
Pekka Karhula

Internet of Things: a gateway centric solution for

providing IoT connectivity

Master’s Thesis
in Information Technology

May 26, 2016

University of Jyväskylä

Department of Mathematical Information Technology

Kokkola University Consortium Chydenius

Author: Pekka Karhula
Contact information: pekka.karhula@vtt.fi
Phonenumber: +358 (0)40-830 9162
Supervisor: Ismo Hakala
Title: Internet of Things: a gateway centric solution for providing IoT connectivity
Työn nimi: Esineiden Internet: gateway-pohjainen ratkaisu IoT–yhdistettävyyden
toteuttamiseksi
Project: Master’s Thesis in Information Technology
Page count: 74
Abstract: The Internet of Things (IoT) is revolutionising the traditional Internet by
extending it with smart everyday objects. Wearables, smart grids and home au-
tomation systems are just a few examples of the IoT. A noteworthy point is that the
amount of devices connected to the Internet will rapidly grow with the IoT. The IoT
typically involves devices that are constrained in terms of energy, memory and pro-
cessing resources. Therefore, they also limit applying the existing Internet protocols
to the IoT. New protocols have been designed for the IoT, all the way from the phys-
ical layer, to the application layer. This thesis presents an implementation for an IoT
gateway, which enables connectivity to the Internet for several different end devices
using protocols designed for the IoT. This thesis reviews existing IoT architectures,
protocol stacks, IoT gateway functionalities and management, and presents three
case examples of gateway usage scenarios.
Suomenkielinen tiivistelmä: Esineiden internet (engl. Internet of Things, IoT)
on mullistamassa perinteistä Internetiä laajentamalla sitä älykkäillä, jokapäiväisillä
esineillä. Puettava teknologia, älykäs sähköverkko ja kotiautomaatio ovat vain muu-
tama esimerkki esineiden internetistä. Huomionarvoista on, että Internetiin liitet-
tävien laitteiden määrä kasvaa ripeästi esineiden internetin myötä. Esineiden inter-
netin sovelluksissa käytössä on tyypillisesti akkukestoltaan sekä muisti- ja lasken-
takapasiteetiltaan rajoitettuja laitteita. Siten ne myös rajoittavat nykyisten Internet-
protokollien soveltamista esineiden internetiin. Uusia protokollia on kehitetty esinei-
den internetiä varten aina fyysiseltä tasolta sovelluskerrokseen. Tässä työssä e-
sitetään toteutus IoT-tukiasemalle (engl. IoT gateway), joka mahdollistaa useiden
erilaisten laitteiden yhdistämisen Internetiin, käyttämällä esineiden internetiä varten
suunniteltuja protokollia. Työssä käydään läpi olemassa olevia IoT-arkkitehtuureja,
protokollapinoja, IoT-tukiaseman ominaisuuksia ja hallintaa sekä esitetään kolme
case-esimerkkiä, joissa IoT-tukiasemaa on käytetty.

Keywords: Internet of Things, IoT gateway, CoAP, MQTT, Distributed Decision En-
gine
Avainsanat: Esineiden Internet, IoT tukiasema, CoAP, MQTT, Distributed Decision
Engine

Copyright c© 2016 Pekka Karhula

All rights reserved.

ii

Preface

I would like to thank VTT for giving me the opportunity to work on this topic and
write a thesis about it. It has been a truly interesting and educational experience.
Hopefully, it is able to provide valuable information for interested readers, as well.

I would also like to thank my supervisors, Professor Ismo Hakala from the Uni-
versity of Jyväskylä and Dr Jukka Mäkelä from VTT for their valuable feedback.
Also, many thanks to Mirjami Jutila for reading the thesis and giving me important
advice.

i

Glossary

3GPP 3rd Generation Partnership Project
6LoWPAN IPv6 over Low-power Wireless Personal Area

Networks
BLE Bluetooth Low Energy
CCA Clear Channel Assessment
CoAP Constrained Application Protocol
CPE Customer-Premises Equipment
DDE Distributed Decision Engine
DTLS Datagram Transport Layer Security
ED Energy Detection
ETSI European Telecommunications Standards Institute
FFD Full Functional Device
GPRS General Packet Radio Service
HCI Human-Computer Interaction
HTTP HyperText Transfer Protocol
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IoE Internet of Everything (also Internet of Energy)
IoT Internet of Things
IDE Integrated Development Environment
IP Internet Protocol
JSON JavaScript Object Notation
LLN Low-power and Lossy Network
LPWA Low-Power Wide-Area
LQI Link Quality Indicator
LTE Long-Term Evolution
LWM2M Lightweight Machine to Machine

ii

M2M Machine to Machine
MAC Medium Access Control
MQTT MQ Telemetry Transport
MTC Machine-Type Communication
NFV Network Function Virtualisation
OMA Open Mobile Alliance
OMA-DM Open Mobile Alliance Device Management
OSI Open Systems Interconnection
OUI Organisational Unique Identifier
PAN Personal Area Network
PPDU PHY Protocol Data Unit
REST Representational State Transfer
RFC Request For Comments
RFD Reduced Function Device
RFID Radio-Frequency Identification
SDN Software Defined Network
SenML Sensor Markup Language
SMS Short Message Service
TCP Transmission Control Protocol
TKL Token Length
UDP User Datagram Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator
WAN Wide Area Network
WLAN Wireless Local Area Network
WoT Web of Things
WPAN Wireless Personal Area Network
WSN Wireless Sensor Network
WWW World Wide Web

iii

Contents

Preface i

Glossary ii

1 Introduction 1
1.1 Research problem . 3
1.2 Research process . 3

2 Internet of Things architecture 4
2.1 Machine to machine . 4

2.1.1 ETSI M2M . 5
2.1.2 oneM2M . 6

2.2 RESTful architecture . 7
2.2.1 HTTP . 7
2.2.2 Constrained Application Protocol 8

2.3 Publish-subscribe paradigm . 13
2.3.1 MQTT protocol . 13

2.4 Web of Things . 15
2.4.1 Evolution of the Web towards the Web of Things 16

2.5 IoT components . 17
2.5.1 Things . 18
2.5.2 Gateways . 19
2.5.3 Back end . 19
2.5.4 Applications . 19
2.5.5 Interfaces . 20

3 IoT connectivity 21
3.1 Internet reference models . 21

3.1.1 Application layer . 22
3.1.2 Transport layer . 23
3.1.3 Network layer . 23

iv

3.1.4 Data-link layer . 23
3.1.5 Physical layer . 23

3.2 IoT protocols and protocol stacks . 24
3.2.1 IEEE 802.15.4 . 25
3.2.2 IEEE 802.11 . 27
3.2.3 Bluetooth . 27

3.3 Future connectivity . 29

4 IoT gateway 31
4.1 Gateways and routers . 32
4.2 Gateway functionalities . 33

4.2.1 Edge computing . 33
4.2.2 Dataflow control . 33
4.2.3 Proxy functionality and caching 34
4.2.4 Resource discovery . 35
4.2.5 Security . 36

4.3 Gateway management . 36
4.3.1 Management standards . 36
4.3.2 Management protocols . 38

4.4 Virtualising the gateway functionality 38

5 IoT gateway development and deployment 40
5.1 Gateway architecture . 41

5.1.1 Distributed Decision Engine 41
5.1.2 Data format . 42
5.1.3 Hardware interfaces . 43
5.1.4 Operating system . 44

5.2 Interface design . 44
5.2.1 Wi-Fi Producer . 45
5.2.2 XBee Producer . 46
5.2.3 BLE Producer . 47
5.2.4 CoAP Consumer . 47
5.2.5 HTTP Consumer . 47
5.2.6 MQTT Consumer . 48

5.3 Case examples . 48
5.3.1 Case 1 - Environmental monitoring 51

v

5.3.2 Case 2 - Tracking an object/indoor localisation 52
5.3.3 Case 3 - Crowd counting . 53

5.4 Discussion . 53

6 Conclusion 56

References 58

vi

1 Introduction

The Internet of Things (IoT) has been a widely discussed topic for a while now.
However, it is not always so obvious as to what is meant by that term. The name
was first used by Kevin Ashton in 1999 [6]. He viewed it as an extension of the
traditional Internet, where not only humans generate data, but different kinds of
objects do so as well.

Atzori et al. [7] view the IoT as an intersection between semantic, Internet and
things oriented visions. The Internet oriented IoT vision emphasises the connec-
tivity of IoT devices, while the IoT devices cover the things oriented vision. The
semantic oriented vision includes organising, representing, storing, searching and
interconnecting information.

Vermesan et al. [78] consider the IoT to form a greater internet together with the
Internet of Energy, Internet of Media, Internet of Services and Internet of People.
Cisco [27] views the IoT as physical items, which together with people, data and
processes form a "network of networks" called the Internet of Everything (IoE). The
IoE would benefit individuals, businesses and governments. In Cisco’s vision, the
IoE can help with tracking world resources and solving major problems, such as
hunger, limited drinkable water resources and climate change.

The IoT covers a very heterogeneous set of devices, which operate in various en-
vironments. IoT devices can be found in household appliances, wireless sensor net-
works (WSNs), industrial machines, jet engines and so on. The point is that they can
be put everywhere, and that creates many new challenges. Chase [16] lists connec-
tivity, power management, security, complexity and rapid deployment as challenges
of the IoT. Gubbi et al. [30] append the list with privacy, participatory sensing, data
analytics, geographic information system (GIS) based visualisation and cloud com-
puting. They also consider architecture and protocols as open challenges, which
also play key roles in solving IoT connectivity problems. Atzori et al. [7] consider
standardisation activity and networking issues as open challenges in the IoT. The
open challenges considered by Miorandi et al. [55] include distributed intelligence,
distributed systems, computing, communication and identification. It is worth not-
ing that connectivity is present in every list in the aforementioned open research

1

challenges of the IoT, in one form or another.
Machine to machine (M2M) is an integral part of the IoT. M2M consists of au-

tonomous devices communicating with each other, without human intervention.
M2M communication does not necessarily require Internet connectivity. In fact, if
M2M systems are connected to the Internet, we can view the resulting system as an
IoT system [14].

The traditional Internet is powered by the TCP/IP reference model. TCP/IP
reference models have a layered architecture with four layers. Internet protocol (IP)
addressing is used for routing packets to their destinations. The TCP/IP model
is also relevant to IoT systems, but in a much lighter form than with traditional
networks. Another popular reference model is the OSI model, which has seven
layers. However, nowadays, the OSI model mostly serves as an educational model
rather than a design specification [77], [50].

IoT devices can be constrained in several properties: the common ones being en-
ergy consumption and storage, physical size, cost, computing power and memory.
These factors also set constraints on connectivity. Devices may not be able to send
data frequently and their communication range is limited. Devices also come with
various radios and protocols, making the connectivity problem even more compli-
cated. The goal is to gather data from these devices, deliver them to the Internet
and make useful applications around them. Often a bidirectional communication
is preferred, as we want to manage the end devices with control messages. In this
thesis, the connectivity problem is approached by designing a flexible IoT gateway
that can host several radio interfaces and is easily modifiable, for new use cases.

An early version of the IoT gateway was developed for providing connectivity
to a safety vest, which was equipped with sensors, a GPS module and a small IEEE
802.15.4 radio [43], [44]. The sensor vest was later equipped with wireless charging
capabilities, in a follow-up research project [45]. The gateway, however, was not up-
graded, at that point. Soon, several other research and commercial projects required
a gateway for their specific purposes. It often meant that the gateway had to be
tailored for each project individually. That led to an idea of a generic IoT gateway
that would be easy to deploy with new scenarios. The empirical part of this thesis
presents an IoT gateway design as well as three case examples, where the gateway
is used.

The rest of the thesis is organised as follows: Chapter 2 gives an overview of
the components and their relations that, together, form the IoT architecture. Also,

2

standards related to IoT architecture are briefly discussed. The Internet reference
models and the IoT protocol stacks are discussed in Chapter 3. Chapter 4 focuses
on the IoT gateway and discusses its requirements and functionalities. IoT gateway
management is also touched in this chapter. Chapter 5 covers the empirical part of
the thesis, presenting the design and deployment of an IoT gateway. Three cases are
presented as example usage scenarios for the gateway. In Chapter 6, a summary of
the topics covered in this thesis is given and conclusions, based on the theoretical
and empirical parts, are drawn.

1.1 Research problem

As noted in [16], [30] and [7], the connectivity of the IoT devices is an open challenge
that needs to be solved using new protocols, architectures and standards that are
specifically tailored for the IoT. This thesis takes a gateway oriented approach for
the connectivity issue. The main questions are: how to provide connectivity using
an IoT gateway, what are the main functionalities of an IoT gateway and how well
does a gateway fit into the IoT architecture, in contrast with other options.

1.2 Research process

This thesis was done at VTT as part of the Digile IoT programme, the VTT-funded
Energy Aware Learning in Cognitive Radios and Networks (AWARENESS) project
and the Tekes-funded 5G Test Network (5GTN) project. The beginning of the gate-
way research and development dates back to 2014, when a preliminary version of
the gateway was introduced in [44]. Gateway development continued in [43], where
it was used as part of an indoor localisation system. In [45], the gateway was applied
to a larger use case, but its functionality was kept the same as in the previously men-
tioned publications. The gateway was an essential part of the scenarios presented
in the publications, but it was never the focus of research. This thesis builds on
the work that was previously done and focuses on the gateway topics. The goal
of the empirical part is to design a fully functioning IoT gateway and form a gate-
way infrastructure that would serve as a testbed for future research, for example, in
energy-efficient communication protocols and localisation algorithms. The author’s
role in this process was to define use cases, develop gateway software and deploy a
network of gateways in a laboratory environment.

3

2 Internet of Things architecture

This chapter gives a high level picture of the IoT field. The machine to machine
(M2M) standardisation efforts of ETSI and oneM2M are briefly discussed in separate
sections. IoT and M2M have subtle differences, but they can often be considered to
mean the same thing. Similarly, the M2M specifications presented in this chapter can
be viewed as the IoT specifications. RESTful architectural style is introduced and
Constrained Application Protocol (CoAP) is more carefully inspected. The publish-
subscribe paradigm is discussed as it occurs in many places in the IoT architecture,
as will be seen later in the empirical part. The concept of the Web of Things is
introduced as it can also be viewed as a platform for new IoT applications. Lastly,
IoT components that, together, form the IoT architecture, are discussed.

2.1 Machine to machine

Machine to machine (M2M) communications form an integral part of the IoT. In [14],
Boswarthick et al. consider M2M as communication between an end device and a
business application. However, the communication between the two has to be op-
erated with little or no human intervention in order to be qualified as M2M. M2M,
itself, is not a standard. Rather, it is a paradigm in which devices autonomously
communicate with each other. In the literature, M2M is sometimes referred to as
machine type communication (MTC). The term is most commonly found in 3rd Gen-
eration Partnership Project (3GPP) specifications [76].

