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Abstract

Eye movement data are outputs of an analyser tracking the gaze when a person
is inspecting a scene. These kind of data are of increasing importance in scien-
tific research as well as in applications, e.g. in marketing and human-computer
interface design. Thus the new areas of application call for advanced analysis
tools. Our research objective is to suggest statistical modelling of eye move-
ment sequences using sequential spatial point processes, which decomposes the
variation in data into structural components having interpretation.

We consider three elements of an eye movement sequence: heterogeneity of the
target space, contextuality between subsequent movements, and time-dependent
behaviour describing self-interaction. We propose two model constructions.
One is based on the history-dependent rejection of transitions in a random
walk and the other makes use of a history-adapted kernel function penalized by
user-defined geometric model characteristics. Both models are inhomogeneous
self-interacting random walks. Statistical inference based on the likelihood is
suggested, some experiments are carried out, and the models are used for deter-
mining the uncertainty of important data summaries for eye movement data.
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1. Introduction

Eye movements reflect brain functions, revealing information on ongoing cogni-
tive processes, and can be recorded by eye trackers in a cost-efficient way. Eye
movement data are spatio-temporal and consist of time sequences of fixations,
points in the target space where the gaze stays for a while, and of saccades,
which are rapid jumps between fixations. An example of eye movement data
can be seen in Figure 1.

Figure 1: First 100 fixation points of one subject on a painting called Black Bow (1912) by
Wassily Kadinsky. The arrows show the movement of the gaze during the first three seconds.

Fixation locations in eye movement data are point patterns which can be mod-
elled by means of spatial point processes. Point process statistics is a well-
developed branch of spatial statistics increasingly used in applied sciences, see
e.g. Illian, Penttinen, Stoyan, and Stoyan (2008) and Diggle (2013). Exten-
sive software spatstat (Baddeley, Rubak, and Turner, 2015) has made efficient
point pattern data analysis attractive. Point process statistics has been applied
for eye movement data by Barthelmé, Trukenbrod, Engbert, and Wichmann
(2013), who use the spatial inhomogeneous Poisson point process to predict the
fixation locations. The approach by Barthelmé et al. (2013) aggregates the eye
movement data over time but omitting all dynamics. Engbert, Trukenbrod,
Barthelmé, and Wichmann (2015) present a dynamical model that takes spatial
interaction into account, but their model validation is based on characteristics
of spatial point processes. A step towards a dynamic model is to add the tem-
poral order of fixations, which leads us to the class of (finite) sequential spatial
point processes, see van Lieshout (2006a,b, 2009). If, in addition to the order,
the time instances of occurrences of the points are recorded and included in the
model, then the underlying process is a spatio-temporal point process, see e.g.
Diggle, Kaimi, and Abellana (2010), and an application to eye movement data
by Ylitalo, Särkkä, and Guttorp (in press).
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We consider eye movement data to be a realisation of a sequential spatial point
process which allows us to extend the approach by Barthelmé et al. (2013) for
detecting new important dynamic structures of data. The advantage of this
approach is that the likelihood is tractable and the simulation of realisations is
straightforward. In addition, sequential point process modelling is a construc-
tion step for spatio-temporal point processes.

For eye movement data, three structural components of sequential spatial point
processes are central. Spatial heterogeneity of fixation pattern means that some
parts of the scene get the observer’s attention more than others. This strong
component is present in almost all eye movement data. It is usually modelled
through a saliency map, which is calculated from the features of the scene (see
e.g. Itti and Koch, 2000; Kümmerer, Wallis, and Bethge, 2014), such that the
most salient areas are expected to obtain more fixations. Dynamic contextual-
ity is a saccadic property which describes the (metric) length of a jump from
the current fixation to the next one: for example, nearby sites may be more
favourable than the more distant ones (see e.g. Tatler, Baddeley, and Vincent,
2006). Both heterogeneity and contextuality are well-established in eye move-
ment studies (see e.g. Barthelmé et al., 2013; Engbert et al., 2015; Kümmerer
et al., 2014).

However, our empirical evidence shows that these two components are not suffi-
cient, since e.g. they cannot model the learning effect. Similar findings are made
by Engbert et al. (2015) and Kümmerer et al. (2014). Thus we are looking for
simple mechanisms which could utilize the long-term dependence indicating the
learning process during an experiment. One such possibility is self-interaction,
which modifies the individual moves (saccades) by means of the history of the
eye movement sequence. As an illustration, the observer prefers to inspect the
whole scene at the beginning of the experiment and gradually focuses on a few
details (see e.g. Locher, Gray, and Nodine, 1996). Here, we offer a tool for
studying the self-interaction effect in eye movement sequences. We suggest new
models for eye movement data to deduce the effect of structural components and
to evaluate statistical variation in problem-specific functional summary statis-
tics. The suggested models have potential use also beyond the eye movement
research, e.g. in ecology for modelling animal movements, and in user-interface
studies.

Our idea is that the history of the sequence changes the dynamics during the
evolution of the eye movement sequence. We present two general principles for
model construction, both of which are generalisations of the random walk in
heterogeneous media. The first principle is the history-dependent thinning of
transitions, which assigns smaller weights for suggested transitions being at odds
with the chosen functional summary characteristic conditional on all previous
fixations. This type of penalization is similar to the area-interaction process
by Baddeley and van Lieshout (1995) in point process statistics. The second
principle resembles the ARCH (autoregressive conditional heterogeneity) model,

3
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commonly applied in econometric time series analysis (Engle, 1982). Based
on these principles, we present the construction of the two processes, how to
simulate them, and how to estimate the parameters by the maximum likelihood
method. Several summary statistics, assisted by Monte Carlo simulation, are
applied in model evaluation.

The new models are mainly of “statistical” nature, which means that they do
not mimic the neural process, but they can capture essential variation in eye
movement data. We will not employ all the generality the suggested new models
are able to achieve. Instead, the objective is to present the new ideas in terms of
rather simple models which still are useful in eye movement data analysis, espe-
cially in the study of the learning mechanism during an experiment, and in the
derivation of statistical variation of important data summaries. Furthermore,
this new approach will bring eye movement data analysis closer to statistical
inference. The motivation is the complexity of eye movement data, which are
inhomogeneous in space and time, and the use of asymptotic inference, for ex-
ample, is difficult to justify.

