
Frankie Robertson

Morphological Parsing with Lexical Transducers:

A case study of OMorFi

Bachelor’s Thesis in Information Technology

May 31, 2016

University of Jyväskylä

Department of Mathematical Information Technology

Author: Frankie Robertson

Contact information: frankie.r.robertson@student.jyu.fi

Title: Morphological Parsing with Lexical Transducers: A case study of OMorFi

Työn nimi: Morfologinen jäsentäminen transduktorien avulla: tapaustutkimus OMor-

Fista

Project: Bachelor’s Thesis

Page count: 34+0

Abstract: This thesis explores the task of morphological parsing, which is going from

a written word to a representation of the units of meaning making up the word.

The research objective is to investigate morphological parsing of Finnish with lexical

transducers through a case study of OMorFi (Open Morphology for Finnish). The

thesis also presents some linguistic and mathematical background as well as some

techniques for constructing FSTs (Finite-State Transducers). The main results are an

exposition and some analysis of OMorFi’s paradigms, stubs & stems language model,

some comparison with related work and ideas for potential future work.

Keywords: Natural Language Processing, Finnish Morphology, Morphological Pars-

ing, Finite-State Transducers, Lexical Transducers

Suomenkielinen tiivistelmä: Tämän kandityön tarkoituksena on tutkia morfolo-

gista jäsentämistä, eli prosessia, jonka seurauksena kirjoitettu sana esitetään sanan

muodostavina merkitysyksiköinä. Tutkimustehtävänä on tutkia Suomen kielen mor-

fologista jäsentämistä transduktorien avulla hyödyntäen tapaustutkimusta, jonka

kohteena on OMorFi (Open Morphology for Finnish). Lisäksi esitellään lingvististä ja

matemaattista taustaa sekä äärellistilaisten transduktorien rakennustekniikoita. Pää-

asialliset tulokset ovat OMorFin kielimallin kuvaus ja analyysi sekä vertailu muihin

vastaavanlaisiin projekteihin ja jatkotutkimusmahdollisuuksien hahmottelu.

Avainsanat: kieliteknologia, Suomen kielen morfologia, morfologinen jäsentäminen,

äärellistilaiset transduktorit

i

List of Figures
Figure 1. An example of, and an analogy between, an FSA and an FST. 7
Figure 2. The data processing pipeline leading from upstream (external to

OMorFi) sources of lexical data to lexical transducers . 15
Figure 3. The tables which make up OMorFi’s lexical database . 18

List of Tables
Table 1. A mapping from rows in OMorFi’s tables to records in generated lexc files19

ii

Contents
1 INTRODUCTION.. 1

2 LINGUISTIC BACKGROUND .. 3

3 FINITE-STATE TRANSDUCERS . 7

4 LANGUAGES AND TOOLS FOR TRANSDUCERS . 11

5 CASE STUDY: OMORFI. 14
5.1 Lexical data processing pipeline . 14
5.2 Analysis of design choices . 20

6 CONCLUSIONS. 23
6.1 Related work . 23
6.2 Potential future work . 24

BIBLIOGRAPHY . 26

iii

1 Introduction

Finnish is a language with a rich morphology, which can prove a barrier in the

creation of computer programs to process it. Incremental developments since the

generative morphology of Chomsky & Halle (1968) have resulted in an efficient

and computationally tractable model of morphology with lexical transducers. My

research objective is to investigate how the task of morphological parsing of Finnish

can be accomplished using lexical transducers through a case study of OMorFi (Open

Morphology for Finnish). I will also investigate applications and related work. My

choice of topic is partially motivated by an interest in the acquisition of Finnish in

non-native speakers due to my own attempts at learning Finnish. I approach my

research objective from the perspective of the following research questions:

• How can we go about constructing a lexical transducer for a language with a

complex morphology? In particular, how does OMorFi do it for Finnish?

• What can we use lexical transducers for?

• What potential related future work is there in this area?

The thesis will take the form of a literature review focussed around a case study. A

case study is research conducted on an individual rather than a population. It can be

considered an inductive technique (Mills 2010, pp. 457-459) in that we might hope to

learn things about the whole population from the individual. According to Schramm

(1971, p. 6), a common feature of case studies is that they investigate sets of decisions,

the reasons they were made, the manner in which they were implemented, and their

results. Thus, in engineering disciplines, a case study of a system tells us about the

particular design choices made by the system, but might also hint at fundamental

trade-offs in the problem domain. In this case the individual system is a piece of

software, namely, OMorFi. Conducting a case study on OMorFi therefore can tell us

generally about the construction of lexical transducers, linguistic data processing and

natural language processing software as well as something about the design choices

and trade offs available with this type of system.

1

One reason that OMorFi is a good candidate for a case study is that it is an open

source project. As such it is possible to study it not only through running it, but also

by reading its source code. Studying OMorFi’s source code will allow me to see how

it fits together and get an idea of how it has been designed. In the process, I hope to

identify the main stages, or the “hows”, of constructing a lexical transducer, as well

as look in detail so as to discover the key domain specific problems that drive the

overall design of a system and explain the “whys”.

Adams, Khan, Raeside & White (2007, pp. 56-57) lay out a framework consisting of

three types of literature review: evaluative, exploratory, and instrumental. In terms

of this framework, my thesis is primarily an exploratory review, in that its aim is to

discover what knowledge exists in this area. It also shares something in common

with an instrumental review, in that the specific application of OMorFi is used as a

starting point to access the literature rather than starting with a research topic per-se.

As it is primarily an exploratory literature review, the aim is to focus on a particular

research topic. At the same time, it’s important to make sure to show how the topic

relates to the larger picture. A metaphor here is that of the human vision, where

only the centre is totally in focus but there are more things in less detail around the

edges. The vision around the edge of the eye helps to contextualise what is in focus. I

identify the edges in this case as including exploration of applications and related

and potential future work.

2

2 Linguistic background

In linguistics, morphology is the study of word forms and word formation (Matthews

1991, p. 3). Within the field of morphology, there are a number of different models

corresponding to a variety of different types of analysis which are performed for

different purposes or reflect different views of language. There are continuing fun-

damental debates in linguistics about how best to break down, abstract and analyse

language; whether there exist some natural, universal set of definitions and what

they might be (Aitchison, 2012, pp. 33-34; Lyons, 1968, pp. 196-197). However, for our

purposes the definitions of Matthews (2007), form a reasonable starting point:

• A morpheme is a minimal unit of grammar into which a sentence or a word

within a sentence can be divided. For example in Finnish we could analyse

“puhun” as made up of the root morpheme “puhu” and the first person singular

suffix morpheme “–n”.

• A word is the smallest of the units that make up a sentence, and marked as such

in writing. For our purposes, we take the definition of a word as that which is

delimited by whitespace or punctuation.

• A lexeme is a word considered as a lexical unit, in abstraction from the specific

forms it takes in specific constructions. One way of thinking of a lexeme is

as being a set of all inflections of a dictionary form of a word. The lexeme is

identified by its dictionary entry which consists of a lemma, also known as a

headword, and a homonym ordinal.

