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Abstract

In this master’s thesis we study the cosmological consequences of the new
scalar field, the axion, that appears in the U(1)PQ extension of the standard
model of particle physics. We start by presenting some essential fragments
of the standard model of Big Bang cosmology, that are needed when we
describe the evolution of the axion field in the early Universe. We also
review the basics of phase transitions in the early Universe, and go through
the creation and evolution of the topological defects that emerge from these
symmetry-breaking transitions.

We also study the so-called U(1)A problem of the QCD, and the resolu-
tion that yields the strong CP problem that are closely related to the axion
physics. The minimal Peccei-Quinn extension and the axions are usually
taken to be the most elegant solution to this latter problem. The global and
chiral U(1)PQ required by this extension can be implemented into the theory
in multiple ways, and therefore we study the different axion models proposed
in the literature. We also go through certain phenomenological aspects of ax-
ions, and review the model-parameter constraints coming from astrophysical
observations. A discussion of the different direct detection methods and ex-
periments is also given.

The focal point of this thesis is to study the role of axions as a candidate
for dark matter. Through the coherent oscillation of the so-called zero-
momentum modes of the axion field and the decay of axionic topological
defects (cosmic strings, domain walls) the Universe can contain a significant
axionic cold dark matter population, that is an essential part of the cosmo-
logical concordance model ΛCDM. Following the earlier work presented in
the literature, we compute the contribution of the axion dark matter to the
overall energy density, and also discuss the finer details of these mechanisms,
such as the possible isocurvature fluctuations that the axion field can pro-
duce during inflation. We also give a brief review on the proposed idea of
the axion Bose-Einstein condensate.
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Tiivistelmä

Tässä pro gradu -tutkielmassa tarkastellaan hiukkasfysiikan standardimallin
U(1)PQ-laajennukseen kuuluvan uuden skalaarikentän, aksionin, roolia kos-
mologiassa. Aluksi esittelemme valittuja paloja kosmologian standardimal-
lista, joita tarvitsemme tarkasteltaessa aksionikentän evoluutiota varhaisessa
maailmankaikkeudessa. Teemme myös katsauksen varhaisen maailmankaik-
keuden faasitransitioihin ja niiden mukanaan tuomiin topologisiin defektei-
hin.

Käymme myös läpi ns. U(1)A-ongelman ja tätä seuranneen vahvan CP-
ongelman perusteet. Jälkimmäisen ongelman yhtenä eleganteimmista rat-
kaisuista pidetään ns. Peccei-Quinn -laajennusta ja aksionikenttää. Tämän
minimaalisen laajennuksen globaali kiraalinen U(1)PQ-symmetria voidaan li-
ittää hiukkasfysiikan standardimalliin usealla eri tavalla, joten kiinnitämme
huomiota kirjallisuudessa ehdotettuihin erilaisiin aksionimalleihin. Tarkas-
telemme myös yleisesti aksionien hiukkasfenomenologiaa, teemme yleisen
katsauksen kirjallisuuteen ja listaamme eri astrofysikaalisista havainnoista
saatavia rajoitteita malliparametreille. Esittelemme myös lyhyesti aksionien
löytämiseksi kehitettyjä havaintomenetelmiä ja koejärjestelmiä.

Tutkielman pääpainona on tarkastella aksionien roolia pimeän aineen hiuk-
kasena. Aksionit voivat muodostaa kosmologian standardimallin vaatiman
kylmän pimeän aineen populaation joko ns. nolla-liikemäärä -moodiratkai-
sujen koherentilla oskillaatiolla, tai U(1)PQ-symmetrian spontaanista sym-
metriarikosta syntyvien topologisten defektien, kuten säikeiden ja seinämien
hajoamisella aksioneiksi. Laskemme näiden mekanismien tuottaman aksion-
ien energiatiheyden, ja keskustelemme aksionituoton yksityskohdista, kuten
aksionikentän tuottamista isokurvatuurifluktuaatioista inflaation aikana. Lo-
puksi teemme myös katsauksen kirjallisuudessa ehdotetun aksionien muo-
dostaman Bose-Einstein kondensaatin keskeisiin väittämiin.
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1 Introduction

The concordance model of cosmology, ΛCDM, assumes that a quarter of
the total energy-budget of the Universe is in the form of weakly-interacting
matter, that we refer to as cold dark matter (CDM). The presence of this
matter is required by the gravitational observational data coming from the
galactic rotation curve measurements, weak-lensing surveys and the large-
scale structure formation studies. Although there have been propositions
that baryonic – or ordinary – matter, such as massive compact halo objects
(MACHOs), can constitute as dark matter, it seems that these populations
cannot contribute significantly to the observed energy density.

Unfortunately, the standard model of particle physics, which is extremely
well-established and consistent with experimental data, does not offer a suit-
able dark matter candidate. One has then to look for physics beyond the
Standard Model (SM). In the literature there are numerous propositions for
the possible extensions of the SM, such as the supersymmetric theories, that
provide naturally suitable dark matter candidate particles. The most theo-
retically and experimentally studied dark matter candidates are the so-called
weakly-interacting massive particles (WIMPs), which usually have masses in
the range of mWIMP ∼ 10 − 104 GeV. Another well-motivated and studied
dark matter candidate is a sterile neutrino (ms ∼ 1− 100 keV), a new neu-
tral fermion additional to the three so-called active neutrinos present in the
Standard Model. However, these are just a few examples, as the literature
is filled with different extensions with potential hypothetical particle classes.
This issue of the nature of the dark matter is usually dubbed as the dark
matter problem.

The standard model of particle physics, which is a quantum field theory that
describes the elementary particles and forces between them, does have other
deficiencies in addition to the lack of a proper dark matter particle. For
example, the theory contains naturalness – or fine-tuning – problems, where
the values of the theory-parameters have to be extremely fine-tuned for the
theory to retain its predictability. One of these fine-tuning problems is the
so-called strong CP problem. This problem is related to the non-observation
of the neutron electric dipole moment, requiring that one of the parameters
of the theory, denoted by θ̄, has to be fine-tuned to an extremely small value.

Perhaps the most elegant solution to the strong CP problem is the Peccei-
Quinn mechanism [1, 2], which is an extension of the Standard Model, where
an additional global U(1)PQ symmetry is included in the theory. Miracu-
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lously, the spontaneous and explicit breaking of this added symmetry pro-
duces a weakly-interacting and extremely light pseudoscalar particle, referred
to as the axion, that is a suitable dark matter candidate. As expected, both
the theoretical and experimental studies of axions are highly-motivated due
to this simultaneous solution to both of the aforementioned problems. This is
also the subject of this thesis, where we study the cosmological consequences
of the axion field, with the focal point being the production of axion dark
matter.