The paper is organized in the following way. In Section 2, two new sequential
spatial point process models are suggested. Simulation algorithms are given
in Section 3 with simulation experiments demonstrating the models. In Sec-
tion 4, eye movement data in the field of art study is modelled by using the
new approach to deduce self-interaction. Section 5 contains some concluding
remarks.

2. Finite sequential spatial point process models

Suppose −→x n = (x1, . . . , xn) is a sequence of time-ordered points in a bounded
window W ⊂ R2. The corresponding unordered point set {x1, . . . , xn} is de-
noted by {−→x n}. If (Wn,Wn) stands for the n-dimensional space of ordered
points provided with the Borel σ-algebra in Wn, the density function f w.r.t.
the Lebesgue measure is defined sequentially as follows: f1(x1) stands for the
probability density of the first point, and the conditional density of a further
point x given −→x k = (x1, . . . , xk), k = 1, . . . , (n− 1), is denoted by fk+1(x|−→x k),
a transition probability density for the transition −→x k → (−→x k, x), and the joint
density of −→x n is

f(−→x n) = f1(x1)
n−1∏

k=1

fk+1(xk+1|−→x k) . (1)

The density f1(x) can be assumed to follow a function (e.g. the saliency map)
exposing the focal areas of the target, or modelling can be conditional on the
first observation x1. The transition densities fk+1(x|−→x k), k = 1, . . . , n − 1,
reflect saccadic features of the eye movement sequence.

4
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A simple model for the transition would be a random walk in heterogeneous
media, which is defined as

fk+1(x|−→x k) ∝ α(x)K(xk, x), (2)

where α(x) is non-negative and bounded in W , and K(xk, x) is a Markovian
kernel, i. e.,

K(xk, x) ≥ 0 for all xk, x ∈W , and∫

W

K(xk, u) du = 1 for all xk ∈W ,

k = 1, . . . , n − 1. In this simple model, α(x) describes heterogeneity of the
scene. It can be a known saliency map, an empirical saliency map estimated as
the intensity of repeated fixation patterns (see the discussion in Diggle, Gómez-
Rubio, Brown, Chetwynd, and Gooding, 2007), or a model based prediction of
the saliency map, for example,

α(x) = h




p∑

j=1

bjzj(x)


 ,

where the variables zj(x) are the values of p feature vectors at x extracted from
the scene using machine learning techniques, bj :s are regression coefficients, and
h is an adequate non-negative function (see e.g. Barthelmé et al., 2013). The
Markovian kernel K(xk, x) describes the contextuality of subsequent fixations
related to jump lengths. An example is the truncated Gaussian kernel

K(xk, x) ∝ e− 1
2σ2 ||xk−x||2 , xk, x ∈W, (3)

where ||xk − x|| is the Euclidean distance between the points xk and x. For
the rectangular window W = [a, b]× [c, d] the normalization term for (3) can be
written as

2πσ2(Φ(b)− Φ(a))(Φ(d)− Φ(c)),

where Φ is the c.d.f. of the standard normal distribution. This kernel penalizes
large jumps and keeps the process inside the specified window W . Thus the
model (2) captures heterogeneity in the target and models the transitions (or
saccades) in a Markovian way.

The transition mechanism (2) may be insufficient if data contain learning. For
instance, a two-stage model describing the nature of an aesthetic experience
(see e.g. Locher, 2006; Locher et al., 1996, 2007) suggests that a picture is first
inspected globally and, after having obtained a gist of the scene, the viewer
starts to concentrate on some details. Also, the visual information gathered
from the scene affects our cognitive processes and attention, which again affect
the movement of the gaze. By keeping these complexities of human attention
in mind, we develop two models which try to catch the sequential adaptation in
the eye movement sequence in a tractable manner using geometric reasoning.

5
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2.1. Self-interaction due to history-dependent rejection model

First, we define a history-dependent rejection model (later: rejection model),
in which the self-interaction mechanism is created by a reweighting probability
function. This model penalizes the location of the next point in terms of coverage
or recurrence composed by the previous points: the density for the transition−→x k → (−→x k, x) is assumed to be

fk+1(x|−→x k) ∝ α(x)K(xk, x)π(x, S(−→x k, x)), (4)

where π(x, S(−→x k, x)) is the reweighting probability of x when proposed accord-
ing to the density proportional to α(x)K(xk, x). Here, S(−→x k, x) = S(x1, . . . , xk, x)
is a measure of coverage or recurrence of the ordered sequence (x1, . . . , xk, x).

Reasonable choices of the reweighting probability π in the eye movement context
are given below.

Coverage-based reweighting

Two measures of the coverage of a point set are the area of its convex hull and
the area of the associated ball union. From now on we assume that the scene
W is convex. The convex hull of a point set {−→x k}, denoted by Conv(−→x k), is
the minimal convex subset of W which contains all the points of {−→x k}. The
convex hull is unique and invariant under permutation of the points; hence it is
the same for ordered and unordered sets. Let us denote by SC(−→x k) the area of
Conv(−→x k) and call it convex hull coverage.

The ball union measure of a point set {−→x k} is defined as

Bcov(−→x k) =
k⋃

i=1

b(xi, r) ∩W,

where b(x, r) stands for the ball with radius r and centred at x. It is a “region-
alized” version of the point set, where the r close neighbourhood of a point is
taken into account, and which again is invariant under permutation. Its area
SB(−→x k) is called ball union coverage.

The rationale behind model (4) is that the kernel function generates random
jumps and the reweighting probability determines which of the proposed jumps
are accepted, depending on the current coverage of the sequence and on the new
suggestion. Consider the convex hull coverage first: if the new suggestion x is
not in Conv(−→x k), the odds ratio of acceptance w.r.t. a proposal y ∈ Conv(−→x k)
with ||x− xk|| = ||y − xk|| is SC(−→x k, x)/SC(−→x k).

A reasonable and simple choice of the geometric nature for the reweighting
probability would be

π(x, S(−→x k, x)) =
{

1 if x ∈W \ Conv(−→x k)
ρ if x ∈ Conv(−→x k) , (5)

6
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where ρ ∈ [0, 1] and k ≥ 1. If ρ = 1, we have the random walk model. When
ρ < 1, this choice encourages locations outside the convex hull of previous points
leading to faster coverage. When the convex hull of the points covers almost
the whole scene, the process behaves like a random walk. The density for the
transition −→x k → (−→x k, x) with the truncated Gaussian kernel is

fk+1(x|−→x k) ∝ α(x) e−
1

2σ2 ||xk−x||2 (1W\Conv(−→x k)(x) + ρ1Conv(−→x k)(x)), (6)

where k = 1, 2, . . . , n− 1, and 1(·) is the indicator function.