Morphological parsing, morphological segmentation or morphological analysis is

the task of going from a word to a more structurally rich representation within the

above framework. In particular, we usually want to extract the lemma and a series

of tags, describing the part of speech (e.g., verb) and a grammatical analysis of how

the lexeme has been inflected. In an agglutinative language like Finnish, in contrast

to a fusional language like Latin, there is a close relationship between the list of

morphemes and the set of tags (Matthews 1991, pp. 107-114). The list of all tags

3

available for inclusion in an analysis and the rules for their formatting form a data

format called a tag set. In Finnish, for example, a tag could represent the case (e.g.,

inessive “-ssa”) or the presence of an enclictic particle (e.g., interrogative “-ko”) if it

is present. Morphological generation is the opposite process: that of going from a

lexeme and some set of tags to a word form.

As well as inflection, morphological analysis might need to also consider processes

of lexical derivation1. This is when new lexemes, with new distinct meanings, are

formed from old ones. Here we consider two forms: morphological derivation and

word compounding. Morphological derivation is the process of a new lexeme being

formed by affixing a morpheme to an existing lexeme, possibly changing the part of

speech in the process. A Finnish example is the verb “ajaa” (en: to drive), and the

agent morpheme “-ja” (Karlsson 1999, pp. 232-243) forming the agent noun ’‘ajaja”

(en: driver). Derivational morphemes are described as productive when they can be

attached to more words of a particular part of speech, and result in a word which

is understandable and considered valid by a native speaker (Matthews 1991, p. 69).

Word compounding occurs when multiple words are attached to form new lexemes.

In Finnish, both types of lexical derivation happen in a mutually recursive manner and

can mix with inflection. For example, given a compound word, each internal word

can be inflected, and can have already undergone lexical derivation itself (Karlsson

1999, pp. 232-243).

Derivation is traditionally considered distinct from inflection: inflection is said to be

a grammatical phenomena, whereas derivation is said to occur within the lexicon.

It should be mentioned that the distinction is based on multiple criteria and may

not always be entirely clear cut. Matthews (1991, p. 43) gives a number of edge

cases and arguments against the distinction, gradually bringing in more criteria to

deal with the various edge cases. Given the distinction is made on not entirely solid

ground, alternative models have been formulated, such as Booij (1996), who presents

a tripartite model. An example of an edge case is the English word “sands”, which

has the sense desert, and thus here “-s” behaves more like a derivational morpheme
1Also referred to as word formation.

4

than an inflectional morpheme. In applied linguistics, the distinction can be made on

a pragmatic basis: we shouldn’t expect to find inflected forms in a normal dictionary2,

but we would expect to find at least the most common derived forms.

The rest of this chapter deals with the limits of the usefulness and the range of

applicability of tagging word derivation in morphological parsing. A major restriction

on usefulness is that knowing the derivation of a word isn’t sufficient on its own to

reliably predict the word sense (Matthews 1991, pp. 67-69). We might be able to get

some idea of word sense, but we are not able to obtain the exact word sense in the

general case. The primary force restricting the range of applicability is the difficulty

of encoding the rules that govern when word derivations are possible. These can

include phonological and semantic restrictions, but it is also possible to construct

cases that need an appreciation of subtle contextual cues which probably reaches the

level of being AI-hard (Raymond 1991).

One reason to consider lexical derivation in morphological parsing is that it may

allow us to recognise and parse new words by guessing a possible derivation. For

example, if we have no knowledge of the word “ajaja”, and don’t know what part

of speech it is, but know “ajaa” is a verb and “-ja” makes verbs into nouns, then we

can guess that “ajaja” is in our lexicon and that it might be a noun. In the absence of

a perfect set of rules for when a certain derivation is allowed, the degree to which

we’re willing to allow derivations might depend on our application. For example,

for Optical Character Recognition (OCR) and spell checking applications we might

prefer to guess less, so as to avoid the possibility of introducing false positives.

Another reason to take account of lexical derivation is that it can provide useful

information for our application. For example, since an agent morpheme also exists in

English (“-er”), rule-based machine translation from Finnish to English could parse

“ajaja” into “aja” and “-ja”, look them up in a bilingual dictionary to convert them

into “drive” and “-er” and then generate “driver”, rather than having to explicitly

have ajaja ↦ driver in our bilingual dictionary. However, the problem of predicting

word sense prevents this from working in the general case. Unlike the previous,
2For Finnish, however, we might expect to find their inflection class.

5

rather convenient example, many derivational processes produce a lexeme which

is distinct from the sum of its parts, for example, in Finnish “lohikäärme” refers to

the same concept as dragon in English but is formed from the lexemes “lohi”, (en:

salmon) and “käärme”, (en: snake). While it’s a reasonable enough way to form a new

word, in terms of semantics the combination of salmon and snake is a fairly crude

approximation of the idea of a dragon. It’s quite unlikely that an English speaker with

no knowledge of Finnish would get the sense “dragon” from the literal translation

“salmon snake”.

In addition to the word sense problem, the evolution of the lexicon can introduce

structural irregularities. Meanings can diverge or lexemes can disappear from usage

entirely (Matthews 1991, pp. 54-59). Extending the agent noun example further, in

English3 the affixes which make agent nouns are “-er”, “-or” and “-ist”. However, for

the word “author”, the root “auth” is no longer in the English lexicon, but rather we

have to look at the word’s etymology to find that in Latin it was formed from “augeō”,

meaning to increase, spread or enrich, and the Latin agent morpheme “-tor”.

The rules under which certain forms of morphological derivation can occur can be

extremely irregular, and the attachment of less productive derivational morphemes

can be governed by complex, context dependent rules. An irregular example which

would probably be impossible to encode in a rule-based system is the English deriva-

tional suffix “-age” which forms nouns as in roughage, baggage and wordage. In

normal current English usage, this suffix isn’t particularly productive to the point

where many less frequently used dictionary words ending “-age” now sound quite

archaic, but in 1970s surfer slang it can be extremely productive, for example, “suck-

age” or “grindage”. There are many difficult to interpret, subtle contextual cues a

computer program would have to interpret to know when this type of derivation is

allowed. Thus, being able to account for all types of derivation completely accurately

is probably either prohibitively difficult or AI-hard.

3This is due to my limited knowledge of Finnish, but these phenomena occur across languages.

6

3 Finite-state transducers

A Finite-State Transducer (FST) can be understood as an extension of a Finite-State

Automaton (FSA). Each construction has an equivalent graphical form. Figure 1

shows an analogy between an FSA and an FST, and should give some intuition for

those familiar with FSA. Formally, as in Roche & Scheabes (1997, p. 14), an FST can be

defined as 6-tuple (𝛴∗
1, 𝛴∗

2, 𝑄, 𝑖, 𝐹, 𝐸) such that:

• 𝛴1 is a finite set, the input alphabet;

• 𝛴2 is a finite set, the output alphabet;

• 𝑄 is a finite set of states;

• 𝑖 ∈ 𝑄 is the initial state;

• 𝐹 ⊆ 𝑄 is the set of final states; and

• 𝐸 ⊆ 𝑄 × 𝑄 × 𝛴1 × 𝛴2 is the set of edges (or state transitions).

Here, the Kleene star (∗) is a function from sets of symbols (also called alphabets)

to sets of strings (also called languages). This definition admits non-determinism

since 𝐸 is a general relation rather than a function, and since this definition includes

𝜀-transitions – transitions which have the empty string as their input. We can view an

FST as representing a relation 𝐿(𝑇) between 𝛴∗
1 and 𝛴∗

2. One way to define this relation

is by taking the transitive closure of the FST’s edges, simultaneously accumulating

r

a
s

o

i
k

i

s
An FSA defining the regular language:

{ koira, kissa } (a set of strings)

a:𝜀

k:h

s:u

r:𝜀
i:u

i:i
k:m

s:a

o:a

An FST defining the regular relation:

{ (koira, hau), (kissa, miau) } (a relation

of strings)

Figure 1. An example of, and an analogy between, an FSA and an FST.

