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We study the effect of the intrinsic (Rashba or Dresselhaus) spin-orbit interaction in superconductor–nanowire–
superconductor (SNS) weak links in the presence of a spin-splitting field that can result either from an intrinsic
exchange field or the Zeeman effect of an applied field. We solve the full nonlinear Usadel equations numerically
[The code used for calculating the results in this paper is available in https://github.com/wompo/Usadel-for-
nanowires] and analyze the resulting supercurrent through the weak link and the behavior of the density of states
in the center of the wire. We point out how the presence of the spin-orbit interaction gives rise to a long-range
spin triplet supercurrent, which remains finite even in the limit of very large exchange fields. In particular, we
show how rotating the field leads to a sequence of transitions between the 0 and π states as a function of the angle
between the exchange field and the spin-orbit field. Simultaneously, the triplet pairing leads to a zero-energy
peak in the density of states. We proceed by solving the linearized Usadel equations, showing the correspondence
to the solutions of the full equations and detail the emergence of the long-range supercurrent components. Our
studies are relevant for ongoing investigations of supercurrent in semiconductor nanowires in the limit of several
channels and in the presence of disorder.

DOI: 10.1103/PhysRevB.93.024522

I. INTRODUCTION

The antagonistic nature of conventional singlet supercon-
ductivity and magnetism has been clearly illustrated in exper-
iments studying supercurrents flowing through ferromagnetic
weak links [1,2]. There, the spin-splitting (exchange) field h

suppresses the supercurrent within a typically short magnetic
length scale ξm = √

�D/h, where D is the diffusion constant
of the wire. As suggested in Ref. [3], this suppression can
be lifted by converting part of the singlet supercurrent into
a triplet with a finite projection of the magnetic moment of
Cooper pairs by utilizing an inhomogeneous magnetization at
the interface between the ferromagnet and the superconductor.
This component couples electrons with spins from the same
band, and therefore it is not sensitive to the spin-splitting
field. This suggestion was experimentally demonstrated in a
number of works [4,5] utilizing a series of different types
of magnetic layers that are noncollinear with respect to each
other.

Besides using magnetic materials, the spin-splitting field
can be realized via the Zeeman effect of an applied mag-
netic field [6,7]. Similar physics as in the superconductor–
ferromagnet–superconductor case can be envisaged as long
as the orbital effect of the magnetic field is weak enough
[8,9] and does not limit the supercurrent. Such a situation
takes place especially in narrow nanowires, where the spin-
splitting field in combination with the Rashba-type spin-orbit
(SO) interaction has been used in an effort to take these
wires to the limit of topological superconductivity [10–12]
for the detection of Majorana-type excitations at the edges
of the wires. Most of such experiments are nevertheless
in the topologically trivial limit. It is hence of interest to
study the physics of such nanowires in the presence of the
combination of the spin-orbit and spin-splitting fields. This
is the aim of the present work. In particular, we study the
supercurrent behavior in systems schematically presented in
Fig. 1. Contrary to many recent theory works on the effects of

spin-orbit coupling on proximity superconductivity discussing
the fully ballistic regime [13–15], we assume the wires to
be diffusive. Strictly speaking this limit requires that all wire
dimensions are smaller than the elastic mean free path. Typical
epitaxial nanowires have mean free paths comparable to the
wire thickness and much less than the wire length [16–23].
Even in this limit the diffusive-limit theory is likely to capture
the essential physics much better than the fully ballistic limit.
In the diffusive limit it is generally possible to obtain a
fully quantitative fit with between theory and experiments
[24,25], which is why also the quantitative details of the
theory are relevant. On the other hand, the quasiclassical
theory we employ corresponds to setting the Fermi wavelength
λF → 0. Therefore it cannot capture effects related to, for
example, weak antilocalization, possibly relevant in these
wires [23,26,27]. Alternative derivations of the quasiclassical
theory on the fixed few-channel limit [28] cannot be directly
connected to the many-channel limit considered here.

This paper extends on the work of Bergeret and Tokatly
[29,30], who introduced the mechanism of including the in-
trinsic (Rashba or Dresselhaus) spin-orbit interaction as a spin-
dependent vector potential into the Usadel equation describing
inhomogeneous superconductivity in the diffusive limit. They
also pointed out how for certain relative orientations of the
wire, spin-orbit fields, and the exchange field, the combination
of the latter two may produce a triplet supercurrent that
survives even at large exchange fields. In particular, they
showed that the wire with a homogeneous exchange field
and intrinsic spin-orbit interaction is gauge equivalent to
a ferromagnet with inhomogeneous magnetization (see also
Ref. [31]). Here we study this mechanism quantitatively (Sec.
IV). In particular, we show the dependence of the supercurrent
vs exchange field for varying magnitudes of the Rashba field.
We also demonstrate in detail how the triplet supercurrent
depends on the direction of the magnetic field applied in the
plane of the wire. For strong spin-orbit coupling, we predict
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FIG. 1. SNS junction studied in this work. A diffusive nanowire
of length L connects two bulky superconductors. The nanowire is
characterized by the spin-orbit field Ā and the system exhibits an
exchange field h, either due to an applied magnetic field �B or by
proximity to magnetic material (not in the picture). We assume that
both Ā and h are in the xz plane and that h is at an angle θ compared
to the (z) direction of the wire.

that changing the direction of the field drives the junction
through a sequence of 0-π transitions.