The convex hull coverage can be replaced by the ball union coverage. It is not as
sensitive to distant points as the convex hull coverage but reacts to the “holes”
in the point pattern. If Conv(−→x k) is replaced by Bcov(−→x k) in the reweighting
probability (6), the process favours locations away from the previous points and
hence reduces clustering if ρ is small. It should be noted that the ball union
coverage measure requires the radius of the ball.

Recurrence-based reweighting

As a measure of recurrence we propose the number of earlier visits in a ball
b(x, r) around a site x, formally S̃R(−→x k, x) =

∑k
i=1 1b(xi,r)(x). However, instead

of using all the previous points, at step k the number of earlier visits is calculated
from the point set {−→x k−1} omitting the most recent point xk. This delayed
recurrence measure

SR(−→x k, x) =
k−1∑

i=1

1b(xi,r)(x) (7)

is less confounded with the Markovian kernel K(xk, x) than S̃R(−→x k, x) and is
therefore used in this paper from now on. Note also that the recurrence measure
is not invariant under random permutation.

A simple model for the reweighting probability is

π(x, SR(−→x k, x)) =
{
θ if SR(−→x k, x) ≥ 1
1− θ if SR(−→x k, x) = 0 , (8)

where θ ∈ [0, 1] and k ≥ 2. The odds ratio for accepting a location close to the
points of {−→x k−1} against accepting a location from an empty area is θ/(1− θ).
If θ is close to 1, the process favours clustering, and if θ is small, the process
avoids previously visited local areas around the points {−→x k−1}. If θ = 0.5, the
process is a random walk. The density for the transition −→x k → (−→x k, x) with
the truncated Gaussian kernel is

fk+1(x|−→x k) ∝ α(x) e−
1

2σ2 ||xk−x||2 ((1− θ)1{SR(−→x k,x)=0}(x) + θ 1{SR(−→x k,x)≥1}(x)),
(9)

7
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where k = 2, 3, . . . , n− 1, (and f2(x|−→x 1) = f1(x)).

In particular, the model defined through (4) is among the simplest ones which
satisfy our requirements of self-interacting nature. Note that we need the nor-
malized transition kernel in the likelihood, because the scaling factor contains
the parameters of the model. The normalizing integral can be computed using
numerical integration. Its evaluation can be avoided in the simulation of the
process, however.

2.2. Self-interaction due to history-adapted model

The motivation behind the history-adapted model arises from the saliency map
idea and the two-stage model by Locher and colleagues (Locher, 2006; Locher
et al., 1996, 2007). Heterogeneity of the target plays the main role at an early
stage of the process evolution: the areas with high saliency (or intensity) get
more fixations than the low-saliency areas. However, when the target has been
inspected well enough, the jump lengths get shorter as if the process were mim-
icking a local inspection process.

This model construction is intended for coverage type self-interaction. We apply
directly an adaptive Markovian kernel Kφk(xk, x), where φk is a function of the
points {−→x k} and determines the width of the kernel. Hence, the kernel changes
in time and affects the jump lengths. The transition probability density can be
written as

fk+1(x|−→x k) =
α(x)Kφk(xk, x)∫

W
α(u)Kφk(xk, u)du

(10)

φk = φk(−→x k) ∝ H(S(−→x k)) (11)

where H(s) is decreasing in s. Here α(x) controls the heterogeneity of the target
as in the rejection model, whilst H(s) models the progress of the coverage. This
model resembles the autoregressive conditional heterogeneity model (ARCH)
commonly applied in time series analysis for modelling volatility (Engle, 1982).
While ARCH models use the information from q lagged values, our model is
allowed to use the entire history. Again, this model is a self-interacting random
walk.

In what follows, we make use of the specific model

Kφk(xk, x) ∝ e
− 1

2φk(−→x k) ||xk−x||
2

, (12)

φk(−→x k) = τ e−κS(−→x k)/|W | , (13)

τ, κ ≥ 0 and xk, x ∈ W , where S(−→x k) is the coverage of {−→x k}. If κ = 0,
the process is a random walk since the kernel does not change in time. This
model contains two parameters, τ describing the initial kernel width and κ
modelling the decay as a function of coverage. The transition is determined
by the conditional density (10). Both convex hull and ball union coverages are
suitable for this construction.

8
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2.3. Model fitting and statistical inference

2.3.1. Model fitting

We assume that an ordered sequence −→x n = (x1, . . . , xn) is observed in W . In
what follows we suggest parameter estimation for the two models defined by
(6) (rejection model), and by (12) and (13) (history-adapted model) assuming
that the non-negative heterogeneity component α(x) is fixed. In practice, the
estimation of α(x) is problematic, as we have pointed out in Discussion.

History-dependent rejection model

The log-likelihood for the general rejection model (4) is now a function of the
model parameters. For the two parameter model defined by (6) the expression

l(σ2, ρ) =
n−1∑

k=1

log(α(xk+1))− 1
2σ2

n−1∑

k=1

||xk − xk+1||2 (14)

+ log(ρ)
n−1∑

k=1

1Conv(−→x k)(xk+1)

−
n−1∑

k=1

log
∫

W

α(u) e−
1

2σ2 ||xk−u||2 (1W\Conv(−→x k)(u) + ρ 1Conv(−→x k)(u)) du

is obtained. Here we use the convex hull coverage in the reweighting probability,
but also the ball union coverage could be used. The log-likelihood function
for the rejection model with recurrence (9) is shown in Section 4.1, formula
(16). The logarithm of the normalizing factor (the last line of (14)) can be
computed by numerical integration. The optimization of l(σ2, ρ) w.r.t. σ2 can
be conducted using numerical optimization, or alternatively, one can solve the
exponential family likelihood equation

n−1∑

k=1

Eσ2,ρ

(
||xk − U ||2 |−→x k

)
=
n−1∑

k=1

||xk − xk+1||2 ,

where the expectation is over the conditional distribution of a new random point
U from the distribution fk+1(x|−→x k). This can be computed using Monte Carlo
maximum likelihood (MCMCML, see Geyer (1991)).