This thesis is structured as follows. In Chapter 2 we give an overview of the
different aspects of cosmology needed in describing the evolution of the ax-
ion field in the early Universe. As the topological defects emerging from the
phase transitions in the early Universe are closely related to the production
of axions, we study these configurations carefully in Chapter 3. In Chapter
4 we consider the aforementioned strong CP problem [3] and the historically
preceding U(1)A problem [4], which are related to the low-energy phenom-
ena of the QCD theory. In this chapter we also present the Peccei-Quinn
mechanism [1, 2], that solves the strong CP problem with the additional the
axion field. Chapter 5 is dedicated to the axion and its properties. We de-
scribe the different methods proposed to implement the U(1)PQ symmetry
to the Standard Model, and also discuss the phenomenology of the differ-
ent axion models. In addition to this, we also give a brief overview on the
model-parameter constraints coming from astrophysical observations and the
different direct detection methods and experiments that search for the axions
permeating the investigated solar system and the Milky Way.

The center of our attention, the production of axionic dark matter, is studied
in Chapter 6. We first study the thermal production of axions, showing it
to yield a negligible population of hot dark matter. Following the literature,
we then study and compute the cold axion populations generated by the
coherent oscillation of the zero-momentum modes of the axion field and the
decay of the axionic topological defects (cosmic string, domain walls). The
production of axions through these mechanisms is then compared with the
observed cold dark matter energy density, which allows us to constraint the
model-parameters. We also discuss the finer details of these mechanisms,
such as the possible isocurvature fluctuations that the axion field can cause
during the inflation. The final chapter, Chapter 7, is dedicated for a short
review on the proposed idea of the axion Bose-Einstein condensate.
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2 Overview of cosmology

In this chapter we briefly review some aspects of cosmology needed for de-
scribing the evolution of a scalar particle in the Universe. We start by going
through standard quantities that are related to the Friedmann-Lemâıtre-
Robertson-Walker metric that describes the expanding Universe, and move
on to discuss the main points of cosmological inflation. After this we touch on
the subject of thermodynamics in the early Universe, deriving some quantities
that are needed in studying interactions between particles in the primordial
particle plasma. We conclude this chapter by discussing how the current
energy-budget of the Universe is shared between different components.

2.1 The Friedmann-Lemâıtre-Robertson-Walker met-
ric

The Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric describes a ho-
mogeneous, isotropic universe:

ds2 = −dt2 +R2(t)

(
dr2

1− kr2
+ r2dθ2 + r2sin2(θ)dφ2

)
, (1)

where t is the physical time, R(t) is the scale factor that describes the relative
expansion of the Universe, and the three-metric part represents the spatial
line element in spherical coordinates. The parameter k describes the curva-
ture of the space: positive, negative and zero curvature indicate closed, open
and flat universe. Note that throughout this thesis we will use the natural
units

~ = c = kB = 1, (2)

where ~ is the reduced Planck constant, c is the speed of light and kB is the
Boltzmann constant.

From the FLRW metric (1) and the Einstein equations

Rµν −
1

2
gµνR = 8πGNTµν + gµνΛ, (3)

we obtain the Friedmann equations

H2 +
k

R2
=

8πGN

3
ρtot, (4)

R̈

R
= −4πGN

3
(ρtot + 3ptot) , (5)
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where the Hubble parameter is defined as H ≡ Ṙ(t)/R(t), GN is the New-
tonian gravitational constant, and ρtot and ptot describe the total energy
density and the total pressure of the fluid system, respectively. Note that
we have defined the vacuum energy density as ρΛ ≡ Λ/8πGN and included
it to the total energy density. When we consider processes in the early Uni-
verse we assume a negligible vacuum energy, Λ = 0, and that the Universe is
reasonably well described by a flat geometry, i.e. we set k = 0.

The two Friedmann equations (4) and (5) can be used to derive the continuity
equation

ρ̇tot + 3H(t) (ρtot + ptot) = 0. (6)

In the cosmological models considered there are different types of fluids
present. For example, we consider non-relativistic matter fluid with den-
sity ρm and radiation fluid (photons etc.) with density ρr. These different
fluids have different equations of state p = ρ(t): non-relativistic matter has a
negligible pressure, pm = 0, while radiation has e.o.s. of an ideal relativistic
gas, pr = ρr/3. In cosmology, one then usually defines the general equation
of the state as

pi = weos,iρi, (7)

where weos,m = 0, weos,r = 1/3 and weos,Λ = −1.

We can then check from the equations (6) and (7) how the energy density
scales and how the scale factor R(t) and the Hubble parameter H(t) depend
on t during radiation and matter dominated epochs, ρtot ≈ ρr and ρtot ≈ ρm:

rad. dom. ρr ∝ R−4(t), R(t) ∝ t1/2, H(t) =
1

2t
(8)

mat. dom. ρm ∝ R−3(t), R(t) ∝ t2/3, H(t) =
2

3t
. (9)

One also defines the dimensionless density parameter

Ωi =
ρi
ρcrit

, (10)

where ρcrit ≡ ρc ≡ 3H2(t)/8πGN is the so-called critical energy density, that
corresponds to a flat universe. If we denote the present time by t0 we can
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write Eq. (5) in the form

H2(t) = H2(t0)

[
Ωr

(
R(t0)

R(t)

)4

+ Ωm

(
R(t0)

R(t)

)3

+ Ωk

(
R(t0)

R(t)

)2

+ΩΛ + Ωi

(
R(t0)

R(t)

)3(1+weos,i)
]
, (11)

where we defined the curvature density Ωk ≡ −k/R2H2, and Ωi denotes
other additional fluids that might obey different equations of state.