Besides supercurrent, we also study the local density of
states in the junction in Sec. V. This is also the typical
observable in the studies of Majorana physics. We find that
spin-orbit interaction induces a zero-energy peak for a range
of exchange fields. This peak originates from the induced
long-range triplet amplitude of the superconducting pairing,
and it is quite sensitive to the precise direction of the field and
the amplitude of the SO coupling.

II. USADEL EQUATION WITH SPIN-ORBIT COUPLING

We implement the spin-orbit interaction into the Usadel
equation describing the quasiclassical Nambu-spin retarded
Green’s function ĜR in the diffusive limit [29,32,33] (here
and below, e = � = kB = 1 except when we discuss particular
values of the observables):

D∇̂ · (ĜR∇̂ĜR) = [−iετ̂3 − ih · σ̄ + 	̂ + 
̂sf + 
̂in, Ĝ
R].

(1)

Here D is the diffusion constant inside the nanowire, ε is the
energy, σ̄ is a vector of Pauli matrices in spin space, h =
(hx,hyτ̂3,hz), and ∇̂ĜR = ∇RĜR − i[Āτ̂3, Ĝ

R] is the gauge
invariant gradient with Ā describing the SO coupling. The
latter is specified below in more detail [34].

Inside the normal metal, the superconducting pair potential
	̂ is zero and we assume that the term 
̂in describing the
inelastic scattering is negligible. In practice, the junction
contains also regular spin-flip scattering and scattering due
to isotropic spin-orbit coupling [35], characterized by the
self-energy 
̂sf . We assume spin relaxation to be dominated
by the intrinsic SO coupling and neglect these other terms in
the following. Thus inside the normal metal we have

D∇̂ · (ĜR∇̂ĜR) = [−iε+τ̂3 − ih · σ̄ ,ĜR], (2)

where ε+ = ε + iη, and η → 0+ is a small term specifying
the location of the poles of the retarded Green’s function.

Introducing a dimensionless position coordinate z′ = z/L

and defining a Thouless energy ET = D/L2, where L is the
length of the normal metal wire, we can work in energy units of
ε = E/ET and h̃ = h/ET and use the scaled vector potential
Ās = ĀL. Moreover, below we assume the Zeeman field to lie
in the substrate plane, and therefore hy = 0. Equations (1) and

(2) have to be supplemented with the normalization condition
(ĜR)2 = 1̂. In the numerical solutions, we implement this by
using the Riccati parametrization [36] (see Appendix A) for the
retarded Green’s function. In that parametrization, the Nambu-
space Green’s function is specified in terms of two parameters,
γ and γ̃ . In general, both of these parameters are 2 × 2 matrices
in spin space. The Usadel equation written for γ reads

∂2
z′γ − 2(∂z′γ )γ̃ N (∂z′γ )

= −2iεγ − ih̃ · [γ,σ̄ ] + [
Ā2

s ,γ
] + 2{Ās ,γ }Ñ (Ās − γ̃ Āsγ )

+ 2i[(∂z′γ )Ñ(Ās − γ̃ Āsγ ) + (Ās − γ Ās γ̃ )N (∂z′γ )]. (3)

For equilibrium observables, we replace −iε by the Matsubara
frequencies ωn = πT (2n + 1) [37]. The equation for γ̃ is
obtained by substituting γ ↔ γ̃ , N ↔ Ñ and by taking a
complex conjugate of the scalars.

A. Spin-orbit field

A generic spin-orbit coupling emerging in systems with
broken inversion symmetry is of the form Āi = α

j

i σ̄j . For a
one-dimensional wire the symmetry is broken by the geometry
in both directions perpendicular to the wire, and therefore the
components α

j

i can be considered independent of each other.
To describe a one-dimensional wire in the z direction placed
on a substrate (see Fig. 1) spanning the xz plane, we describe
the generic spin-orbit field as

Ā = (
α1

1 σ̄1 + α3
1 σ̄3, 0, α1

3 σ̄1 + α3
3 σ̄3

)
. (4)

For a thin wire there are gradients only in the z direction, and
therefore the only terms coupling linearly to the gradient are
related to α3. The other terms can be nonvanishing and they
contribute in general to the Dyakonov-Perel spin relaxation
[29,30], but as they do not lead to other interesting physics,
we neglect them in our numerical results. After neglecting the
orbital effect of the field, the properties of the junction depend
only on the relative direction between h and �Az in Āz = �Az · �σ .
As we vary the direction of h, we fix Āz ∝ σ1, i.e., α3