Maximizing the log-likelihood (14) (or (16)) is costly due to the normalizing
integral. We apply the coordinate ascent algorithm which would be simple
choice also for more complex model.

History-adapted model

9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The kernel width φk of the kth transition of the random walk is a function of
the model parameters and is adapted to the history of the sequence through
the coverage measure S(−→x k). The log-likelihood for the general model given by
(10) and (11) is

n−1∑

k=1


log(α(xk+1)) + logKφk(xk, xk+1)− log

∫

W

α(u)Kφk(xk, u) du


 .

In the special case of (12) and (13) the log-likelihood is

l(τ, κ) =
n−1∑

k=2

log(α(xk+1))−
n−1∑

k=2

1
2φ(τ, κ)

||xk − xk+1||2 (15)

−
n−1∑

k=2

log
∫

W

α(u)e−
1

2φ(τ,κ) ||xk−u||
2

du

with φk(κ, τ) = τ e−κS(−→x k)/|W |, k = 1, . . . , n− 1.

The log-likelihood can again be maximized directly, or alternatively, the likeli-
hood equations can be derived and solved: the estimation equations are

n−1∑

k=2

Eτ,κ
(
||xk − U ||2 |−→x k

)
/φk =

n−1∑

k=2

||xk − xk+1||2/φk

n−1∑

k=2

Eτ,κ
(
S(−→x k) ||xk − U ||2 |−→x k

)
/φk =

n−1∑

k=2

S(−→x k) ||xk − xk+1||2/φk ,

where the expectations are over the conditional distribution fk+1(x|−→x k) with
parameters τ and κ. The estimation equations are in accordance with the
maximum likelihood equations for the exponential family of distributions.

2.3.2. Model evaluation

Model evaluation of spatial dynamic models is typically based on the selected
functional summary statistics which measure different features of the model,
such as coverage, recurrence and jump length as a function of time (or order).
In addition, a saliency map is plotted together with the fixation locations. The
random variation of the summary statistics is estimated from simulations.

Model evaluation is done by estimating several summary statistics from data
and plotting the estimates together with the model based simulated pointwise
envelopes being a parametric bootstrap method (see e.g. Efron and Tibshirani,
1994, p. 53). These envelopes indicate statistical variation in the summary
statistic under the parametric model assumption. It should, however, be noted

10
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that when using the pointwise envelopes as statistical tests, the multiple testing
problem is present and the interpretation of the envelopes must be done with
care, see the discussions in Grabarnik, Myllymäki, and Stoyan (2011) and in
Baddeley, Diggle, Hardegen, Lawrence, Milne, and Nair (2014).

Model evaluation is illustrated in the examples in Sections 3 and 4.

3. Simulation experiments

Realisations from the suggested models can be simulated sequentially using con-
ditional distributions (4) and (10)-(11). We recommend to use the scaled het-
erogeneity α(x)/maxu∈W α(u) as the distribution for the first location, or alter-
natively, to condition to the first location x1 of data. Assume that (x1, . . . , xk)
are simulated. A simple algorithm for adding a point x to −→x k = (x1, . . . , xk), or
equivalently, simulating from the distribution having density fk+1(x|−→x k), is to
apply the accept-reject algorithm, see e.g. Ripley (1987, p. 61), which provides
an upper bound for the conditional density. For the two models, the algorithm
is as follows:

• History-dependent rejection model: A point x following the conditional
density α(x)K(xk, x) is proposed using the accept-reject method and the
proposal is accepted with the reweighting probability π(x, S(−→x k, x)) .

• History-adapted model: The kernel width φk = H(S(−→x k)) is computed
and proposals from the unnormalized transition density α(x)Kφk(xk, x)
are drawn using the accept-reject method.

In the following simulation experiment we generate realisations of the new mod-
els with three parameter values in order to demonstrate the time evolution of
the new processes and to see how data summaries capture their properties. We
illustrate to what extent and how fast these processes can cover the target area,
as well as whether the process starts to cluster in space. Each realisation con-
sists of 100 points located in the unit square window. In this illustration, for
the sake of simplicity, we assume that the target space is homogeneous, setting
α(x) ≡ 1, and hence the first point is drawn uniformly and the same starting
point is used for all realisations. The first sampled point is x1 = (0.22, 0.41).

3.1. History-dependent rejection model

First, we demonstrate the history-dependent rejection model with self-interaction
defined through the convex hull coverage, where the points outside the convex
hull of the current point set are favoured according to the reweighting probability
(5). Second, we demonstrate the rejection model with recurrence self-interaction
by using the reweighting probability (8), which takes the number of generated
points near the suggested point into account.

11
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3.1.1. Coverage self-interaction

The purpose of this example is to illustrate self-interaction caused by the pa-
rameter ρ in the history-dependent rejection model with convex hull coverage
(6). We fix the parameter σ2 = 0.3 of the truncated Gaussian kernel (3) and
vary the parameter ρ:

• Model a, ρ = 1 (random walk without self-interaction).

• Model b, ρ = 0.1 (fast coverage), which accepts points inside the convex
hull of previous points with low probability.

• Model c, ρ = 0.5 (mild coverage), which accepts points inside the convex
hull of previous points with mild probability.

We simulate 19 realisations of the random walk model a, since it here represents
a reference model, and five realisations of Model b and Model c. One of the
simulated realisations of each model can be seen in Figure 2. The polygons in
the figure illustrate the convex hull coverage related to the first 10 points of the
process. One cannot detect much difference between the random walk model a
and mild coverage model c, but the fast expansion of Model b can perhaps be
seen: there are early (dark) points near the edges.
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Figure 2: Simulated patterns of the three history-dependent models with coverage self-
interaction. The colour of the points denotes their order (from dark to light) and the first
fixation is marked with a cross. The polygon indicates the convex hull of the first 10 points.

However, point patterns only tell us about the spatial nature of the point pro-
cess. Since we are mainly interested in the sequential (time order) aspect, we use
four different functional summary statistics: ball union coverage (with radius
0.1), convex hull coverage, scanpath length and cumulative recurrence. (The
two latter ones are explained below). The results related to these summaries
can be found in Figure 3. The ball union coverage does not distinguish be-
tween the three models, but the convex hull coverage reveals that the coverage
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of Model b increases faster than for the other two models. Accordingly, Model
b makes longer jumps on average than Model a or c, as can be seen from the
scanpath length which measures the length of the sample path cumulatively.