2.2 Cosmic inflation and fluctuations

The standard Hot Big Bang model predicts and explains in great detail the
Hubble’s law and the expansion of space, the origin of cosmic microwave
background (CMB) radiation, the abundance of primordial light elements
and the large-scale structure (LSS, galaxies etc.) formation. However, the
Big Bang model does have several problems, such as the horizon problem,
the flatness problem and the problem of unwanted relics (e.g. magnetic
monopoles – see Section 3). Also, it does not explain the origin of the small
inhomogeneities necessary for the structure formation as “the seeds of galax-
ies“. The inflationary paradigm, a scenario where the Universe undergoes
an epoch of exponential expansion, was introduced to solve the former prob-
lems, and alongside it gave a natural explanation for the seeds of structure
growth. For more information and reviews on the problems of the Big Bang
model and inflation mechanism, see for example Refs. [5, 6, 7]

For the Universe to undergo a period of accelerated expansion, the total
energy density has be dominated by vacuum energy – see Eq. (11). The
observed present day accelerated expansion is believed to be due to the dom-
ination of dark energy, but the origin of the primordial vacuum energy dom-
ination is still unclear. In the most inflation models considered one assumes
that there is a scalar field, inflaton, that is responsible for the inflationary
dynamics. It is then assumed that before inflation the inflaton rests in a
high-energy state, and during the inflationary period the inflaton releases its
energy slowly while rolling towards to the minimum of its flat potential1.
The transition period between inflation and the beginning of the standard
Hot Big Bang evolution of the Universe is referred to as the reheating. Infla-
tion ends when the inflaton reaches minimum of its potential and starts to

1This is usually referred to as the slow-roll inflation.
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oscillate around it. The inflaton decays through these oscillations into the
Standard Model and other possible exotic particles present in the primordial
plasma of the Hot Big Bang Model.

In the previous section we described the Universe as a homogeneous and
isotropic FLRW-universe. However, the Universe today is inhomogeneous
and possesses both large- and small-scale structures. It is now believed
that these structures are generated from the evolution of primordial inhomo-
geneities, that are created from the quantum fluctuations of the fields present
during inflation, e.g. inflaton. After inflation these small inhomogeneities
then grow and form the observed structure of the Universe. There are two
different types of primordial fluctuations: adiabatic and non-adiabatic – or
curvature and isocurvature – fluctuations.

We do not go into details here, but the curvature and isocurvature fluc-
tuations are related to the fluctuations in the energy density and entropy,
respectively. We can write the energy density of the non-FLRW-universe as
ρ(t, ~x) = ρ̄(t) + δρ(t, ~x), where ρ̄ is the energy density of the background
FLRW-universe and δρ is the perturbation that measures the deviation from
the background value. When discussing about the primordial fluctuations
one needs to note that in the very early regime all cosmologically interesting
modes are outside the horizon, meaning that the causal microphysical pro-
cesses are disconnected. At later times these scales (fluctuations) are inside
the horizon and are again causally connected.

In short, in the early regime we can consider curvature fluctuations to be
fluctuations in the energy density, i.e. δρ 6= 0. These perturbations are
characterized by that the fluctuations in the local number density of the
particle species relative to the entropy density vanishes, i.e. δ(ni/s) = 0. On
the other hand, isocurvature fluctuations are perturbations in the entropy, or
in the local equation of state, and not in the energy density or local curvature,
i.e. for super-horizon sized modes δρ = 0. The isocurvature fluctuations are
characterized by δ(ni/s) 6= 0. When the studied modes become sub-horizon
sized their fluctuations can be converted into the fluctuations in the energy
density. [5] It happens that if the particles of our interest, axions, are present
during inflation they can generate isocurvature fluctuations – this will be
discussed in Section 6.5.
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2.3 Thermodynamics in the early Universe

After inflation the evolution of the Universe is assumed to follow the stan-
dard Hot Big Bang cosmological model. In the very early times the Universe
is assumed to be filled with the Standard Model particles and possible other
particles still unknown, such as dark matter particles. At these high temper-
atures the Universe is assumed to be in thermal equilibrium, and the particles
are assumed to follow the equation of state of a relativistic ideal gas, i.e. the
Universe is radiation dominated. In this section we will introduce the basic
thermodynamical quantities needed in describing the thermal history of the
early Universe.

In kinetic equilibrium particles follow either the Bose-Einstein (−) or the
Fermi-Dirac (+) phase space distribution

f(~p) =
1

e(E−µ)/T ± 1
, (12)

where E is the energy of the particle, E(~p) =
√
|~p|2 +m2, T is the tempera-

ture related to the total energy of the system, and µ is the chemical potential
that is related to the total particle number. In the following we will assume
that the chemical potential is negligible.

The particle number density n, energy density ρ, pressure p and entropy
density s are related to the phase space distribution function f(~p) and are
given by

n(T ) =
g

(2π)3

∫
f(~p) d3p, (13)

ρ(T ) =
g

(2π)3

∫
E(~p)f(~p)d3p (14)

p(T ) =
g

(2π)3

∫
|~p|2

3E
f(~p)d3p, (15)

s(T ) =
g

(2π)3

∫
4|~p|2 + 3m2

3ET
f(~p)d3p, (16)

where g is the number of the intrinsic degrees of freedom (spin, polarization,
etc.), e.g. for photons g = 2.

Assuming a negligible chemical potential, the number density and energy
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density reduce in the ultrarelativistic limit (T � m) to

n(T ) =

{
(3/4π2)ζ(3)gT 3 fermions
(1/π2)ζ(3)gT 3 bosons,

(17)

ρ(T ) =

{
(7/8)(π2/30)gT 4 fermions
(π2/30)gT 4 bosons.

(18)

Here ζ(3) = 1.20206 . . . is the Riemann zeta function. As we treat particles
as radiation, we have that equation of state is given by weos,r = 1/3.

Since the energy density and pressure of relativistic particles are much greater
than those of non-relativistic particles, it is enough to consider only the
relativistic particles when considering the radiation-dominated epoch of the
early Universe. Total energy density and pressure are then

ρ(T ) =
∑

ρi(T ) =
π2

30
g∗(T )T 4 (19)

p(T ) =
1

3
ρ(T ) =

π2

90
g∗(T )T 4, (20)

where g∗(T ) is given by

g∗ (T ) ≡
∑

i=bosons

gi

(
Ti
T

)4

+
7

8

∑
j=fermions

gj

(
Tj
T

)4

, (21)

where the sums go over relativistic bosons and fermions. In Eq. (21) Ti is
the temperature of the relativistic particle at which the particle in question
looses contact with the other particle species and decouples from the thermal
equilibrium.

Neglecting the curvature and vacuum energy density, the Friedmann Eq. (4)
is given by

H2 =
8πGN

3
ρ(T ) =

4π3

45
g∗(T )

T 4

m2
Pl

, (22)

where mPl = 1/
√
GN ≈ 1.22× 1019 GeV is the Planck mass.

As g∗(T ) is slowly changing in the early Universe, it is sometimes valid to
approximate it as constant, g∗(T ) ' g∗. From the Eq. (22) one then obtains
a relation between time t and temperature T :

t =
1

2
H−1 =

1

2

√
45

4π3g∗

mPl

T 2
≈ 0.301g−1/2

∗
mPl

T 2
. (23)
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Table 1: The values of g∗ at different temperature regimes in the early Uni-
verse.