3 = 0. We
vary the remaining term α = α1

3 to observe the physics due
to the intrinsic spin-orbit coupling. Note that the term ασ1ûz

gives rise to the linear energy term of the form eασ1pz/m. Our
term α is related to the (Rashba) terms of size α̃ considered in
the literature on Majorana fermions (e.g., [38]) by

α = mα̃

�e
, (5)

where m is the effective mass of the electrons inside the
nanowire. Our α hence has a dimension of �/(eL), where
L is some length scale. In the numerics, the important
dimensionless parameter is eαL/�, where L is chosen to
be the distance between the two nanowire-superconductor
contacts. For example, with the parameters of InSb discussed
in Ref. [38] (m = 0.015me and α̃ = 0.2 eV Å, where me is the
electron mass), we get eα/� ≈ 4 × 106 1/m. These estimates
are consistent with recent experiments [23], which obtain even
a somewhat larger value of α̃. For typical wires of length L ∼
1 μm, the value of the dimensionless parameter eα�L can
hence be of the order of or larger than unity. On the other hand,
in order to be able to neglect gradients in transverse directions
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in Eq. (3), we assume that the wires are narrow compared to
the spin-orbit length, i.e., wire thickness d satisfies d � �/eα.

B. Boundary conditions

For the boundary conditions to the Green’s functions, we
assume clean NS interfaces. This assumption means that the
parameters γ and γ̃ are continuous across the interface and
coincide with bulk BCS superconductor values [33,39],

γBCS = i|	|eiϕ

ε + i
√

|	|2 − (ε + i0+)2
σ̄2, (6a)

γ̃BCS = i|	|e−iϕ

ε + i
√

|	|2 − (ε + i0+)2
σ̄2, (6b)

in the real-time description (for Matsubara frequencies, replace
ε by iωn). The exact form of the boundary conditions depends
on the chosen form of the Nambu vector.

In the numerics, we express all the lengths in terms of
the length L of the wire. In this case, the natural energy
scale is given by the Thouless energy ET = �D/L2. We
mostly concentrate on the limit of long wires, where L �
ξ0 = √

�D/	. This also means that 	/ET = L2/ξ 2
0 � 1.

C. Supercurrent

The supercurrent through the junction is characterized by
the spectral current density [40]

js = L

4
Tr[(ĜR∇̂ĜR − ĜA∇̂ĜA)τ̂3]. (7)

In the Riccati parametrization, the spectral current density
can be written as

js = L

2
{Tr[N (γ γ̃ ′ − γ ′γ̃ )N − Ñ (γ̃ γ ′ − γ̃ ′γ )Ñ

+ i(N{Ā,γ }γ̃ N + Nγ {Ā,γ̃ }N
+ Ñ{Ā,γ̃ }γ Ñ + Ñ γ̃ {Ā,γ }Ñ )]}, (8)

where γ ′ = ∂γ /∂z.
The supercurrent can be calculated as a weighted average

of the spectral current density

Is = ET

2eRN

∫ ∞

−∞
dεRejs(ε)tanh

(
ε

2T

)
, (9)

where RN = L/(Ae2DνF ) is the Drude resistance of the
nanowire in the normal state. Here L is the length, A is the
area, D the diffusion constant, and νF the density of states
at the Fermi level of the nanowire in its normal state. In the
Matsubara technique, the integral can be calculated as a sum
of the spectral current densities evaluated at the Matsubara
frequencies ωn as

Is = − ET

eRN

2πT

∞∑
n=0

Imjs(ωn). (10)

In the numerics, we cut the Matsubara sum to the index after
which the obtained supercurrent changes less than 1%.

D. Density of states

The density of states (DOS) is given by [33]

N (ε,R) = NF

2
Re{Tr[ĜR(ε,R)τ̂3]}, (11)

where NF is the DOS in the absence of superconductivity. In
the Riccati parametrization,

N (ε, R) = NF

2
ReTr{N(1 − γ γ̃ ) + Ñ (1 − γ̃ γ )}. (12)

Besides supercurrent, the density of states is another way to
characterize the excitation spectrum induced by the proximity
effect. It can be accessed via a standard tunneling measure-
ment. In Sec. V we show how a combination of the finite
exchange field and the Rashba spin-orbit coupling gives rise to
a zero-energy peak in the density of states. This is qualitatively
similar to what one expects from the measurements in the
Majorana wires [10–12], although the physics of this effect
is quite different. Initial results for the density of states
in Rashba wires were presented by us in [41]. Recently,
similar types of results were discussed also in Refs. [42,43],
but that work concentrated on superconductor/ferromagnet
multilayers in the short junction limit, where the junction
length is of the order of the superconducting coherence length
ξ0 = √

�D/	. In such multilayers, the emergence of the long-
range triplet superconductivity requires either the presence
of both Rashba- and Dresselhaus-type spin-orbit coupling or
out-of-plane magnetic fields. Moreover, for short junctions the
energy scales are primarily set by the superconducting gap 	

instead of the Thouless energy as here. Nevertheless, also there
the triplet proximity effect leads to the presence of zero-energy
density of states peaks and long-range supercurrent. However,
the quantitative details of the results are quite different, and
therefore as such not applicable for the nanowire setups.