Due to the heterogeneous set of technologies involved in M2M, the solutions
often turn into so-called "silos". Boswarthick et al. [14] view standardisation and
reusable service platforms as a means to take the silos down and increase the in-
teroperability in M2M. This is often referred to as a transition from vertical silos to
horizontal platforms. Alam et al. [4] consider the future IoT to offer a horizontal
platform for a multitude of vertical M2M applications. They also view standardi-
sation as being one of the key elements to move M2M and the IoT forward. ETSI
M2M and oneM2M architectural standards are briefly presented in the following
subsections. In addition, IEEE has set up a working group for specifying an IoT

4

architecture, but as of the writing of this thesis, they have not yet published a stan-
dard, and thus, it is not covered in this thesis [35].

2.1.1 ETSI M2M

The European Telecommunications Standards Institute (ETSI) has set up a techni-
cal committee working on standardising the M2M architecture. The ETSI M2M
standard supports short-range communication, but the emphasis is on long-range
cellular communication, which allows mobility and provisioning. Considerable
fragmentation exists in the form of component level standards tackling, for exam-
ple, how a sensor node communicates with a gateway. ETSI M2M aims to offer a
standardised way to bring the fragmented application areas onto a horizontal plat-
form. The standardised platform allows the M2M market to takeoff and deliver
cost-effective M2M solutions. Fig. 2.1 depicts the ETSI M2M high-level architecture.

Figure 2.1: ETSI M2M high-level architecture. Adapted from ETSI M2M functional
architecture document [25].

5

The high-level architecture is separated into two domains: network domain and
device and gateway domain. There are two types of end devices in the device and
gateway domain. The first type of M2M end devices operate in constrained M2M
area networks and require an M2M gateway for accessing the network domain.
M2M area networks can be mesh-networks or simply point-to-point connections
between an M2M device and a gateway. The second type of devices are capable of
communicating with the network domain directly, without the need of gateways.
The core network at least has IP connectivity, and the M2M devices connect to it
through access network base stations. M2M service capabilities offer M2M func-
tions that M2M applications access, using open interfaces. M2M management func-
tions are used to manage the M2M service capabilities. The core network and access
network are managed using network management functions. [25]

2.1.2 oneM2M

oneM2M [59] is a global standardisation body for M2M and the IoT. It was formed in
2012 by seven major standards organisations. The goal of oneM2M is to standardise
interoperability between devices, applications, data collection and data storage. It
aims to enable growth in M2M and IoT markets by providing a set of specifications
for an IoT architecture [59]. oneM2M is intended to work with existing industry
standards. It can also be viewed as a partial extension of the ETSI M2M standard
[25]. The oneM2M functional architecture document [60] specifies a service layer,
which aims to provide a single network-independent horizontal platform for the
multitude of the IoT domains. oneM2M does not specify specific technologies or
protocols to be used. Instead, it specifies higher level interfaces, which businesses
use to access services. Therefore, in a high level scenario, oneM2M can be viewed
as providing interoperability between businesses, through a common service layer.
Other important aspects of oneM2M are security and device management. Device
management is enabled by integrating existing device management standards into
oneM2M specifications. Device management and management standards are dis-
cussed in Chapter 4.

6

2.2 RESTful architecture

Representational state transfer (REST) is an architectural style used in the World
Wide Web (WWW). RESTful systems work in a request-response manner. A client
makes a request to a server and the server sends a response to the client. The server
specifies a set of interfaces that the client can use for accessing and modifying re-
sources. The message sent by the client contains a request method, which tells what
kind of operation is requested to be done on the server resource. The server sends
back a response containing a code, which tells whether the request was successful
or if there was an error. RESTful systems typically use HTTP in the Web, but it is
often unsuitable for IoT applications. The Constrained Application Protocol (CoAP)
has been developed to provide RESTful style for wireless sensor networks (WSNs)
and the IoT as well as the Web of Things (WoT), which will be discussed in Section
2.4.

2.2.1 HTTP

Before diving into the mysteries of CoAP, it is worth having a short recap of the
HTTP protocol, as there are many similarities between the two. HTTP [28] is a pop-
ular application layer protocol used in the Web. The most common HTTP request
methods are GET, PUT, POST and DELETE. GET returns a representation of a Web
resource to the user. The requested resource is specified by the Uniform Resource
Locator (URL), which includes the path to the server and to the requested resource.
The GET request typically yields a HyperText Markup Language (HTML) document
as a response, but it could also be, for example, an Extensible Markup Language
(XML) file or a JavaScript Object Notation (JSON) file. POST and PUT methods are
used to create or modify server resources. The DELETE method removes a given
resource. HTTP communication typically uses TCP as the transport protocol, as re-
liable transmission of packets is often required. The IoT can benefit from the HTTP
protocol, especially when it is used between devices that have plenty of process-
ing resources. Unfortunately, those devices are often only mains powered gateways
or back end devices, because HTTP is typically too much of a resource demanding
protocol to be implemented in an IoT end device.

7

2.2.2 Constrained Application Protocol

Constrained Application Protocol (CoAP) [72] was developed to address the limita-
tions that other application level protocols, such as HTTP, have in low-power and
lossy networks (LLNs). CoAP provides a common language for the heterogeneous
IoT applications and aids the emergence of the IoT as well as the Web of Things
(WoT). CoAP is currently a trending topic in the IoT field. A search on the IEEE
Xplore digital library yields 912 results with a search string ”’Constrained Appli-
cation Protocol’ OR CoAP”. The search covered metadata and full text. Filtering
the search to the years 2014–2015, yields 513 results, so it clearly shows that a lot
has been going on around CoAP, lately. Of course, not all the papers focus on de-
veloping or enhancing CoAP. Many papers merely build applications or test other
concepts, with the help of CoAP. It still indicates that CoAP has reached a certain
level of maturity, and can be used in many different scenarios.

CoAP resembles HTTP in many ways, but it is not merely a reduced or com-
pressed version of the HTTP protocol. Like HTTP, it uses GET, POST, PUT and
DELETE methods for querying and modifying resources. CoAP has new features
that are especially designed for the constrained environments and are not part of
the HTTP. One of them is the Observe method [34], which allows a client to contin-
uously receive responses from a server. It is a useful method, for example, in a case
where the client wants to receive a continuous stream of sensor data from a sensor
node. Energy is saved due to the reduced amount of control messaging. CoAP sup-
ports resource discovery, i.e. the protocol allows the client to request information
on the resources that the server has. Secure transmissions at the transport level can
be achieved by using a Datagram Transport Layer Security (DTLS) protocol. CoAP
supports HTTP proxies, meaning that clients can request resources from a CoAP
server using regular HTTP requests. The CoAP protocol can be further optimised
by using header compression techniques, as has been done in [54].

CoAP messages are sent using the User Datagram Protocol (UDP). UDP reduces
the amount of control messaging, as it does not guarantee reliable delivery like the
Transmission Control Protocol (TCP). However, CoAP can provide reliable delivery
on the application layer. The sender can tag messages as confirmable, which re-
quires an acknowledgement from the receiving end. The sender repeats sending the
confirmable messages until it runs out of attempts or the recipient acknowledges
it with an acknowledgement message. The number of attempts is defined by the
MAX_RETRANSMIT variable.

8

Message types

CoAP specifies the following message types:

• Confirmable

• Non-confirmable

• Acknowledgement

• Reset

As already mentioned, confirmable messages require acknowledgements and
they are used when a reliable delivery is required. The sent confirmable messages
are matched to the received acknowledgement messages, by using message IDs.
Non-confirmable messages must not be acknowledged. Non-confirmable messages
suit well in situations where streams of data are sent. That also means that the mes-
sages may be lost during transmission or arrive out of order. CoAP also elegantly
supports piggybacked messages. A recipient of a confirmable message may send
payload data back on an acknowledgement message, instead of building a new con-
firmable message, as the response. If the recipient cannot immediately respond with
a piggybacked acknowledgement message, it will send an empty acknowledgement
and later send a confirmable or non-confirmable message with the payload content
in it. The reset message is sent when the receiver cannot handle the received mes-
sage, for one reason or another. In general, reset messages are used to reject un-
known messages.

Message format

A CoAP message is composed of a header, a token, a set of options and a payload.
The structure of a CoAP message is depicted in Fig. 2.2.

9

Figure 2.2: CoAP message format. The header is highlighted in green.

The message header has a fixed length of 4 bytes. The version field indicates the
version of the CoAP specification. Value 1 means that the current RFC-7252 CoAP
specification is used. Other values are reserved for future versions. The next field
in the header is the type field. It indicates whether the message type is confirmable,
non-confirmable, an acknowledgement or reset. The token length (TKL) field con-
tains the length of the Token, which can be between 0 and 8 bytes. The code field
indicates the request method code, in the case of a request message or the response
code, in the case of a response message.

The 0-8 bytes long token field is used to match requests to responses. It is a differ-
ent concept from the message ID, which only matches individual CoAP messages.
Tokens are allowed to be up to 8 bytes long to protect against spoofing attacks. All
CoAP messages have tokens, even if they have zero length.

The options field holds information that affects the performance and functional-
ity of the CoAP. For example, a remote resource is identified by a Uniform Resource
Indicator (URI). The URI is decomposed into the option field in the CoAP message,
when a client makes a request. The format of the CoAP URI scheme is shown below:

coap-URI = "coap:" "//" host [":" port] path-abempty ["?" query]

The above example is taken from the RFC-7252 [72]. The host section can contain
a host name or an IP address. The port, used by UDP, points to the application
running on the server. The default port 5683 is used if the port section is left empty.
Furthermore, the URI contains a path to the resource and a sequence of parameters
for more detailed queries.

Caching and proxying related information are also given as options. An exhaus-
tive list of options can be found in the RFC-7252 [72]. The payload data can be con-

10

tained in a request or a response message. Payload can be carried in a confirmable
or a non-confirmable message, or it can be piggybacked on an acknowledgement
message. The content-type in the options field indicates the type of payload. If the
content-type is not specified, then it can be inferred from the application context.

Requests

The basic CoAP request methods are GET, POST, PUT and DELETE. The GET method
is used to request the state of a resource that is given in the URI. It can be a sensor
value, battery status, name of the device and so on. The PUT and POST methods
are used to update the value of a resource or to create a new resource. The DELETE
method is used to remove the resource specified by the URI.

In addition to the basic RESTful request methods, the RFC-7641 [34] introduces
an Observe method for the CoAP protocol. It was designed because the existing
methods did not work well when a client was interested in observing a resource,
over a period of time. The protocol allows a CoAP server node to send notifications
continuously, after it has received a registration message from a client. The server
keeps a list of all registered observers. The server’s goal is to keep the client up-to-
date by notifying the observers of the latest values. The observed phenomenon can
be sent to the client at regular intervals or when a change in the value has occurred.
It is up to the server to decide the conditions of when to notify the client.

The method is based on the observer design pattern, which is well-known in the
software engineering discipline. The messages carry observer-related information
in the options field. When a client is interested in observing a resource, it sends a reg-
istration message to the server. The registration message is sent as a GET method,
with the observe option set to value ”0”. The server adds the observer to the ob-
server list and starts sending notifications. Each notification message has a value
set to the observe field, and it is used to check the freshness of the measurement. If
the server is not able to add a new observer, it sends a response without the observe
option. The basic operation of the observe protocol is depicted in Fig. 2.3. The client
is interested in observing the temperature at the server node and starts with sending
a registration message to the server. The server adds an observer to its database and
starts sending notifications to the client. When the client is no longer interested in
observing the temperature, it sends a deregister message with an observe option set
to ”1”.

11

Figure 2.3: Sequence diagram of the CoAP observe protocol. Adapted from RFC-
7641 [34].

The server can send the notifications in confirmable or non-confirmable mes-
sages. In the case of confirmable messages, the server awaits acknowledgements
from the client. If the server does not receive acknowledgements within a pre-
defined period of time, it will consider that the client is no longer interested in
observing the resource. The server will then remove the client from the observer
list. This is the easiest way for the client to stop observing a resource. There are two
alternative ways for the client to stop observing. The client can deregister by setting
the observer option to ”1”, as depicted in Fig. 2.3, or it can reject a notification by
sending a reset message. In both cases, the server will remove the observer from the
list.

Responses

If the request method was delivered in a confirmable message, it should yield an
acknowledgement message containing one of the following response code classes:

• 2.xx Success

• 4.xx Client error

12

• 5.xx Server error

The ’xx’ values are replaced with the actual codes that more precisely identify
the response code. If the resource was successfully retrieved, updated, created
or deleted, then it should yield a success response. Client errors occur when the
sender is assumed to have made a mistake. Incorrect URI’s, requesting non-existent
resources or resources to which the sender does not have access, should all yield
client errors. Server errors happen when the server cannot handle the request or is
faulty, for some other reason.

2.3 Publish-subscribe paradigm

The publish-subscribe paradigm [26] makes up another high-level architectural style
for message transmission. The paradigm is roughly composed of publishers, an
event service and subscribers. Publishers produce events that are passed to the
event service. Events are then forwarded to the subscribers who can then consume
them. The publish-subscribe paradigm has a fundamental problem as the structure
of the published data has to be known by the subscribers. Also, publishers should
not arbitrarily change the structure of data, as it may break the subscribing modules.
In larger and more complex systems, this may lead to very messy implementations.
However, the publish-subscribe paradigm is an effective way of distributing infor-
mation from publishers to subscribers, and is very useful in IoT applications. The
IoT friendly MQ Telemetry Transport (MQTT) is a good example of a protocol using
the publish-subscribe paradigm.

2.3.1 MQTT protocol

MQ Telemetry Transport (MQTT) [10] is a well-known application layer protocol
suitable for low-power and lossy networks. The publish-subscribe implementation
is based on the TCP protocol. Clients publish messages via a centralised broker,
which forwards them to subscribers. Messages are published as topics that can be,
for example, temperature, acceleration or light switch status. Subscribers can sub-
scribe to a topic or a set of topics using topic filters and wild cards.

13

Messaging

MQTT defines five different messaging methods: connect, disconnect, subscribe,
unsubscribe and publish. The messages are carried in MQTT control packets. Con-
nect is used by subscribers to establish a connection to a broker. Subscribers close
the connection by using disconnect method respectively. Connection is needed be-
fore any subscriptions can be made. However, publishers do not need to set up
a connection beforehand, in order to start publishing a topic. Acknowledgement
messages are specified for connect, subscribe, unsubscribe and publish messages.

An MQTT control packet is composed of a fixed header, a variable header and
a payload. A fixed header is part of every control packet. It contains fields for the
packet type, flags and remaining length. The presence of the variable header and
payload depends on the message type. A packet identifier field is commonly found
in variable headers of publish, subscribe and unsubscribe messages. The packet
identifier is used for retransmissions when quality of service is enabled. The con-
tent of the payload field also varies, depending on the message type. In case of a
publish message, the payload contains the actual MQTT application message.

Topics

Clients either publish or subscribe to a topic. In sensor networks the topic could be,
for example, temperature in a specific room or the state of a light switch. However,
topics are not restricted to sensors, and payloads are not restricted to numeric val-
ues. In fact, topics can be anything and the published messages may contain data
in many different forms. Subscribers naturally need to know what to subscribe and,
therefore, MQTT specifies topic filters and wildcards to enable more advanced sub-
scription functionality. The topic is composed of topic separators and topic levels.