Temperature Significant events g∗
T ∼ 200 GeV all SM particles present 106.75

T ∼ O(100) GeV electroweak phase transition 106.75
T < 170 GeV top-quark annihilation 96.25
T < 125 GeV Higgs 95.25
T < 80 GeV W±, Z 86.25
T < 4 GeV bottom-quark 75.75
T < 1 GeV charm-quark, τ 61.75

T ∼ O(100) MeV QCD phase transition 17.25
T < 100 MeV π±, π0, µ 10.75
T < 0.5 MeV e− annihilation 7.25

According to the fundamental equation of thermodynamics the internal en-
ergy of system U is given by

U = TS − pV +
∑
i

µiNi. (24)

When neglecting chemical potential, the following equations follows for the
entropy density s = S/V :

s =
ρ+ p

T
. (25)

In the early Universe the equation of state is p = ρ/3, and the dominant con-
tribution to the energy density is given by the relativistic particles. Therefore
the entropy density s is to a good approximation given by

s =
4

3

ρ

T
=

4

3

1

T

∑
ρi(T ) =

2π2

45
g∗s(T )T 3, (26)

where g∗s is defined as the entropy degrees of freedom

g∗s (T ) ≡
∑

i=bosons

gi

(
Ti
T

)3

+
7

8

∑
j=fermions

gj

(
Tj
T

)3

. (27)

Comparing this with Eq. (21) shows that if all particle species have the same
temperature, that is Ti ' T for all particles i, in the radiation-dominated
epoch, one has

g∗(T ) ≈ g∗s(T ). (28)

These two quantities start to deviate from each other when the temperature
goes below T ∼ 0.5 MeV.
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Using eqs. (22), (23) and (26) we find the following relation between the
entropy density and the scale factor:

ṡ

s
= −3

Ṙ

R
. (29)

Therefore the entropy density scales as s ∼ R−3. This implies that the total
entropy of the universe S = sV stays constant. Conservation of entropy also
implies that

g∗s(T )T 3R3 = constant. (30)

2.4 Matter and energy content of the Universe

After inflation, the epoch dominated by vacuum energy, and the reheating
the very early Universe was dominated by radiation. The Universe then
moved to a matter-dominated epoch. Later on the Universe moved to the its
present dark energy dominated phase, which presents itself in the observed
accelerated expansion of the Universe. At present, the energy-budget of the
Universe is shared between relativistic particles (radiation; photons, neutri-
nos), non-relativistic matter (baryons, dark matter) and dark energy, the last
one constituting about 69 % of the total energy density [8].

From the Big Bang nucleosynthesis and observations from the galactic ro-
tation curve measurements and gravitational lensing surveys it has been for
long known that the ordinary baryonic matter can substitute only a small
fraction of the total non-relativistic matter content of the Universe: the re-
cent Planck observations favour the baryonic energy density value Ωb ≈ 0.048,
while the total matter density is Ωm ≈ 0.315 [8]. This means that about 85 %
of the present matter content is in an unknown form, referred to as dark mat-
ter, that might be made up of one or several new massive weakly-interacting
particle species.

It is now known from CMB and LSS observations that a majority of the
dark matter has to be in the form of cold dark matter (CDM), which is,
along with the dark energy, the main building block of the cosmological con-
cordance model ΛCDM. The cold dark matter relics, created in the early
Universe, have a small internal velocity dispersion, meaning that they were
non-relativistic already during the formation of galaxies. In the case of CDM,
the structure growth proceeds hierarchically: larger structures form through
the mergers of smaller objects. The other limiting case would be hot dark
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matter (HDM), where the particles are still relativistic during galaxy forma-
tion. With HDM the evolution of large-scale structures goes from “top to
bottom“, where the larger structures fragment and condense into smaller,
galaxy-sized objects. The Planck experiment infers from the combination
of CMB power spectra and other external data the following value for the
present CDM energy density [8]

Ωch
2 = 0.1188, (31)

where the Hubble parameter h is defined as h ≡ H(t0)/(100km s−1 Mpc−1).
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3 Topological defects in cosmology

According to our present understanding the Universe may have undergone
series of phase transitions early in its history. In addition to electroweak
phase transition, many grand unification theories (GUT), for example, pre-
dict several spontaneous symmetry breakings (SSB) to take place at higher
temperatures. These phase transitions, where a local or global symmetry is
broken, allow the emergence of topological defects. These defects are stable
configurations of matter related to the remnants of the false vacuum preced-
ing the SSB, that persist after the phase transition. Depending on the type
of the broken symmetry, there are a number of distinct configurations, the
most well-known being domain walls, strings and monopoles. Phase tran-
sitions and topological defects are often studied in the condensed matter
physics, but they might also have a significant role in cosmology through the
Kibble mechanism. As topological defects may also have an important role in
axion physics, we next briefly describe the basic features of phase transitions
and topological defects related to them. This chapter follows mainly Refs.
[5, 9].

3.1 Phase transitions in the early Universe

Let use consider the spontaneous symmetry breaking by in a model described
by the Lagrangian

L = −∂µS∗∂µS − V (S), (32)

where S is a complex scalar field and V (S) is the zero-temperature potential
given by

V (S) =
1

4
λ
(
|S|2 − v2

S

)2
. (33)

Here vS and λ are positive constants. This model is invariant under the
global U(1) phase transformation

S(x)→ eiαS(x), (34)

where α is independent of the spacetime coordinates x.

This potential has a degenerate minima that corresponds to a circle around
the bottom of the mexican hat potential (see Figure 2). The vacuum or the
ground state of the theory is defined such a way that

〈0|S|0〉 ≡ 〈S〉 = vSeiθ, (35)
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where θ is an arbitrary phase, and we refer to vS as the vacuum expectation
value. When the field chooses its ground state (35) it is not anymore invariant
under the global transformation (34), which now corresponds to the shift
θ → θ + α. The symmetry is then spontaneously broken, and we refer to
the potential in Eq. (33) as the symmetry breaking potential. The local
maximum of the potential, the symmetric state 〈S〉 = 0, is referred to as the
false vacuum.

The discussion above is somewhat simplistic as the considered potential is
purely classical. In reality the field S interacts with itself and other particles
and the potential receives radiative corrections. Without going into details
of the calculation here, we just quote the resulting general one-loop effective
potential [9]:

Veff(S) = V (S) +
1

64π2

{
Tr

[
M4log

(
M2

σ2

)]
+3Tr

[
M4

g log

(
M2

g

σ2

)]
− 4Tr

[
M4

s log

(
M2

s

σ2

)]}
, (36)

where σ is the renormalization scale and M , Mg and Ms are the scalar, vector
(gauge boson) and spinor (fermion) mass matrices, respectively.