III. GENERATION OF THE LONG-RANGE
TRIPLET COMPONENT

Below we present numerical solutions of the supercurrent
and density of states in a nanowire Josephson weak link
exhibiting both intrinsic spin-orbit coupling and exchange
field. To understand these results, let us first study what we
expect to find in the limit of a weak proximity effect [29,30],
which allows us to linearize the Usadel equation.

Linearizing Eq. (3) yields

∂2
z′γ = 2ωnγ − ih̃ · [γ,σ̄ ] + [

Ā2
s ,γ

]
+ 2{Ās ,γ }Ās + 2i{∂z′γ,Ās}. (13)

Here we have discarded all the terms O(γ 2) and noticed that

N = 1 due to the normalization condition (ĜR)
2 = 1. We

separate the different spin components as

γ =
3∑

i=0

fiσ̄i (14)

and choose a specific SO field Ās = ασ̄1ûz and direction
of the magnetic field, h̃ = h[sin(θ ),0, cos(θ )]. The resulting
equations describe the interplay between the short-range and
long-range pairing components.
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We can solve the resulting second-order boundary value
problem by separating the short-range and long-range com-
ponents fi , and using the previous to find effective boundary
conditions for the latter. The details are given in Appendix B.
As a result, we get the spectral supercurrent describing the
long-range component. In the case of a perpendicular field and
Ās (θ = 0), the result reduces to

Im(js) = − |	|2(
ωn + √

ω2
n + |	|2)2

8
√

2α2D
√

ω̃n

h sinh(
√

2
√

ω̃n)
sin(φ),

(15)

where φ is the phase difference between the two supercon-
ductors, and ω̃n = (ωn + 2Dα2)/ET is the (dimensionless)
Matsubara frequency modified by the pair-breaking effect
from the spin-orbit coupling (ωn �→ −iε in the real-time
formulation with energy ε). Note that the spin-orbit coupling
α plays here a dual role: first, it induces the long-range
triplet component of the (spectral) supercurrent, and second, it
induces pair-breaking effects. If we would include the ordinary
spin-flip or spin-orbit scattering effects, they would (in the
lowest order) induce the corresponding terms into ω̃.

The observable supercurrent at a given temperature T

is obtained by summing over the Matsubara frequencies or
integrated over the real energies as in Eqs. (9) and (10). At
low temperatures kBT � ET we may transform the Matsubara
sum into an integral and obtain in the long-junction limit
ET ,e2

�α2D � 	 (restoring e and �):

IS(T ≈ 0) = 32ET eα2D

hRN�
e−2αLe/�

(
1 + 2αLe

�
+ 2α2L2e2

�2

)
× sin(φ). (16)

Strictly speaking this is valid only for 2eαL/� � 1, but this
approximation fits numerical results reasonably well also for
low α. On the other hand, at high temperatures kBT � ET , it
is enough to include only the lowest Matsubara frequency and
the result is

IS(T � ET ) = |	|2(
πkBT +

√
π2k2

BT 2 + |	|2)2

8ET eα2D

hRN�

×√
xe−√

x, (17)

where x = 2πkBT /ET + 2αLe/�.
We compare the analytical result to the full numerics

in Fig. 4. For large α � 6�/(eL), the full theory shows a
second maximum in the supercurrent, absent in this analytical
approximation (see Fig. 4).

For a nonzero θ ∈]0,π/2[, both long-range components f0

and f3 become nonzero. Due to their coupling, the supercurrent
obtains terms oscillating with αLe sin(θ )/�. The resulting
oscillations vs θ for αLe � 1 signal transitions between 0 and
π states, which would be observed as cusps in the dependence
of the critical current on the field direction. This is qualitatively
described in Appendix B and further explored in Fig. 5.

IV. SUPERCURRENT

The effects of the spin-orbit coupling show up only in
the presence of a nonzero exchange field in the wire. This

FIG. 2. Exchange field dependence of the supercurrent in a SNS
junction for different intrinsic spin-orbit coupling strengths α. A finite
SO coupling strength yields a finite supercurrent through the junction
even with large exchange fields.

exchange field can be established either in an intrinsically
ferromagnetic wire, via the magnetic proximity effect in a wire
in contact with a ferromagnetic insulator, or via the Zeeman
field from an applied external magnetic field. In all these cases
the (direct or stray) magnetic field generates also the orbital
effect for the charge carriers. The relevance of this orbital
effect depends on the aspect ratio of the wire [8,9]. Here we
assume that the wire is thin enough so that we can disregard
the orbital effect and concentrate only on the Zeeman field.
Unless stated otherwise, the numerical results are obtained for
a field in the direction of the wire (i.e., θ = 0).