For example, ”/home/kitchen/temperature” has three levels, which are sepa-
rated by slashes. In the example, several different sensors can be located in the
kitchen and can be published as their own topics. Wildcards can be used to specify a
set of topics of interest. A ”+” character is used to match a single topic level. A topic
string ”/home/kitchen/+” would return messages from all sensors located in the
kitchen. On the other hand, a topic string ”/home/+/temperature” would return
temperatures of all rooms in the home. A ”#” character is used to match all the levels
in the path. A string ”/home/#” would match all of the sensors in all rooms includ-

14

ing, e.g. ”/home/livingroom/humidity” and ”/home/kitchen/temperature”.

Comparison to CoAP

Even though CoAP achieves similar behaviour with the Observe protocol, the two
protocols are fundamentally different. CoAP connections are typically formed be-
tween two nodes, whereas MQTT forms connections between multiple clients. There
may be many subscribers for a topic and many clients publishing on the same topic.
The CoAP Observe protocol uses a server to generate and publish messages to sub-
scribers. There are no external publishers who would first publish messages to the
CoAP server. However, there is work in progress to provide similar functionalities
to CoAP by introducing a publish–subscribe broker [48]. The basic idea is the same
as with MQTT. CoAP clients publish messages on a topic via a centralised CoAP
server that operates as a broker. The broker further forwards messages to matching
subscribers.

2.4 Web of Things

M2M and IoT standardisation were discussed in Section 2.1. The standardisation
efforts were aiming to offer a common platform for the heterogeneous set of M2M
and IoT applications. In this thesis, the term Web is often used to shorten World
Wide Web (WWW). The World Wide Web has been successful in providing a plat-
form for the multitude of applications running on the Internet. There is a great deal
of research being done to apply the same principles to the IoT. The IoT version of
the Web is commonly known as the Web of Things (WoT). The Web of Things is not
a separate concept from the Web. Rather, the WoT is extending the Web with Things
by using similar protocols and design principles. Guinard and Trifa [31] consider
that it is worth leveraging existing Web protocols, as they can also provide interop-
erability between the real objects. Mainetti et al. [53] also see the Web as having
the potential to operate as the common platform for the heterogeneous set of IoT
applications, but some of the protocols need to be optimised.

Applications built on top of the WoT are called mashups [31]. Mashups gather
data from different sources, e.g. physical devices in order to provide some sort of
a service. One of the biggest challenges of the WoT is accessing these devices. The

15

physical devices operate as servers and serve their resources the same way Web
servers offer their resources. The difference is that Web servers have plenty of pro-
cessing and storage capacity, whereas embedded servers have only a tiny fraction of
it. Moreover, a large amount of traffic to and from the embedded server will deplete
its battery very quickly. One solution to this problem is explained in Section 4.2.3,
which discusses proxying and caching.

HTTP has proven to be a powerful protocol for building Web applications and
Guinard and Trifa [31] have used it for demonstrating WoT mashups. One of the
characteristics of the WoT is that the underlying architecture is hidden from the
end user who is accessing the resources using, for example, a Web browser. The
use of proxies enables translation between protocols allowing the creation of many
different kinds of architectures. A user may use a regular Web browser and make
requests in HTTP to access IoT resources. The user may or may not know that
there is a proxy translating the request to a protocol that the IoT device understands.
There even exist Web browser extensions, such as Copper [49], which enables full
CoAP-to-CoAP communication between a Web browser and a CoAP server.

2.4.1 Evolution of the Web towards the Web of Things

As computers have been getting more powerful in terms of processing capabilities,
they have also been getting smaller and cheaper. Embedded devices have been able
to host simple HTTP based Web services, for some time. An example of this could be
a wireless access point, which typically has an embedded Web server running inside
to serve a configuration page using HTTP. Optimising the traditional communica-
tion protocols and inventing new ones has made it possible to use even smaller and
more constrained embedded devices for IoT and WoT purposes.

The Internet was a very disorganised and modest network before the introduc-
tion of the World Wide Web, in the early 90s. The Web has made new innovations
possible and unleashed the real power of networked computers and information
sharing. The Web has enabled people to easily generate and store information, as
well as find that information using search engines. In [1], this first revolutionising
wave of the Web is referred to as Web 1.0. The Web 2.0 strengthened collaboration
between individuals and enabled collaborative platforms such as wikis [1]. Social
media took off and offered even higher layers for new innovative applications. Now
there is even active research on combining principles from the social networks and
the IoT [8]. People are generating a large volume of data on the Web, and that re-

16

quires intelligent information processing algorithms and storage techniques. The
amount of data generated on the Web is increasing even more rapidly, as more and
more Things are connected to the Internet. This clearly shows that the Web has come
a long way, in a very short time; but, is still thriving and always finding new areas
for growth.

2.5 IoT components

Fig. 2.4 gives a simplified overview of the components, which form the IoT architec-
ture. The idea behind the figure is that there is a set of Internet and IoT components
that, together, form a core for the IoT applications. In the figure, the IoT applications
are placed around the core components. There are certainly many more devices and
applications involved, but, the main point is to give a basic idea of what the IoT is.

Figure 2.4: A general view of IoT architecture and application areas

Categorising applications to different domains is a bit of a fuzzy activity and
there are many different ways of doing it. There is also a lot of overlap between the

17

different application domains. This section explains the different IoT components,
which include end devices, network devices, the back end and interfaces. Lastly,
some of the applications and domains are discussed.

2.5.1 Things

Things or IoT devices are commonly categorised as sensors or actuators. They are
roughly composed of a power supply, a radio and a microcontroller. Sensors are
used to gather information from the surroundings. The sensed observables can be,
for example, temperature, various gases, humidity and movement. Actuators, on
the other hand, can interact with the environment, e.g. by showing information on
a monitor, flashing an LED or moving a robot arm. Sensor readings can be used as
inputs to actuators. For example, an actuator can optimally set the room lighting
if given the brightness readings, or an actuator can adjust the radiator if given the
temperature values of the environment.

IoT devices are also minimal on the software side. Generally, they are not able
to run Linux sized operating systems. There exist several lightweight operating
systems intended for small sensor nodes. Two of the well-known ones are Contiki
and TinyOS. Sensor node operating systems are not in the scope of this thesis and
an interested reader is encouraged to see a survey by Hahm et al. [32] for the current
state of the art.

IoT devices are often not mains powered, and require a battery and/or energy
harvesting techniques. It is not practical to change batteries often, as there may be
hundreds or thousands of IoT devices in the network. Therefore, the power con-
sumption of the device has to be very low in order to increase the lifetime of the de-
vice. Additionally, different energy harvesting techniques can be used to recharge
the battery on the go or to immediately initiate transmission. Energy sources in-
clude, for example, light, wind, human movement, ambient vibrations and RF en-
ergy [75].

Radio-frequency identification (RFID) technology introduces another interesting
way of gathering energy for information processing and transmission. Passive RFID
tags get their energy from RF signals coming from the RFID reader. Therefore, they
do not require batteries. Active RFID tags, however, have their own power supplies,
and can initiate communication [79].

18

2.5.2 Gateways

Gateways process and relay information between the IoT devices and the Internet.
Gateways are needed as IoT devices are not typically able to connect directly to
the Internet. Gateways come in several different forms. Gateways include mobile
phones, specialised IoT gateways and also 4G/LTE base stations that can be thought
of as gateways. Sometimes IPv6 connectivity is needed in the end device nodes.
Connectivity is then enabled by border routers, which implement a network level
protocol stack. Gateways are discussed in greater detail in Chapter 4.

2.5.3 Back end

Resource demanding operations, such as information processing and data storage,
are often done in the IoT back end. Data coming from the IoT devices are stored
in databases, which are located in the cloud. The volume of the data coming from
the IoT devices is often massive and can be considered as big data. Data mining,
machine learning and analytics algorithms can be run in the back end to find new
information from raw data. The back end offers services that can be used by users
and/or devices to request information. A Web server is a common example of a
service running in the back end.

2.5.4 Applications

There are various ways of categorising IoT applications into domains. Atzori et
al. categorise applications into transportation and logistics, healthcare, smart envi-
ronments, and personal and social domains [7]. Gubbi et al. use four categories:
personal and home, enterprise, utilities, and mobile domain [30]. There is a lot of
overlap between the categories, as shown in Fig. 2.4, which gives some examples of
the applications and application domains. The point is that the IoT touches many
different domains and can be applied to almost anything.

The IoT is becoming more popular in industry and the term industrial IoT has
been coined to refer to this subset. Xu et al. [84] list healthcare services, food sup-
ply chain, mining production, transport and logistics, and firefighting as some of
the application domains for the industrial IoT. The industrial IoT enables more effi-
cient use of resources by applying methods from artificial intelligence. Alahakoon
and Yu [3] consider smart meters and smart grids as the ”way of life” in the future.

19

Smart meters can monitor energy usage in homes so that electricity consumption
can be adjusted accordingly. The energy sector benefits from the industrial IoT, in
the form of smart grids. A smart grid enables more efficient management of the grid
and allows better communication between the electric industry and homes. Smart
metering and smart grids not only allow homes to adjust their energy consumption,
but also the electric power industry to adjust the electricity generation by demand,
at given times. Different energy sources can be more easily added to a smart grid,
including devices that locally generate electricity at homes.

2.5.5 Interfaces

In Fig. 2.4, the two-way arrows indicate connections between different sections of
the IoT. Many kinds of Things interface with the physical world by observing and
manipulating it with sensors and actuators. Things communicate with gateways
through physical wireless or wired connections. Gateways have similar methods
for interfacing with the Internet infrastructure. However, IoT applications require
richer communication than just a physical connection to exchange data. Higher
level protocols enable more advanced functionality and features for M2M commu-
nication. IoT applications can talk to each other using, e.g. RESTful interfaces that
were presented in Section 2.2. Section 3 discusses IoT connectivity in more detail,
by introducing Internet reference models as well as protocol stacks for the IoT. IoT
standards, such as oneM2M, provide even wider integration by introducing service
layer interfaces that the different application domains can use to communicate with
each other.

Finally, the IoT is not just devices or machines communicating together. There
has to be a way for humans to access data that is gathered or generated by the de-
vices. This type of communication is known as Human–computer interaction (HCI)
[65]. HCI is enabled through user interfaces, which can be, for example, graphical or
text-based computer programs, mechanical switches, or voice controlled interfaces.
In order to provide the greatest value for the user, the raw data is processed and re-
fined into human readable format. Visualisation of the data is a good technique for
representing complex data. Two-way communication between devices and users is
often required. The typical cases include navigating resources and querying data.
There may also be management tasks for controlling the IoT devices and gateways
directly through the user interface.

20

3 IoT connectivity

As mentioned before, the IoT does not form a new Internet. Instead it enhances
the existing Internet by extending it with "Things". Therefore, it is important to
review the existing Internet protocols and examine their applicability in the IoT.
This chapter takes a look into the Internet reference models as well as the protocol
stacks used in the IoT.

3.1 Internet reference models

This section presents three models that are used to describe Internet connectivity or
are used as a guideline for designing network devices and software. The models are
the OSI model, the TCP/IP model and their hybrid model. The models are depicted
in Fig. 3.1.

Figure 3.1: From left to right: OSI model, TCP/IP model and a hybrid model

As mentioned in the introduction, the TCP/IP reference model is the basis of the
connectivity in the traditional Internet. It has a layered architecture of four layers.
They are from the highest to the lowest: application layer, transport layer, Internet
layer and host-to-network layer. In the layered architecture, lower level layers offer

21

services to higher level layers. Services include, e.g. encapsulation, encryption and
retransmission. For example, the transport layer encapsulates the application layer
data into datagrams. The Internet layer takes the transport layer datagrams and
encapsulates them into packets and gives them Internet protocol (IP) addresses.
Finally, the host-to-network layer encapsulates the packets into frames and sends
them through a wired or a wireless link to the next hop.

According to Tanenbaum [77], the TCP/IP reference model was developed for
the ARPANET, which was the predecessor of today’s Internet. The name of the
model came from the two fundamental protocols used in the ARPANET. Today, the
TCP/IP protocols are still the cornerstones of the Internet connectivity. The protocol
stack has since been appended with newer protocols that are used in a wide variety
of scenarios.

The OSI model is another well-known networking reference model. It defines
seven layers. In addition to the TCP/IP model’s layers, it contains presentation and
session layers. Also, instead of a host-to-network layer, the OSI model has a data-
link layer and a physical layer. The OSI reference model is rarely used as the basis
for design. It mostly serves as an educational model for network connectivity.

In the literature [77], [50], a hybrid model inspired by the TCP/IP and OSI mod-
els is often used. In the hybrid model, the TCP/IP model’s host-to-network layer is
further split into data-link and physical layers. The OSI model’s session and presen-
tation layers are abandoned, as they are rarely needed and they can be implemented
in the application layer if required. The resulting reference model, therefore, has five
layers: application, transport, network, data-link and physical.

3.1.1 Application layer

The application layer is the highest level in the reference models. Network appli-
cations can be viewed as interfaces between the user and the network. The Web
browser is a familiar application that uses an application layer protocol, namely
HyperText Transfer Protocol (HTTP), for communicating with a Web server. Other
important protocols include File Transfer Protocol (FTP) and Simple Mail Transfer
Protocol (SMTP).

22

3.1.2 Transport layer

The transport layer handles the connections between applications over a network.
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are the
two common, currently used transport layer protocols. TCP provides reliability, or-
dering of packets and error checking for the communication. If such reliability is not
needed, then connectionless UDP is a good alternative. UDP is suitable for appli-
cations that do not care if some packets are lost during transmission or occasionally
arrive in the wrong order.

3.1.3 Network layer

The network layer encapsulates datagrams from the transport layer into packets.
Packets are delivered to their destinations using IP addressing. IPv4 is widely used
in the Internet, but its address space has already been exhausted. Therefore, IPv6
has been specified to enable the Internet to keep up with the growing number of
devices. Its success is also critical for the success of the IoT. IPv6 addresses are 128
bits, meaning that the address space has around 1038 addresses [7]. To put things
into perspective, Mulligan calculated in [56] that there are 667× 1021 IPv6 addresses
for every square meter on Earth. Therefore, there are plenty of addresses for the
future IoT devices, as well.

3.1.4 Data-link layer

The data-link layer handles communications between adjacent devices. Its respon-
sibilities include encapsulating packets into frames, accessing the link using a media
access control (MAC) protocol, providing reliable delivery of frames, and detecting
and correcting errors. The Ethernet and 802.11 (WLAN) are two examples of MAC
protocols used in the data-link layer. A common IoT example is the IEEE 802.15.4
standard, which was specified for low-power embedded devices. It forms the basis
for many mesh protocols that are used in IoT and sensor networks.

3.1.5 Physical layer

Lastly, the physical layer (PHY) takes the data-link layer frames, encodes them into
individual bits and sends them over a communication link. Similarly, incoming bits
of information are decoded and then passed onto the data-link layer. The link can be

23

wired or wireless. In the case of a wireless link, it is the responsibility of the physical
layer to set the frequency for transmission and reception [77],[50].