7

input and output strings with concatenation, and then considering the resulting input

and output strings on the resulting edges which connect the initial state to a final

state. This relation is called a regular relation, by analogy with regular expressions.

By definition, every regular relation has an equivalent FST.

Here, rather than the string transducer defined above, we consider primarily letter

transducers, which can be defined as the 6-tuple (𝛴1 ∪ {𝜀}, 𝛴2 ∪ {𝜀}, 𝑄, 𝑖, 𝐹, 𝐸). There

is no loss of power from using a letter transducer rather than a string transducer

since there is an algorithm which transforms an arbitrary string transducer to a letter

transducer representing the same relation 𝐿(𝑇). Weighted versions of FSTs and letter

transducers can be defined, where each edge and final state is additionally assigned

a weight. As in Ésik & Kuich (2009, p. 70), given a semiring, we can define the weight

of a pair in 𝐿(𝑇) in terms of its paths as:

⨁
path∈paths

⎛⎜
⎝

⨂
edge∈path

edgeWeight(edge)⎞⎟
⎠

⊗ finalStateWeight(path)

In morphological applications, often the min-plus Tropical semiring, where ⊕ ↦ min
and ⊗ ↦ + (Droste & Kuich 2009, p. 7-8), is used. In this case, if edges are weighted

with negative log probabilities, the weight of a pair in 𝐿(𝑇) is the negative log of the

joint probability of the path with the greatest joint probability.

Weighted and unweighted FSTs are widely used in the field of natural language

processing, where they prove to be a versatile tool for tasks including information

extraction (Hobbes, et al. 1997), speech recognition (Pereira & Riley 1997), spelling

correction (Pirinen 2014), spelling to phonetics which is used in text to speech applica-

tions (Laporte 1997), named entity recognition (Kokkinakis, et al. 2014), and our focus

here, morphological analysis and morphological generation. Transducers which can

perform these last two tasks are known as lexical transducers. They relate strings

containing natural language words, which are said to be in surface form, to strings

representing an analysis in what’s referred to as lexical form.

As a concrete example, OMorFi’s FinnTreeBank 3.1 (FTB3.1) lexical transducer relates

the Finnish language to a set of strings containing tags in the FTB3.1 tag set. The

8

transducer’s relation includes the following pair:

Surface form Lexical form

puhun puhua V Prs Act Sg1

We can then interpret the lexical form as a space delimited list of tags as defined in

Voutilainen, Purtonen & Muhonen (2012), like so:

Tag Interpretation

puhua The lexeme is puhua

V The part of speech is verb

Prs The tense is present

Act The voice is active

Sg1 The person is first person singular

One application of a lexical transducer is at the first and last stages of shallow-transfer

Rule Based Machine Translation (RBMT)1. At the first stage, morphological analysis

is performed in the source language, say, Finnish. The shallow-transfer stage then

operates on the words in lexical form, performing tasks such as looking up lemmas

in a bilingual dictionary, converting case endings to prepositions and reordering

words. At the beginning of the final stage we might have a string in lexical form in the

target language, say, English. We can then perform morphological generation in this

language. Since lexical analysis might output more than one result for a particular

word form, there is generally a disambiguation step where the most likely analysis

is chosen. This step corresponds to part of speech tagging and can use statistical

and/or machine learning techniques, for example the hidden Markov model based

Trigrams’n’Tags tagger (Brants 2000)), or rule-based techniques such as Constraint

Grammar (Karlsson 1990), or a mixture of both (Hulden 2011). Lexical transducers

can also be used as part of Statistical Machine Translation (SMT)2.

There are a few different ways to perform spell checking with finite-state techniques.
1For example, Apertium (Forcada, et al. 2011).
2For example, Google Translate or Moses (Koehn, et al. 2007).

9

One reasonably simple way, as outlined in Pirinen (2014) and used in Voikko v4.0.23,

is to make an FSA from a lexical transducer by discarding its output side. At this

point weights can be added according to word probability, which can be estimated

using word frequency statistics. Another transducer which corrects errors, referred

to as an error model, is then constructed. The idea is to model the process of errors

as a regular relation and then invert the corresponding FST to get an error correcting

FST. A simple error model relates strings separated by a Levenshtein distance (a.k.a.

edit distance) of one (Levenshtein 1966). A word is correctly spelt only if it is accepted

by the FSA. We can then generate a list of suggestions for a misspelt word in order

of likelihood by feeding the output of the error correcting FST into the FSA. This set

up can be improved using more sophisticated error models such as a model with

weights representing the probability of the error occurring, which could for example,

take into account keyboard layout. The error model and FSA are not composed in

advance since this will result in a prohibitively large transducer (Pirinen 2014, p. 69).

Another application area is hyphenation. Liang (1983) presents this problem and a

solution in depth. Placing hyphens in certain places when splitting a word over two

lines in justified text, such as on a compound boundary, a morpheme boundary, or

a syllable boundary, results in more readable text. This is a relatively early applica-

tion of FSTs, and Liang’s implementation may also be one of the most widespread

applications in terms of number of users, since it is part of the TEX typesetting system.

One simple but extremely practical pair of applications are the closely related tasks of

lemmatisation and stemming (Lovins 1968). A word form is lemmatised by extracting

the lemma or stemmed by discarding any inflection data leaving a stem which identi-

fies the lexeme. The task of lemmatisation can be seen as a subset of morphological

parsing. This is immediately useful in the field of Information Retrieval (IR) for per-

forming the task of full-text search. Before a document is indexed, it is preprocessed

by either lemmatising or stemming all the words. Then, before performing a query,

each keyword is stemmed. As a result, an end user will obtain results equivalent to

having searched for all combinations of all inflected forms of their keywords.

3This information was obtained by inspection of its source code.

10

4 Languages and tools for transducers

This chapter surveys the available tools and techniques for the construction of lex-

ical transducers. Just as regular expressions are a language for describing regular

languages, there are languages to describe regular relations. Languages describing

regular relations can be compiled into finite-state transducers analogously to the

compilation of regular expressions into finite-state automata. Roughly, there are three

types of constructs upon which tools and languages to generate FSTs can be based:

• context-sensitive replacement rules,

• a textual description of the structure of an FST, and

• unary and binary operations on regular relations or FSTs.

Context-sensitive replacement rules were introduced in Chomsky & Halle (1968),

where they were used to transform written English into phonetic English. There, the

rules are written as follows:

𝐴 → 𝐵 / 𝑋 —— 𝑌

This can be read as “𝐴 is replaced with 𝐵 when it has left context 𝑋 and right context

𝑌”. For example, applying this rule would transform 𝑋𝐴𝑌 to 𝑋𝐵𝑌. A set of context-

sensitive rewrite rules can be interpreted as accepting a language (Partee, et al. 2012,

p. 450). This language will be a context-sensitive language, which, in terms of the

Chomsky hierarchy (Chomsky 1956), is strictly more powerful than a context-free

language, which is in turn strictly more powerful than a regular language. At first

glance then, it seems impossible to compile context-sensitive replacement rules to an

FST, which is a strictly less powerful formalism.

