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Abstract

We model meteoroids entering the Earth’s atmosphere as objects surrounded
by non-magnetized plasma, and consider efficient numerical simulation of
radar reflections from meteors in the time domain. Instead of the widely used
finite difference time domain method (FDTD), we use more generalized finite
differences by applying the discrete exterior calculus (DEC) and non-uniform
leapfrog-style time discretization. The computational domain is presented
by convex polyhedral elements. The convergence of the time integration is
accelerated by the exact controllability method. The numerical experiments
show that our code is efficiently parallelized. The DEC approach is compared
to the volume integral equation (VIE) method by numerical experiments.
The result is that both methods are competitive in modelling non-magnetized
plasma scattering. For demonstrating the simulation capabilities of the DEC
approach, we present numerical experiments of radar reflections and vary
parameters in a wide range.
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1. Introduction

We consider a meteoroid entering the Earth’s atmosphere at a hyperve-
locity of 11-72 km/s. Through the interaction with atmospheric particles,
the meteoroid produces a bright event called a meteor. Consequently, a dense
mass of plasma surrounds the meteoroid and leaves a plasma trail, referred
to as meteor plasma, which diffuses into the background atmosphere behind
the meteor. Meteors have been a subject of intensive study over the last
century; in particular, a lot of work has been devoted to collecting and inter-
preting data acquired by optical, and later by radar, seismic, and infrasound
networks.

Meteor head echoes, caused by radio waves scattered from the dense mass
of plasma surrounding the meteor body along its atmospheric trajectory,
have been studied by high-power large-aperture (HPLA) radars since 1960s
(see [1]). Modern HPLA observations of meteor head echoes were made not
earlier than in the 1990s |2|, using the radar systems of the European Inco-
herent Scatter Scientific Association (EISCAT), the Canadian Meteor Orbit
Radar, the Jicamarca high-power large-aperture VHF radar, the 46.5 MHz
MU radar system near Shigaraki, Japan, the Southern Argentine Agile ME-
teor Radar (SAAMER), and other dedicated systems [3, 4, 5, 6]. Although
the considered radar observation volumes are narrow, being elongated in the
vertical direction, huge amounts of meteor head echoes have been detected
over the past years of observations. Most of the events are faint with no
alternative to be detected visually or with intensified video cameras. Thus,
understanding the way in which a meteor reflects radio waves could present
a unique possibility to determine the range, propagation angle, and velocity
of the object based on radar detections.

By using numerical simulation techniques, it is possible to test how changes
in the atmospheric conditions affect the meteor radar reflections and explain
unexpected results in the measurements. To get reliable simulation outputs,
appropriate models, relevant methods, and valid input information has to
be defined carefully. The physics of meteor radar reflections is considered as
electromagnetic scattering. The most simplified models consider meteors to
be solid obstacles, but the more realistic models present the scatterer as a
plasmatic obstacle (see, e.g., |7, 8,9, 10]). In particular, we apply the model,
in which the dielectric tensor is derived from the equation of motion pre-



senting charged, non-magnetized cold plasma, as presented in [9|. By using
this model, the dispersive media can be treated in the time domain without
convolution. Thin, practically two-dimensional, layers of three-dimensional
space are considered with the model in [11], and the model is simulated in
the three-dimensional domain in [12|. Due to the recent developments in
computing resources, it is possible to improve the accuracy of the numerical
simulations or solve more demanding problems. Consequently, the meth-
ods for simulating three-dimensional meteor plasma dynamics are currently
under active research [13]|. Nevertheless, increasing the number of available
CPUs and memory is not enough as the size of the problem does not scale
at the same pace as the available resources. Modern and efficient numerical
methods offer advantages over the earlier approaches and more gain than the
increase in computing power.

The traditional way of solving electromagnetic problems, presented in
the space-time domain as partial differential equations, is to use the finite-
difference time-domain method (FDTD) introduced by Yee [14]. This method
is applied to ground penetrating radar simulations in [15], and meteor sim-
ulations in the two-dimensional domain in [11]| and in the three-dimensional
domain in [12|. The models of electromagnetic wave propagation in mag-
netized plasma have been recently solved in the three-dimensional domain
with the FDTD method in [16, 17]. The other methods, used to discretize
the models presenting the interaction between electromagnetic waves and
plasma, include the continuous and discontinuous Galerkin approaches (see,
e.g. [18]). Instead of applying the FDTD or another well-known method, we
present a more genaralized numerical scheme for 3D simulations. Our ap-
proach is more flexible with respect to spatial and temporal discretizations
than the FDTD method.