Theories such as the Standard Model and GUTs imply that the underlying
symmetry is larger than our low energy state possesses. For example, in the
standard Hot Big Bang model it is assumed that the Universe has undergone
the so-called electroweak phase transition that is associated with the break-
down of SU(2)L⊗U(1)Y → U(1)EM. In a cosmological setting we then expect
the symmetries broken at low temperatures are restored at higher temper-
atures. We can describe the high-temperature symmetry restoration with
the quantitative tools of finite-temperature quantum field theory, where the
fields are considered to be coupled in a thermal bath with non-zero temper-
ature T . To lowest order one can consider non-interacting thermal particles
and compute the corrections to the zero-temperature potential:

Veff(S, T ) = V (S) +
∑
n

Fn(S, T ), (37)

where Fn is the free energy of the system.

Without going into details, the high-temperature effective potential for the
model (32), where we only consider self-interactions, can be expressed as [9]

Veff(S, T ) =
1

4
λ|S|4 − 1

2
λv2

S|S|2 +
1

12
λT 2|S|2, (38)
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where we have dropped the S-independent terms. At high-temperatures the
potential (38) is effectively quadratic and the field lives in the symmetric
state. The phase transition from the symmetric phase to the broken phase
occurs when the Universe cools down to the temperatures below the critical
temperature Tc, which is given by Tc =

√
6vS. This process is not instanta-

neous, as it takes some time for the field to reach its new equilibrium value
described by Eq. (35).

3.2 Classification

After the breaking of a discrete symmetry the vacuum manifold M consists
of number of disconnected regions separated by domain walls. An example of
this is the standard one-dimensional Goldstone-model, where the real scalar
field chooses positive or negative value after moving from the false vacuum.
The domain wall is then recognized to be the region between two domains
with different field values. The field cannot be transformed continuously in
the whole vacuum manifold while maintaining the same value, i.e. we say
that there exist non-trivial elements in the homotopy group of the manifold
M, which correspond to finite energy configurations. The criterion for the
formation of domain walls from the symmetry breaking G → H is πD−1(M) 6=
I, where G is a symmetry group and H is its subgroup, πD−1 is the homotopy
group that counts disconnected components and the vacuum manifold is
M = G/H. The mentioned one-dimensional Goldstone-model, which is also
discussed in Section 3.5.1, corresponds to G = Z2, H = I, M = Z2/I = Z2

and π0(Z2) 6= I.

The topological defects called strings might emerge in models where the
vacuum manifold M is non-simply connected, meaning that there are holes
in M that prevent contracting loops (on the surface) to a point. In two-
dimensional space these holes correspond to finite energy configurations, and
in three-dimensional space the configurations stack up to a tube-like struc-
tures to minimize the energy. Using the above mathematical notation, the
strings arise in theories where a continuous symmetry G is spontaneously
broken to its subgroup H, with the assumption that the vacuum manifold
is non-trivial, i.e. π1(G/H) 6= I. One example of string formation is the
spontaneous breaking of a global U(1) symmetry which will be discussed
in Section 3.4. However, the broken symmetry can also be any continuous
symmetry, e.g. SU(2), and the details of the string formation and dynamics
depend if the broken symmetry is local or global or if the symmetry of the
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theory is abelian or non-abelian.

There are also other defects that may form from phase transitions, such as
monopoles and textures. Monopoles are point-like defects that emerge from
broken spherical symmetries and they are predicted in many GUTs. In cos-
mology the creation of monopoles is a problem, as these defects can dominate
the overall energy density. This is not observed, and as we mentioned, the
inflationary paradigm provides a solution to this problem. Textures arise
when complicated symmetry groups break. In the condensed matter studies
textures appear for example in superfluid 3He.

3.3 The Kibble mechanism

Topological defects may play an important role in the evolution of the Uni-
verse. It actually seems that if topological defects are predicted in a certain
theory, they are bound to form in a cosmological setting via the Kibble
mechanism2. The Kibble mechanism is based on the idea that the corre-
lation length ξ(t) of a field in the phase transition is limited by the causal
particle horizon dH given by

dH = R(t)

∫ t

0

dt′

R(t′)
. (39)

The causality constraint ξ(t) < dH implies that the correlation length of the
field cannot grow endlessly, and there are bound to be separate regions in
space where the field in the phase transition is settled on a different value.

For example, in the case of a single real scalar field φ discussed in Section
3.5.1, the field chooses one of the two degenerate minima ±vφ that develop
below the critical temperature Tc. The choice of minimum depends on the
random fluctuations of the field, that have a certain correlation length. If
there are then two regions separated by a distance larger than ξ(t) the field
can freeze into a different value in these patches which results in a domain
wall formation. The same reasoning applies to formation of cosmic strings
and other defects, when the theory manifold M has a non-trivial homotopy
group.

In Figure 1 the Kibble mechanism is illustrated in the case of domain wall

2Sometimes this is referred to as the Kibble-Zurek mechanism. T. W. B. Kibble studied
phase transitions in the early Universe, while W. H. Zurek worked on condensed matter
systems.
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Figure 1: Defect formation via the Kibble mechanism. Left: the domain
walls are formed between regions with different discrete field values. Right:
the cosmic strings are formed when there is a non-trivial winding around a
point.

and string formation. In this case the domain walls form between the regions
where the field has chosen either positive or negative value, and the strings
form around the region of the false vacuum. We have assumed that the string
solution is of the form vSeiθ, where the phase θ can obtain values between 0
and 2π, as will be discussed in the next section.

3.4 Global cosmic strings

3.4.1 An example: global U(1) strings

A standard text-book example of string formation is the abelian-Higgs model,
where the Lagrangian contains a U(1) gauge field and a complex Higgs field.
In this model the so-called gauge strings emerge from the spontaneous sym-
metry breaking of the local U(1) symmetry. However, in this thesis we study
axions that are related to a new global U(1) symmetry, so there are no gauge
fields present in the Lagrangian. The cosmological properties of the global
U(1) strings are similar to those of gauge strings, albeit there are some differ-
ences – for example, as we are about to see, the energy density of the global
strings is logarithmically divergent, while the gauge string energy density
is localized3. In this section we derive some quantities relevant for global

3There is a theorem related to the existence of non-localized stable configurations called
Derrick’s theorem, see Ref. [9] for details.
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Figure 2: Degenerate circle of minima in the mexican hat potential related
to the broken U(1) symmetry. Figure adapted from Ref. [9].

strings and needed in describing axionic strings.