Douglas (1970) discovered that the way Chomsky & Halle and subsequent phonol-

ogists had used the rewrite rules in phonological derivations was actually more

restricted. They assumed that once a rewrite rule has been applied, its output can not

be affected by subsequent reapplication. It turns out that this restriction is sufficient

11

to allow a context-free rewrite rule to admit an equivalent regular relation1. The

algorithm for compiling a Chomsky & Halle style replacement rule into an FST was

first presented in Kaplan & Kay (1981), but the first publication available to the general

public beyond an abstract was Kaplan & Kay (1994).

Concurrently with these developments, Koskenniemi (1984) formulated a different

type of context-sensitive replacement rule, with clear operational semantics from the

start. In Chomsky & Halle’s scheme, rules are applied in series, with the output of

each rule acting as the input to another: they are combined by composition (Roche &

Scheabes 1997, pp. 21-23). Two level replacement rules operate in parallel: they are

combined by intersection (Roche & Scheabes 1997, pp. 23-25)2. Another difference

is that in Chomsky & Halle rules the context can only depend on the input string

whereas in two level rules the context can also depend on the output string.

There have been a series of compilers for Koskenniemi’s formalism. Probably the

two most advanced are the implementation in the Xerox/PARC finite-state toolkit3

which, along with the rest of the toolkit, is closed source but freely available for

non-commercial use, and hfst-twolc which is part of the Helsinki Finite-State Toolkit

(HFST) and, along with the rest of HFST, is licenced under the GPLv3. Chomsky &

Halle style rules are implemented in xfst (Xerox Finite-State Tool) with the additional

feature of the context having access to the output string.

The next way to construct an FST is to describe its structure directly by giving an

encoding of the 6-tuple specified in chapter 3. Lexc (Lexicon Compiler) is a tool using

this technique. The body of a lexc input file consists of a number of named lexicon

sections, which correspond to states in an FST. Each lexicon contains a series of records

corresponding to state transitions. Each record contains an input string, an output

string and the name of another lexicon, which corresponds to the out-state. There are
1Conversely, Roche (1997, pp. 244-247) shows how the task of top down parsing, which corresponds

to accepting a context-free language, can be performed by iterating the function realised by an FST.
2In general, letter transducers are not closed under intersection, but u�-free letter transducers are.

The two levels move in lockstep, letter by letter, and differences in length are handled by adding
padding characters called zeros.

3Distributed with, and described extensively in Beesley & Karttunen (2003).

12

two special lexicons named Root and #, which correspond to the starting state and an

accepting state respectively. Lexc compiles this text description of a string transducer

to an encoding of a letter transducer. Implementations of lexc exist in the Xerox and

Helsinki toolkits. The typical usage of lexc is to encode the lexicon by listing lemmas

and other morphemes, and to express the morphotactical matter of which pairs of

morphemes can attach to each other. The resulting transducer is then composed with

context-sensitive replacement rules, which express the morphophonemic matter of

how attached morphemes cause sound changes in each other.

Another way to directly express the structure of an FST is using the extended regular

expressions first introduced in xfst. These are an extension of POSIX style regular

expressions (IEEE 2013). A character, such as “a”, will produce an edge with “a” as

its input and output. A colon separated pair, “a:b”, produces an edge taking “a” to

“b”. HFST includes extended regular expressions in its implementation of xfst, and

as an independent tool: hfst-regex.

Finally, we come to unary and binary operations on regular relations or FSTs. In-

tersection and composition have already been mentioned as methods of combining

different types of rule transducers and composition as a way of combining the lexicon

transducer and the rules transducer. For two level rules, the intersection of rules

and composition with the lexicon can be performed with a single compose-intersect

operation to save memory (Karttunen, et al. 1992). Of the remaining operations, many

are best understood as operations between regular relations, such as the invert and

union/disjunct operations, or sometimes as combining two regular languages into

a regular relations, such as the Cartesian product. Some operations operate at the

level of FSTs, such as the minimise operation, which outputs an FST with a smaller or

equal number of edges and states compared to the input FST, without affecting the

corresponding regular relation. These operations can be performed from within xfst

and are also implemented within HFST as independent command line tools where

they can be combined by using Unix-style pipes.

13

5 Case study: OMorFi

OMorFi (Open Morphology for Finnish) uses the tools introduced in the previous

chapter, together with linguistic rules and data, to build a number of lexical trans-

ducers (Pirinen 2015)1. Python, bash shell scripts and the GNU autotools are used

for automation. OMorFi’s databases, however, represent the majority of the work

which has gone into OMorFi. OMorFi can be understood as a lexical data processing

pipeline, as visualised in figure 2 (p. 15). This chapter analyses OMorFi in terms of

this pipeline, following it from its input to its final product: from upstream sources

of linguistic data to a number of lexical transducers performing different analyses.

5.1 Lexical data processing pipeline

Finnish, like most natural languages, has a large, varied and evolving lexicon. Even

native speakers of a natural language only know a fraction of the total lexicon. In

fact, it is impossible to fully enumerate every lexeme in a natural language since new

words can always be introduced – it’s possible to coin a new word that will be readily

understood, for example by using lexical derivation, as explained in chapter 2.

For the purposes of morphological analysis we need a list of lemmas and other

morphemes and an inflection class for each lemma to determine how it combines

with other morphemes. OMorFi acquires this information by screen scraping from

existing sources of linguistic data. Screen scraping is the process of transforming

data meant for human consumption to structured data in a machine readable format.

Since OMorFi is distributed under the GNU Public Licence (GPL) version 3, each

source of data must be licenced under a compatible licence.
1Here I have cited the most recent publication related to OMorFi, but this chapter operates at a

closer level of detail than is available in the literature. Most of the content of this chapter comes from
reading the OMorFi’s source code and experimenting with it. The version of OMorFi used was its git
master branch as of the 19th of February 2016, available at this URL: https://github.com/flammie/

omorfi/commit/e832e931ea4b530e56b12b968c443f3e24e44df1.

14

https://github.com/flammie/omorfi/commit/e832e931ea4b530e56b12b968c443f3e24e44df1
https://github.com/flammie/omorfi/commit/e832e931ea4b530e56b12b968c443f3e24e44df1

Upstream
OMorFi

W
ikisanakirja

K
otus

FinnW
ordN

et

Joukahainen

O
m

egaw
iki

U
nihu

D
irect

Upstream

sources of

linguistic

data

Scrapers & Classifiers

Lexem
es

A
ttributes

Paradigm
s

Database processing

The OMorFi

lexical

database

(see fig 3)

Master database Inflections Stem parts

Continuation database

Lexc generation

A
pertium

FTB3

G
iella

Segm
ents

O
m

or

N
one

Lexc files

for various

tag sets

Lexc

Transducers

Postprocessing

Transducers

Figure 2. The data processing pipeline leading from upstream (external to OMorFi)

sources of lexical data to lexical transducers

15

Kotimaisten Kielten Keskus, Kotus, (en: Institute for the Languages of Finland) have

published Nykysuomen Sanalista, NSSL, (en: The new Finnish word list) (Kotus 2007).

In NSSL each word is given one of 79 inflection classes. NSSL classes 1-51 are for

nominals, the part of speech including nouns and adjectives, and classes 52-78 are

for verbs. Class 99 is for words which don’t inflect, including the adverbs2. If a word

participates in consonant gradation, it is labelled with one of 13 types. NSSL doesn’t

distinguish between the direction of the consonant gradation, nor does it supply the

type of vowel, front or back, endings should take3.

Joukahainen is a freely editable online dictionary started to serve as a source of data

for Voikko, a Finnish language spell checker predating OMorFi (Pitkänen 2006).