3.2 IoT protocols and protocol stacks

This section presents protocols and protocol stacks that are especially used between
an end device and a gateway. Whilst Internet devices typically use the TCP/IP pro-
tocol stack, IoT devices have many to choose from. In [71], Shelby and Bormann
presented an IPv6 based 6LoWPAN stack. The MAC and PHY layers were speci-
fied by the IEEE 802.15.4 standard. A 6LoWPAN adaptation layer was built on top
of that to provide the IPv6 network layer connectivity. The layered architecture al-
lowed different transport and application layer protocols to be used on top of the
IPv6. Palattella et al. [64] proposed a similar protocol stack and implemented an
application layer using the UDP based Constrained Application Protocol (CoAP).

The ZigBee stack [88] also builds on the IEEE 802.15.4 PHY and MAC layers.
However, not all IoT protocol stacks are built on top of the IEEE 802.15.4 standard.
A Bluetooth stack [11] is based on the IEEE 802.15.1 standard and has been used in
plenty of IoT applications. Z-Wave defines its own sub 1 GHz protocol stack for the
IoT [85]. Also regular 802.11 (Wi-Fi) protocols can be found with IoT applications,
even though they are quite resource hungry. It is certainly possible to implement IoT
devices without IP connectivity. In fact, IEEE 802.15.4 can be used alone, without
higher level protocols built on top of it. It may be the exact right choice for some
IoT scenarios, where resource limited end devices are not able to implement higher
level layers.

Protocols, such as IEEE 802.15.4, ZigBee, Bluetooth and 6LoWPAN, are opti-
mised for short-range communications within sensor networks, and between IoT
end devices and gateways. The name southbound connection is used to designate
the connection from a gateway to end devices. However, there are other options for
the link between a gateway and the core network. The connection from the gate-
way to the core network is called a northbound connection. The requirements for
the northbound communication technologies largely depend on the environment.
Some gateways may be located in places where wired media is the smartest way
to enable connectivity. Other places may be so remote that connectivity is enabled
using cellular or other long-ranged wireless technologies, such as Long-Term Evo-
lution (LTE) or satellite communications. Northbound technologies could be a topic

24

for another thesis, and therefore, are beyond the scope of this one.

3.2.1 IEEE 802.15.4

The IEEE 802.15.4 [38] standard specifies the MAC and PHY layers of the proto-
col stack. 802.15.4 radios are suited for wireless personal area networks (WPANs).
They have low power consumption, low data rate and a communication range of
around ten metres. One node in an 802.15.4 personal area network (PAN) operates
as a PAN coordinator. There are two types of devices in the PAN: full functional
devices (FFD) and reduced function devices (RFD). Only FFDs can operate as coor-
dinators. RFDs are very simple devices that are intended to communicate with only
one FDD at a time. The standard specifies two topologies: a star topology and a
peer-to-peer topology. In the star topology, the coordinator establishes the network
and other nodes communicate through it. In the peer-to-peer network, any node
can communicate with any other node, as long as they are within communications
range.

802.15.4 radios use a 16-bit or a unique 64-bit addressing. A 64-bit address is
composed of a 24-bit organisational unique identifier (OUI) and a 40-bit portion as-
signed by the manufacturer. The MAC frame size is only 127 bytes long, and it
is divided into MAC header, payload and frame check sequence fields. The MAC
header may take a notable amount of the available frame size, especially if 64-bit
addressing is used. The 16-bit addresses assigned by the PAN coordinator can al-
ternatively be used. The MAC layer controls access to the physical radio channel.
Its other features include acknowledgement and validation of frames. The MAC
layer requests the PHY layer to perform a clear channel assessment (CCA) in order
to make decisions on whether the channel is clear for transmission or not.

The PHY layer supports 27 channels. 16 channels are allocated in a globally
used 2400–2483.5 MHz frequency band. Additionally, the frequency band of 902–
928 MHz, with ten channels, is used in the USA and the 868–868.6 MHz frequency
band with one channel, in Europe. In addition to transmission and reception of
PHY protocol data units (PPDU), the features of the PHY layer include turning the
radio on and off, channel selection, energy detection (ED), link quality detection and
CCA. ED is used to see if there are other radios transmitting data on the channel.
That information is also used as part of the CCA method. ED, signal-to-noise ratio
or their combination is used to calculate the link quality indicator (LQI). According
to the IEEE 802.15.4 specification [38], the LQI measurement shall be done on every

25

received packet.

ZigBee

The ZigBee stack [88] relies on the IEEE 802.15.4 PHY and MAC layers. In addi-
tion, it defines a network (NWK) layer and an application (APL) layer. The NWK
and APL layers communicate through an application support sublayer (APS). The
network layer supports star, tree and mesh topologies. ZigBee defines three device
types:

• ZigBee coordinator (IEEE 802.15.4 PAN coordinator)

• ZigBee router (IEEE 802.15.4 FDD)

• ZigBee end device (IEEE 802.15.4 FDD or RFD)

Every PAN has one coordinator, which also handles the network formation.
Routers can forward data to other nodes in the network. Router and coordinator
nodes are typically mains powered, as they cannot be put to sleep to save energy.
End devices are the most constrained devices in the network. They are typically bat-
tery powered or rely on energy harvesting techniques. They also conserve energy
by sleeping between duty cycles. ZigBee application areas include healthcare, home
automation, industrial control and many others. The ZigBee specification defines
the application profiles to provide interoperability between applications from dif-
ferent vendors [88]. The ZigBee Alliance has also defined an IPv6 based standard,
which relies on a 6LoWPAN adaptation layer [89].

6LoWPAN

IPv6 over Low-power Wireless Personal Area Network (6LoWPAN) [71] is a set of
specifications aiming to embed IPv6 connectivity into sensor networks and M2M
devices. The 6LoWPAN utilises the IEEE 802.15.4 standard on the lower layers of
the stack. The maximum transmission units (MTUs) in IPv6 are 1280 bytes, whereas
IEEE 802.15.4 MAC frames have only 127 bytes, from which the header may con-
sume a notable amount. For that reason, 6LoWPAN defines an adaptation layer on
top of the 802.15.4 MAC layer to perform fragmentation of the large IPv6 packets.
The name 6LoWPAN comes from a now concluded IETF working group [40]. How-
ever, the work on IPv6 connectivity over constrained networks has not stopped.

26

There is currently another IETF working group developing drafts and RFC’s for
similar topics [39].

3.2.2 IEEE 802.11

IEEE 802.11 [37] is a family of standards for wireless area networks (WLANs). It
was designed for laptops and other mobile devices requiring high-speed wireless
Internet connectivity. Like IEEE 802.15.4, 802.11 also specifies the PHY and MAC
layers of the protocol stack. The frequency bands vary depending on the version of
the standard. The most common frequency band being 2.4 GHz, but some versions
of the standard operate on the 5 GHz band. The 2.4 GHz frequency band overlaps
with the IEEE 802.15.4 channels, except for channels 25–26. Interference on other
channels might be problematic for 802.15.4 PANs, because the transmitting power
of the IEEE 802.11 devices is much higher [73]. The Wi-Fi Alliance [80] promotes
and certifies 802.11 WLAN standards for commercial use. That is also the reason
why IEEE 802.11 devices are often referred to as Wi-Fi devices. In this thesis, both
WLAN and Wi-Fi are used to denote the IEEE 802.11 standards.

An IEEE task group [36] is working on an 802.11ah specification, which is an
amendment to the 802.11 standard. 802.11ah is particularly interesting for the IoT
and M2M applications, because of its frequency band, communications range and
low energy consumption. 802.11ah avoids overlapping with many existing IoT fre-
quency bands, as it is intended to operate on the 900 MHz band. Its throughput is
less than with the traditional WLANs, but it has a communications range of nearly
twice as long. Sub 1000 MHz frequencies also have more robust signal propagation,
making them ideal for IoT and M2M applications. Aust et al. [9] considered sensor
networks, backhaul networks, cellular off-loading, M2M communications and rural
communications as potential use cases for the 802.11ah.

3.2.3 Bluetooth

Bluetooth offers an alternative to the IEEE 802.15.4 based protocol stacks. Especially
the Bluetooth Low Energy (BLE), introduced in Bluetooth core specification version
4.0+ [11], is suitable for IoT applications. "Classic" Bluetooth is referred to as basic
rate (BR) Bluetooth in the specification to distinguish it from the low energy (LE) ver-
sion. Sometimes, the notation BR/EDR is also used, where EDR denotes enhanced
data rate. Some devices may operate in dual mode, meaning that they can commu-

27

nicate with both the LE and BR versions of Bluetooth. Bluetooth devices broadcast
advertisement messages periodically. The advertisement period can be set between
20 ms and 10.24 s in 0.625 ms intervals. The advertisement messages are used to
form connections between devices, and as the name indicates, they can also be used
to send advertisements. IoT applications can utilise advertisement messages to send
periodic sensor data broadcasts. Currently, Bluetooth is supported by most of the
mobile phones and laptops, and due to the small energy footprint of the BLE, it is
becoming more popular in tiny sensor nodes, as well. There is also work in progress
to bring IPv6 connectivity to the BLE [57].

Bluetooth BR/EDR

According to the Bluetooth core specification [11], Bluetooth BR devices are either
masters or slaves. One master device can have up to seven slave devices in a so-
called piconet. Two or more piconets can form a larger network called scatternet.
In a scatternet, a device that operates as a master in one piconet, operates as a
slave in the other piconet(s). Bluetooth operates in the 2.4 – 2.483.5 GHz frequency
band. Bluetooth uses frequency-hopping spread spectrum (FHSS) on the available
79 channels. The hopping rate during transmission can be as high as 1600 hops
per second. The adaptive frequency hopping (AFH) method avoids interference
by performing hopping on less crowded channels. The communication range of a
Bluetooth device is 10–100 meters. BR devices have data rates up to 1 Mb/s. If EDR
is enabled, then the data rates are 2–3 Mb/s. Bluetooth applications communicate
through application profiles, which include headsets, health devices, file transfers
and printers, to name a few. For example, a PC needs a headset application profile
in order to properly connect and use a Bluetooth headset.

The two mandatory protocols are the Link Management Protocol (LMP) and the
Logical Link Control and Adaptation Protocol (L2CAP). The LMP sets up and con-
trols the radio link between two devices. The L2CAP defines several transmission
modes for the packets. The basic mode supports payloads as large as 64 kB with
the default MTU being 672 bytes. Other modes are retransmission, flow control,
enhanced retransmission and streaming mode (SM). SM offers unreliable commu-
nication and thus, does not support retransmission or flow control. [11]

28

Bluetooth Low Energy

Bluetooth Low Energy (BLE) [11] was designed for devices that require very low
power for their operation. These include, but are not limited to, devices, which are
powered by coin cells or energy harvesting techniques. Now, more and more smart
phones have started using BLE, as well. BLE operates on the same frequency band
as Bluetooth BR, but frequency hopping uses only 40 channels. The data rate is
1 Mb/s (the same as with BR). The core specification (4.0+) [11] specifies the Secu-
rity Manager Protocol (SMP) and Generic Attribute Profiles (GATT) for the BLE. The
SMP generates and stores the identity and encryption keys for communicating on an
L2CAP channel. In BR, the link manager has similar functionality. The functionali-
ties of GATT include communicating with peer devices and discovering services. It
also has similar observer behaviour to that introduced in Section 2.2.2, where CoAP
Observer protocol was covered. GATT specifies two types of observe messages: no-
tifications and indications. When using notifications, a BLE server, which can be,
e.g. a temperature sensor, sends messages repeatedly to a BLE client. Indications
behave similarly, except they require acknowledgement from the client device.

3.3 Future connectivity

Long-range cellular IoT technologies bring an alternative to previously mentioned
short-ranged communication technologies. Even though the two technologies are
competing, they can complement each other. They offer alternative ways of access-
ing the IoT just like there are alternatives for accessing the traditional Internet using
cellular Internet technologies, home WLAN gateways and so on.

Cellular IoT devices form Low-Power Wide-Area (LPWA) networks. LPWA sys-
tems require a long battery life, low device cost, low deployment cost, full coverage
and support for massive numbers of devices. LPWA devices communicate directly
with a base station and do not need a gateway device like the aforementioned short-
range technologies. However, base stations may offer similar services as gateways
do. Current LTE technologies are not suitable for the low power end devices, and
even the more powerful gateways struggle, when there are many simultaneous de-
vices sending data through the gateway’s LTE interface [18].

There are several LPWA standards in progress. They are being developed by
keeping the constrained nature of IoT devices in mind. Examples include, LTE-M

29

and EC-GSM, which are expected to be available in 2016. LTE-M uses a bandwidth
of 1.4 MHz, with a data rate of less than 1 Mbps. It offers a communications range
up to 11 km. The narrowband version of the LTE-M supports a 200 kHz bandwidth
with a communications range up to 15 km and a data rate up to 150 kbps. EC-GSM
has a lower data rate of up to 10 kbps, using 2.4 MHz bandwidth. In the future, 5G
is also expected to offer connectivity for cellular IoT applications. [58]

As the 2.4 GHz frequency band suffers from overcrowdedness, some of the IoT
PHY layer protocols are moving to the Sub-1 GHz range [9]. The IEEE 802.15.4 spec-
ification [37] already supports the 868.0–868.6 MHz and 902–928 frequency bands.
One interesting upcoming Sub-1 GHz standard is the IEEE 802.11ah [36] that was
presented in Section 3.2.2. It is interesting, in a sense, that today, many homes and
offices already have Wi-Fi access points for people to access the Internet. Perhaps in
the future, Things can access the Internet using the same access points that people
use, but on different frequency bands.

30

4 IoT gateway

The main task of an IoT gateway is to connect "Things" to the Internet. The mul-
titude of different radio technologies demand gateways that can support multiple
radio interfaces and communication protocols. The PHY and MAC layer protocols,
that were introduced in Chapter 2, are most likely the ones that need support from
the gateway side. Still, it might not be enough, because the sensor nodes might use
other protocols on top of the PHY and MAC layers. In those cases, the gateways
might need to understand the higher level protocols, as well. The idea of a gateway
is not a new one as similar devices were already used in the early Internet [15]. Also
WSNs have been utilising gateways for a long time. In the WSN literature, gateways
are referred to as sinks [2].

Different kinds of IoT gateways have been presented in academic papers in the
past years. Zhu & al. [87] developed an IoT gateway for a ZigBee based WSN. The
northbound interface to the Internet was actualised using a GPRS module. Datta
et al. [19] used multiple southbound and northbound interfaces to communicate
Sensor Markup Language (SenML) data in a RESTful system. There are also many
companies involved with the development of IoT gateways, already. For example,
Digi International [22] offers various IoT gateways, which provide connectivity and
management to their own ZigBee based XBee product family. Intel has variety of
gateways for different target markets such as industry, transportation, energy and
hobbyists [41].

There is, however, a big problem with the aforementioned gateways. They are
usually designed for a very specific purpose, i.e. they support only one or a small
set of protocols and radio interfaces. There are, however, a multitude of sensors
using different protocols and this will quickly lead to a situation where one needs
a new gateway for every new use case. The ideal situation is that one can take an
IoT device out of one environment and place it into another, while keeping similar
connectivity and functionality. Zachariah et al. [86] aimed to accomplish this by
designing a mobile gateway. The idea is that normal smart phones would function
as gateways, i.e. anyone using a smart phone would also offer gateway services for
sensors and other devices. They used Bluetooth Low Energy (BLE) as the commu-

31

nication technology between the gateway and the sensors.
According to Chase [16], it is unlikely that there will only be one IoT standard

standing, in the end. There are plenty of them now and there will be plenty of them
in the future. It also justifies the use of an IoT gateway as it is a way to support
multiple IoT standards and protocols.