The most straightforward experiment is to vary the magni-
tude of the exchange field. In Fig. 2 we plot the supercurrent
IS at phase difference φ = π/2 (close to the critical current)
at the temperature T = 0.1ET for a long junction (length
	/ET = L2/ξ 2

0 = 1000) as a function of the exchange field
for varying magnitudes of the spin-orbit coupling α. For low
α � 1/L, the supercurrent exhibits damped oscillations as a
function of the exchange field, as shown before, for example,
in Refs. [44] and [1]. For IS < 0, the junction enters the π

state. With an increasing spin-orbit field, the oscillation of the
supercurrent is suppressed and the junction no longer can be
found in the π state. (Note that nonquasiclassical corrections
to our theory can lead to the presence of a φ state [45,46]
with φ �= 0,π due to the spin-orbit coupling.) In the absence
of spin-orbit coupling, α = 0, the supercurrent dies out for
large exchange fields. However, a finite α yields also a finite
supercurrent even at rather large exchange fields.

For an intermediate value of α = 2/L, the supercurrent vs
exchange field exhibits a minimum at h ≈ 10 . . . 20ET . This
minimum persists to rather high temperatures, as shown in
Fig. 3.

We can compare our results quantitatively to those obtained
from the linearized Usadel equation at large values of the ex-
change field, where the major contribution to the supercurrent
comes from the long-range components. In Fig. 4 we plot
the supercurrent for a few values of the exchange field as a
function of α. The solid lines show the results from the exact
numerics, whereas the dashed lines come from the Matsubara
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FIG. 3. Supercurrent through the SNS junction as a function of
the exchange field at different temperatures.

sum of Eq. (15) [quite close to Eq. (16)]. We find that both
approaches yield a supercurrent that is nonmonotonous with
respect to the value of the spin-orbit field. Equations (15) and
(16) capture the first oscillation rather well, but the amplitude
of the exact supercurrent is somewhat larger than that obtained
from the analytics.

Tokatly and Bergeret [29,30] showed that in order to
get a long-range triplet supercurrent, the term describing
the exchange field should not commute with the vector
potential. We check this by investigating the dependence of
the supercurrent on the angle θ of an in-plane exchange field
with respect to the wire direction (see inset of Fig. 5). For θ = 0
the exchange field is in the z direction and therefore produces
the term proportional to σ̄3, whereas we describe the (Rashba-
type) spin-orbit term proportional to σ̄1. For θ = π/2, both
are described by terms proportional to σ̄1. The supercurrent
IS(θ ) is plotted in Fig. 5. Indeed, for θ = π/2, IS(θ ) only
contains singlet components of the pairing amplitude and
therefore almost vanishes because of the large value of the

FIG. 4. With large exchange fields, the supercurrent oscillates as
a function of the spin-orbit field strength, reaching a maximum at
around α = 2/L. The solid lines show the numerical results and the
dashed lines are obtained by using Eq. (15) in Eq. (10).

FIG. 5. Supercurrent as a function of the angle θ of the applied
field, h = h[cos(θ )ûz + sin(θ )ûx], h = 170ET and otherwise the
same parameters as in Fig. 2. Rotating the exchange field makes
the long-range component disappear when the spin-orbit field is
parallel to the exchange field (θ = π/2). In addition, applying a field
at an intermediate angle results in an alternating sequence of 0 − π

transitions, their number depending on the precise value of α.

chosen exchange field. In addition, as described in Appendix B,
we find that for α � 1/L, the junction shows a sequence of
0 − π transitions, signalled by the sign change of supercurrent
at φ = π/2. The magnitude of α dictates the positions of
these transitions. For a large exchange field, these positions
do not depend at all on the field and they only weakly depend
on temperature. In experiments, α is not usually a variable
quantity. However, the angle of the applied field can be varied
straightforwardly. Therefore by studying the detailed angular
dependence of the supercurrent, one is able to determine the
magnitude and direction of the Rashba vector potential Ās .
Note that the dependence of the supercurrent on θ resembles
the behavior of supercurrent through a Bloch domain wall with
a varying wave vector [47].

V. DENSITY OF STATES

Besides supercurrent, the proximity effect from the su-
perconductor on the normal wire can be characterized via
a tunneling measurement of the density of states. In the
absence of the exchange field or the spin-orbit field, the density
of states in the proximity wire exhibits a phase-dependent
minigap [48] whose size can be approximatively described
via Eg(φ) ≈ 3.1ET cos2(φ/2). In the absence of spin mixing
(either via the intrinsic spin-orbit coupling considered here,
spin-flip scattering, or the isotropic spin-orbit coupling), the
exchange field simply shifts this minigap by σh for spin
σ = ±. For h > Eg(φ), we hence expect to see two regions
with N (E) = 1/2 in the spin-averaged density of states N (E).
The intrinsic spin-orbit coupling mixes the spins and leads
to a closing of the minigaps for the spin-resolved density of
states. As we show below, an intermediate magnitude of the
intrinsic spin-orbit coupling also leads to a zero-energy peak
in the density of states. The shape and height of this peak
is very sensitive to the exact parameters of the system. We
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FIG. 6. Local density of states (DOS) in the center of the wire
with h = 8ET and φ = 0.5π given with different spin-orbit fields.
The DOS peaks at zero energy for α = 2/L, while the peak converts
to a zero-energy dip for larger α.

illustrate these results in the following via a few examples; a
more complete description can be found from Ref. [49].