In this study, we present the scattering problem in terms of differen-
tial forms (see, e.g., [19]), and discrete exterior calculus (DEC) is used for
spatial discretization [20]. Accordingly, the discrete spaces and exact differ-
ential operators mimic their continuous counterparts, preserving the physical
properties of the problem. With the DEC framework, we use high-quality
mesh structures that mimick the geometry of the close packing in crystal lat-
tices [21]. Combined with non-uniform leapfrog-style time stepping, this ap-
proach gives significant savings in computing time compared to conventional
methods. To get even more accurate results, we tailor the discretization
formulas for time-harmonic plane-wave solutions, by including so-called har-
monic corrections, to reduce the error of the solution into fractions compared



to the traditional Yee method |21].

For solving time-harmonic problems, the simulations based on space-time
models need to be continued until the steady-state solution is reached. Es-
sentially, the procedure is computationally inefficient, but we control the time
integration, by the exact controllability method [22], to accelerate the con-
vergence towards the steady-state solution. The idea of exact controllability
has been recently applied to the fields of acoustics |23, 24|, elastodynam-
ics |25], and electromagnetics [26], but this is the first time it is applied to
three-dimensional meteor plasma dynamics. In the numerical experiments,
we compare the method with the volume integral equation (VIE) formulation
for the electric current [27].

The rest of this paper is organized as follows: First, we review the physical
background and mathematical formulation of the model in Sec. 2. In Sec. 3,
we present the numerical methods applied for solving the problem. For dis-
cretization we present the discrete exterior calculus and a non-uniform time
discretization. The controlled time integration is presented as a minimiza-
tion problem which is solved by a conjugate gradient method. The validation
of the methods is provided by numerical experiments in Sec. 4. Finally, in
Sec. 5, we present the concluding remarks.

2. Model

Based on the observations conducted by the different radar systems and
post-processing techniques, there exist several models for meteor head echo
simulations, (see, e.g. [28]). One reason for this is differences in the character-
istics of the radar systems, e.g., in terms of frequency and antenna geometry,
see [29]. According to the observations reported by, e.g., [30] and [31], the
head echo can be modeled as over-dense scatter from a plasma layer surround-
ing the meteoroid, with a specific density distribution. In these models, the
plasmatic object is assumed to be a conducting spherical object, and the elec-
tromagnetic phenomenon can be presented by partial differential equations
coupling the electric and magnetic fields.

In [11], the dielectric tensor is derived from the equation of motion pre-
senting charged plasma. By following it, and the principles presented in [32],
solid obstacles surrounded by non-magnetized plasma can be modeled with



the use of differential equations as

E
5%—t—VxH:—0E—J, (1)
H
MW—FVXE:—O’*H, (2)
0J
5t v] = ew’E, (3)

where E = (E,E,E3)T € R? is the electric field, H = (H;,Hy,H3)? € R3
is the magnetic field, J = (J;,J5,J3)7 € R3 is the plasma current density, e
is the electric permittivity, p is the magnetic permeability, v is the collision
frequency, o is the electric conductivity, o* is the magnetic conductivity, and
wp is the plasma angular frequency.

The unbounded domain of the scattering problem is truncated to a finite
computational domain by an absorbing boundary condition or layer. In this
study, we use the Silver—Miiller boundary condition (see, e.g., [33]) and the
perfectly matched layer (PML). The unphysical PML is the state-of-the-art
layer for this purpose. We apply the uniaxial PML [34], which is modified for
the DEC, as explained in [35]. The PML restricts the edge elements with the
condition that they must be orthogonal or parallel to the absorbing direction.

3. Numerical method

For computing a numerical solution for the problem, the computational
domain is discretized to vertices, edges, faces, and volumes. Since the metric-
free nature of differential forms allows the presentation of the variables as
integrands over curves, surfaces, and volumes, we use such a presentation.
That is, for instance, instead of the vector presentation E = (E;,Ey,E3) for
the electric field, we present a 1-form Edxri+Esdxro+Esdxs, where d is the
exterior derivative and (z1, 72, 23)7 € R3 (see, e.g. [36]). At the discrete
level, we use the discrete exterior calculus (DEC) framework, applied to the
transient Maxwell equations in [21|. For accelerating the time evolution of
the simulation, we use a controlled time integration approach [37]| via the
exact controllability approach, which leads to the time-harmonic solution.

