization proceeds by approximating the acoustic pressure in
ΩB by

pB (x) =
n∑

j=1

Nj (x) pj = [N1 (x) , . . . , Nn (x)]

⎡
⎢⎣

p1
...
pn

⎤
⎥⎦ = N (x)T p, (20)
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where Nj (x) are global trial functions for finite element mesh, pj are the nodal val-
ues of the acoustic pressure at node j and n is the number of nodes in ΩB. Galerkin
method of weighted residuals proposes that Nj (x) are used as test functions v. The
approximation Eq. (20) is next replaced in Eq. (18) to form a matrix equation

∫
ΩB

1

ρ

(∇N ·∇NT − k2NNT
)
dxp−

∫
ΓA

1

ρ
Nn·∇pA dx−

∫
ΓC

1

ρ
Nn·∇pC dx = 0 (21)

The modal representations of the solutions pA and pC in Eq. (4) are replaced into
Eq. (21), where the normal derivatives of pA and pC are of the form

n ·∇pA (r, θ, 0) =
∂

∂z
pA (r, θ, 0) = −i

mA∑
j=0

λjAjΦj + i

mA∑
j=0

λjFjΦj,

n ·∇pC (r, θ, 0) =
∂

∂z
pC (r, θ, 0) = −i

mC∑
j=0

γjBjΨj. (22)

These derivatives are substituted in Eq. (21):

∫
ΩB

1

ρ

(∇N ·∇NT − k2NNT
)
dxp−

∫
ΓA

1

ρ
N

(
−i

mA∑
j=0

λjAjΦj + i

mA∑
j=0

λjFjΦj

)
dx

−
∫
ΓC

1

ρ
N

(
−i

mC∑
j=0

γjBjΨj

)
dx = 0. (23)

This is expanded in component form

nA∑
j=0

∫
ΩB

1

ρ

(∇Ni ·∇Nj − k2NiNj

)
dx pj + i

mA∑
j=0

λj

∫
ΓA

1

ρ
NiΦj dxAj

−i

mA∑
j=0

λj

∫
ΓA

1

ρ
NiΦj dxFj + i

mC∑
j=0

γj

∫
ΓC

1

ρ
NiΨj dxBj = 0. (24)

If we use the matrix notations

Ĥij = iλj

∫
ΓA

1
ρ
NiΦj dx K̂ij = iγj

∫
ΓC

1
ρ
NiΨj dx

f̃i = i
∑mA

j=0 λj

∫
ΓA

1
ρ
NiΦj dxFj Gij =

∫
ΩB

1
ρ
(∇Ni ·∇Nj − k2NiNj) dx,

(25)
we can write (24) in matrix form

Ĥa+Gp +K̂b = f̃ , (26)

where a contains mA complex modal amplitudes of interface ΓA, b contains mB

complex modal amplitudes of interface ΓB.
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Eqs. (4) and (20) are next replaced in Eq. (19):

∫
ΓA

Φ̄iN
T dxp =

mA∑
j=0

∫
ΓA

ΦjΦ̄i dxAj +

mA∑
j=0

∫
ΓA

ΦjΦ̄i dxFj,

∫
ΓB

Ψ̄iN
T dxp =

mC∑
j=0

∫
ΓA

ΨjΨ̄i dxBj. (27)

Expanded to components, this reads

n∑
j=0

∫
ΓA

Φ̄iNj dx pj =

mA∑
j=0

∫
ΓA

ΦjΦ̄i dxAj +

mA∑
j=0

∫
ΓA

ΦjΦ̄i dxFj,

n∑
j=0

∫
ΓB

Ψ̄iNj dx pj =

mC∑
j=0

∫
ΓA

ΨjΨ̄i dxBj. (28)

By using matrix notations

Hij =
∫
ΓA

ΦjΦ̄i dx Kij =
∫
ΓC

ΨjΨ̄i dx

H̃ij = − ∫
ΓA

Φ̄iNj dx K̃ij = − ∫
ΓC

Ψ̄iNj dx

fi = −∑mA

j=0

∫
ΓA

ΦjΦ̄i dxFi,

(29)

Eq. (28) can be written in matrix form

Ha+ H̃p = f

Kb+ K̃p = 0. (30)

Now, the Eqs. (26) and (30) can be written as a single block matrix equation⎡
⎣ H H̃ 0

Ĥ G K̂

0 K̃ K

⎤
⎦
⎡
⎣ a

p
b

⎤
⎦ =

⎡
⎣ f

f̃
0

⎤
⎦ . (31)