The density of states is in general position dependent. To
illustrate the proximity-induced effects in a symmetry point,
we present the results calculated in the middle of the normal
metal.

In Fig. 6 we show the DOS peaking at zero energy for
α = 2/L, while for larger α the peak converts to a zero-energy
dip and again to an energy gap centered at around zero energy.
As discussed in Refs. [42,50], the particular value for the
zero-energy density of states results from the competition
of the singlet proximity effect aiming to lower N (0) and
the long-range triplet proximity effect to increase it. This
results from the different symmetry of the singlet vs triplet
components. Namely, it is straightforward to show from the
linearized equations, Eq. (B5), that for the singlet component
f̃2(ε = 0) = f ∗

2 (ε = 0), whereas the triplet components sat-
isfy f̃j (ε = 0) = −f ∗

j (ε = 0), j �= 2. Expanding Eq. (12) to

FIG. 7. Density of states with a constant α = 2/L and with
different values of the exchange field h. The zero-energy peak forms
only for h � 2Eg(φ).

FIG. 8. Phase dependence of the DOS in the middle of the
nanowire.

the lowest order in γ then yields

N (0) ≈ NF

⎡
⎣1 − 2|f2(0)|2 + 2

∑
j �=2

|fj (0)|2
⎤
⎦. (18)

For large h, the singlet component vanishes on a short
distance ∼ �m at the interface, whereas the long-range triplet
components f0,3 are much larger in the center of the wire. As
a result, the latter yield N (0) > 1. As shown in the figures,
this may signal the presence of a zero-energy peak, but not
necessarily. The values of α where the transition from a peak
to a dip takes place are similar to those yielding a maximum
in the long-range supercurrent, Fig. 4.

Although the origin is different from that expected for
Majorana junctions [10–12], also for the diffusive nanowire
Josephson junctions the zero-energy peak appears only at a
large enough exchange field, in practice for h � 2Eg(φ) and
for a restricted range of the values of α. We plot the density
of states at a constant α for a few different exchange fields in
Fig. 7. The exact form of the density of states depends a lot on

FIG. 9. Even with phase difference of φ = π , the DOS peaks at
zero energy for a finite SO coupling strength α.
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FIG. 10. Density of states for different directions of the exchange
field, specified in terms of the angle θ (see inset of Fig. 5).

the value of the exchange fields, and the zero-bias peak decays
at large values of h.

The density of states can also be controlled by applying a
supercurrent through the junction so that the phase difference
φ across the junction changes. Besides changing (and closing)
the minigap for a vanishing exchange field, this changes the
form of the density of states. The phase dependence is plotted
in Fig. 8. Note that typically in long junctions (	 � ET

or L � ξ0 = √
�D/	) the density of states for φ = π is

almost featureless due to the destructive interference of the
pair amplitudes emanating from the two superconductors. This
is also modified by the spin-orbit coupling as shown in Fig. 9;
also in this case a zero-energy peak forms.

Let us furthermore demonstrate the connection between the
triplet proximity effect and the zero-energy peak [43,51–53].
Therefore, we study the density of states as a function of the
angle θ of the exchange field between the z direction of the
wire and the x direction, as in Fig. 5 for the supercurrent. This
is shown in Fig. 10. For θ = π/2 we expect to get only the
short-range proximity effect. In this case we indeed only find
the exchange-field split minigaps, and the spin-orbit coupling
makes almost no contribution to the form of the density of
states.

VI. CONCLUSIONS

In this work we have discussed the detailed effects of the
Rashba- and Dresselhaus-type intrinsic spin-orbit interaction
on the supercurrent carried through a diffusive nanowire. We
solve the full Usadel equation to obtain the supercurrent of the
junction and the local density of states. We reproduce the long-
range triplet proximity effect predicted before in the linearized
limit and show how the resulting supercurrent depends on
the direction of the applied field. Besides the complicated
direction dependence and the predicted zero-energy peaks
and dips in the local density of states, our results pave the
way of quantitatively analyzing the experiments carried out
in the nanowire Josephson junctions. To reach, for example,
the topological regime and confirm the Majorana character
of the excitations in the nanowires, it is important that the
experimentalists are able to characterize their junctions in

detail. Our work gives a fixed point for such a characterization,
in the (nontopological) many-channel diffusive limit. We
hence expect this work to be relevant as an intermediate step
for establishing the experimental constraints for using such
junctions in topological quantum computing.
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APPENDIX A: RICCATI PARAMETERIZATION

The normalization condition (ĜR)
2 = 1 implies that the

possible eigenvalues of ĜR are ±1. Therefore in spectral
representation, ĜR can be written in terms of the so-called
Shelankov projectors as [54]

ĜR = P̂+ − P̂− with P̂± = 1
2 (1 ± ĜR). (A1)