3.1. Discrete exterior calculus

We consider the computational domain as a complex of cell elements, such
that we operate the three-dimensional computation on 1-cells (edges) and 2-
cells (faces). We use a pair of primal and dual meshes, where each primal



N

primal

N

Figure 1: Spatial discretization is based on  Figure 2: The incidence matrix d; indicates
primal and dual meshes, where correspond-  the rotation of an edge around the face (or
ing cells are orthogonal. FE, H and J are a dual edge around the dual face).
discrete differential forms on primal edges,

dual edges, and dual faces, respectively.

k-cell, k=1,2, corresponds to a dual (3 — k)-cell. The i:th edge is denoted
by &, ¢ = 1,...,ng, and the j:th face'is denoted by F;, j = 1,...,mz.
The corresponding dual elements are denoted by F; and &. The discrete

differential forms E (1-form), H (1-form), and J (2-form) are presented as
vectors, for which each term is defined as (see Fig. 1)

E;

i Fr
That is, the discrete 1-forms are associated to the edges, and the discrete
2-forms are associated to the faces.

The discrete counterparts of the curl operator are presented by the inci-
dence matrix d; and its transpose dI, such that,

/VXE.da:(dlE)j, /VxH~da:(d1TH)i.
2

Fi

Essentially, the incidence matrix represents the neighboring relations and
relative orientations of the primal edges and faces (see Fig. 2). The entries,
(d1);,i, are non-zero if and only if the edge &; is included in the boundary of
the face F;. Further, the non-zero entries have the value +1 or -1, indicating
the relative orientation defined by counter-clockwise circulation.



The physical character of the discretization is presented by the discrete
Hodge star operator, x, defining a mapping from a discrete 1-form to a dis-
crete 2-form, at the discrete level. The discrete Hodge star of a tensor a on
cells £ and F is defined as

| 7]

*(Oé,(‘:,f) = W ang - ngd’U,
Fo&

where ng is the unit orientation vector of edge £, and F ¢ £ is a convex
hull including both £ and F. The discrete Hodge operators are introduced
as diagonal matrices. The diagonal structure of the matrices is based on
the orthogonality of the primal and dual elements. Applying the harmonic
correction for both spatial and time discretization, the diagonal terms of the
discrete Hodge operators are written as

x€;; = *(€, &, F)) {m sind; | *0ii= %0, &, Fi) |Ki cos ¢; |’
’ j

where the terms in square brackets indicate the harmonic correction. If these
terms are equal to one, the Hodge terms are of Yee’s kind. As shown in |21]
and [35], the spatial correction terms, r; and K, can be computed by
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where ke = w?eu|&|?, kpe = wieprk., ke = w26u|5;‘|2, and Kr = w%,ur%_—j.

The face radius square % is computed using the inner radius r™" and outer
radius ™ (see Fig. 3), having
1 n
2 in\2 2
3= L3 e+ ey @)

The global time step size At can be divided into smaller time steps using
integer numbers s¢, and Ser for each cell & and &7, respectively (see Fig. 4).
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Figure 3: For an irregular quadrilateral, r is

replaced by the mean value computed from
the distances 75" and 7***, j =1,...,4.

Figure 4: In non-uniform time stepping, At
is divided into smaller steps when neces-
sary. The circles with numbers inside rep-
resent time instances of E;, H; and J;. The
arrows illustrate the chronological order of
the computation.

The time stepping is synchronized by selecting the numbers, sg, and Sex,s such
that they can be written as powers of three, i.e.,, s = 3% € {1,3,9,27,...}.
The harmonic corrections for time discretization are applied by using

~ wAt
N 2851. ’
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and the update formulas for the unknown variables are
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The computational complexity of the method is of the order O(mN), where
N is the number of unknowns and m is the number of time steps required to

solve the system.