The recurrence function used in the reweighting probability (8) calculates the
numbers of points near the current point excluding the previous point, and the
cumulative version sums all these numbers together. Now we see that Model b
avoids the locations nearby other points when compared to the random walk.
This may be due to the fact that the fast coverage process b penalizes slow
coverage and hence increases the drift of points near the edges.
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Figure 3: Ball union coverage with radius 0.1 (top left), convex hull coverage (top right),
scanpath length (bottom left) and cumulative recurrence with radius 0.1 (bottom right) for
the two models (five realisations of each): The fast coverage model b is marked with black
solid lines and the mild coverage model c is marked with red dashed lines. The grey area
represents the envelopes estimated from 19 realisations of the random walk model a used as
the reference model.

3.1.2. Recurrence self-interaction

Here we illustrate self-interaction in the history-dependent rejection model with
recurrence (9). We again fix the parameter σ2 of the truncated Gaussian kernel
(3) to 0.3 and vary the self-interaction parameter θ:

• Model d, θ = 0.5 (random walk without self-interaction).

• Model e, θ = 0.1 (low recurrence), which favours points in the non-visited
areas rather than the points in the areas nearby the previous points.
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• Model f, θ = 0.9 (high recurrence), which accepts points nearby the pre-
vious points with high probability.

We again simulate 19 realisations of the random walk model d as well as five
realisations of Model e and Model f. In Figure 4 we can see that, compared
with the random walk model d, the realisation of the low recurrence model e
indicates a tendency towards higher regularity, and the realisation of the high
recurrence model f is clearly more clustered. Note also that Model e seems to
cover the whole area quite fast compared with the other two models.
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Figure 4: Simulated patterns of the three history-dependent models with recurrence self-
interaction. The colour of the points denotes their order (from dark to light) and the first
fixation is marked with a cross. The polygon indicates the convex hull of the first 10 points.

The results of the functional summary statistics are depicted in Figure 5. The
ball union coverage describes clustering of the points, hence for the high re-
currence model e the ball union coverage curves locate lower than for the low
recurrence model f, which covers the whole window with 100 points. The con-
vex hull coverage curves reveal an effect similar to the ball union coverage: the
low recurrence model e almost fills the whole unit square, whereas the high
recurrence model f only fills around 60 % of the area.

There is not much difference between the processes when comparing the scan-
path lengths for the first 40 points, but after that the high recurrence model
f makes shorter jumps on average compared with the other two models. How-
ever, the cumulative recurrence function clearly reveals that the two models
differ from the random walk model: the low recurrence model e avoids areas
close to the previous included points, while the high recurrence model f favours
areas near the previous included points.

3.2. History-adapted model with convex hull coverage
self-interaction

In this example we fix the kernel width parameter τ = 0.3 and pay attention
to the effect of the parameter κ of the history-adapted model (12)-(13). The
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Figure 5: Ball union coverage with radius 0.1 (top left), convex hull coverage (top right),
scanpath length (bottom left) and cumulative recurrence with radius 0.1 (bottom right) for
the two models (five realisations of each): The low recurrence model e is marked with black
solid line and the high recurrence model f is marked with red dashed line. The grey area
represent the envelopes estimated from 19 realisations of the random walk model d.

parameter κ controls the speed of decay as a function of coverage. We again
define three history-adapted models:

• Model g, κ = 0 (random walk, the kernel does not change in time).

• Model h, κ = 2 (mild clustering), which means that the process is allowed
to take long jumps at the beginning, but eventually starts to cluster.

• Model i, κ = 4 (fast clustering), which starts to cluster rather quickly
when the coverage increases.

The kernel function (12) here uses the convex hull coverage, which means that
in (13) S(−→x k) is the area of the convex hull coverage generated by the points
(x1, . . . , xk). Now the history-adapted model works in such a way that at first
the kernel width parameter τ is dominating and the process can make long
jumps, but when the area of the convex hull of points approaches the size of the
window, the parameter κ starts to affect and produces clustering.

In Figures 6 and 7, it can be seen that the convex hull of the first 10 points is
of the same size for all models: the speed of coverage seems to be similar for all
processes at the beginning. The spatial structure of the mild clustering model
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h and the random walk model g are quite similar, but the points of the fast
clustering model i are clearly more clustered than the points of the other two
models, and there are only a few points in the upper half of the unit square.
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Figure 6: Simulated patterns of the three history-adapted models. The colour of the points
denotes their order (from dark to light) and the first fixation is marked with a cross. The
polygon indicates the convex hull of the first 10 points.

The functional summary statistics are plotted in Figure 7. The fast clustering
model i covers the area similarly to the other two models at the beginning, but
after about 50 points it starts to cluster, which can be seen as a decline of the
ball union coverage summaries. The convex hull coverage does not reveal much
difference between the models, and all the models are able to cover at least 60
% of the window. This is due to the wide kernel (τ = 0.3) which allows the
processes to make long jumps at the beginning.

The summary statistic that shows the clearest difference between the three
models is the scanpath length. While the jumps in the random walk model have
time invariant transitions, the clustering models h and i start to take shorter
jumps at some point, which is indicated by the decline in scanpath curves.
In addition, the cumulative recurrence function shows that the fast clustering
model i gathers points around the previous ones. To conclude, the effect of the
decay parameter κ seems to fasten the clustering as a function of coverage.

4. A case study: Black Bow by Wassily Kandinsky

We apply the developed modelling to experimental eye movement data related
to arts in order to study self-interaction. The participants of the art experiment
were inspecting six pictures of paintings and their eye movements were recorded.
The stimulus picture was shown on the screen with a 1024 × 768 resolution and
the eye movements were measured by the SMI iView XTMHi-Speed eye tracker
with temporal resolution of 500 Hz. The distance between a participant’s head
and the screen was about 85cm, and a forehead rest was used in order to prevent
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Figure 7: Ball union coverage with radius 0.1 (top left), convex hull coverage (top right),
scanpath length (bottom left) and cumulative recurrence with radius 0.1 (bottom right) for
the two models (five realisations of each): The mild clustering model h is marked with black
solid lines and the fast clustering model i is marked with red dashed lines. The grey area
represents the envelopes estimated from 19 realisations of the random walk model g used as
the reference model.

unintentional head movements. Each stimulus painting was shown for three
minutes. The participants were also asked to describe the moods of the painting
and their voice was recorded, but this information is not used here.