The Shelankov projectors and the Green’s function are
convenient to parametrize in the Riccati parametrization [36],

P̂+ =
(

N Nγ

γ̃N γ̃Nγ

)
and P̂− =

(
γ Ñγ̃ −γ Ñ

−Ñ γ̃ Ñ

)
,

(A2)

where N = (1 + γ γ̃ )−1 and Ñ = (1 + γ̃ γ )−1. Thus from
Eq. (A1) the Green’s function is

ĜR =
(

N 0

0 Ñ

)(
1 − γ γ̃ 2γ

2γ̃ −(1 − γ̃ γ )

)
. (A3)

The projectors have the property

∇̂P̂± = ±P̂+[∇̂U ]P̂− ± P̂−[∇̂Ũ ]P̂+, (A4)

where

U =
(

0 γ

0 0

)
and Ũ =

(
0 0
γ̃ 0

)
. (A5)

In the spin-dependent case, γ and γ̃ are 2 × 2-spin matrices,
that is

γ =
3∑

j=0

γj σ̄j and γ̃ =
3∑

j=0

γ̃j σ̄j . (A6)

Using the above relations, we have derived the Usadel
equation (3) and the spectral supercurrent, Eq. (8).

APPENDIX B: LINEARIZED EQUATIONS

Linearizing Eq. (3) yields

γ ′′ = 2ωnγ + i[γ,h̄] + [
Ā2

s ,γ
] + 2{Ās ,γ }Ās + 2i{γ ′,Ās},

(B1)
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where we use a shorthand notation ∂z′γ = γ ′. Writing

γ =
3∑

i=0

fiσ̄i , (B2)

assuming a general form for the SO coupling

Ā = (α1σ̄1 + α2σ̄3, 0, α3σ̄1 + α4σ̄3), (B3)

and choosing the exchange field in plane

h̄ = h(cosθσ̄3 + sinθσ̄1) (B4)

we can separate the equations for the different spin compo-
nents. They read

f ′′
0 =

(
2ωn + 4

4∑
i=1

α2
i

)
f0 + 4iα3f

′
1 + 4iα4f

′
3, (B5a)

f ′′
1 = [

2ωn + 4
(
α2

1 + α2
3

)]
f1 − 2hcosθf2

+ 4(α1α2 + α3α4)f3 + 4iα3f
′
0, (B5b)

f ′′
2 = 2hcosθf1 + 2ωnf2 − 2hsinθf3, (B5c)

f ′′
3 = 4(α1α2 + α3α4)f1 + 2hsinθf2

+ [
2ωn + 4

(
α2

2 + α2
4

)]
f3. (B5d)

The equations for f̃i parametrizing γ̃ are obtained by substi-
tuting fi ↔ f̃i , h ↔ −h, and by taking a complex conjugate
of the scalars.

The boundary conditions read

f2 = ceiφ/2, f̃2 = ce−iφ/2, c = |	|
ωn + √|	|2 + ω2

n

, (B6)

with φ having the opposite signs at x = 0 and x = L. For
i = 0,1,3 the functions vanish at the boundaries, that is,
fi(0) = fi(L) = f̃i(0) = f̃i(L) = 0.

Linearizing the spectral current density [see Eq. (8)] yields

Im(js) = 1
2 Im{Tr[(γ γ̃ ′ − γ ′γ̃ ) − (γ̃ γ ′ − γ̃ ′γ )

+ i({Ā,γ }γ̃ + γ {Ā,γ̃ } + {Ā,γ̃ }γ + γ̃ {Ā,γ })]}.
(B7)

Using the Pauli matrix expansion from Eq. (B2) and the general
form for the SO coupling, Eq. (B3), we can simplify Eq. (B7),

Im(js) = Im

⎡
⎣ 3∑

j=0

(fj f̃
′
j − f̃j f

′
j )

+ 4i[α3(f0f̃1 + f1f̃0) + α4(f0f̃3 + f3f̃0)]

⎤
⎦. (B8)

In the numerics we have chosen Ā = (0,0,−ασ̄1). On the
other hand, the analytics becomes more straightforward by
writing the f -function components in the basis dictated by the
exchange field. Therefore, applying the rotation exp(iθσy/2)
to h̃, γ , and Ā yields

f ′′
0 = (2ωn + 4α2)f0 − 4iα cos(θ )f ′

1 − 4iα sin(θ )f ′
3,

f ′′
1 = [2ωn + 4α2 cos2(θ )]f1 − 2hf2 − 4iα cos(θ )f ′

0

+ 2α2 sin(2θ )f3,

f ′′
2 = 2hf1 + 2ωnf2,

f ′′
3 = [2ωn + 4α2 sin2(θ )]f3 + 2α2 sin(2θ )f1 − 4iα sin(θ )f ′

0.

The corresponding equations for f̃j are obtained after replac-
ing h ↔ −h and α ↔ −α.

For h � ωn,α, it is now straightforward to identify f1 and
f2 as the short-range components, decaying within the length
ξm = 1/

√
2h from the interfaces. These two components are

the m = 0 triplet and the singlet component of the pairing
amplitude, respectively. These components can thus be solved
separately in a straightforward manner, but the resulting
analytic expressions are too lengthy to be printed here.