It has a similar system to NSSL, except information about consonant gradation is

included in the inflection class and inflection classes are referred to by example words.

Wikisanakirja is the Finnish language version of Wiktionary, a freely editable online

dictionary which also uses Kotus inflection classes.

FinnWordNet is a Finnish translation of the Wordnet database, which contains semantic

relations between words (Lindén & Carlson 2011). It doesn’t contain inflection class in-

formation, but most of the words in OMorFi from FinnWordNet are either compound

words, for which we can make a reasonable guess by using the inflection class of the

final subword, or the result of morphological derivation in which case the particular

type of derivation might be sufficient to guess the inflection class. Omegawiki is a user

editable dictionary, which unlike Wikisanakirja, tries to group by meaning across

languages. As with FinnWordNet there is no inflection class information and so it

must be obtained by automatic guessing informed by linguistic knowledge of Finnish.

Unihu is a project of the University of Helsinki which hasn’t yet received a publication.

Finally, there is the Direct source, which is for lexemes which have been entered into

OMorFi manually.

OMorFi has 2482 word paradigms for all parts of speech. Since there are only 79 Kotus

inflection classes, it follows that each word paradigm encodes more information than
2Kotus inflection classes are labelled 1-78 and 99.
3The agreement between vowels in a stem and an ending is known as vowel harmony.

16

an inflection class. As well as inflection class, each OMorFi paradigm encodes: the

type of consonant gradation, similar to Joukahainen; whether the vowel harmony is

front or back, or whether either is possible, as with some loan words; and the part of

speech. Ultimately the word paradigm must determine which characters are deleted

from the end of the lemma to form the stub. This is the initial part of the word which

remains unchanged by inflection. The morphophonology table maps each paradigm

to a more sparse representation, explicitly stating a value for each paradigm and

phenomenon, for example, whether vowel harmony is front or back. The stub-deletions

table contains the part of the lemma that is not a part of the stub, that is, the ending

of the lemma. The notion of the stub here is distinct from the stem as referred to in

descriptions of the Finnish grammar such as Karlsson (1999). The stem is the part of

the word which remains unchanged in some subset of inflectional endings whereas

the stub doesn’t change between the lemma form and any inflected form.4

All upstream data must be mapped onto one of OMorFi’s classes by its classifiers.

The classifiers begin by guessing a number of features, such as categorising the

lemma’s vowel harmony as front or back based on its final syllable. Then, based on a

combination of these features, Kotus inflection class, Kotus gradation type and the

ending of the lemma, a paradigm is chosen for the lexeme. On top of the data encoded

in paradigms, there is data stored on a per word basis in the attributes tables. An

important example is the boundaries table which contains internal word boundaries

for compound words.

All of the tables in figure 3 are joined to obtain the master table. It should be noted at

this point that OMorFi’s database tables are stored as tab separated values text files,

and operations, such as join, are implemented manually in Python, rather than using

a relational database management system as might be inferred from the terminology.

Due to Codd (1970), the relational database model can be defined in terms of sets

(or multisets), independently from any implemention details. A key advantage of
4For example, for nominals, there is a common stem for genitive, plural and most case endings.

For the word “politiikka” this is “politiika-”. We can then directly attach, for example, the genitive
ending “-n” to the stem. In this case the stub is “politii-”. To form the genitive, we must first attach the
missing part of the genitive stem “-ka-” and then the genitive ending “-n”.

17

OMorFi’s approach is the interoperability it affords with Unix-style tools, for example

git, diff, awk and grep, which are designed primarily to operate on text files.

OMorFi has two of its own tag sets. The omor tag set, for which a lexical transducer is

produced, is intended for public consumption. The stuffs tag set is internal and is used

to generate tags for every tag set OMorFi supports from its continuation database.

The continuation database consists of the stems and inflections tables. The stems table

maps the 3-tuple of a paradigm, an analysis in terms of stuffs, and a stem part, to a

set of continuation classes. The stem part, when affixed to the stub, will produce the

stem as defined in Karlsson (1999). The inflections table has a similar structure to the

Le
xe

m
es

Joint foreign key

Foreign key

lemma homonym

origin

paradigm

abbr

boundaries
clitic

snumtype

po
sse

ssi
ve

s

pr
on

un
cia

tio
n

se
m

an
tic

sy
m

bo
l-c

la
ss

esadptype

broken-paradigm
s

lexicalised-inflection

plurale-tantum

prontypeproper-classes
style

verb-arguments

Attributes

morphophonologystub-deletions

Paradigms

Figure 3. The tables which make up OMorFi’s lexical database

18

stems table. Instead of mapping from paradigms, it maps from continuation classes.

To deal with compound words, the inflection table can also map to parts of speech.

The stem part column in these two tables contains markers delimiting morpheme

boundaries and word boundaries in compound words.

The first part of generating the final set of lexical transducers is to generate a lexc file

for each output tag set. Each lexc file is a combination of the of the master, stems and

inflections tables. In each lexc file, the root lexicon points to all the part of speech

lexicons. The table below shows how each row of of each of these database tables

maps to records in the generated lexc file:

Table Lexicon Input Output Continuations

Master Part of

speech

Stub The lemma & a part

of speech

The lexeme’s

paradigm

Stems Paradigm Stem part Converted stuffs Continuation

classes

Inflections Continuation

class

Stem part Converted stuffs Continuation

classes

Table 1. A mapping from rows in OMorFi’s tables to records in generated lexc files

This transducer produced from this lexc file still needs markers delimiting morpheme

boundaries in its input. To obtain a transducer which can deal with word forms

as they appear in text we must make another transducer which attempts to insert

these boundaries between every character in the input word and compose it with

the transducer produced by lexc. This is realised in OMorFi using a twolc file which

disjunctions a series of replacement rules from 𝜀 to each of the boundary markers.

There are other post processing steps implemented with replacement rules. For

example allowing “š” to be spelt as “sh’5. Some output transducers, such as the

transducer for the FinnTreeBank 1 tag set, are implemented by replacing the tags

output by another transducer. None of these replacement rules are context-sensitive.
5As it is in many English words, and as is now common in Finnish in loan words such as “shakki”.

19

5.2 Analysis of design choices

OMorFi is a rule-based, data driven tool for tasks involving Finnish morphology,

including morphological analysis and generation. As in section 5.1, the current version

of OMorFi is based almost entirely on lexc, with twolc and hfst-regex being used only

for simple search and replace tasks, rather than for encoding morphophonemic rules.

OMorFi has a thin layer of abstraction on top of lexc. By construction, descriptions

written in the twolc or xfst languages can be compiled to FSTs. As in chapter 4, the

structure of a lexc file has a one to one correspondence to an FST. Thus, anything

describable with either twolc or xfst is describable with lexc alone.

Why doesn’t OMorFi use twolc or xfst? It’s certainly surprising since Koskenniemi’s

two level system was designed with Finnish in mind (Koskenniemi 1984, pp. 42-88).

Older versions of OMorFi did use twolc6 to deal with phonological phenomena such

as vowel harmony and consonant gradation7. One reason might be that while fairly

good coverage was possible with the combination of lexc and twolc, encoding a set

of interacting rules which dealt with the general case became prohibitively difficult.

For example, vowel harmony is reasonably easy to encode for Finnish words, but

loan words which contain both front and back vowels can take endings with both.