4.1 Gateways and routers

Cerf and Kirstein noted in [15] that the IoT faces similar gateway challenges that
the early Internet encountered, in the 1970s. Back then, it was not certain whether
gateways should be application-level gateways or just natively relay messages us-
ing some network layer protocols. It turned out that the gateways started adapting
IP-based network protocols and evolved into the IPv4/IPv6 routers of the Internet
that we know today. Now IoT needs to find its way to extend the existing Inter-
net. The question is again, should IoT use network-level routers or application-level
gateways?

In the former scenario the network-level support is directly implemented in the
IoT devices. If the end devices were able to implement a network stack that includes
IP-connectivity, then gateways did not have to process the messages in the applica-
tion layer. Gateways would then perform as IoT routers and relay the messages
like traditional routers. The previously discussed 6LoWPAN specification intends
to bring IPv6 connectivity to low-power end devices. Gateways in 6LoWPAN are
called border or edge routers. Border routers implement an IPv6 adaptation layer
on top of the MAC layer. The adaptation layer slices large IPv6 packets into suit-
able sizes so that they can be carried in IEEE 802.15.4 frames. Additionally, border
routers support neighbour discovery, link-layer & network routing, IPv6/IPv4 in-
terconnection, firewall & access control and management & proxy services [71]. The
use of IPv6 based end devices would enable similar routing functionality as is used
in the Internet today. For example, the IPv6 Routing Protocol for Low-Power and
Lossy Networks (RPL) [82] has gained some ground in the IoT/WSN together with
6LoWPAN.

In the latter scenario, the IoT end devices would communicate with gateways us-
ing non-IP protocols, such as IEEE 802.15.4, ZigBee or Bluetooth. Application-level
gateways would then process the messages and pass them on using network level
protocols, e.g. IPv6. Furthermore, the payload can be wrapped into even higher

32

level protocols such as HTTP or CoAP. More about this approach is discussed in
Chapter 5, where IoT gateway design is presented. These two approaches are also
discussed a bit more, in the conclusion, in Chapter 6.

4.2 Gateway functionalities

This section introduces some important functionalities of an IoT gateway. It is not
an exhaustive list of all the functionalities, as they also largely depend on specific
applications. Furthermore, this is certainly not a definitive list of functionalities that
an IoT gateway must have. In the end, it is up to the system architects and engineers
to decide which functionalities should be the responsibilities of an IoT gateway, as
some of the functionalities may also be implemented in the end device or in the back
end.

4.2.1 Edge computing

Edge computing, also known as fog computing, is an extension of the cloud com-
puting paradigm. Computation tasks that are normally executed in the cloud are
brought to the network edge. It reduces latencies, as computation is done closer to
the user. Edge computing is especially suitable for devices, which are mains pow-
ered. Sensor nodes are typically incapable of executing demanding computational
tasks. Gateway devices, on the other hand, are often mains powered and equipped
with more processing and storage capabilities for edge computing purposes [13].

4.2.2 Dataflow control

IoT gateways have one or more southbound and northbound interfaces. South-
bound interfaces face the IoT end devices and northbound interfaces connect to the
cloud services. For example, an IoT gateway may offer IEEE 802.15.4, ZigBee and
Bluetooth as southbound interfaces and LTE and Ethernet as northbound interfaces.
The IoT Gateway may also support multiple higher level protocols. There may be a
need to send data from the IoT devices to multiple destinations using, for example,
both CoAP and HTTP.

IoT gateways can also be thought of as being part of a software defined net-
working (SDN) system. SDN decouples the control plane and the data plane in the
network. SDN uses centralised intelligent devices, that control how the underlying

33

devices relay data. In the IoT scenario, the gateways take the roles of controllers,
which control the behaviour and dataflows of the underlying network of Things.
Stojmenovic [74] applied the SDN idea to a fog computing architecture, where one
device in the fog took the role of the controller.

In cases, where the gateway relays information between sensors and sensor net-
works, it is important that the gateways support data aggregation. The goal of data
aggregation is to save energy in the receiving ends by filtering and combining the
data before sending.

4.2.3 Proxy functionality and caching

Proxies are often implemented in gateways. They offer essential functionality for
the low-power and lossy networks (LLNs). Proxies are relevant if the clients cannot
or should not access the physical devices directly. The use of a proxy may reduce re-
sponse time, network bandwidth and energy consumption of an end device. There
are a couple of benefits in using proxies. Firstly, they can be set to listen for no-
tifications from a node. In this case, the nodes can decide when to send data and
when to save energy. Secondly, proxies can serve multiple clients, which allows the
node to only communicate with the proxy. This saves the nodes’ energy, memory
and processing resources, because there will only be one client (proxy) accessing it.
Sometimes protocol conversions are needed as devices prefer energy-efficient proto-
cols, whereas human users may prefer the user-friendly ones. For example, Mainetti
et al. [53] used a proxy server to convert CoAP notifications into WebSocket notifi-
cations that could be read from a Web browser. CoAP-to-HTTP or HTTP-to-CoAP
are other common protocol conversions.

Proxies can also support caching. It is another powerful method for saving en-
ergy in the node. Notifications or events coming from the node can be stored for a
certain period of time. If clients want to request a certain resource, the proxy can
serve the resource from its cache instead of passing the request to the node. An im-
portant thing is to keep the cached values up-to-date and that is the responsibility
of the proxy. CoAP supports all of these functionalities natively.

CoAP [72] defines two types of proxies: a forward-proxy and a reverse-proxy.
Forward-proxies perform requests on behalf of clients. A forward-proxy is selected
by a client by using a Proxy-Uri option. The forward-proxy consumes the Proxy-Uri
option and creates the Uri-Host, Uri-Port, Uri-Path and Uri-Query options, which
are forwarded to the actual server. Reverse-proxies stand in for the actual server and

34

a client may not be aware that it is communicating with a reverse-proxy instead of
the actual server. Proxies can simply perform CoAP-to-CoAP mapping or even do
cross-protocol translations. As an example of a cross-protocol translation, a proxy
may take the client’s request in HTTP, translate it into a CoAP request and forward
it to the actual server. The actual server will then send a CoAP response, which will
be translated into an HTTP response by the proxy, and then finally gets forwarded
to the client. Caching is also supported by CoAP. CoAP uses a freshness model to
arrange caching. The freshness of a message is determined by the expiration time
defined by the Max-Age option. If the response is fresh and it can satisfy the request,
then it is sent to the client instead of contacting the actual CoAP server. If the proxy
has disabled caching, then the requests will be passed directly to the actual server.
The Max-Age option can also be set to zero, which avoids caching that particular
message.

4.2.4 Resource discovery

Resource discovery is an important functionality in M2M and IoT applications as
there are multitude of different types of sensors and actuators offering their re-
sources. Resource discovery can be done in different layers of the network depend-
ing on the network size and type. The essential thing is that the devices should
somehow be able to expose their resources, so that a client using an IoT application
will be able to know about them.

CoAP [72] supports resource discovery and it follows the CoRE link format as
specified in [70]. The link format specifies a URI prefix "/.well-known/core" for list-
ing all the resources that the server is offering. Resource directories can be used to
gather resource descriptors from multiple servers in the network. Resource directo-
ries are hosted in more capable devices such as gateways, which can poll the servers
or receive notifications about the resources. The link format also supports filtering
the resources by using the query section in URIs as seen in Section 2.2.2. It is useful
when the client is only interested in specific types of resources. In [53], Mainetti et
al. built a Web of Things architecture where device discovery was implemented in
a CoAP gateway proxy.

Datta et al. [20] view CoAP as lacking some important discovery functions.
Firstly, the CoAP server has the ability to expose its resources, but there is no mech-
anism to announce its own existence. The clients need to have previous knowledge
that such a server exists. Secondly, it is not specified how a client can remotely look

35

up the resource directory. Thirdly, there is a scalability issue with the resource di-
rectory and CoAP. For example, in larger networks the gateways should be able to
propagate their resources to higher level resource directories. Due to the shortcom-
ings of built-in resource discovery of CoAP and other protocols, Datta et. al [20]
proposed a technology independent architecture for the resource discovery. In their
architecture, the end nodes expose resources by sending notifications to a proxy
layer. The clients use search engines to find resources that have been registered to
the configuration registry by the proxy.

4.2.5 Security

As noted in [7], [30] and [55], security and privacy are open issues in the IoT re-
search. IoT gateways are attractive targets for various attacks as they connect all
sorts of constrained devices to the Internet. In [81], secure booting, access control,
device authentication, firewalling, and updating and patching were listed as mech-
anisms to secure IoT devices. Frantti et al. [29] made a risk analysis of different
security threats facing the IoT and defined security requirements for an IoT edge
router. It is essential to understand that security is not an add-on, but a fundamen-
tal part of the underlying architecture [29], [55]. Security issues are not in the scope
of this thesis, but it is important to take them into account, when designing IoT
systems.

4.3 Gateway management

Like IoT end devices, gateways also need to be managed. There might be security
fixes, new features, device settings or new dataflow profiles that need to be remotely
changed or updated in the gateway. It is also important to be able to monitor the
status of the gateways. This section introduces some of the well-known device man-
agement standards.

4.3.1 Management standards

The standards presented in this section are often associated with end devices. How-
ever, they are not strictly designed for specific types of devices and they are well
suited for gateway management, as well.

36

TR-069

Broadband Forum’s (previously DSL Forum) TR-069 technical specification [24] de-
scribes a communication protocol between customer-premises equipment (CPE) and
an auto-configuration server (ACS). The protocol also specifies security and CPE-
related management functionality. CPE WAN Management Protocol (CWMP) uses
HTTP requests with GET, PUT and POST methods to handle device management
tasks. Management requests are always initiated by the CPE device to which the
ACS responds with management messages. CPE encloses a heterogeneous collec-
tion of different kinds of devices. TR-069 can be used with home gateways, set-top
boxes, VoIP phones, game consoles and other kinds of electronic devices [66].

OMA device management

Open Mobile Alliance Device Management (OMA-DM) [63] specifies an architec-
ture, requirements and a protocol for end device management. OMA-DM builds
on RESTful architecture using HTTP as the application layer protocol. The require-
ments include mechanisms to handle management tasks, interoperability, admin-
istration and security. The management tasks include configuring device settings,
managing and upgrading the device with software updates, retrieving device infor-
mation for fault management and so on.

OMA Lightweight M2M

OMA Lightweight M2M (LWM2M) [61] is a management standard aimed for man-
aging low-power embedded devices. As a comparison to the aforementioned stan-
dards, LWM2M extends the range of devices that can be managed. LWM2M devices
are constrained in terms of network bandwidth, computing power, memory, battery
and cost. Also, more complex devices, such as gateways and hubs, can be managed
with LWM2M. Management tasks include switching the device on and off, software
updates, configuration, maintenance, error recovery, monitoring and data queries
[47].

LWM2M defines a client-server communication architecture. The architecture

37

also includes bootstrapping and smart-card modules [61]. LWM2M defines a set
of high-level functional requirements and a couple of security requirements. High-
level functional requirements specify, for example, what kind of information is trans-
ferred to and from the device and which features should be managed. Security re-
quirements include authentication, authorization, data integrity and confidentiality
[62].

An example implementation was introduced in [47]. The implementation is
based on RESTful architecture. CoAP is used as the application layer protocol.
LWM2M client is composed of objects, which contain different resources. Resources
can be read, written or modified by using CoAP GET, POST, PUT and DELETE
methods. CoAP messages can be delivered using 6LoWPAN, Wi-Fi or a short mes-
sage service (SMS). End-to-end security builds on the Datagram Transport Layer
Security (DTLS), which provides a secure channel between a LWM2M client and a
LWM2M server. Secure communication can be built on public key or pre-shared key
technologies.

4.3.2 Management protocols

The previously presented TR-069 and OMA-DM use HTTP as the application layer
protocol. The devices run RESTful services that can be accessed using the request
methods that were mentioned in Section 2.2.1. Similar RESTful services can be im-
plemented using CoAP, as was the case in [47]. However, CoAP has a broader range
of target devices than HTTP, due to its suitability to low-power and lossy networks.

MQTT brings another interesting perspective to gateway management. Manage-
ment or configuration messages can be delivered in publish-subscribe fashion using
a centralised broker. In [46], Kim et al. proposed an MQTT based architecture for
device management. They used an IoT gateway as a broker to forward control mes-
sages to different IoT devices. The same idea can also be applied to control gateways
themselves. Unfortunately, there are currently no management standards that build
on the MQTT protocol.

4.4 Virtualising the gateway functionality

Network Function Virtualisation (NFV) is a novel technique to reduce time to mar-
ket of new services and to improve network flexibility and manageability. NFV de-

38

couples software and hardware by a virtualisation layer, which abstracts the phys-
ical resources. From a hardware perspective, there can be a very heterogeneous set
of devices such as smartphones, gateways, routers and set-top boxes. Through a
virtualisation layer they all can have the same functionality and behaviour with a
consistent management interface [33].

Docker [23] is a good example of a virtualisation tool that can be used for gate-
way devices. Docker wraps all the needed functions and packages into a container.
Containers can be run on any platform supporting Docker, without the need to do
platform specific modifications to the container. Docker containers are much more
lightweight than the traditional virtual machines. They can, therefore, support man-
ageability and maintainability in small devices like IoT gateways. Containers are
built using instructions contained in a Dockerfile. To provide new functionalities
for a network device, new containers can be seamlessly deployed by using a cen-
tralised image repository. [23]

39

5 IoT gateway development and deployment

The first goal of the empirical part is to develop an IoT gateway that provides con-
nectivity between end devices and back end servers. The second goal is to deploy
eight gateways in a laboratory environment. The gateways will collect data from a
heterogeneous set of end devices, in an area of approximately 640m2. The long-term
goal is to have an IoT testbed that can be used to study and compare, for exam-
ple, different communications protocols, power consumption and localisation algo-
rithms. Figure 5.1 presents the gateways designed in this thesis. The gateway on
the right is one of the eight gateways deployed for the laboratory demo. The one on
the left is used as a standalone gateway for demonstrations and for introducing new
gateway functionalities before they are deployed in the lab network. The network
topology is presented in Section 5.3. It is important to note that the development
of the gateway and the systems related to it have been developed in a project with
other researchers and developers. There have been a lot of people contributing to
different parts of the project, from the planning state, to the implementation and
testing phases. The author of this thesis has focused on defining use cases, develop-
ing gateway software and deploying gateways in the laboratory environment. The
software tasks included the design of sensor interfaces in the gateway, internal data
processing and external gateway communication. Other components, such as visu-
alisation and back end, have not been designed by the author. However, they are
also presented in this chapter, as they are relevant for providing the big picture of
the system.

Figure 5.1: The designed gateway with and without covers.

40

5.1 Gateway architecture

The main focus in the gateway design is the software. The Distributed Decision
Engine (DDE) was selected as the software architecture for the gateways. It will be
discussed in detail in Section 5.1.1.