4 Numerical experiments

In this section, the multiobjective minimization of the functions f1 and f2 in Eq. (9) is
tested in four different cases. In each case, the shape of the muffler is controlled with
certain shape parameters x and the goal is to improve attenuation at given frequen-
cies. The test problem #1 represents a non-symmetric three-dimensional muffler
component optimization. The test problem #2 is chosen because similar optimiza-
tion has been considered in Barbieri and Barbieri [12]. The test problem #3 has been
chosen as an example of a problem that has many parameters defining the shape.
The last test problem #4 is Helmholtz resonator that has been considered in Selamet
et al[13]. It has been chosen as second example that represents non-symmetric three-
dimensional geometry.
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4.1 Technical details

The non-dominated sorting genetic algorithm[10] (NSGA-II) is used as a generic
multi-objective optimizer. It is chosen as an optimizer due to local minima and
non-linear nature of the problem. The following parameters are used in genetic al-
gorithm. The population size npop = 50 is used in examples #1 and #2 and npop = 100
in examples #3 and #4. At the beginning of optimization, a random population of
size 10npop is generated, and then the best candidates are chosen to initial popula-
tion. The crossover probability is set to pc = 0.9. The mutation probability is set to
pm = 1/nvars, where nvars is the number of optimization variables in the problem.
Binary selection is used and simulated binary crossover (SBX) operator and polyno-
mial mutation operator [14] are utilized with distribution indices ηc = 20, ηm = 10,
respectively.

The three-dimensional tetrahedral meshes for test problems are generated by
freely available Netgen mesh generator[15] and the finite element approximation
of the pressure field in muffler component is evaluated by a code written in Nu-
merrin language[16], which is a modelling language developed by Numerola Ltd.
Quadratic tetrahedral elements are used in order to reduce the error from approx-
imation of rounded surfaces and finite element pollution effect [17]. The shape of
the muffler component is altered with respect to chosen variables in order to obtain
optimal transmission loss for the muffler component at chosen frequency ranges.
The problem is formulated as a multiobjective optimization problem, as described
in Section 2. In numerical experiments, meshes are generated such that there are at
least ten elements per wave length at the highest considered frequency. The number
of elements in test problems are around 2000. The limiting value TLmax = 50 dB (see
Eq. (8)) is used in all examples.

4.2 Test problem #1

The dimensions and a schematic illustration of the muffler component are presented
in Fig. 2a. The length of the chamber is L = 500 mm. The radius of inlet and out-
let ducts are r = 30 mm. The problem has three variables that are optimized: the
location of inlet duct x1 ∈ [0.1, 0.5], the location of outlet duct x2 ∈ [0.25, 0.5] and
the radius of muffler chamber x3 = [0.04, 0.08]. Transmission loss is optimized in
frequency ranges 800-900 Hz and 1700-1800 Hz. Two sets of frequencies are opti-
mized according to the formulation in Eq. (9): ω = [800, 825, 850, 875, 900] Hz and
ι = [1700, 1725, 1750, 1775, 1800] Hz. The objective function values in initial popula-
tion are on average f1 = −14.6 dB and f2 = −11.7 dB.

In Fig. 2b, there are four non-dominated fronts (approximations of pareto op-
timal fronts) that are obtained by NSGA-II algorithm after 100 generations. The
different fronts in the figure are obtained by using different random number gener-
ator seed numbers. It is seen, that different fronts are mostly converged to the same
line. This implicates that the algorithm is behaving robustly. It is also seen that after
optimization, the objectives are over 20 dB better than before optimization.
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In Fig. 3b, the transmission loss as a function of frequency is plotted for an opti-
mal solution that is chosen from the non-dominated front at point f1 = −38.3 dB , f2 =
−33.4 dB which is given by shape parameter vector x = [0.16, 0.37, 0.08]. It is seen
that the transmission loss is significantly greater at optimized frequency ranges than
elsewhere.

(a)

(b)

Figure 2: In the upper figure, there is a diagram of a muffler component cross section
used in test case #1. In the lower figure, there are non-dominated solution fronts for
test case #1, four different random seeds.
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Figure 3: In the upper figures, there is the time average of pressure for optimal
solution of test problem #1. The frequency is f = 1800 Hz and optimized parameters
are x = [0.16, 0.37, 0.08] mm. The solution is chosen from non-dominated front at
point f1 = −38.3 dB , f2 = −33.4 dB. In the lower figure there is the transmission
loss as a function of frequency. Transmission loss is maximized in frequency ranges
800-900 Hz and 1700-1800 Hz.