These types of edge cases may have meant that the twolc-based approach was no

longer tenable. This would be an instance of the 80/20 rule of engineering, where

the last 20 % of a project takes 80 % of the effort. Another related reason might be

that since the structure of a lexc file has a close correspondence to the structure of

the final transducer, relying mostly on lexc makes it easy to track the size of the final

transducer. This is analogous to choosing to program in a lower level language at the

cost of certain types of abstraction because of predictable performance characteristics.

OMorFi’s inflections table contains around 3000 entries and its stems table contains

around 28 000 entries for its roughly 2500 paradigms. Each paradigm must determine
6Such as a version from 2009, which is available here: https://github.com/flammie/

purplemonkeydishwasher/tree/master/2009-sfcm.
7Since consonant gradation can’t be determined from the word form on its own, strings coming

from the lexicon transducer into the rules transducer are tagged with their gradation class.

20

https://github.com/flammie/purplemonkeydishwasher/tree/master/2009-sfcm
https://github.com/flammie/purplemonkeydishwasher/tree/master/2009-sfcm

the set of inflections a lexeme can take and the particular form they must take. Many

paradigms are identical apart from one small difference in the form of a particular

suffix8. Based on these facts and the lack of usage of context-sensitive replacement

rules, OMorFi can be characterised as more data-driven versus a possible rule-driven

approach, which would make heavier usage of context-sensitive replacement rules.

One question then is: Are there disadvantages of this representation, and if so, can

they be remedied?

As a Finnish learner, I am quite interested in the possibility of certain types of human-

computer interactive language learning. This application area is known as Computer

Aided Language Learning (CALL)9. One potential application here is a question/an-

swer system, such as Oahpa! (Antonsen, et al. 2009), which includes automatic

question generation and answer checking for the Sámi languages. Koskenniemi (2006,

pp. 428-429) gives an example of a system which generates questions asking a language

learner to give a particular inflection of a lexeme, incorporating morphophonemic

information from two level rules by using the pair-test utility. In his example, the

user gives an answer which is almost correct, apart from not incorporating the result

of a single phonological rule. The CALL software can then make decisions based on

this information, such as give positive feedback (“almost right”) and give information

about the rule the learner failed to incorporate along with examples, as well as asking

more questions where the rule needs to be taken into account in the future.

Is Koskenniemi’s technique possible with OMorFi’s current paradigms, stubs and

stems approach? Certainly it doesn’t seem to be as easy as in his example, but

perhaps at least some of this functionality of modelling the mistakes of language

learners could be recovered by making a series of error transducers10. These could

be constructed by changing OMorFi’s continuation database in ways which model
8For example, gray (as in the SI unit of radiation) can be put in the illative by attaching “-hyn” or

“-hin” or “-ihin” but reggae can be put in the illative by attaching “-en”, “-hen”, “-hin” or “-ihin”. Even
though the paradigms inflect identically apart from this, the fact that they differ for a single inflection
means they necessarily belong to different paradigms.

9For background see, for example, (Levy 1997).
10As in spell checking.

21

different types of errors and then compiling new, incorrect versions of OMorFi based

on these. Another CALL application would be an information retrieval system on

OMorFi’s lexicographic database. A language leaner might like to be able to find out

the inflection class of a new word, but OMorFi has too many paradigms for a language

learner. For example, it has 237 verb paradigms. We might be able to remedy this

and retrieve the 5 verb types taught to Finnish learners by coalescing paradigms into

larger classes by, for example, merging otherwise identical front and back paradigms

and ignoring certain rare inflections.

Currently OMorFi supports analysing derived forms which are not in its lemmas

database for a number of deverbal suffixes and the “-sti” deadjectival suffix, but

this is a subset of possible types of morphological derivation in Finnish11. Analyses

produced this way include the lemma and part of speech as they are before undergoing

derivation, along with a tag for the derivational morpheme. OMorFi also contains

a mechanism to include lexicalised derivation. This is where individual entries are

tagged as having undergone a derivational process. In this case, OMorFi will output

the word form and part of speech as it is after derivation.

11Older versions of OMorFi have supported a slightly different set of types of morphological deriva-
tion, including “-ja’.

22

6 Conclusions

Dealing with the internal structure of words can present problems in natural language

processing. These problems are most pronounced for synthetic languages like Finnish,

which have a high morpheme to word ratio. For these languages, a full form lexicon,

where all possible forms of every lexeme are listed, is not tenable. OMorFi’s approach

emphasises lexical data and employs classical data management and processing

techniques to control complexity. It builds on freely available tools based on decades

of incremental advances in the theory of finite-state language processing, resulting in

an efficient solution with good coverage of the Finnish language. In this chapter, I

will first point to some related pieces of work and briefly characterise them. I will

close by outlining some potential opportunities for future work in this area.

6.1 Related work

Hunspell is an open source spell checker, written with Hungarian, a distant linguistic

cousin of Finnish in the Uralic language family1, in mind. Its dictionaries use an

interpreted language which has evolved to accommodate different languages. This

lacks the clean mathematical basis and generality of the finite-state approach. Voikko

is another open source spell checker, but written with Finnish in mind. Voikko began

life as a Hunspell dictionary, but quickly ran up against the limitations of the system.

Later versions were based on Suomi-malaga, which implements morphological pars-

ing in terms of parsing a context-free grammar. This approach is general enough to

deal with the same morphological phenomena as FSTs, but context-free grammars

are a needlessly powerful formalism. Current versions of Voikko are based on FSTs.

OMorFi and Voikko are separate projects, but have had a mutually beneficial rela-

tionship. The Joukahainen database is a product of Voikko’s development, and the

improvements in finite-state tooling via the concurrent development of HFST with

OMorFi (Koskenniemi 2008, pp. 92-93) enabled the current finite-state based Voikko
1For background on the Uralic languages see, for example, Abondolo (2015).

23

backend. Since Hunspell dictionaries can be converted to Voikko (Pirinen, T., &

Lindén 2010) and Voikko integrates with many pieces of software such as OpenOffice

and Firefox, it’s well positioned as a replacement for Hunspell.

There are a number of open source morphological analysers for other languages

in the Uralic family. For Hungarian there is the Hunmorph analyser (Trón, et al.

2005) and the Morphdb.hu database (Trón, et al. 2006). These project share a similar

relationship to OMorFi and Joukahainen. Hunmorph uses a similar technique to

Hunspell, based on affix stripping, but as the authors note in Trón, et al. (2005), the

linguistic data could be reused in a finite-state morphological analyser. For Estonian,

Pruulmann-Vengerfeldt (2010) has implemented a finite-state description as part of

his masters thesis2. The previously mentioned Oahpa! is part of a larger project at

the Giellatekno Center for Sámi Language Technology at the University of Tromsø

(Antonsen, et al. 2009), which has produced linguistic applications and resources for

the Sámi languages, including morphological analysers based on HFST.

A recent piece of work is FinnPos (Silfverberg, et al. 2015). While the software is

designed to be modular enough to apply to other tasks, it is currently distributed with

data and scripts that allow it be to used as an extension of OMorFi. One direction in

which OMorFi is extended is the addition of morphological disambiguation. This

implementation is at its core an averaged perceptron, as introduced in Freund &

Schapire (1999). The other direction in which OMorFi is extended is the addition of

probabilistic lemmatisation of unknown words.

6.2 Potential future work

As described in section 5.1, OMorFi’s lexical database is created by scraping and

classifying upstream linguistic data. However, this description is of an idealised

version of OMorFi. The data in OMorFi’s database as of writing has first been scraped

and then undergone conversion from an old database format. Additionally, only a

subset of the upstream sources of linguistic data have publicly available scrapers.
2The implementation is available from https://github.com/jjpp/plamk.