Raspberry Pi 2 was selected as the computing platform for the gateway as it is a
highly customisable board in terms of software components and hardware peripher-
als. Raspberry Pi 2 also has a significant boost in computing capabilities, compared
to the previous versions, as it has a 900 MHz quad-core ARM Cortex-A7 CPU and
an increased amount of memory. It supports Secure Digital memory cards up to 32
GB, so it can operate as a local storage for logs and cached data [67].

The gateway software has also been tested on Intel Galileo Board [42]. It en-
ables the use of various IoT peripherals, as it is compatible with Arduino shields.
Programs on Galileo can be written like any Arduino program using the Arduino
Integrated Development Environment (IDE). The Arduino programs run on top of
an embedded Linux operating system. Therefore, Intel Galileo supports embedded
Linux software development, as well as quick prototyping with the Arduino IDE.

5.1.1 Distributed Decision Engine

The Distributed Decision Engine (DDE) [69], [52] forms the underlying architecture
of the gateway. The DDE enables rapid development of new features and adds
modularity to the gateway architecture. Figure 5.2 presents the general DDE archi-
tecture. It uses a publish-subscribe model, which was presented in Section 2.3. In
DDE, information producers collect data from sensors and publish them as events
through a module named Event Cache. The Event Cache distributes the events to all
consumers who have subscribed to them. Consumers will then process the events
or send them further to a remote server.

41

Figure 5.2: Distributed Decision Engine. Adapted from Rautio et al 2013 [69].

Event Cache is not just for caching and distributing information. The visualisa-
tion interface can be used to view the current status of different DDE modules. The
management interface can be used to modify producer registrations, consumer sub-
scriptions and policies. Access by different consumers can be controlled using poli-
cies that are stored in the Event Cache’s policy database. The controlling database
has information of all registrations and subscriptions made by producers and con-
sumers.

The DDE also supports modules that work both as consumers and producers.
In fact, the algorithm module, specified by the DDE, operates that way. It receives
an event from the Event Cache from its consumer interface, does some processing
to the data, and finally publishes the processed data, as a new event, through its
producer interface [52].

5.1.2 Data format

The producers use JavaScript Object Notation (JSON) to communicate sensor data
to the Event Cache. The Event Cache relays them onwards to consumers who have

42

subscribed to that event. Consumers can further process the data contained in the
JSON or send it further on without changes. The JSON packets are then appended
to a CoAP, HTTP or MQTT request. The data format has the following structure:

{
payload: {

rssi: float
tagID: string
gwID: string
timestamp: string
samples: {

sensor1: integer
sensor2: integer
...
sensorN: integer

}
}

}

XBee, Wi-Fi and Bluetooth based producers use the above format, although not
all end devices have sensors. In that case, the samples section is empty. The format
is very lightweight and samples include only the name and the value of the sensor.
Currently, the sensor values represent the analog-to-digital conversion (ADC) val-
ues, which need to be converted to the needed unit in the application side. As noted
in Section 2.3, the producers should not change the data format arbitrarily, as it may
break the subscribing modules.

5.1.3 Hardware interfaces

Hardware interfaces allow different peripherals to be connected to Raspberry Pi.
Raspberry Pi 2 has four USB ports, which can be used to connect, e.g. Wi-Fi dongles
and other USB devices. 40 GPIO pins enable custom made or off-the-shelf hardware
components to be interfaced with the Raspberry. GPIO pins include UART, i2c, SPI
and i2s audio interfaces. Peripherals can use 3.3 V or 5 V pins as their voltage supply.

USB ports and the GPIO UART are needed for the selected peripherals. Wi-Fi
and Bluetooth dongles are connected to USB ports and the XBee module is con-

43

nected to the UART, using a specialised shield [17].
One thing to consider, when adding peripherals, is the current consumption.

Current consumption has to be within the limits of the power supply’s output cur-
rent, otherwise the gateway will not work as expected. The output current for the
Raspberry Pi power supplies is usually around 1-2 A.

5.1.4 Operating system

There are plenty of options for an operating system for Raspberry Pi 2 due to its
increased computing capabilities. Raspbian is a popular operating system for Rasp-
berry Pi and it is also officially supported by the Raspberry Pi foundation. Third
party operating systems include, for example, Ubuntu Mate and Windows 10 IoT
core [68]. Furthermore, hobbyists often use Archlinux, as it is a lightweight operat-
ing system that can be customised for a specific purpose [5]. Raspbian was selected
for this work, as it offered many important tools by default, and it was a quick way
to start the software development phase.

5.2 Interface design

The actual gateway instantiation of the DDE does not require that all of the specified
components of Fig. 5.2 are implemented. Connectivity can be achieved by imple-
menting only the needed producers and consumers around the Event Cache. The
end devices use IEEE 802.15.4, IEEE 802.11n and Bluetooth Low Energy (BLE) ra-
dio technologies. Therefore, a producer module is created for each one of them, in
the gateway. The task of a producer is to receive and parse a frame that is coming
from one of the aforementioned technologies. The producer then appends needed
metadata, such as timestamps and RSSI values, to the JSON payload. Consumer
modules are implemented for CoAP, HTTP and MQTT to enable connectivity with
remote servers. Figure 5.3 shows the different modules running in the actual gate-
way.

44

Figure 5.3: DDE modules inside the gateway

The producers have unique event identifiers that are used by the Event Cache
to distribute events to correct consumers. Consumers subscribe to events during
start-up. It is also possible to use one consumer to listen to multiple events. The
modularity of the DDE allows manipulating dataflows by adding, changing and re-
moving the event subscriptions. Python was used as the programming language,
mainly because it makes prototyping much quicker than with the more efficient,
lower level languages. The DDE provides the flexibility to use almost any program-
ming language, as the modules communicate through socket interfaces.

5.2.1 Wi-Fi Producer

The task of the Wi-Fi Producer is to monitor traffic in the IEEE 802.11n frequency
band. The pieces of information to be collected are the RSSI value and the MAC
address of the end device. In order to perform meaningful monitoring on WLAN
devices, we need to see all traffic on a given channel. A promiscuous mode lets us
see all traffic from the network to which the monitoring device is attached. How-
ever, it is not enough to monitor only one network, as we want to see traffic from all
devices including the ones that are not associated to any network. Moreover, we do

45

not necessarily want to be attached to any access points while doing monitoring. It
turns out that devices supporting the monitor mode can do exactly that. In the mon-
itor mode, the wireless interface is able to listen to traffic from all the devices, in a
specific channel. Unfortunately, experience has shown that not all wireless interface
drivers support the monitor mode.

The interesting message types are probe requests, which are broadcasted by lap-
tops and smart phones. Devices broadcast probe requests on all channels that are
supported by the device. Therefore, we can set our monitoring device to listen to
only one channel. Probe requests are used, for example, to gather information of
the nearby access points. The frequency of sending probe requests varies greatly
between different manufacturers. An important piece of information carried by the
probe requests is the MAC address of the device. The MAC address is used together
with the RSSI values to determine the location of the device. Linux supported Ra-
diotap headers append additional information into the 802.11 frames including the
important RSSI values.

The actual implementation of the Wi-Fi producer was coded in Python. Libp-
cap was used to capture incoming MAC frames including the Radiotap headers. A
Pylibpcap python module made the C-based libpcap library callable from Python
programs. That made it straightforward to parse the MAC frame and the Radiotap
header in Python.

5.2.2 XBee Producer

The XBee Producer collects information coming from the XBee 802.15.4 nodes. The
important pieces of information to be collected are sensor data, sender address and
the measured RSSI value. Sensor values include, for example, temperature, hu-
midity and brightness. The XBee modules are mounted on a shield that is placed
on the Raspberry Pi. XBee 802.15.4 frames are read using a serial communication
between the Raspberry Pi and the XBee module. The serial interface is shown
as "/dev/ttyAMA0" in the Raspbian operating system. The interface is not hard
to read, but there are existing libraries assisting reading characters and forming
802.15.4 frames. The pyserial library was used for initialising the serial commu-
nication and reading characters from the interface. In addition, an XBee Python
library was used to help with parsing 802.15.4 frames. The RSSI measurement is
conveniently supported by the XBee radio firmware, and the values are embedded
into received 802.15.4 frames. There are also XBee libraries for several other pro-

46

gramming languages including Java, C/C++ and Python.

5.2.3 BLE Producer

Bluetooth Low Energy (BLE) devices are set to broadcast sensor data periodically in
advertisement messages. The task of the BLE Producer is to listen the advertisement
messages. The implementation of the BLE Producer is very similar to the XBee
Producer, with few exceptions. The BLE module is physically attached to a USB
port of the Raspberry Pi and only temperature data is currently sent by the nodes.
The incoming Bluetooth frames are read using a BlueZ Python module, which is the
official Bluetooth stack implementation in Linux. Finally, the temperature data and
the device ID are parsed from the Bluetooth frame.

5.2.4 CoAP Consumer

The CoAP Consumer operates as a CoAP client. It listens to events coming from the
Event Cache and forwards them to a remote CoAP server. The CoAP Consumer is
set to listen to events coming from all of the producers. In the case of WLAN data,
the CoAP consumer sends a payload containing an RSSI value and a MAC address
to the remote server using the PUT method. If an entry for the given MAC address
already exists, then the server will update the RSSI value associated with the MAC
address, in the database. Otherwise, the server will send a 4.04 (Not found) error. In
that case, the CoAP Consumer will build a new POST request to create a new entry
in the database. Now, all of the subsequent requests with that MAC address can be
sent using the PUT method. However, this applies only to data coming from the Wi-
Fi Producer. When dealing with unknown non-Wi-Fi devices, such as sensor nodes,
the CoAP Consumer will not add a new device in the database. Libcoap was used
to build a CoAP client, which was then utilised by the CoAP Consumer. Libcoap is
written in the C programming language and, therefore, produces an external exe-
cutable, which needs to be called from inside the CoAP consumer, for every request.

5.2.5 HTTP Consumer

The HTTP Consumer actually has the same functionality as the CoAP Consumer.
It just provides an alternative protocol for transmitting data to a remote server. In
some cases, it might even be preferable to use HTTP as there are plenty of options

47

for Web servers available. CoAP is preferred in cases where the server has con-
straints in processing, memory or energy, or when the data is sent over low-power
and lossy networks. The HTTP Consumer provides support for Transport Layer Se-
curity (TLS) and, therefore, is a good option when sending data over insecure net-
works. HTTP Consumer uses the Python Requests module for handling the HTTP
connections.

5.2.6 MQTT Consumer

MQTT is used for real-time monitoring of sensor data. MQTT Consumer publishes
sensor data to a remote broker, which forwards them to visualisation clients. This
kind of setup allows for a quick way to implement new visual front-ends for, e.g.
demos. MQTT Consumer subscribes both XBee and BLE events because they both
contain sensor data that are needed in the current visualisations. WLAN events are
also subscribed and aggregated in order to plot the amount of WLAN devices. The
MQTT Consumer is implemented using the Python Paho MQTT library. The MQTT
Consumer publishes data to following topics:

• /IoT_Demo/BLE/<tagid>

• /IoT_Demo/XBee/<tagid>

• /IoT_Demo/WLAN/<gwid>

The <tagid> placeholder is specific to the device from where the data is origi-
nating. The tagid of a BLE device is the hardware address (bdaddr) of the module.
Accordingly, the XBee tagid is a 64-bit address from the XBee module. The <gwid>
is the MAC address of the gateway, which forwards the Wi-Fi data. The data is ag-
gregated on the application side and shown as the number of wireless devices that
are within the communications range of a gateway.

5.3 Case examples

Eight gateways were connected to the laboratory network using an Ethernet con-
nection. Figure 5.4 shows the network topology of the system. Gateways use IPv6
addressing, because it is considered as one of the enablers of the IoT as IPv4 ad-
dresses are running out [7]. The server can handle requests, which use CoAP, HTTP
or MQTT protocols.

48

Figure 5.4: Network topology presenting end devices, gateways and the back end.

The tag database is used to store data sent by the sensors and mobile devices.
The real-time monitoring follows the publish–subscribe paradigm discussed in Sec-
tion 2.3. The monitoring client binds to an MQTT broker and subscribes to events
coming from the MQTT consumer. The monitoring client receives notifications and
the values are then updated on a graph, in real-time. The visualisation client can
also show historical data to the user. Fig. 5.5a shows historical sensor data as graphs
and Fig. 5.5b represents the real-time dataflow. Users can make HTTP requests from
the visualisation client to the tag database for graphing data, from specific sensors.
HTTP-to-CoAP mapping is implemented using proxy functionality similar to that,
which was discussed in Section 4.2.3.

49

(a) Environmental monitoring (b) Dataflow visualisation

(c) IoT gateway management

Figure 5.5: Screenshots of the user interfaces

Figure 5.5c is a screenshot from the IoT gateway orchestration tool. It is used to
manage all of the different modules running inside the gateway, including the pre-
viously presented DDE modules. The management interface is implemented using
Docker containers, which were discussed in Section 4.4. The basic functionalities
include starting and stopping a container. It can also be used to deploy, update or
remove a container. New containers are loaded from a remote image repository.

50

5.3.1 Case 1 - Environmental monitoring

There is a set of sensors in the lab monitoring several different properties. Some of
the sensors are depicted in Figure 5.6.

Figure 5.6: Some of the sensors used for environmental monitoring.

The most basic ones are temperature sensors, whereas more complex sensors
include air flow (not pictured) and carbon dioxide (CO2) sensors. In the figure,
the sensor marked with ”A” is a CO2 sensor. ”B” in the figure represents smart
phones. They are not currently used for environmental monitoring and they have
greater relevance in Cases 2 and 3. ”C” is an XBee sensor box, which contains tem-
perature, humidity and brightness sensors. EnOcean sensors are grouped under
the letter ”D”. They provide energy harvesting mechanisms for sensor data trans-
mission. The DDE support for EnOcean sensors was developed by other members
of the project, and therefore, are not covered in the previous sections. Finally, the
sensor marked with ”D” is VTT’s TinyNode, which provides temperature readings
using a Bluetooth Low Energy radio. Figure 5.5a depicts environmental monitor-

51

ing data coming from the sensors. The sensor data is carried using Bluetooth and
IEEE 802.15.4 based radios. The gateway interfaces that were presented in Section
5.2 play a key role in delivering data from the sensors to the back end servers and to
the visualisation. The MQTT Consumer presented in Section 5.2.6 is used to provide
data to visualisation clients in real-time. The visualisation works as a demonstration
of the dataflow that goes through the gateway and can also be used to demonstrate
the management functionalities of the gateway. The CoAP Consumer (or the HTTP
Consumer) subscribes to sensor events and forwards them to a remote server for
storage. Visualisation clients can then show historical data as graphs and plots.

5.3.2 Case 2 - Tracking an object/indoor localisation

Static sensors are simple in terms of localisation, as the location does not change
over time. Mobile sensors and objects pose a challenge as they will move, thus, their
location needs to be frequently changed in the database. There are scenarios where
everyday items, such as keys or phones, need to be tracked and localised in indoor
spaces. There are several different technologies for achieving indoor localisation.
The most inexpensive way is to use the existing hardware and perform RSSI based
localisation. The IoT gateways record RSSI values from all of the radio interfaces,
hence allowing rough distance estimation and localisation on the server side. The
location can be calculated when the broadcasting tag is heard by multiple gateways.