3.2. Controlled time integration

In principle, the time-harmonic solution can be reached by simple time
integration (asymptotic approach), but we accelerate the convergence rate by



applying a control. The basic idea of controllability is to steer a dynamical
system from an initial state to a particular state by using an appropriate
control mechanism. The concept of controllability can be divided into two
categories, exact and approximate controllability. Approximate controllabil-
ity makes it possible for the system to achieve a final state that belongs to an
arbitrary small neighborhood of the final state, whereas exact controllability
enables forcing the system from a preassigned initial state to a specific final
state. Propagation, observation, and control issues of wave equations are
reviewed by Zuazua in [38].

We apply the exact controllability technique pioneered by Bristeau, Glowin-
ski, and Périaux [22| to time evolution. Essentially, the approach is a con-
trolled variation of the asymptotic approach with periodic constraints, in
which the time-dependent equation is simulated in time until the time-
harmonic solution is reached. A natural quadratic error functional is based
on the energy of the problem

1
B 1.7) = (BTsep 4 il ) )

From this basis, the time-harmonic solution can be found by minimizing
E(E—Ey, H—Hy, J—Jy), where the initial conditions Ey, Hy, and Jy are also
the control variables. A quadratic functional can be minimized by solving the
corresponding linear system with the conjugate gradient (CG) method (see,
e.g., [39]). In principle, the gradient is computed at each CG iteration by
solving two time-dependent equations, the state equation advancing forward
in time and the corresponding adjoint state equation advancing backward in
time. Only the current and previous gradient and search vectors and scalar-
valued weights must be stored at each iterations. To guarantee the smooth
initial approximation for the CG algorithm satisfying also the boundary con-
ditions, we use the transition procedure suggested by Mur [40|. The residual
of the algorithm, which defines at each iteration how far the solution is from
a periodic solution, is also used to accelerate the convergence rate by giv-
ing a controlling impulse to the system. The discrete quadratic functional,
which we minimize, is spanned by a diagonal mass matrix, and the algorithm
operating in L?-type Hilbert space does not need preconditioning.

4. Numerical experiments

We present numerical experiments considering the entry of a meteoroid
into the Earth’s atmosphere and study the scattering properties of the meteor



plasma. Both the full scattering cross section and the backscattering cross
section are computed, and the computing time and efficiency of the method
is considered. The numerical method is implemented in C++ programming
language and parallelized using message passing interface (MPI) routines.

The meteor is viewed from the ground by a radar, as schematically il-
lustrated in Fig. 5. The angle between the radar and the meteor propaga-
tion direction is denoted by «. The considered computational domain, for
simulating a bow shock around the meteoroid and surrounded area, is an
origin-centered cylinder with a length of 10 m and diameter of 4 m. In the
meteor plasma trail, the collision frequency v is 10 MHz and the peak plasma
frequency f, is 420 MHz. The angular plasma frequency w, is computed from
the peak plasma frequency by the following distribution:

2 LSS
wp = QWfPF(x)m@ (rtk(zo=aN? (5)
where
T—T0
el 336]—00,,%07[,
Flz)=4 1- —($;§°)2, x € [xg, T + 1], (6)
0, x €|z + 1, 00].

The constants of the plasma distribution are r = 0.6 m, £ =0.15m, [ =3 m
and xg = 4 m. The cross section of the distribution is illustrated in Fig. 6.
With a time-harmonic assumption, the plasma frequency and collision fre-
quency can be turned into permittivity by the Drude model [41]. Since the
peak plasma frequency exceeds the wave frequency, the permittivity becomes
smaller than zero, which means the problem may become unstable, for ex-
ample with the discrete-dipole approximation (DDA) solvers [42, 43].

4.1. Parallelization test

In the first test, the wavelength is 1.0 m, implying that the radar fre-
quency f, is approximately 300 MHz. The incident wave is circularly po-
larized. Ome of the simplest ways to construct cylinder-shaped geometry is
to create a two-dimensional circular grid on the y-z-plane and stretch the
grid through the z-direction to obtain a three-dimensional grid. The two-
dimensional base grid is mostly constructed of equilateral triangles, which
fill the circle of radius » = 2 m. The plasma region is surrounded by a 1 m
thick layer, which is filled with quadrilateral elements provided with the PML

10
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Figure 5: Meteor propa-  Figure 6: The normalized distribution of the meteor plasma
gation angle a. frequency on the z-y-plane in a 10 m x4 m rectangle.