Theory with a complex scalar field S and a global U(1) symmetric Lagrangian
density with no gauge fields present is described the model already discussed:

L = −∂µS∗∂µS − V (S), (40)

where the symmetry breaking potential is

V (S) =
1

4
λ
(
|S|2 − v2

S

)2
. (41)

Here vS is the vacuum expectation value of the field S and we have neglected
temperature correction terms.

As discussed earlier, during the SSB the field rolls down towards the newly
developed minimum. In the case of a complex scalar field, the degenerate
minima corresponds to a circle in the bottom of the mexican hat potential –
see Figure 2. The phase transition mechanism does not determine the phase
of the complex scalar, as the vacuum expectation value depends only upon
|S|. We are thus left with a phase degree of freedom θ, and the string is
formed from this winding around the bottom of the potential. We can then
seek a string solution, which we assume for simplicity to be a cylindrically
symmetric and static configuration. For a straight static string lying along
the z-axis we have the ansatz [9]

S(t, ~x) = S(r, θ) = vSf(r)einθ, (42)

where (r, θ) are given in the standard polar coordinates and n is an integer,
called the string winding number, that counts the number of cycles around
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the non-trivial region of the false vacuum. The field S approaches vS far from
the false vacuum, which acts as the string core, so the wanted asymptotic
behaviour of the unknown real-valued function f(r) is [9]

f(r)→
{

1, r →∞
0, r → 0.

(43)

The equation of motion for the complex scalar field S written in the spherical
coordinates reduces to the following when considering the ansatz (42) in a
flat Minkowski space:

r̃2∂
2f(r̃)

∂r̃2
+ r̃

∂f(r̃)

∂r̃
− n2f(r̃)− r̃2f(r̃)

(
f 2(r̃)− 1

)
= 0, (44)

where r̃ =
√
λ/2vSr. It happens that the winding numbers n = ±1 corre-

spond to the lowest energy string configurations. We will consider only the
case n = 1. For a discussion on the higher valued winding numbers, that
lead to a more complex inner string structure, see Ref. [9].

We do not know the explicit solution for Eq. (44), but we can use the asymp-
totic behaviour of the function f(r) to obtain an approximative solution for
small r [9]. In this case we can linearize the Eq. (44) in the limit where
r̃ → 0 by dropping the f 3(r̃) term. This gives us a familiar Bessel differen-
tial equation with an asymptotic form for the solution given by the Bessel
function of the first kind J1(r̃):

f(r̃) ' C1 × J1(r̃) ≈ C1 ×
1

2

(√
λ/2vSr

)
∼
√
λvSr, (45)

where C1 is a constant with a value O(1) [9]. The deviation from the asymp-
totic limit can be interpret as the width of the string core [9]

δs ∼
(√

λvS

)−1

, (46)

which will appear in the string energy density that we will derive next.

Let us compute the energy per unit length of a global string. On length scales
larger than the string core width we can neglect the details of the internal
structure of the string and the stress-energy tensor can be computed following
Ref. [10]. In this case the effective stress-energy tensor for a straight string
lying in the z-axis is

T̃ µν ≡ δ(x)δ(y)

∫
T νµ dx dy. (47)
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By using the invariance under the Lorentz boosts in the z-direction and the
conservation of stress-energy tensor4, ∂νT

µν = 0, it can be shown that the
only non-zero components of the effective tensor are T̃ 0

0 and T̃ 3
3 . These are

then interpreted as the energy density, T̃ 0
0 = ρ, and pressure T̃ 3

3 = −p, and
one can also show that they are equal T̃ 0

0 = T̃ 3
3 . The pressure is then interpret

as the string tension, which is (up to a sign) equal to the energy density of
the string. The effective stress-energy tensor can then be written as [10]

T̃ µν = µsδ(x)δ(y)× diag(1, 0, 0, 1), (48)

where µs is the linear energy density of the string

µs =

∫
T 0

0 dxdy = −
∫
T00dxdy. (49)

By using the canonical stress-energy tensor

Tµν(x) =
∑
i

∂L
∂ (∂νφi)

∂µφ
i − gµνL. (50)

in the static string case, described by Eq. (44), the linear energy density
reduces to

µs = −
∫
L dxdy =

∫
dxdy (∂µS

∗∂µS + V (|S|))

=

∫ ∞
0

∫ 2π

0

drdθ r

[
∂S

∂r

∂S∗

∂r
+

1

r2

∂S

∂θ

∂S∗

∂θ
+ V (|S|)

]
=

∫ ∞
0

dr2πv2
Sr

[(
∂f(r)

∂r

)2

+
f 2(r)

r2
+

1

4
λv2

S

(
f 2(r)− 1

)2

]
. (51)

Assuming that the function f(r) changes all at once from one asymptotic

value to another, i.e. from zero to one at r = δs '
(√

λvS

)−1

, the above

integral yields

µs ≈
π

4
v2
S +

[
2πv2

Slog(r)
]∣∣∞
r=δs

. (52)

As we see, the energy density diverges logarithmically and we must impose
a cut-off L at some large radius. This logarithmic divergence arises from the
long-range interactions of the Goldstone boson field and it is not present in

4Here we assume negligible gravity and cartesian coordinates.
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the case of standard gauge strings [9]. In a cosmological setting this imposed
cut-off L, that characterizes the length scale of the string, can be thought as
the distance between neighbouring strings or as the curvature radius of the
strings. We expect that the length scale L is comparable to the horizon scale,
i.e. L ∼ H−1 ∼ t. In the literature it is usually assumed that in the case of
global strings one can neglect the contribution of the string core. Then the
linear energy density is given by

µs ≈ 2πv2
S log

(
L

δs

)
. (53)

3.4.2 Global string evolution

The study of the local and global string evolution has a long history with
semianalytical and numerical studies done by several groups. The gauge
strings have gotten more attention, but according to field-theoretic simula-
tions these two types of strings have many similarities. Their dynamics do
not differ greatly on cosmological scales, and the main difference between
them is the enhanced radiative decay of the global strings into the Nambu-
Goldstone bosons. Due to the shared similarities, one usually assumes that
the global U(1) strings, or in our case axionic strings, behave approximately
as local Nambu strings. [9, 11]

The strings that emerge from the phase transition form a complicated string-
network that permeates through the entire Universe. After formation the
whole network is comprised of two main components: an infinite network of
long strings and smaller closed string loops forming a sub-dominant compo-
nent. How the whole network evolves in the early Universe depends on the
details of the model, but the basic picture is quite well understood.