24

https://github.com/jjpp/plamk

OMorFi could include a direct route from upstream linguistic data into its lexical

database. This would enable the addition of new lexemes and the modification of old

lexemes upstream to enter OMorFi’s lexical database. This work might need to be

accompanied by a conflict resolution strategy.3

As mentioned in section 5.2, a CALL system based on OMorFi is a potential future

application. Another application would be as part of a machine translation pipeline,

as outlined in chapter 3. OMorFi could be improved by addressing the shortfalls of its

derivation system given at the end of section 5.2. The different formats for analyses of

lexicalised and non-lexicalised derivation could be made more consistent with a post

processing step. As mentioned in chapter 2, encoding restrictions on derivation can

be tricky, but without sufficient restrictions on new types of derivation, the system

will overgenerate, that is generate word forms which are ungrammatical. To account

for new types of restrictions on derivation, it may be necessary to introduce new

criteria beyond the per-paradigm and per-lexeme ones already in OMorFi.

A general line of work in open linguistic resources is the effort to try and share

resources and enable cooperation between different research groups and across

languages by harmonising the results of linguistic analyses and data exchange formats,

and increasing interoperability of tools4. This is one of the achievements of the

HFST project, which is implemented on top of and interoperates with a number of

existing tools. Cross language resource sharing is a major motivation for the Universal

Dependencies project (Nivre 2015). This work has already begun to be integrated

into OMorFi in the form of changes to the omor tag set to include the Universal Part

Of Speech (UPOS). The aim of the UPOS work is to make sure people use the same

set of a parts of speech across different languages consistently. As we’ve seen, there

are a large number of different tools and analyses representing a number of opposing

approaches, and the rules and exceptions of natural language make converging on

universal truths extremely difficult. Since this topic involves overcoming both these

challenges, it seems there will be work to be done in this area for quite some time.
3An example of a scenario in which a conflict would occur is the addition of a Wiktionary entry

with a Kotus class which disagrees with the paradigm of a word already in OMorFi’s lexical database.
4An overview of this topic is given in Witt, et al. (2009)

25

Bibliography

Abondolo, D. (2015). Introduction. In The Uralic Languages (pp. 1-42). Abingdon, Oxon,

England: Routledge.

Adams, J., Khan, H. T., Raeside, R., & White, D. I. (2007). Research methods for graduate

business and social science students. SAGE Publications India.

Aitchison, J. (2012). Words in the mind: An introduction to the mental lexicon (4th ed.).

New York, NY: John Wiley & Sons.

Antonsen, L., Huhmarniemi, S., & Trosterud, T. (2009). Interactive pedagogical pro-

grams based on constraint grammar. Proceedings of the 17th Nordic Conference of

Computational Linguistics Nealt Proceedings Series Volume 4 (pp. 10-17). Oslo, Nor-

way: North European Association for Language Technology.

Antonsen, L., Gerstenberger, C., Trosterud, T. & Wiechetek, L. Sámi Language Tech-

nology at the University of Tromsø. Poster presented as part of the Made for Arctic

Languages: Syntax, Morphology, Lexicon course at the University of Tromsø. Re-

trieved from http://giellatekno.uit.no/background/giellatekno3.pdf.

Beesley, K., & Karttunen, L. (2003). Finite state morphology. Stanford, CA: Center for

the Study of Language and Information.

Booij, G. (1996). Inherent versus contextual inflection and the split morphology hy-

pothesis. Yearbook of morphology 1995 (pp. 1-16). Dordrecht, Netherlands: Springer

Netherlands.

Brants, T. (2000). TnT: a statistical part-of-speech tagger. Proceedings of the sixth confer-

ence on Applied natural language processing (pp. 224-231). Stroudsburg, PA: Associa-

tion for Computational Linguistics.

Chomsky, N. (1956). Three models for the description of language. IRE Transactions

on Information Theory Volume 2, Issue 3 (pp. 113-124). Piscataway, NJ: IEEE.

Chomsky, N., & Halle, M. (1968). The sound pattern of English. Harper & Row.

Codd, E. F. (1970). A relational model of data for large shared data banks. Communi-

cations of the ACM Volume 13, Issue 6 (pp. 377-387.). New York, NY: ACM.

Johnson, C. D. (1970). Formal Aspects of Phonological Description. (Doctoral dissertation).

CA: University of California.

26

http://giellatekno.uit.no/background/giellatekno3.pdf

Droste, M. & Kuich, W. Semirings and Formal Power Series. In Handbook of weighted

automata (pp. 1-28). Berlin, Germany: Springer Science & Business Media.

Ésik, Z. & Kuich, W. Finite Automata. In Handbook of weighted automata (pp. 69-104).

Berlin, Germany: Springer Science & Business Media.

Forcada, M.L., Ginestí-Rosell, M., Nordfalk, J., O’Regan, J., Ortiz-Rojas, S., Pérez-Ortiz,

J.A., Sánchez-Martínez, F., Ramírez-Sánchez, G. & Tyers, F.M. (2011). Apertium: a

free/open-source platform for rule-based machine translation. Machine translation

Volume 25, Issue 2 (pp. 127-144). Berlin, Germany: Springer Science & Business

Media.

Freund, Y., & Schapire, R. E. (1999). Large margin classification using the perceptron

algorithm. Machine learning Volume 37, Issue 3 (pp. 277-296). Berlin, Germany:

Springer Science & Business Media.

Hobbs, J. R., Appelt, D., Bear, J., Israel, D., Kameyama, M., Stickel, M., & Tyson,

M. (1997). FASTUS: A Cascaded Finite-State Transducer for Extracting Informa-

tion from Natural-Language Text. In Finite-state language processing (pp. 383-406).

Cambridge, MA: MIT Press.

Hulden, M., & Jerid F. Boosting statistical tagger accuracy with simple rule-based

grammars. Proceedings of the Eight International Conference on Language Resources and

Evaluation (LREC’12). Istanbul, Turkey: European Language Resources Association

(ELRA).

Regular Expressions. In The Open Group Base Specifications Issue 7 Chapter 9. The IEEE

and The Open Group. Retrieved from http://pubs.opengroup.org/onlinepubs/

9699919799/basedefs/V1_chap09.html.

Kaplan, R. M., & Kay, M. (1981). Phonological rules and finite-state transducers.

Linguistic Society of America Meeting Handbook, Fifty-Sixth Annual Meeting (pp. 27-

30).

Kaplan, R. M., & Kay, M. (1994). Regular models of phonological rule systems. Com-

putational linguistics - Special issue on computational phonology Volume 20, Issue 3

(pp. 331-378). Cambridge, MA: MIT Press.

Karlsson, F. (1990). Constraint grammar as a framework for parsing running text.

Proceedings of the 13th conference on Computational linguistics Volume 3 (pp. 168-173).

27

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html

Stroudsburg, PA: Association for Computational Linguistics.

Karlsson, F. (1999). Finnish: An Essential Grammar. Abingdon, Oxon, England: Rout-

ledge.

Karttunen, L., Kaplan, R. M., & Zaenen, A. (1992). Two-level morphology with com-

position. Proceedings of the 14th conference on Computational linguistics. Volume 1

(pp. 141-148). Stroudsburg, PA: Association for Computational Linguistics.