The weighted centroid localisation algorithm [12] was chosen for the case exam-
ple. It is based on a Received Signal Strength Indicator (RSSI), which is measured in
the gateway from incoming packets. All of the chosen technologies, namely Wi-Fi,
BLE and XBee send periodic broadcasts that are captured by their respective pro-
ducer modules, at the gateway. RSSI values are then sent to a remote server and
the location is calculated using the weighted centroid localisation algorithm. The
location is then updated in the tag database, and can be queried by the visualisation
client. The prerequisite of the technique is that the locations of the gateways are
known and stored in the database.

An earlier version of the gateway was used in a children’s safety application,
where their locations were approximately measured to ensure that they are in al-
lowed areas during daycare [43]. The children used safety vests, which were sup-
plemented by some processing, sensing and radio capabilities. The safety vests are
still compatible with the gateway presented in this thesis.

There are alternatives to RSSI-based localisation. Some of the more advanced

52

and accurate ones include time of flight (ToA) and time difference of arrival (TDOA)
techniques [51]. Their distance estimation is based on the propagation time of the
signal. They are, however, quite expensive to deploy, as the timing has to be very
precise, and that requires specialised hardware. Although RSSI-based localisation
is not a very accurate technique, it is an inexpensive option, as no extra hardware is
required.

5.3.3 Case 3 - Crowd counting

Crowd counting is a technique used for counting how many people are in a given
area. The examples include crowded areas such as shopping malls, rallies and fes-
tivals. State of the art crowd counting techniques use Wi-Fi signals to count the
number of people in an area [21], [83]. People do not even need to have smart
phones, as the systems are based on detecting changes that people cause on the Wi-
Fi signals that are actively sent by the detectors. The aforementioned techniques
are beyond the scope of this case example, and a more straightforward approach is
used for rough crowd estimation. The crowd counting technique supported by the
gateway counts the wireless devices that are sending probe requests. It, therefore,
misses a lot of people, but can still provide information on which areas are more
populated at specific times. The method counts all of the devices that are within the
communications range of the gateway.

The Wi-Fi Producer is used for extracting information from probe requests. It is
the same module as in the indoor localisation case. The difference is a new instance
of the CoAP consumer, which forwards data to another application running on the
server. Additionally, an MQTT Consumer is listening to the Wi-Fi events and for-
wards them to be aggregated and shown in the visualisation. The visualisation in
Fig. 5.5b shows the amount of Wi-Fis heard by the gateway during short intervals.
The downside of this case example is that some of the newer mobile devices keep
changing their MAC addresses. It is a welcomed feature for security reasons, but
makes crowd counting more challenging.

5.4 Discussion

The preliminary versions of the gateway were initially presented in [44], [45] and
[43]. Since then, it has gone through many cycles of development and evolved

53

into an easily manageable multi-purpose gateway. The publish-subscribe paradigm
worked well as the message passing architecture. It was utilised in two places in
the system, as the Distributed Decision Engine (DDE) handled internal communica-
tion in the gateway and the MQ Telemetry Transport (MQTT) protocol was used to
bind gateways to visualisation clients, through a centralised broker. The DDE made
it possible to easily control dataflows from the gateway to the outside world. In
addition, modularity of the DDE enables quick development of new gateway func-
tionality. The DDE is well suited to container-based management as DDE modules
are easy to ship and deploy inside containers. The management interface allows
quick loading and unloading of the functionalities. Eight gateways were success-
fully installed in the laboratory network, and they were ready to serve as a testbed
for IoT research, as was the original plan.

CoAP support was built into the gateway, but was merely used between the
gateway and the back end. The sensors, however, did not have CoAP capabilities,
and therefore, the end-to-end communication was not purely CoAP. Instead, the end
devices only used lower level protocols, such as IEEE 802.15.4, 802.11 and Bluetooth
Low Energy to communicate with the gateway. The gateways processed the frames,
read the payload content and appended it to a JSON data structure, along with
the measured RSSI values and timestamps. The JSON data structures were then
forwarded using CoAP, HTTP and MQTT protocols.

Gateways are essential in providing connectivity between sensors and the cloud.
However, the gateways can do a lot more than that. In addition to receiving sensor
data, the gateways monitored wireless LAN broadcasts. For every incoming packet,
the gateways recorded the signal strength and timestamp that were required by the
three case examples. The gateway provides ways for device management, caching,
data filtering and aggregation, and edge computing. As of now, the user is expected
to take actions based on the sensor data, but in the future, more responsibility could
be given to actuator nodes. The gateway architecture supports creating and con-
necting actuator nodes as well as deploying intelligent algorithms for information
processing. Therefore, some of the reasoning can already be done on the gateway
side (edge computing), and more computationally demanding tasks can be passed
to the cloud. Again, DDE is of great help in controlling where the data is processed.

The indoor localisation scenario in Case 2 did not require any additional hard-
ware. The only piece of information needed was the RSSI value that was mea-
sured from every incoming frame by the gateway. Therefore, it was a very inex-

54

pensive way to provide approximate locations of objects. In terms of accuracy, there
are better indoor localisation techniques available, such as systems based on ultra-
wideband radios, which allow for taking accurate time-of-flight measurements. Sim-
ilarly, the other two case examples represented useful scenarios, without the use of
expensive hardware or overly complicated algorithms. Despite the simplicity of the
crowd counting method, it can be used to monitor increased activity in specific ar-
eas. This can be combined with other data sources, such as CO2 sensors, to provide
greater details about the activity in an area.

55

6 Conclusion

This thesis started from the big picture of the IoT by presenting existing architectural
standards and the concept of the Web of Things. The application level communica-
tion paradigms and protocols that enable the Web of Things were also explained.
Constrained Application Protocol (CoAP) was more carefully inspected as it is cur-
rently a trending topic on the IoT. The connectivity chapter narrowed the discussion
down to Internet reference models and low-level communication protocols of the
IoT. Important IoT specifications, such as IEEE 802.15.4 and Bluetooth Low Energy
were covered. The discussion was further narrowed in the next chapter to cover
topics related to the IoT gateway. Important features and functionalities of the IoT
gateway were discussed, along with the existing device management standards and
methods. The empirical part covered an IoT gateway design and implementation.
Eight gateways were then successfully deployed and used in three case examples.
Therefore, the initial goal to provide a platform for future IoT research was accom-
plished. The author of this thesis contributed to the use case definitions, gateway
software development and gateway deployment. Important topics that were made
by other project members, such as back end and visualisation, were briefly covered
in order to provide a big picture of the system.

The questions that were raised in the introduction were: how to provide connec-
tivity using an IoT gateway, what are the main functionalities of an IoT gateway, and
how well does a gateway fit into the IoT architecture, in contrast to other options.
The first question was answered by the theoretical and empirical parts of the thesis.
Chapter 3 introduced the IoT protocol stacks, which were then used in the empirical
part to provide end-to-end connectivity from a sensor node to the back end. The
second question was partially answered by Chapter 4, which discussed IoT gate-
ways and their functionalities. The functionalities also depend on the application
domain, and therefore, differ between gateways. Also, not all of the functionali-
ties introduced in Chapter 4 were needed in the gateway that was developed in the
empirical part. A complete answer to the question would require a more extensive
survey on different application domains and the identification of their requirements.
The answer to the third question is not straightforward, either. Two different view-

56

points emerged in the thesis for answering the question.
One approach is to compare the two architectures, where one architecture uses

gateways and the another one uses direct communication between an end device
and the access network, e.g. a base station. Cellular IoT is still in the research and
development phase, but it shows intriguing future possibilities. However, the two
architectures can co-exist, as was the case in the ETSI M2M high-level architecture
introduced in Section 2.1. Similarly, people connect to the Internet using Wireless
LAN standards and 4th generation mobile networks. Perhaps, a similar analogy
works with the future IoT, as there are cellular IoT technologies in development, as
well as current and upcoming short-range wireless standards. Therefore, it is likely
that the technologies will supplement each other.

The second approach is to compare application-level gateways and network-
level gateways, i.e. routers, as was done in Section 4.1. Network-level routing using
IPv6 certainly shows significant potential in the IoT. However, it means that the
end devices must implement a 6LoWPAN/IPv6 stack, which might not be possible
for every device. Therefore, it leaves room for application-level gateways, as well.
Furthermore, nothing rules out gateways that could handle both 6LoWPAN end
devices and other non-IPv6 devices, in parallel.

The future looks bright for the IoT. There is active standardisation work going on
to specify IoT architecture and protocols. The proposed cellular IoT technologies can
expand the range of the future IoT applications, even further. Sub-1 GHz standards
provide a less crowded channel for the IoT applications and there are new interest-
ing specifications under development. Currently, it looks like the amount of new
IoT specifications keeps on increasing, but there are also a set of well-established
IoT protocols, such as IEEE 802.15.4 and CoAP, which have gained ground in many
IoT applications. One future direction for gateway research is to further explore the
possibilities of virtualisation, and how to use it, e.g. for device and network man-
agement. Although the IoT has been a hot topic for a long time, it is still in its early
stages. Also, it is worth mentioning that it is not just a technology of the future, it is
already here.

57

References

[1] AGHAEI, S., NEMATBAKHSH, M. A., AND FARSANI, H. K. Evolution of the
world wide web: From web 1.0 to web 4.0. International Journal of Web & Se-
mantic Technology 3, 1 (2012), 1.

[2] AKYILDIZ, I., SU, W., SANKARASUBRAMANIAM, Y., AND CAYIRCI, E. Wireless
sensor networks: a survey. Computer Networks 38, 4 (2002), 393 – 422.

[3] ALAHAKOON, D., AND YU, X. Smart electricity meter data intelligence for
future energy systems: A survey. IEEE Transactions on Industrial Informatics 12,
1 (Feb 2016), 425–436.

[4] ALAM, M., NIELSEN, R. H., AND PRASAD, N. R. The evolution of m2m into
iot. In Communications and Networking (BlackSeaCom), 2013 First International
Black Sea Conference on (2013), IEEE, pp. 112–115.

[5] ARCHLINUX. Archlinux homepage. URL: https://www.archlinux.org, ac-
cessed: 6.4.2015.

[6] ASHTON, K. That ’internet of things’ thing. RFiD Journal 22, 7 (2009), 97–114.

[7] ATZORI, L., IERA, A., AND MORABITO, G. The internet of things: A survey.
Computer Networks 54, 15 (2010), 2787 – 2805.

[8] ATZORI, L., IERA, A., MORABITO, G., AND NITTI, M. The social internet
of things (siot) – when social networks meet the internet of things: Concept,
architecture and network characterization. Computer Networks 56, 16 (2012),
3594 – 3608.

[9] AUST, S., PRASAD, R. V., AND NIEMEGEERS, I. G. Ieee 802.11 ah: Advantages
in standards and further challenges for sub 1 ghz wi-fi. In Communications
(ICC), 2012 IEEE International Conference on (2012), IEEE, pp. 6885–6889.

[10] BANKS, A., AND GUPTA, R. Mqtt version 3.1.1. OASIS Standard (2014).

[11] BLUETOOTH STANDARD 4.2. Bluetooth Core Specification, 2014.

58

https://www.archlinux.org

[12] BLUMENTHAL, J., GROSSMANN, R., GOLATOWSKI, F., AND TIMMERMANN,
D. Weighted centroid localization in zigbee-based sensor networks. In Intelli-
gent Signal Processing, 2007. WISP 2007. IEEE International Symposium on (2007),
IEEE, pp. 1–6.

[13] BONOMI, F., MILITO, R., ZHU, J., AND ADDEPALLI, S. Fog computing and its
role in the internet of things. In Proceedings of the first edition of the MCC workshop
on Mobile cloud computing (2012), ACM, pp. 13–16.

[14] BOSWARTHICK, D., ELLOUMI, O., AND HERSENT, O. M2M Communications: A
Systems Approach. John Wiley & Sons, West Sussex, United Kingdom, 2012.

[15] CERF, V. G., AND KIRSTEIN, P. T. Gateways for the internet of things: An
old problem revisited. In Global Communications Conference (GLOBECOM), 2013
IEEE (2013), IEEE, pp. 2641–2647.

[16] CHASE, J. The evolution of the internet of things. Texas Instruments Incorporated,
White paper (2013).

[17] COOKING HACKS. Raspberry Pi to Arduino shields con-
nection bridge. URL: https://www.cooking-hacks.com/

raspberry-pi-to-arduino-shield-connection-bridge, accessed:
6.4.2016.

[18] COSTANTINO, L., BUONACCORSI, N., CICCONETTI, C., AND MAMBRINI, R.
Performance analysis of an lte gateway for the iot. In World of Wireless, Mobile
and Multimedia Networks (WoWMoM), 2012 IEEE International Symposium on a
(2012), IEEE, pp. 1–6.

[19] DATTA, S. K., BONNET, C., AND NIKAEIN, N. An iot gateway centric architec-
ture to provide novel m2m services. In Internet of Things (WF-IoT), 2014 IEEE
World Forum on (2014), IEEE, pp. 514–519.

[20] DATTA, S. K., COSTA, R. P. F. D., AND BONNET, C. Resource discovery in in-
ternet of things: Current trends and future standardization aspects. In Internet
of Things (WF-IoT), 2015 IEEE 2nd World Forum on (Dec 2015), pp. 542–547.

[21] DEPATLA, S., MURALIDHARAN, A., AND MOSTOFI, Y. Occupancy estimation
using only wifi power measurements. IEEE Journal on Selected Areas in Commu-
nications 33, 7 (July 2015), 1381–1393.

59

https://www.cooking-hacks.com/raspberry-pi-to-arduino-shield-connection-bridge
https://www.cooking-hacks.com/raspberry-pi-to-arduino-shield-connection-bridge

[22] DIGI INTERNATIONAL. Digi homepage, 2015. URL: http://www.digi.com,
accessed: 4.9.2015.

[23] DOCKER. Docker homepage, 2016. URL: https://www.docker.com, accessed:
1.2.2016.

[24] DSL FORUM STANDARD TR-069. CPE WAN Management Protocol, 2004.

[25] ETSI SPECIFICATION 102 690 V2.1.1. M2M functional architecture, 2013.

[26] EUGSTER, P. T., FELBER, P. A., GUERRAOUI, R., AND KERMARREC, A.-M. The
many faces of publish/subscribe. ACM Computing Surveys (CSUR) 35, 2 (2003),
114–131.

[27] EVANS, D. The internet of everything. Cisco IBSG, White paper (2012).

[28] FIELDING, R., AND RESCHKE, J. Hypertext Transfer Protocol (HTTP/1.1): Mes-
sage Syntax and Routing. RFC-7230, June 2014.

[29] FRANTTI, T., HIETALAHTI, H., AND SAVOLA, R. Requirements of secure wsn-
mcn edge router. In Information Networking (ICOIN), 2013 International Confer-
ence on (2013), IEEE, pp. 210–215.

[30] GUBBI, J., BUYYA, R., MARUSIC, S., AND PALANISWAMI, M. Internet of things
(iot): A vision, architectural elements, and future directions. Future Generation
Computer Systems 29, 7 (2013), 1645–1660.