If the strings interact with other particles in the primordial plasma and the
symmetry breaking scale is high enough, they go through an epoch, where
the strings experience a damping force from the radiation background. Dur-
ing this damped evolution epoch string loops will decay and any possible
substructure in the long-string network is smoothened out. At later times
the effect of damping forces will be negligible and the long strings can move
more freely and develop relativistic velocities. Through the frequent inter-
section and reconnection of strings the long-string networks fragment into
string loops, which can then further fragment into smaller configurations.
For global U(1) string loops the main energy-loss mechanism is the radia-
tion to NGBs in just O(10) oscillations. The emission of the NGBs is also
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possible for long strings, as they are perturbed by small-scale “kinks“. This
mechanism prevents the string-network from dominating the overall energy
density of the Universe. However, string domination is possible in certain
models where strings are non-intercommuting, meaning that they can just
pass through each other [9].

A well established observation in the literature is that the local and global
string networks enter the so-called scaling solution, where the large-scale
structure scales with the horizon scale [9]. In this regime the energy density
of the long-string network is described by

ρs =
µs
L2

= ξs
µs
t2
, (54)

where the scaling parameter ξs essentially counts the average number of long
strings in a Hubble volume [12].

There are several approaches and different interpretations discussed in the
literature when studying the evolution of global strings and the produced
number of NGBs. The standard approach used is to start from either the total
string network density consisting of the long string and string loop energy
densities, or just the long string energy density assuming that it dominates
the system, and numerically follow the evolution of these components. The
procedure with slightly different methods in axion context is described for
example in Refs. [9, 11, 13] and Refs. [12, 14]. Here we will follow one of
these, and assume that the long-string energy density dominates and evolves
according to [14]

dρs
dt

= −2H
(
1 + 〈v2〉

)
ρs − Γloopρs − ΓNGρs, (55)

where 〈v2〉 is the average of the string velocity squared, Γloop is the loop
production rate and ΓNG is the direct emission rate of NGBs. If we neglect
the NGB and loop production terms, the string evolution is governed by

dρs
dt

= −2H
(
1 + 〈v2〉

)
ρs, (56)

where the first term on the right-hand side takes into account the dilution
(−3Hρs) and stretching (Hρs) of the strings. The equation of state param-
eter for these strings is weos,string = −1/3 + 2/3〈v2〉.
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Figure 3: A numerical simulation of a U(1) cosmic string network, that
consists of infinite strings and finite string loops. Figure from Ref. [5].

3.5 Domain walls

3.5.1 Examples

The simplest one-dimensional Goldstone model for a real scalar field φ is
given by the Lagrangian density

L = −1

2
∂µφ∂

µφ− V (φ). (57)

The symmetry-breaking potential V (φ) has the standard double-well form

V (φ) =
1

4
λ
(
φ2 − v2

φ

)2
, (58)

and it has a discrete set of degenerate minima. The potential above breaks
the discrete Z2 reflection symmetry when the field φ adopts one of the two
possible values, 〈φ〉 = ±vφ. In a cosmological setting the domain wall forms
between the different causal regions, where the field obtains different value in
the phase transition. The transition region where the scalar field smoothly
transfers from one vacuum state to another is interpret as a domain wall.

Let us consider an infinite static wall lying in the (x, y)-plane located at
z = 0. The scalar field solution φ(z) describes a kink-like wrinkle that is
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localized around z = 0, and where the field interpolates between the two
vacuum state, that are localized at the spatial infinity, z → −∞, φ → −vφ
and z →∞, φ→ vφ. The equation of motion for φ(z) reads

∂2φ

∂z2
− ∂V (φ)

∂φ
= 0. (59)

This has the solution

φ(z) = vφtanh
[√

λ/2vφz
]
. (60)

Combining the above with the canonical stress-energy tensor given in Eq.
(50) and the Lagrangian in Eq. (57) allows us to write the stress-energy
tensor as

Tµν =

(
dφ

dz

)2

diag(−1, 1, 1, 0). (61)

From this follows for the surface density of a domain wall

σw = −
∫
T00dz =

4

3

√
λ

2
v3
φ. (62)

The thickness of the wall is characterized by the argument of the hyperbolic
tangent solution in Eq. (60)5 through

δw ∼
(√

λ/2vφ

)−1

∼
(√

λvφ

)−1

. (63)

Let us next consider a more complicated model for a complex scalar field S
that is related to our discussion on axion models. We assume that the field S
is again of the form given in Eq. (42), and we consider the following periodic
ZN -symmetric (when N > 1) Lagrangian:

LS = −∂µS∗∂µS − V (S) + 2
m2v2

S

N2
[cos(Nθ)− 1] , (64)

whereN is an integer. The potential V (S) is again of the standard symmetry-
breaking form, and we do not specify here the source of the periodic mass
term. In axion models the periodic mass term arises from the periodic QCD
vacuum (see Sections 4 and 5). We will consider a potential of this form when
discussing the production of axions from the domain wall configurations.

5Keeping the factor of
√

2 varies within literature, e.g. Ref. [5] keeps it, but Ref. [9]
neglects it.
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If we assume that m2v2
S � λv4

S the above Lagrangian has an approximate
(global) U(1) symmetry, broken by the periodic mass term. At low energies
where the field is trapped in the bottom of the mexican hat potential we can
set f(r) = 1 [9]. The phase θ of the field S that is left free can be interpret
as a new field obeying the following Lagrangian:

Lθ = −v2
S∂µθ

∗∂µθ + 2
m2v2

S

N2
[cos(Nθ)− 1] . (65)

The potential in Eq. (65) has N -degenerate minima θ = 2πn/N , with n =
0, 1, . . . , N − 1. The regions in the Universe with these N distinct vacua are
separated by domain walls [15].

It might not be apparent why domain walls are formed even in the case
N = 1. One would expect that as there is only one vacuum, there is no
reason for the existence of domain walls. However, in axion models the
symmetry-breaking potential V (S) leads to the formation of strings that
emerge from the winding of the bottom of the mexican hat potential, where
θ changes by 2π around the false vacuum. The periodic symmetry-breaking
term then leads to the strings being attached to N domain walls. Now the
domain walls will form between regions with phases θ differing by more than
2π [16], with both sides of the wall being in the same vacuum.