Table 1: Computing resources.

machine name processors available cores used cores
Paasikivi Intel E7-8837 @ 2.67GHz 64 unreserved 32
Taito Intel E5-2670 @ 2.60GHz 448 256
Sisu Intel E5-2690v3 @ 2.60GHz 19,200 1,024

condition and bounded by the Silver-Miiller boundary condition. Thus, the
resulting three-dimensional grid includes prism-shaped elements and twisted
cubic elements. The average length of an edge of the grid is about % m, and
the number of unknowns in the problem is 24,270,626.

For the parallelization, the mesh elements, which are nodes, edges, faces
and bodies, are separated into blocks, and each block builds a computational
domain for a computer core. To minimize the number of communications
between processes, the surface area between the blocks should be kept small.
The separation is applied by first ordering average positions of elements in the
x-direction, and separating the elements by the median into two blocks. To
obtain four blocks, the same procedure is repeated for both halves separately.
The ten divisions needed for 1,024 cores are applied by ordering the elements
in z-, -, y-, 2-, 2-, y-, x-, x-, y-, z-directions, respectively. In this procedure,
each core processes approximately the same number of elements, but the
number of computing operations is not controlled. The mesh and the blocks
are illustrated in Fig. 7.

The parallelization is tested by running the simulation over 100 time
periods on three different supercomputers: Paasikivi, which is located at the

11



- Paasikivi = Sisu
- Taito -- reference

iteration time (s)

1 2 4 8 16 32 64 128 256 5121024
number of compute cores

Figure 7: The mesh is divided into 1,024  Figure & The iteration time by number of
blocks for the parallel computation. computer cores n. The reference line obeys
function t = 100s/n.

University of Jyviskyld, and Taito and Sisu, which are computing resources
of the CSC - IT Center. The details of the machines are presented in Table 1.
The average simulation time for one time period (iteration time) is reported
as the wall-clock time in seconds in Fig. 8. The reference line indicates the
perfect parallelization, where the simulation time is inversely proportional to
the number of cores. The simulation results demonstrate that the applied
parallelization is efficient. The number of compute cores times the iteration
time is between 87 s and 112 s on Paasikivi simulations, between 37 s and
100 s on Taito simulations, and between 30 and 89 on Sisu simulations. On
Sisu, the iteration time is 30.4 s with a single processor and less than 0.087
s with 1,024 cores.

4.2. Simulations with different parameters

In this section, we vary the variables of geometry and the meteor model,
and consider their effect on the backscattering properties. The mesh under
the plasma region is filled with a so-called C15 grid [44]. That is, the primal
grid is constructed by tetrahedra, and there are sixteen 12-hedra and eight
16-hedra in the dual grid structure. Such a construction is found to be a high
quality grid for the DEC with good isotropic properties [21]. A half-meter-
thick layer, consisting of prism-shaped and twisted cubic elements, bounded
by the Silver-Miiller boundary condition, is built outside the region (see
Fig. 9). There are two reasons for applying the layer: first, the near-to-far
field computation, computed on the inner surface of the layer, can be applied
with a smaller error. Second, the additional space between the target object

12



Figure 9: A half-cut illustration of the mesh
used in DEC simulations with discretiza-
tion level 10 elements per meter.

and the outer surface decreases the error caused by the absorbing boundary
condition.

We apply radar frequencies of 160 MHz, 224 MHz, 300 MHz, 422 MHz,
500 MHz, 720 MHz, and 930 MHz, which are the AT.TAIR. and EISCAT fre-
quencies [45, 46]. For the two highest radar frequencies, 720 MHz and 930
MHz, we use 28 elements per meter, while for the other frequencies we apply
20 elements per meter. The number of unknowns in the considered prob-
lems are 24,861,538 and 9,089,226, respectively. The solver is initialized by a
transition stage [40], taking 10 time periods, for smoothly running the right-
hand-side values, presented in Eqs. (1)—(3), from zero to their known electric
and magnetic source values. The controlled conjugate gradient iterations
are run until the norm of the residnal decreases down to 10~*. From each
simulation, we compute three backscattering quantities: backscattering cross
section Si1, same-circular cross section SC = S11+ Sy, and opposite-circular
cross section OC' = S7; — Sy, all of which are important physical observ-
ables in radar applications. In particular, the circular-polarization ratio %
is found to provide the best indications of the wavelength-scale geometric
complexity of the material [47, 48].