4.3 Test problem #2

The second numerical example problem is illustrated in Fig. 4a. The geometry of the
problem is the same as in Barbieri and Barbieri[12]. The diameter of the chamber is
D = 153.2 mm and the length of the chamber L = 282.3 mm. Inlet and outlet
duct diameters are d = 48.6 mm. The problem has two variables to be optimized:
lengths of the inlet and outlet ducts inside the muffler chamber x1, x2 ∈ [10, 250]
mm, respectively.

In Barbieri and Barbieri[12], the tests were reduced to two dimensional domains
using axisymmetry, whereas our similations are performed in three-dimensional do-
mains. As an optimizer, the Zoutendijk’s feasible direction method was used in Bar-
bieri and Barbieri[12], whereas NSGA-II is considered here. The NSGA-II method
brings two obvious advantages: the problem may be formulated as a multi-objective
optimization problem and there is no need to choose a good starting point for the
algorithm.

Transmission loss is optimized around frequency ranges 600-650 Hz and 1200-
1250 Hz. Two sets of frequencies used in Eq. (9) are ω = [600, 625, 650] Hz and
ι = [1200, 1225, 1250] Hz. The objective function values in initial population are on
average f1 = f2 = −10 dB.
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The Fig. 5 shows the non-dominated fronts of objective functions in Eq. (9) given
by NSGA-II after 50 generations for the problem when using four different seed
number for random number generator. It is seen that fronts have converged to same
line and that significant improvement in transmission loss values have been gained
at both frequency ranges. It is obvious that the best compromise of the optimal value
is found at the edge at point f1 = −32.0 dB, ,f2 = −35.4 dB in Fig. 5. The optimal
solution is obtained with parameters x1 = 125 mm and x2 = 58 mm. In Fig. 6, the
transmission loss as a function of frequency is plotted. It is seen, that at optimized
frequency ranges, there are improvement in transmission loss.

The results obtained in Barbieri and Barbieri[12] (Example 2 in Section 4.2) are
very similar to the results obtained here. The optimization method finds a solu-
tion where a transmission loss peak in both optimized frequency ranges occur. The
method described here is more general and easily used in general three-dimensional
problems.

(a) (b)

Figure 4: On the left figure, there is the diagram of a muffler component used in
test case #2. On the right figure, the time average of pressure for optimal solution is
plotted. The frequency is f = 1225 Hz and optimized parameters are x1 = 125.2 mm,
x2 = 58.1 mm. The solution is chosen from non-dominated front at f1 = −32.0 , f2 =
−35.4.
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Figure 5: The non-dominated fronts for test case #2, four different random seeds.
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Figure 6: The transmission loss as a function of frequency is plotted. Transmission
loss is maximized in frequency ranges 600-650 Hz and 1200-1250 Hz. The optimal
parameters x1 = 125.2 mm, x2 = 58.1 mm that are chosen from non-dominated front
at f1 = −32.0 dB, f2 = −35.4 dB are used.

4.4 Test problem #3

As an example of a problem that has more optimization variables, a muffler com-
ponent that consists of five cylinders with variable radii is considered. In Fig. 7a,
a schematic figure of the problem is presented. In addition to the radius of each
cylinder, the length of inlet and outlet ducts are variable as well, similarly to the
test problem #2. The length of muffler component is L = 1000 mm and the di-
ameters of inlet and outlet ducts are d = 100 mm. The length of inlet and outlet
ducts x1, x2 can vary between [20, 900] mm and the diameter of each cylinder x3...7

is between [120, 240] mm. Transmission loss is optimized in two frequency ranges:
between 200-300 Hz and 500-600 Hz, and the frequency sets (see Eq. (9)) are set to
ω = [200, 233, 266, 300] Hz and ι = [500, 533, 566, 600] Hz. The population size was
set to npop = 100 due to larger number of optimization variables.
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In Fig. (8), there are four non-dominated fronts of objective functions in Eq. (9)
that are obtained by NSGA-II after 120 generations. Also here it is seen that fronts
are converged to the same line. Before optimization, the average values of the fitness
function values of randomly generated initial population were f1 = −13 dB and
f2 = −15 dB.

In Fig. 9, the transmission loss as a function of frequency is plotted for an optimal
solution that is chosen from the non-dominated front at f1 = −43.16 dB, f2 = −42.97
dB. The optimal parameters for the chosen solution are x = [35.6, 35.3, 21.0, 24.0,
12.0, 24.0, 14.8] mm. The same parameters are used also when plotting the example
solution in Fig. 7b. It is seen in Fig. 9 that both frequency ranges significantly
improved transmission loss level.