We will focus on one painting used in the experiment, called Black Bow (1912) by
Wassily Kadinsky shown in Figure 1 (source of the painting: Düchting (1991)).
We will fit four versions of the history-dependent model with recurrence self-
interaction to the eye movement data of one subject. The goodness-of-fit of the
model is checked using the four functional summary statistics mentioned earlier,
and the best fitting model is compared with the other subjects’ data in order
to conclude whether the same model fits well for all participants.

4.1. Fitting the history-dependent rejection model with
recurrence self-interaction

We choose one subject of which eye movements are analysed and modelled here.
Because of the long inspection period (three minutes), we decided to use only
100 first fixations of the sequence corresponding to a 35 second time-interval,
as shown in Figure 1. According to the two-stage model (see e.g. Locher et al.,
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1996) the overall impression of the scene is obtained during the first few fixations,
and then the focus turns to the presumably interesting features. In addition,
the gaze has a tendency to return to the interesting parts of the scene. Our aim
is to find out whether we can find this sort of behaviour, i.e. if the process is of
self-interacting type and if we can catch it with our rejection model.

We first investigate the variation of the four functional summary statistics re-
lated to this particular data from Kadinsky’s painting. The ball union coverage
with radius of 35 pixels, convex hull coverage, scanpath length and cumulative
recurrence (radius 50) of the 20 subjects of the experiment are presented in
Figure 13, as a dark solid curve for the subject under study, and as grey curves
for the other participants. It can be noticed that the first 100 fixations do not
cover the whole painting (the ball union covers around 30 % and the convex hull
around 40 % of the target). It is typical of the eye movements that the edges of
the painting are avoided and that is why the coverage hardly ever reaches the
whole scene.

Next, we estimate the heterogeneity term α(x) for the target painting. In this
case, we utilize the empirical saliency map estimated as the intensity of fixation
patterns of all the 20 subjects excluding the one under study (a total of 9366
fixations is used for the intensity estimation). Problems associated with the
estimation of α(x) are considered in Discussion. For technical reasons α(x)
is scaled to have values in [0, 1]. The scaled saliency map together with the
fixations of the subject under study can be seen in Figure 8. This particular
subject paid most attention to the areas with high intensity, but the gaze stayed
in some low intensity areas also.

  Empirical saliency map
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Figure 8: Empirical saliency map estimated from the fixations of all subjects excluding the
one under study. The points indicate the first 100 fixation points of the particular subject
under study. The first fixation is marked with a cross and the second with a star.

In what follows, we fit four different rejection models consisting of three com-
ponents: heterogeneity (H), contextuality (C) and self-interaction (S). The
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self-interaction is assumed to be caused by the delayed recurrence function
SR(−→x k, x), k = 2, . . . , n − 1 defined in (7), where the radius r = 50 pixels
is used. Therefore, we condition by the first two fixations, x1 and x2. All four
models are submodels of (9), see Table 1.

Model Components Parameter values
1 H θ = 1

2 , σ2 large*
2 H, C θ = 1

2 , σ2 > 0
3 H, S 0 ≤ θ ≤ 1, σ2 large*
4 H, C, S 0 ≤ θ ≤ 1, σ2 > 0

Table 1: Components of the four rejection models. (*The value of σ2 should be chosen to be
large enough such that the kernel is flat in the specified window.)

Model 1 includes heterogeneity and is a binomial process in a heterogeneous
environment. When the Markovian kernel function is added (Model 2) the
process is a random walk with Markovian property. Model 3 is a self-interacting
process in a heterogeneous media without the contextuality effect and Model 4
contains both the Markov kernel and the self-interaction term.

The log-likelihood function for Model 4 is now

l(σ2, θ) =
n−1∑

k=2

log(α(xk+1))− 1
2σ2

n−1∑

k=2

||xk − xk+1||2 (16)

+ log(1− θ)
n−1∑

k=2

1{SR(−→x k,xk+1)=0}(xk+1) + log(θ)
n−1∑

k=2

1{SR(−→x k,xk+1)≥1}(xk+1)

−
n−1∑

k=2

log
∫

W

α(u) e−
1

2σ2 ||xk−u||2 ((1− θ)1{SR(−→x k,u)=0} + θ 1{SR(−→x k,u)≥1}) du.

The likelihood for Model 1 is just the first term on the right hand side of equa-
tion (16). For Model 2, the likelihood is obtained choosing θ = 1

2 in (16) and
for Model 3 choosing σ2 to be large (i.e. large enough such that the kernel is flat
in the specified window). The parameters are estimated using the coordinate
ascent algorithm. We used numerical integration for computing the normaliza-
tion term of the log-likelihood (16), last row, and a grid of (60, 80, . . . , 400) and
(0.05, 0.10, . . . , 0.95) for maximizing the likelihood.

Model 1 includes only the empirical saliency map and we do not have to estimate
any parameters. For Model 2 we get σ̂ = 180, and for Model 3 θ̂ = 0.75. The
parameter estimates for Model 4 are σ̂ = 180, θ̂ = 0.70. Note that for a random
walk model we should have θ = 0.50; hence there are recurrence features involved
in this data.
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4.1.1. Model comparisons

Assessing the goodness-of-fit of the models is here done by estimating the four
summary statistics mentioned earlier from the data and from 99 simulated real-
isations of the fitted models. When simulating the model, we condition on the
observed values of the first two fixations in order reduce variation right at the
beginning of the process. One simulated realisation of each model can be seen
in Figure 9, and the summary statistics estimated from the data with pointwise
envelopes estimated from the simulations in Figures 10 – 13. Note that the ball
union and convex hull coverages are here presented with respect to the size of
the window, hence they obtained values in [0, 1].
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Figure 9: Simulated realisations of the four models fitted to the eye movement data of the par-
ticular subject under study, overlaid with the empirical saliency map based on data from the
other subjects. The first two points are fixed and marked with a cross and a star, respectively.

For Model 1 all summary statistics show poor fit (Figure 10). Compared with
the data this model covers the target area too fast, takes too long jumps accord-
ing to the scanpath length, and goes to areas with too few points according to
the cumulative recurrence function. As a conclusion, the heterogeneity compo-
nent alone does not describe the data set well enough even though the spatial
heterogeneity is followed rather well (see Figure 9 upper left).