First, we consider the effect of the meteor propagation angle « by vary-
ing it from 0 degrees (meteor moving towards the radar) up to 180 degrees
(meteor moving away from the radar) with 5 degree increments. Second, we
vary radar frequency and consider its effects on the backscattering properties.
The results are shown in Fig. 10 and Fig. 11. Both variables have substan-
tial and non-monotonic effects on the backscattering properties. Thus, the
effects of these variables must be modeled when analyzing meteor properties
using radar measurements.

13
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Figure 10: Cross sections as a function of  Figure 11: Cross sections as a function of
the meteor propagation angle a. radar frequency f,.

Third, we consider the collision frequency v describing the number of col-
lisions between the particles in the ionosphere. Since the collision frequency
is temperature-dependent, having different values depending on the time of
day, we vary its value over a wide range, from 0.1 MHz to 1,000 MHz. The
collision frequency dramatically affects convergence during iterations; when
v < 1 MHz, the convergence is slow. However, the collision frequency seems
to have only a small effect on the backscattering properties as shown in
Fig. 12. The effect of the peak plasma frequency f, is much more consid-
erable. We applied seven different peak plasma frequencies, 70 MHz, 140
MHz, 280 MHz, 420 MHz, 560 MHz, 720 MHz, and 900 MHz. The results
are illustrated in Fig. 13. The larger the plasma frequency, the larger the
backscattering cross sections. The maximum difference between the smallest
and the largest value is around 50 dB. We also consider the effect of the me-
teor radius on the backscattering properties. By varying the parameter r in
Egs. (5)—(6) from 0.1 to 0.8 m, the results show that a larger radius implies
larger cross sections, as illustrated in Fig. 14.

During the high-velocity atmospheric entry, a meteoroid may fragment
into smaller pieces with a certain statistical mass distribution (see, e.g. [49]).
In order to show how sensitive the model is with respect to the fragmentation
of a meteor body, we consider the splitting of the meteoroid into two equal
parts. We assume that the meteor radius is » = 0.3 m and the distance
between the halves is denoted by d. We model the plasma trail of each half
such that the peak plasma frequency is divided by v/2. Both halves then
have a 296.98 MHz peak plasma frequency. The conductivity terms, ewf), of
the overlapping plasma distributions are then summed up in a way that the
model of distance d = 0 equals the single meteor model with peak plasma

14
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Figure 14: Cross sections as a function of  Figure 15: Cross sections of meteor pairs as
meteor radius 7. a function of distance d between meteors.

frequency of 420 MHz. We vary the distance d between 0 and 1 m in 10
cm increments; the scattering results are illustrated in Fig. 15. Here, one
can see the influence of destructive interference, since backscattering has the
smallest values at distances 0.3 m and 0.8 m.

4.8. Comparison with the volume integral equation method

In this section, we compare the simulation efficiency of the method with a
volume integral equation (VIE) method. The scattering problem, described
by the partial differential equations, can be reformulated as an equivalent
system of integral equations. The volume integral equation (VIE) method
for the electric current, (J-VIE) [27], is used in this paper. In this formulation,
the unknown equivalent electric current density is expanded with piecewise
constant basis functions. We apply Galerkin’s procedure, in which identical
basis and testing functions are used for converting the continuous equation
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Figure 16: The mesh for VIE simulations
with discretization level 10 elements per
meter.

into a discrete set of linear equations [50]. The resulting system is solved
iteratively by the generalized minimal residual method restarted after every
50 iterations (GMRES(50)), see, e.g., [39]. The matrix-vector multiplication
in each iteration step is accelerated by the precorrected-FFT algorithm [51].
The most memory demanding data structure is the precorrection matrix.
The memory requirement grows at each GMRESiteration, until the method is
restarted, since the results from previous iterations need to be stored. Hence,
the computational complexity of the method is of the order O(M N log N),
where N is the number of unknowns and M is the number of iterations
required to solve the system.