(a) (b)

Figure 7: On the left figure, there is a diagram of a muffler component used in test
case #3. On the right figure, the pressure time average of optimal solution is plotted
for test case #3 at f = 600 Hz. The figure is rotated 90◦, such that inlet appears on
the bottom of the figure.
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Figure 8: The non-dominated fronts for test case #3 are plotted, four different ran-
dom seeds.
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Figure 9: The transmission loss as a function of frequency. Transmission loss is
maximized at frequency ranges 200-300 Hz and 500-600 Hz.

4.5 Test problem #4

Fourth example is a Helmholtz resonator component similar to the example used in
Selamet et al.[13], that represents an example of true three-dimensional geometry.
The dimension of the component are presented in a schematic figure in Fig. 10a.
As in Selamet et al.[13], the diameter of the duct is dp = 4.859 cm. The optimization
variables are as follows. The diameter of the resonator chamber x1 can vary between
[1, 15] cm, the diameter of connecting pipe x2 can vary between [1, 4] cm, the length
of the connecting duct x3 can vary between [0.1, 8.5] cm and the length of the res-
onator chamber x4 can vary between [1, 15] cm. Transmission loss is optimized in
two frequency ranges: between 80-100 Hz and 160-180 Hz, and the frequency sets
(see Eq. (9)) are set to ω = [160, 170, 180] Hz and ι = [70, 80, 90] Hz. As in previous
test problem, the population size is set to npop = 100.
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In Fig. 11, there are four non-dominated fronts of objective functions in Eq. (9)
that are obtained by NSGA-II after 30 generations. Also here it is seen that fronts are
converged to the same line. Before optimization, the average values of the fitness
function values of randomly generated initial population were f1 = −3.3 dB and
f2 = −1.4 dB.

In Fig. 12, the transmission loss as a function of frequency is plotted for selected
optimal solutions. The example solutions for these points are also plotted in Fig.
10b. It is seen in Fig. 12 that in this case, that within the chosen frequency range,
it is not possible to obtain significant transmission loss at both frequency ranges
simultaneously, as only one peak in transmission loss curve occur. A good solution,
however, is obtained for both frequency ranges separately.

(a) (b)

Figure 10: On the left figure, there is a diagram of a Helmholtz resonator compo-
nent used in test case #4. On the right figure, the pressure time average of selected
optimal solutions is plotted for test problem #4. The figures are plotted at 170, 170
and 90 Hz, correspondingly.

Figure 11: The non-dominated fronts for test case #4 are plotted, four different ran-
dom seeds.

16



0 20 40 60 80 100 120 140 160 180 200
frequency, Hz

0

10

20

30

40

50

60

70

80

tr
a
n
s
m

is
s
io

n
 l
o
s
s
 i
n
 d

B Solution 1

Solution 2

Solution 3

Figure 12: The transmission loss as a function of frequency. Transmission loss is
maximized at frequency ranges 80-100 Hz and 160-180 Hz. The solution 1 has been
chosen at point f1 = −33.8 dB, f2 = −5.9 dB, solution 2 at f1 = −6.5 dB, f2 = −11.2
dB and solution 3 at f1 = −2.5, f2 = −26.6 dB.

5 Conclusions

Multiobjective shape optimization in a muffler with respect to sound transmission
loss has been considered. The shape of the muffler component in a duct system is
optimized. NSGA-II has been used as an multiobjective optimization method and
acoustics has been simulated by finite element method. A hybrid method has been
considered to match the acoustical solution of the muffler with analytical multi-
modal solution in inlet and outlet ducts.

Two frequency ranges were optimized simultaneously. For each test problem,
example solutions were chosen from the non-dominated front that was given by
NSGA-II optimizer algorithm. The transmission loss as a function of frequency was
plotted for them and the time average of pressure was plotted to a single frequency.
A good sound transmission loss, from 30 dB to 50 dB, was obtained at chosen fre-
quencies in each test problem. The optimization significantly improved the objective
functions when compared to the initial random designs.

The robustness of the method was tested by considering test problems with four
different random number generator seed numbers. It was found that similar results
were found for all tested seed numbers, which implicates that the method converges
to a near-optimal solution and that the solution does not depend on initial solutions
with considered test problems.

Because of the mode matching that was considered on inlet and outlet bound-
aries, the hybrid method provides accurate and realistic modeling of acoustics in
muffler component. The method can be used with any frequency that the com-
putation time and memory allows. Finite element method allows almost arbitrary
three-dimensional shape of the design and boundary conditions, which brings ver-
satile possibilities to the formulation of muffler component optimization. Combined
with the NSGA-II optimization algorithm, the method offers generic, robust and ad-
vanced approach to many three-dimensional muffler optimization problems.
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