Model 2 seems to perform slightly better than Model 1. The summaries esti-
mated from the data set stay inside the simulated pointwise envelopes, except
the ball union coverage and cumulative recurrence function after the first 70
points (Figure 11). These findings indicate that data begin to cluster at the end
of the inspection period, but the model does not carry that effect.
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Figure 10: Ball union coverage with radius 35 (top left), convex hull coverage (top right),
scanpath length (bottom left) and cumulative recurrence with radius 50 (bottom right) for
the subject under study (solid line). Dashed lines represent pointwise envelopes estimated
from 99 simulations of Model 1.

0 20 40 60 80 100

0
.0

0
.1

0
.2

0
.3

0
.4

index

b
a

ll 
u

n
io

n
 c

o
v
e

ra
g

e

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

index

c
o

n
v
e
x
 h

u
ll 

c
o
v
e

ra
g

e

0 20 40 60 80 100

0
1

0
0

0
0

2
5

0
0

0

index

s
c
a

n
p

a
th

 l
e

n
g

th

0 20 40 60 80 100

0
5

0
1

5
0

2
5

0
3

5
0

index

c
u

m
u

la
ti
v
e

 r
e

c
u

rr
e

n
c
e

Figure 11: Ball union coverage with radius 35 (top left), convex hull coverage (top right),
scanpath length (bottom left) and cumulative recurrence with radius 50 (bottom right) for
the subject under study (solid line). Dashed lines represent pointwise envelopes estimated
from 99 simulations of Model 2.

Model 3 includes heterogeneity and self-interaction, but not contextuality, which
is related to the length of the jumps the process makes. As a result, this model
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seems to jump too much compared with data, since the estimated scanpath
length summary is at odds with the simulated pointwise envelopes (Figure 12).
The marginal spatial structure looks slightly more clustered than Model 1 and
Model 2 predict (Figure 9).
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Figure 12: Ball union coverage with radius 35 (top left), convex hull coverage (top right),
scanpath length (bottom left) and cumulative recurrence with radius 50 (bottom right) for
the subject under study (solid line). Dashed lines represent pointwise envelopes estimated
from 99 simulations of Model 3.

Model 4 includes all the three effects and seems to be in good agreement with
data: all four summary statistics estimated for the subject under study stay
within the simulated pointwise envelopes, see Figure 13. It seems that this
model is able to catch the nature of this eye movement process fairly well.
The estimated parameter value θ̂ = 0.75 indicates that the locations nearby
the previous points (excluding the most recent point) are favoured, which is a
cause of spatial clustering. We conclude that the random walk model does not
seem to be a good model for these data, but there is self-interaction due to the
recurrence involved: the eye movement process seems to favour areas close to
previous fixations.

4.1.2. Population level comparison

We have been able to describe the variation in the eye movement sequence of
an individual by using the rejection model with recurrence-based weighting. In
order to investigate the generality of the suggested models, we make comparisons
at the population level using all 20 subjects. As can be seen in Figure 13, the
envelopes of Model 4 seem to cover the convex hull and ball union coverage
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Figure 13: Ball union coverage with radius 35 (top left), convex hull coverage (top right),
scanpath length (bottom left) and cumulative recurrence with radius 50 (bottom right) for
the subject under study (black solid line) and for all other subjects (grey solid lines). Dashed
lines represent pointwise envelopes estimated from 99 simulations of Model 4.

curves of the subjects rather well. The scanpath length does not cover the curves
as well: there are subjects whose gaze makes longer jumps at the beginning of
the eye movement process than the fitted model predicts. Furthermore, the
envelopes of the cumulative recurrence function cover almost all the curves, but
there is one exceptional subject, whose fixations are strongly clustered after the
70th fixation.

In order to further describe the variation in the data set related to self-interaction,
we fitted Model 4 for the first 100 fixations of each subject separately. The es-
timates of the parameters σ and θ can be seen in Table 2. The 90 % bootstrap
confidence intervals for the parameter estimates are calculated from 20 reali-
sations of the fitted model. When the parameter σ is large, the model allows
jumps over the observation window, and then the self-interaction parameter θ
dominates. Large θ indicates strong spatial clustering. When σ is small, one
needs to take multiple jumps in order to cross the whole target window.

In Figure 13, we have plotted the estimated summary statistics for all subjects
together with the pointwise envelopes based on the model fitted to subject 5. For
subjects 13, 18 and 20, the scanpath length curves clearly exceed the envelopes
of the Model 4 fitted for subject 5. For each of them, the fitted value of the
parameter σ in Model 4 is over 280. This indicates that the process is allowed
to make long jumps resulting in longer scanpaths. However, for these subjects
the recurrence parameter θ varies from 0.70 to 0.80 and does not differ much
from the recurrence parameter of subject 5.

23



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Subject id σ̂ 90 % CI for σ̂ θ̂ 90 % CI for θ̂
1 240 200 280 0.75 0.70 0.85
2 180 160 200 0.55 0.45 0.65
3 160 140 180 0.65 0.60 0.75
4 160 140 180 0.80 0.75 0.85
5 180 140 200 0.70 0.65 0.85
6 180 140 200 0.85 0.80 0.95
7 160 140 180 0.70 0.65 0.80
8 240 200 280 0.70 0.65 0.80
9 160 140 180 0.65 0.60 0.75
10 160 140 180 0.65 0.60 0.75
11 200 180 220 0.70 0.65 0.80
12 260 240 320 0.85 0.80 0.90
13 280 220 340 0.70 0.60 0.85
14 220 200 240 0.70 0.60 0.75
15 220 180 260 0.55 0.45 0.60
16 200 160 220 0.70 0.65 0.80
17 160 140 180 0.70 0.60 0.80
18 340 220 420 0.80 0.75 0.90
19 140 120 160 0.70 0.65 0.80
20 280 200 340 0.80 0.70 0.85

Table 2: Estimated parameters σ̂ and θ̂ of Model 4 with their confidence intervals for all
subjects. The subject under closer study is number 5 (bold).

For subject 6, the cumulative recurrence curve is way above the envelopes, and
the estimated recurrence parameter is 0.85 indicating strong clustering. The
other subjects, whose cumulative recurrence curve is outside the envelopes, are
4, 12, 18 and 20, and for all of them the recurrence parameter is over 0.80. As a
conclusion, there is some variation related to the clustering effect of the points
between these subjects. However, for each subject the estimated recurrence
parameter differs from 0.5 meaning that the random walk is not a suitable
model.