Since the VIE solver requires no additional simulation domain outside
the target object, the computational grid for it is simply a cut of the C15
grid, such that all volume element average positions are inside a cylinder
of a 10 m length and 4 m diameter (see Fig. 16). With the DEC, we use
the same mesh as in Sec. 4.2 (see Fig. 9). We simulate the problem with
several discretization levels by applying grids with approximately 5, 7, 10,
14, 20, 28, and 40 elements per meter. The simulations were run on CSC’s
supercomputer Taito with 16, 32, 64 or 128 computer cores, depending on
the discretization level. We compared the methods with the peak plasma
frequencies, f,, 280 MHz and 420 MHz. With the VIE, the computing was
stopped for f, = 280 MHz with a tolerance limit of 107*, which took 10
iterations, and for f, = 420 MHz with a tolerance limit of 1073, which took
200 iterations. For the DEC-based method, the norm of the residual 10~*
was used as a stopping criterion, and the average number of iterations was
66 for f, = 280 MHz and 403 for f, = 420 MHz.

As a result of these simulations, we compute the Mueller matrices in-
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tegrated over the azimuth angles. The accuracy of the simulation result is
measured by the average relative error ¢ of the Mueller matrix component
S;; with the formula

_ Jo 1955(6) — S5(6)]d6
Jo Sis(0)do

In particular, we consider elements Siq, Si2, S34, and Syy. The exact result
of the problem is not known, so we compute the reference solution Sf;f by
taking the average of the Mueller matrices obtained by both methods with
the finest discretization level of 40. The relative error at the discretization
level of 40 is then found to be approximately 0.1%. Thus, the results of
different methods are very close to each other, as shown in Fig. 17.

The relative errors of the S-components are illustrated with respect to the
discretization levels in Fig. 18 and Fig. 19. The first case ( f, = 280 MHz) is
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computationally less demanding, since the plasma frequency does not exceed
the radar frequency. The results indicate that the errors decrease with the
element size, and that VIE produces more accurate results compared to DEC
at the same discretization level. The second case (f, = 420 MHz) includes
region, where the plasma frequency is higher than the radar frequency. This
makes the problem computationally much more demanding, and the con-
vergence of relative error is non-monotonic with both methods. The reason
for this phenomenon might be that the small details in discretization at the
neighborhood of the meteor center can produce a remarkable difference in the
result. Thus, a simulation with unfortunate element locations can produce
a relatively large error. In the first test, the VIE gives more accurate results
which might be because the stopping criteria of the methods are defined in
a different way. In the second case, the accuracy of VIE and DEC are of the
same order.

We have reported the computing times for solving the time-harmonic
problem (processing time), as the wall-clock time in seconds multiplied by
the number of processors used, in Fig. 20. The most remarkable difference
between these two methods is that the initialization of VIE is highly de-
manding, and most of the total time is spent during the initialization. That
is because a precorrection matrix for the FFT is assembled during the ini-
tialization. The initialization with the DEC takes only about 1% of the VIE
initialization time. Essentially, for large number of unknowns, N, the number
of iterations for the both methods as well as the number of time-steps for the
DEC-based method are small compared to the number of unknowns. Thus,
the asymptotic time complexity for the DEC method, O(N), is smaller than
the asymptotic time complexity for the VIE method, O(Nlog N). In the
numerical tests, the DEC method seems to be at least an order of magnitude
faster than the VIE method. Since the stopping criteria of the methods does
not provide the same accuracy, we present the relative error of the Mueller
matrix component S; with respect to simulation time in Fig. 21, and see that
the DEC method is more efficient. That is because with DEC discretization,
only diagonal matrices need to be inverted during time stepping. The per-
formance of the DEC method does not strongly depend on the values of the
material parameters, while the VIE method would require preconditioning
to maintain a fast convergence rate for different parameters.
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5. Conclusions

We have presented three-dimensional numerical simulations of radar re-
flections from meteors. The model was based on the assumption that me-
teors are solid objects surrounded by non-magnetized plasma. The spatial
discretization by discrete exterior calculus and partly-structured non-uniform
polyhedral grids, asynchronous leapfrog-style time discretization, and time
integration accelerated by the exact controllability method, provided compu-
tational efficiency for solving time-harmonic problems. By numerical experi-
ments, we validated the approach and compared it with the volume integral
equation method for electric currents. DEC-based controlled time integra-
tion seems to be more efficient, and its performance is not sensitive to the
level of discretization and the values of the material parameters.
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