The short-range components generate boundary conditions
for the long-range components f0 and f3 that decay within the
length �0=1/

√
2ωn + 4α2,�3 = 1/

√
2ωn + 4α2 sin(θ ) � ξm.

First, disregarding the coupling term between f0 and f3, we
get an analytic solution,

f0 = A0 sinh

[
z

�0

]
+4iα cos(θ )

∫ z

0
�0 sinh

[
z − x

�0

]
f ′

1(x)dx,

(B9)

f3 = A3 sinh

[
z

�3

]
+2α2 sin(2θ )

∫ z

0
�3 sinh

[
z − x

�3

]
f1(x)dx.

(B10)

This solution takes into account the boundary condition
f0(0) = f3(0) = 0. The prefactors A0,3 would be obtained
from the other boundary condition f0(1) = f3(0) = 1. How-
ever, we concentrate only on the vicinity of the interface at
z = 0 and disregard these terms. Note that both components
vanish for θ = π/2, when the exchange field is collinear with
the spin-orbit field, whereas f3 = 0 for θ = 0.

For �0,3 � z � ξm, we may expand and get

f0(z) ≈ 4iα cos(θ )
∫ z

0
f1(x)dx, (B11)

f ′
3(z) ≈ 2α2 sin(2θ )

∫ z

0
f1(x)dx. (B12)

The previous expression requires also one partial integration
and using the fact that f1(0) = 0. The equation is written
for f ′

3(z) because only the derivative tends to a constant
in this interval. Performing the integral yields

∫ z

0 f1(x) ≈
c exp(iφ/2)/(2

√
h), saturating for z � ξm. Repeating a similar

procedure on the other end, z = 1 (in reduced units) yields
finally the full boundary conditions for the long-range compo-
nents

f0(0) = 2iα cos(θ )ceiφ/2/
√

h, (B13)

f ′
3(0) = α2 sin(2θ )ceiφ/2/

√
h, (B14)

f0(1) = 2iα cos(θ )ce−iφ/2/
√

h, (B15)

f ′
3(1) = −α2 sin(2θ )ce−iφ/2/

√
h, (B16)

where now z = 0,1 means the position ∼ξm away from the
contacts. The boundary conditions for f̃0,3 are obtained by
changing the sign of the derivatives, α ↔ −α, φ ↔ −φ. The
remaining equations for the long-range components can be

024522-8



INTRINSIC SPIN-ORBIT INTERACTION IN DIFFUSIVE . . . PHYSICAL REVIEW B 93, 024522 (2016)

written for the two-component vector �f = (f0 f3)T as
�f ′′ = [ωn + 4α2] �f − 4α2 cos2(θ )σ↓ �f − 4iα sin(θ )σx

�f ′.
(B17)

We get rid of the second off-diagonal term by defining
�h = U (z) �f = exp[−2iα sin(θ )σxz] �f . This satisfies

�h′′ = [ωn + 4α2 cos2(θ )]�h − 4α2 cos2(θ )U (z)σ↓U †(z)�h
(B18)

with h0(0) = f0(0), h′
3(0) = f ′

3(0), [exp(2iα sin(θ )σx)
�h(1)]0 = f0(1), [exp(2iα sin(θ )σx)�h′(1)]3 = f ′

3(1). Besides
Eq. (B18) we can hence transform the coupling terms to the
boundary conditions. As the general solution to Eq. (B18) is
overly complicated, we disregard the last term in Eq. (B18). In
this case, solving (B18) is straightforward. The full solution
for �h(z) is lengthy, but the spectral supercurrent is given by
js = 8iα2 cos2(θ )c2 sin(φ)I (α) with

I (α) = e
√

2
√

ω̃n(
√

2(e2
√

2
√

ω̃n − 1) cos (2α sin(θ ))(2ω̃n − α2 sin2(θ )) − 4α sin(θ )(e2
√

2
√

ω̃n + 1)
√

ω̃n sin (2α sin(θ )))

h
√

ω̃n(−2e2
√

2
√

ω̃n cos (4α sin(θ )) + e4
√

2
√

ω̃n + 1)
, (B19)

where ω̃n = ωn + 2α2 cos2(θ ). In particular, for θ = 0, where
the above approximation of neglecting the last term in
Eq. (B18) is not relevant, we get Eq. (15).

For θ between 0 and π/2, the two long-range components
mix and produce a supercurrent that can change sign for a fixed
phase as the direction of the magnetic field is tuned. Such a sign
change is described by the terms of the form cos (2α sin(θ ))

that result from the above transformation between �f and �h.
They show that the sign change takes place whenever α � 1.
However, due to the approximation of neglecting the last term
in Eq. (B18), this result does not match very well the exact
solution at arbitrary range of parameters. Therefore, it is better
to use the rather straightforward solution of the full linearized
equations for finding the supercurrent in this case.
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