[31] GUINARD, D., AND TRIFA, V. Towards the web of things: Web mashups for
embedded devices. In Workshop on Mashups, Enterprise Mashups and Lightweight
Composition on the Web (MEM 2009), in proceedings of WWW (International World
Wide Web Conferences), Madrid, Spain (2009), p. 15.

[32] HAHM, O., BACCELLI, E., PETERSEN, H., AND TSIFTES, N. Operating systems
for low-end devices in the internet of things: a survey. IEEE Internet of Things
Journal PP, 99 (2015), 1–1.

[33] HAN, B., GOPALAKRISHNAN, V., JI, L., AND LEE, S. Network function virtu-
alization: Challenges and opportunities for innovations. Communications Mag-
azine, IEEE 53, 2 (2015), 90–97.

60

http://www.digi.com
https://www.docker.com

[34] HARTKE, K. Observing Resources in the Constrained Application Protocol
(CoAP). RFC-7641, September 2015.

[35] IEEE. P2413 working group. URL: http://grouper.ieee.org/groups/
2413/, accessed: 23.2.2016.

[36] IEEE 802.11AH TASK GROUP. Status of Project IEEE 802.11ah, 2015.
URL: http://www.ieee802.org/11/Reports/tgah_update.htm, accessed:
13.1.2016.

[37] IEEE STANDARD 802.11. Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications, 2012.

[38] IEEE STANDARD 802.15.4. Part 15.4: Low-Rate Wireless Personal Area Networks
(LR-WPANs), 2011.

[39] IETF. IPv6 over Networks of Resource-constrained Nodes (6lo), 2012. URL:
https://datatracker.ietf.org/wg/6lo/documents, accessed: 8.4.2016.

[40] IETF. IPv6 over Low power WPAN (6lowpan), 2016. URL: https://

datatracker.ietf.org/wg/6lowpan/documents, accessed: 8.4.2016.

[41] INTEL. Gateway solution brief, 2014. URL: http://www.intel.

com/content/dam/www/public/us/en/documents/solution-briefs/

iot-gateway-solutions-brief.pdf, accessed: 18.2.2016.

[42] INTEL. Intel galileo, 2014. URL: http://www.intel.com/

content/dam/www/public/us/en/documents/solution-briefs/

iot-gateway-solutions-brief.pdf, accessed: 18.2.2016.

[43] JUTILA, M., KARHULA, P., RIVAS, H., AND PANTSAR-SYVÄNIEMI, S. End-to-
end safety solution for children enabled by a wearable sensor vest. "Journal of
Ubiquitous Systems & Pervasive Networks" 6, 1 (2015), 33 – 39.

[44] JUTILA, M., RIVAS, H., KARHULA, P., AND PANTSAR-SYVÄNIEMI, S. Imple-
mentation of a wearable sensor vest for the safety and well-being of children.
Procedia Computer Science 32 (2014), 888–893.

[45] JUTILA, M., STRÖMMER, E., ERVASTI, M., HILLUKKALA, M., KARHULA, P.,
AND LAITAKARI, J. Safety services for children: a wearable sensor vest with
wireless charging. Personal and Ubiquitous Computing (2015), 1–13.

61

http://grouper.ieee.org/groups/2413/
http://grouper.ieee.org/groups/2413/
http://www.ieee802.org/11/Reports/tgah_update.htm
https://datatracker.ietf.org/wg/6lo/documents
https://datatracker.ietf.org/wg/6lowpan/documents
https://datatracker.ietf.org/wg/6lowpan/documents
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/iot-gateway-solutions-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/iot-gateway-solutions-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/iot-gateway-solutions-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/iot-gateway-solutions-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/iot-gateway-solutions-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/iot-gateway-solutions-brief.pdf

[46] KIM, S. M., CHOI, H. S., AND RHEE, W. S. Iot home gateway for auto-
configuration and management of mqtt devices. In Wireless Sensors (ICWiSe),
2015 IEEE Conference on (Aug 2015), pp. 12–17.

[47] KLAS, G., RODERMUND, F., SHELBY, Z., AKHOURI, S., AND HÖLLER, J.
"Lightweight M2M": Enabling Device Management and Applications for the
Internet of Things. OMA LWM2M, White Paper (2014).

[48] KOSTER, M., KERANEN, A., AND JIMENEZ, J. Publish-subscribe broker for
the constrained application protocol (coap). Internet-Draft draft-koster-core-
coap-pubsub-04, IETF Secretariat, November 2015. http://www.ietf.org/

internet-drafts/draft-koster-core-coap-pubsub-04.txt.

[49] KOVATSCH, M. Demo abstract: human-coap interaction with copper. In Dis-
tributed Computing in Sensor Systems and Workshops (DCOSS), 2011 International
Conference on (2011), IEEE, pp. 1–2.

[50] KUROSE, J. F., AND ROSS, W. K. Computer Networks. Pearson Education, Essex,
England, 2013.

[51] LIU, H., DARABI, H., BANERJEE, P., AND LIU, J. Survey of wireless indoor
positioning techniques and systems. Systems, Man, and Cybernetics, Part C: Ap-
plications and Reviews, IEEE Transactions on 37, 6 (2007), 1067–1080.

[52] LUOTO, M., RAUTIO, T., OJANPERA, T., AND MAKELA, J. Distributed decision
engine - an information management architecture for autonomic wireless net-
working. In Integrated Network Management (IM), 2015 IFIP/IEEE International
Symposium on (2015), IEEE, pp. 713–719.

[53] MAINETTI, L., MIGHALI, V., AND PATRONO, L. A software architecture en-
abling the web of things. Internet of Things Journal, IEEE 2, 6 (2015), 445–454.

[54] MAJANEN, M., KOSKELA, P., AND VALTA, M. Constrained application proto-
col profile for robust header compression framework. In Energy 2015, The Fifth
International Conference on Smart Grids, Green Communications and IT Energy-
aware Technologies (2015), ThinkMind, pp. 47–53.

[55] MIORANDI, D., SICARI, S., DE PELLEGRINI, F., AND CHLAMTAC, I. Internet
of things: Vision, applications and research challenges. Ad Hoc Networks 10, 7
(2012), 1497–1516.

62

http://www.ietf.org/internet-drafts/draft-koster-core-coap-pubsub-04.txt
http://www.ietf.org/internet-drafts/draft-koster-core-coap-pubsub-04.txt

[56] MULLIGAN, G. The 6lowpan architecture. In Proceedings of the 4th workshop on
Embedded networked sensors (2007), ACM, pp. 78–82.

[57] NIEMINEN, J., SAVOLAINEN, T., ISOMAKI, M., PATIL, B., SHELBY, Z.,
AND GOMEZ, C. Ipv6 over bluetooth(r) low energy. Internet-Draft draft-
ietf-6lo-btle-17, IETF Secretariat, August 2015. http://www.ietf.org/

internet-drafts/draft-ietf-6lo-btle-17.txt.

[58] NOKIA. LTE-M -Optimizing LTE for the Internet of Things, White Paper, 2015.

[59] ONEM2M. oneM2M Homepage, 2016. URL: http://www.onem2m.org, ac-
cessed: 2.2.2016.

[60] ONEM2M TS-0001-V1.6.1. Functional Architecture, 2015.

[61] OPEN MOBILE ALLIANCE. Lightweight Machine to Machine Architecture, 2013.

[62] OPEN MOBILE ALLIANCE. Lightweight Machine to Machine Requirements, 2013.

[63] OPEN MOBILE ALLIANCE STANDARD. OMA Device Management Protocol v2.0,
2016.

[64] PALATTELLA, M. R., ACCETTURA, N., VILAJOSANA, X., WATTEYNE, T.,
GRIECO, L. A., BOGGIA, G., AND DOHLER, M. Standardized protocol stack
for the internet of (important) things. Communications Surveys & Tutorials, IEEE
15, 3 (2013), 1389–1406.

[65] PREECE, J., ROGERS, Y., SHARP, H., BENYON, D., HOLLAND, S., AND CAREY,
T. Human-computer interaction. Addison-Wesley Longman Ltd., 1994.

[66] RACHIDI, H., AND KARMOUCH, A. A framework for self-configuring devices
using tr-069. In Multimedia Computing and Systems (ICMCS), 2011 International
Conference on (2011), IEEE, pp. 1–6.

[67] RASPBERRY PI FOUNDATION. Raspberry Pi 2 Model B. URL: https:

//www.raspberrypi.org/products/raspberry-pi-2-model-b/, accessed:
6.4.2016.

[68] RASPBERRY PI FOUNDATION. Raspberry Pi downloads. URL: https://www.
raspberrypi.org/downloads, accessed: 6.4.2016.

63

http://www.ietf.org/internet-drafts/draft-ietf-6lo-btle-17.txt
http://www.ietf.org/internet-drafts/draft-ietf-6lo-btle-17.txt
http://www.onem2m.org
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/downloads
https://www.raspberrypi.org/downloads

[69] RAUTIO, T., LUOTO, M., MAKELA, J., AND MANNERSALO, P. Evaluation
of autonomic load balancing in wireless multiaccess environment. In Wire-
less Communications and Networking Conference (WCNC), 2013 IEEE (2013), IEEE,
pp. 1416–1421.

[70] SHELBY, Z. Constrained RESTful Environments (CoRE) Link Format. RFC-
6690, August 2012.

[71] SHELBY, Z., AND BORMANN, C. 6LoWPAN: The wireless embedded Internet. John
Wiley & Sons, West Sussex, United Kingdom, 2009.

[72] SHELBY, Z., HARTKE, K., AND BORMANN, C. The Constrained Application
Protocol (CoAP). RFC-7252, June 2014.

[73] SRINIVASAN, K., DUTTA, P., TAVAKOLI, A., AND LEVIS, P. An empirical study
of low-power wireless. ACM Transactions on Sensor Networks (TOSN) 6, 2 (2010),
16.

[74] STOJMENOVIC, I. Fog computing: A cloud to the ground support for smart
things and machine-to-machine networks. In Telecommunication Networks and
Applications Conference (ATNAC), 2014 Australasian (2014), IEEE, pp. 117–122.

[75] SUDEVALAYAM, S., AND KULKARNI, P. Energy harvesting sensor nodes: Sur-
vey and implications. Communications Surveys & Tutorials, IEEE 13, 3 (2011),
443–461.

[76] TALEB, T., AND KUNZ, A. Machine type communications in 3gpp networks:
potential, challenges, and solutions. Communications Magazine, IEEE 50, 3
(2012), 178–184.

[77] TANENBAUM, A. S. Computer Networks. Pearson Education, New Jersey, USA,
2012.

[78] VERMESAN, O., FRIESS, P., GUILLEMIN, P., GUSMEROLI, S., SUNDMAEKER,
H., BASSI, A., JUBERT, I. S., MAZURA, M., HARRISON, M., EISENHAUER, M.,
ET AL. Internet of things strategic research roadmap. Internet of Things: Global
Technological and Societal Trends 1 (2011), 9–52.

[79] WANT, R. An introduction to rfid technology. Pervasive Computing, IEEE 5, 1
(2006), 25–33.

64

[80] WIFI-ALLIANCE. Wifi-Alliance homepage, 2016. URL: http://www.wi-fi.
org/, accessed: 26.4.2016.

[81] WINDRIVER. Security in the internet of things, lessons from the past for the
connected future. Security Solutions, Wind River, White Paper (2015).

[82] WINTER, T., THUBERT, P., BRANDT, A., HUI, J., KELSEY, R., LEVIS, P., PISTER,
K., STRUIK, R., VASSEUR, J., AND ALEXANDER, R. Rpl: Ipv6 routing protocol
for low-power and lossy networks. RFC-6550, March 2012.

[83] XI, W., ZHAO, J., LI, X. Y., ZHAO, K., TANG, S., LIU, X., AND JIANG, Z.
Electronic frog eye: Counting crowd using wifi. In INFOCOM, 2014 Proceedings
IEEE (April 2014), pp. 361–369.

[84] XU, L. D., HE, W., AND LI, S. Internet of things in industries: a survey. Indus-
trial Informatics, IEEE Transactions on 10, 4 (2014), 2233–2243.

[85] Z-WAVE ALLIANCE. Z-Wave Homepage, 2016. URL: http:

//z-wavealliance.org, accessed: 13.1.2016.

[86] ZACHARIAH, T., KLUGMAN, N., CAMPBELL, B., ADKINS, J., JACKSON, N.,
AND DUTTA, P. The internet of things has a gateway problem. In Proceedings
of the 16th International Workshop on Mobile Computing Systems and Applications
(2015), ACM, pp. 27–32.

[87] ZHU, Q., WANG, R., CHEN, Q., LIU, Y., AND QIN, W. Iot gateway: Bridging
wireless sensor networks into internet of things. In Embedded and Ubiquitous
Computing (EUC), 2010 IEEE/IFIP 8th International Conference on (2010), IEEE,
pp. 347–352.

[88] ZIGBEE ALLIANCE. ZigBee PRO Specification, 2012.

[89] ZIGBEE ALLIANCE. ZigBee IP Specification, 2014.

http://www.wi-fi.org/
http://www.wi-fi.org/
http://z-wavealliance.org
http://z-wavealliance.org

	Preface
	Glossary
	1 Introduction
	1.1 Research problem
	1.2 Research process

	2 Internet of Things architecture
	2.1 Machine to machine
	2.1.1 ETSI M2M
	2.1.2 oneM2M

	2.2 RESTful architecture
	2.2.1 HTTP
	2.2.2 Constrained Application Protocol

	2.3 Publish-subscribe paradigm
	2.3.1 MQTT protocol

	2.4 Web of Things
	2.4.1 Evolution of the Web towards the Web of Things

	2.5 IoT components
	2.5.1 Things
	2.5.2 Gateways
	2.5.3 Back end
	2.5.4 Applications
	2.5.5 Interfaces

	3 IoT connectivity
	3.1 Internet reference models
	3.1.1 Application layer
	3.1.2 Transport layer
	3.1.3 Network layer
	3.1.4 Data-link layer
	3.1.5 Physical layer

	3.2 IoT protocols and protocol stacks
	3.2.1 IEEE 802.15.4
	3.2.2 IEEE 802.11
	3.2.3 Bluetooth

	3.3 Future connectivity

	4 IoT gateway
	4.1 Gateways and routers
	4.2 Gateway functionalities
	4.2.1 Edge computing
	4.2.2 Dataflow control
	4.2.3 Proxy functionality and caching
	4.2.4 Resource discovery
	4.2.5 Security

	4.3 Gateway management
	4.3.1 Management standards
	4.3.2 Management protocols

	4.4 Virtualising the gateway functionality

	5 IoT gateway development and deployment
	5.1 Gateway architecture
	5.1.1 Distributed Decision Engine
	5.1.2 Data format
	5.1.3 Hardware interfaces
	5.1.4 Operating system

	5.2 Interface design
	5.2.1 Wi-Fi Producer
	5.2.2 XBee Producer
	5.2.3 BLE Producer
	5.2.4 CoAP Consumer
	5.2.5 HTTP Consumer
	5.2.6 MQTT Consumer

	5.3 Case examples
	5.3.1 Case 1 - Environmental monitoring
	5.3.2 Case 2 - Tracking an object/indoor localisation
	5.3.3 Case 3 - Crowd counting

	5.4 Discussion

	6 Conclusion
	References