Kokkinakis, D., Niemi, J., Hardwick, S., Lindén, K., & Borin, L. (2014). HFST-

SweNER–A New NER Resource for Swedish. Proceedings of the Ninth International

Conference on Language Resources and Evaluation (LREC’14). Reykjavik, Iceland: Eu-

ropean Language Resources Association (ELRA).

Kotimaisten Kielten Keskus (2007). Nykysuomen Sanalista. Retrieved from http://

kaino.kotus.fi/sanat/nykysuomi/.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan,

B., et al. (2007). Moses: Open source toolkit for statistical machine translation.

Proceedings of the 45th annual meeting of the ACL, interactive poster and demonstration

sessions (pp. 177-180). Prague, Czech Republic: Association for Computational

Linguistics.

Koskenniemi, K. (1984). A general computational model for word-form recognition

and production. Proceedings of the 10th international conference on Computational Lin-

guistics (pp. 178-181). Stroudsburg, PA: Association for Computational Linguistics.

Koskenniemi, K. (2006). Notes on the Two-Level Morphology. A man of measure:

Festschrift in Honour of Fred Karlsson on His 60th Birthday – A special supplement to

SKY Journal of Linguistics Volume 19 (pp. 422-431).

Koskenniemi, K. (2008). How to build an open source morphological parser now.

Resourceful Language Technology: Festschrift in Honor of Anna Sågvall Hein (pp. 86-95).

Uppsala, Sweden.

Laporte, É. (1997). Rational Transducers for Phonetic Conversion and Phonology. In

Finite-state language processing (pp. 407-430). Cambridge, MA: MIT Press.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and

reversals. Soviet physics doklady Volume 10, Issue 8 (pp. 707-710). Russia: Springer

Science & Business Media.

28

http://kaino.kotus.fi/sanat/nykysuomi/
http://kaino.kotus.fi/sanat/nykysuomi/

Levy, M. (1997). Computer-assisted language learning: Context and conceptualization.

Oxford, England: Oxford University Press.

Liang, F. M. (1983). Word Hy-phen-a-tion by Com-put-er. (Doctoral dissertation). Stanford,

CA: Department of Computer Science, Stanford University.

Lindén, K., & Carlson, L. (2010). Finn WordNet-WordNet på finska via översättning.

LexicoNordica Volume 17 (pp. 119-140).

Lovins, J. B. (1968). Development of a stemming algorithm. Mechanical Translation

and Computational Linguistics Volume 11, Numbers 1 and 2. Cambridge, MA: MIT

Information Processing Group, Electronic Systems Laboratory.

Lyons, J. (1968). Introduction to Theoretical Linguistics. Cambridge, England: Cambridge

University Press.

Matthews, P. H. (1991). Morphology (Cambridge Textbooks in Linguistics). Cambridge,

England: Cambridge University Press.

Matthews, P. H. (Ed.). (2007). The concise Oxford dictionary of linguistics. Oxford, Eng-

land: Oxford University Press.

Mills, A. J., Durepos, G., & Wiebe, E. (Eds.). (2010). Encyclopedia of case study research

Volume 1. Thousand Oaks, CA: SAGE Publications, Inc.

Nivre, J. (2015). Towards a universal grammar for natural language processing. Com-

putational Linguistics and Intelligent Text Processing (pp. 3-16). Springer International

Publishing.

Partee, B. H., Meulen, A. T., & Wall, R. E. (2012). Mathematical methods in linguistics.

Berlin, Germany: Springer Science & Business Media.

Pereira, F. C. N., & Riley, M. (1997). Speech recognition by composition of weighted

finite automata. In Finite-state language processing (pp. 431-453). Cambridge, MA:

MIT Press.

Pirinen, T., & Lindén, K. (2010). Creating and weighting hunspell dictionaries as finite-

state automata. Investigationes Linguisticae Volume 21, (pp. 1-16). Poland: Poznań.

Pirinen, T. (2014).’ Weighted Finite-State Methods for Spell-Checking and Correction. (Doc-

toral dissertation). University of Helsinki, Finland.

Pirinen, T. A. (2015). Omorfi – Free and open source morphological lexical database

for Finnish. Proceedings of NoDaLiDa 2015: 20th Nordic Conference on Computational

29

Linguistics. Linköping, Sweden: Linköping University Electronic Press.

Pitkänen, H. (2006). Hunspell-fi in Kesäkoodi 2006: Final report. Retrieved from http:

//www.puimula.org/htp/archive/kesakoodi2006-report.pdf.

Pruulmann-Vengerfeldt, J. (2010). Praktiline lõplikel automaatidel põhinev eesti keele

morfoloogiakirjeldus. (Master’s thesis). Tartu, Estonia: University of Tartu.

Raymond, E. S. (Ed.). (1991). AI-complete. In The Jargon File, Version 2.8.2. Retrieved

from http://catb.org/esr/jargon/oldversions/jarg282.txt.

Roche, E. (1997). Parsing With Finite-State Transducers. In Finite-state language process-

ing (pp. 241-281). Cambridge, MA: MIT Press.

Roche, E., & Schabes, Y. (1997). Introduction. In Finite-state language processing (pp. 1-

66). Cambridge, MA: MIT Press.

Schramm, W. (1971). Notes on Case Studies of Instructional Media Projects. Stanford, CA:

California Institute for Communication Research.

Silfverberg, M., Ruokolainen, T., Lindén, K., & Kurimo, M. (2015). FinnPos: an open-

source morphological tagging and lemmatization toolkit for Finnish. Language Re-

sources and Evaluation. Advance online publication. doi:10.1007/s10579-015-9326-3

Trón, V., Kornai, A., Gyepesi, G., Németh, L., Halácsy, P., & Varga, D. (2005). Hun-

morph: open source word analysis. Proceedings of the ACL-05 Workshop on Software

(pp. 77-85). Stroudsburg, PA: Association for Computational Linguistics.

Trón, V., Halácsy, P., Rebrus, P., Rung, A., Vajda, P., & Simon, E. (2006). Morphdb.hu:

Hungarian lexical database and morphological grammar. Proceedings of 5th Inter-

national Conference on Language Resources and Evaluation (pp. 1670-1673). Genoa,

Italy.

Voutilainen, A., Purtonen T. & Muhonen, K. (2012). FinnTreeBank2: Man-

ual. Retrieved from http://www.ling.helsinki.fi/kieliteknologia/tutkimus/

treebank/sources/FinnTreeBankManual.pdf.

Witt, A., Heid, U., Sasaki, F., & Sérasset, G. (2009). Multilingual language resources

and interoperability. Language Resources and Evaluation Volume 43, Issue 1 (pp. 1-14).

30

http://www.puimula.org/htp/archive/kesakoodi2006-report.pdf
http://www.puimula.org/htp/archive/kesakoodi2006-report.pdf
http://catb.org/esr/jargon/oldversions/jarg282.txt
http://dx.doi.org/10.1007/s10579-015-9326-3
http://www.ling.helsinki.fi/kieliteknologia/tutkimus/treebank/sources/FinnTreeBankManual.pdf
http://www.ling.helsinki.fi/kieliteknologia/tutkimus/treebank/sources/FinnTreeBankManual.pdf

	1 Introduction
	2 Linguistic background
	3 Finite-state transducers
	4 Languages and tools for transducers
	5 Case study: OMorFi
	5.1 Lexical data processing pipeline
	5.2 Analysis of design choices

	6 Conclusions
	6.1 Related work
	6.2 Potential future work

	Bibliography