5. Discussion

In this paper, we develop advanced data-analytical tools for extracting infor-
mation from eye movement sequences needed in various areas of application
utilizing eye tracking (see e.g. Rayner, 2009). Our objective is to create simple
but flexible dynamic stochastic models by employing mechanisms which use the
whole history of the sequence in each gaze jump in order to capture features of
learning during the experiment.
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Heterogeneity of the scene, contextuality of subsequent fixations, and self-inter-
action of eye movements are elements that affect the eye movement process. We
present a sequential spatial point process approach which includes these three
effects, the self-interaction being new in this context and is interpreted as a
learning effect. This leads to what in probability theory is called self-interacting
processes, which are generalizations of random walks in heterogeneous media.
Although self-interacting random walks are well established in mathematics,
physics and animal ecology, our reasoning here is slightly different. We study
how the process evolves at an early stage of an eye movement sequence whilst,
e.g. in mathematics, the long term behaviour is of interest. Such processes are
analytically difficult, even intractable, but their simulation is basically straight-
forward.

After having constructed a new model, we need model fitting (estimation), eval-
uation of goodness-of-fit (model criticism) and simulation algorithms for vari-
ous inferential purposes. Here, we suggest a likelihood approach for the new
processes which is used in parameter estimation. It is not possible to obtain
analytical results or use asymptotical reasoning. Instead, we compute the like-
lihood using simulation which allows us to make exact inference in the sense
that it does not depend on the size of data and which includes a boundary ef-
fect correction. In doing this, we enlarge the applicability of spatial statistics
and the likelihood inference to a new area of applications. The processes can
be used to make inference on the structure of data, including self-interaction,
and to deduce uncertainties in conventional and new functional data summaries
such as scanpath length and recurrence function.

In this paper, we are interested in the dynamics of the eye movement process.
The main question is whether there is self-interaction present in a given eye
movement sequence and whether we can detect it using our new modelling.
We focus on the beginning of an eye movement process, since, according to
the two-stage model by Locher and colleagues (see e.g. Locher, 2006), the gist
of the scene is established during the early fixations. Our history-dependent
rejection model is, in fact, able to observe self-interaction in these particular
data, although there is large within-subject variation.

Our models utilize stochastic geometry in creating self-interaction caused either
by coverage (how much of the scene is covered and how fast) or by recurrence
(how much the process favours points nearby the previous points), both of which
have justifications in eye movement literature. Functional summary statistics
are needed for checking the goodness-of-fit of a fitted model, as well as for
describing the structural components of the sequence. We use four summary
statistics: convex hull coverage, ball union coverage, scanpath length, and cu-
mulative recurrence. Several summary statistics are needed since none of these
four was able to alone distinguish between the models in our simulation study.
We found that the rejection model with convex hull coverage can be separated
from the random walk by the scanpath length, whereas the rejection model with
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recurrence can be distinguished from random walk with the coverage measures.
The scanpath length and cumulative recurrence are needed with the history-
adapted model for defining the speed of spatial clustering.

We have illustrated two tractable process constructions for self-interaction, namely,
history-based independent thinning and history-dependent transitions. These
constructions are very different, and their use depends on the problem and
the data set. The two developed models are rather simple but can easily be
extended. Other constructions are also possible, such as the heterogeneous mix-
ture model, where the Markov kernel K(−→x k, x) is replaced by

p(−→x k)K1(xk, x) + (1− p(−→x k))K2(xk, x) .

Here, K1 and K2 are two kernel functions where the choice K2(xk, x) could
be uniform in W or proportional to α(x), for example, and the mixture factor
p(−→x k) depends on the history of the sequence. Although simulation of such a
model is straightforward, the associated inference is computationally demand-
ing.

We have restricted our approach to sequential spatial point processes, mainly
due to their tractability. However, this approach is a bridge to spatio-temporal
models that would take fixation durations into account. For a separable spatio-
temporal model, the spatial effect and time dynamics are multiplicative in the
likelihood. A sequential spatial point process model can be used as a building
block: if an order-dependent spatial model is available, the inclusion of time
dynamics is straightforward, because inference on the ordered spatial aspect
and fixation durations can be performed independently. If a preferred summary
statistic contains information on the fixation durations, then a spatio-temporal
model should be used instead of the sequential point process.

The estimation of the heterogeneity component α(x) is problematic. In the
second order analysis of point patterns the first and second order components
are not estimable from one observed point pattern without further information.
Diggle et al. (2007) suggest two alternatives, which are the use of a paramet-
ric model for the intensity (heterogeneity) or, alternatively, the utilization of
replications for the intensity estimation. In the sequential context the situation
is similar. In our experiment sequences measured from several participants are
available and are independent of the particular sequence under study. When
using this information in the estimation of the heterogeneity component, the
problem is that also these auxiliary control sequences are serially correlated
leading to extra clustering at the sequence level. We assume that this effect is
not as serious as in the intensity estimation from the case data only. When using
auxiliary sequences, we have assumed that these sequences contain information
which origins mainly from the target common to all participants and to the case
under study and measures the wanted heterogeneity.
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An improvement would be to sample fixations from each of the auxiliary fixation
sequences instead of using all the fixations as we did here. Merging these sam-
pled fixations gives a point pattern which is then used in the estimation of α(x)
using the kernel method. This will further reduce the effect of serial correlation.
An alternative improvement is based on the case sequence under study by using
the fitted model (containing both contextuality and self-interaction and a pre-
fixed α(x)) to compute the inverse of the transition probability for each fixation.
These weights can then be used in the estimation of α(x) by the weighted kernel
method. The procedure can be iterated. The estimation of α(x) is discussed in
Barthelmé et al. (2013); Engbert et al. (2015).

Another issue concerns the parameter estimation. Here, we suggest the dis-
cretized coordinate ascent algorithm for maximum likelihood using forward sim-
ulation. This early experimenting shows that by this method it is possible to
separate the effect of self-interaction and present confidence intervals for pa-
rameter estimates and confidence envelopes for chosen summary statistics. We
know that approximative inference, being computationally much faster, is also
a possibility and would be very important in a methodological toolbox.
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