There actually is an analytic solution for the equation of motion obtained
from Eq. (65) in the case of a static thin wall:

θ =
2πn

N
+

4

N
arctan(exp(mz)). (66)

From this one obtains the domain wall surface energy density:

σw = −
∫
T00dz = 2v2

S

∫ (
dθ

dz

)2

dz = 16
mv2

S

N2
. (67)

An example of a periodic potential that gives rise to domain walls is the
sine-Gordon model [9], whose Lagrangian is given by Eq. (64) when N = 1.

3.5.2 Domain wall evolution

The cosmological string evolution coheres on some level with the evolution
of the domain wall systems. The domain wall configurations can collide and
reconnect, possibly accompanied with the production of particles. Walls also
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(a) (b) (c)

Figure 4: The one-dimensional Goldstone model. (a) potential in Eq. (57),
(b) tanh-solution in Eq. (60) and (c) surface density in Eq. (62).

go through a damped epoch, where their velocities are slowed down by the
radiation background. For Z2-walls one expects the evolution of domain
walls to be scale-invariant and the typical size of walls to be of the horizon
scale, while the evolution of ZN -walls might lead to different outcomes.

The domain wall configurations usually start to dominate the energy density
of the Universe, which does not agree with the observations. This scenario
can be avoided if there is an inflationary period that dilutes away the domain
wall density. The wall domination can also be avoided in some hybrid models,
where the domain walls are attached to or bounded by cosmics strings, i.e.
the domain walls are part of a larger string-wall network [9].

These string-wall configurations are formed in two stages. First the strings
are formed in the very early Universe in a phase transition, where for example
global U(1) breaks. These strings follow the evolution described in Section
3.4.2 and approach the scale-invariant evolution. The string-bounded do-
main walls emerge then from a later phase transition, which can arise from a
potential such as in Eq. (64). The evolution of these configurations obviously
depends on the details of the model, but in certain models the string-wall net-
work quickly fragments into smaller pieces by self-intersections, which then
decay via the preferred channel to Nambu-Goldstone bosons or gravitational
waves. This is usually the case with models given by Eq. (64) with N = 1.
This is relevant for the axionic string-wall configuration studies [15, 17, 9].
However, within the axion models, usually with N > 1, it is possible to have
long-lived configurations that are incompatible with the standard cosmolog-
ical picture [15].
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4 The strong CP problem and the Peccei-

Quinn solution

The axion model provides an elegant solution to the so-called strong CP
problem. This problem has its groundings in the so-called U(1)A problem,
which was solved in the 1970’s when the studies revealed the complex struc-
ture of the low-energy QCD vacuum. In this chapter we describe in detail
these two problems, and then move to study the Peccei-Quinn mechanism
which solves the strong CP problem in terms of the axion field.

4.1 The QCD Lagrangian and the U(1)A problem

The standard QCD Lagrangian that describes the strong interactions of
quarks and gluons is given by

LQCD = −1

4
Ga
µνG

µν
a +

∑
r

ψ̄ar

(
i /D

b
a −mrδ

b
a

)
ψrb, (68)

where ψar is the quark with a flavour r, colour charge a and mass mr. The
covariant derivative /D has the form

/D
b
a = γµ

(
∂µδba + igs

1

2
λiabG

µ
i

)
, (69)

where Ga
µ are the gluon fields and λiab are the SU(3) generators. The gluon

field strength tensors Ga
µν are given by

Ga
µν ≡ ∂µG

a
ν − ∂νGa

µ − gsfabcGb
µνG

c
µν , (70)

where fabc are the SU(3) structure functions.

In the massless limit mr → 0 the Lagrangian (68) has a global symmetry
U(1)V ⊗U(1)A. Here U(1)V denotes the singlet vector transformation under
which the chiral fields, ψR/L ≡ (1/2)(1± γ5)ψ, transform as

ψr,R → ψ′r,R = eiαψr,R, ψr,L → ψ′r,L = eiαψr,L, (71)

and U(1)A refers to the singlet axial transformation which acts differently on
the chiral fields:

ψr,R → ψ′r,R = e−iαψr,R, ψr,L → ψ′r,L = eiαψr,L. (72)
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The limit of vanishing quark masses is not realized in nature, but for the
lightest quarks u, d and s the symmetries U(1)V and U(1)A, that are part of a
larger symmetry group U(3)V⊗U(3)A

6, are approximative symmetries as the
light-quark masses are small compared to the QCD scale ΛQCD. It turns out
this almost agrees with what is seen experimentally. The vector symmetry
U(1)V is invariant, and through the Noether’s theorem it corresponds to
the baryon number conservation. The spontaneous breaking of the subgroup
SU(3)V⊗SU(3)A due to the formation of quark condensates to a single group
SU(3)V is also seen as the emergence of the eight massless Nambu-Goldstone
bosons according to the Goldstone’s theorem. The small, but non-zero mass
terms explicitly break the symmetry, and what is observed are the eight
massive pseudo-Nambu-Goldstone bosons: the three pions π0, π±, four kaons
K0, K̄0, K± and the eta meson η. [18, 19]

However, what is not seen is any suitable ninth Nambu-Goldstone boson
related to the spontaneous breaking of U(1)A. Closest candidate is the eta
prime meson η′, which has the right quantum numbers but is too heavy,
mη′ ≈ 960 MeV, as one can find the following upper-bound for the U(1)A

NGB mass [4]
mA .

√
3mπ. (73)

Historically, this question of the missing pseudo-NGB is dubbed as the U(1)A

problem [18, 20, 21].

It then seems that U(1)A is not a genuine symmetry of QCD, albeit in the
massless quark limit it seems to be present. The resolution to this problem
begins from the fact that in the quantized theory the symmetry U(1)A is
actually anomalously broken by the Adler-Bell-Jackiw (ABJ) anomaly [22].
The axial current Jµ5 corresponding to the axial symmetry gets contribution
from a triangle-loop diagram, where two gluons are coupled to fields through
a quark loop. It is similar anomalous-diagram that allows the neutral pions to
decay into two photons, π0 → γγ. Due to the chiral anomaly the divergence
of the axial current is non-vanishing7:

∂µJ
µ
5 = C

g2
s

32π2
Ga
µνG̃

µν
a , (74)

where C is a numerical constant and G̃µν
a = (1/2)εµναβGαβa is the so-called

dual of the gauge field strength tensor. [18, 20, 22]

6If we consider the three lightest quarks Nf = 3, in a general case we would have the
symmetry group U(Nf )V ⊗U(Nf )A that can be decomposed into groups SU(Nf )V/A and
U(1)V/A.

7Note that there is also an additional term usually included that vanishes in the zero-
mass limit, 2imψ̄γ5ψ.
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The term GµνG̃
µν can actually be written as the divergence ∂µKµ, where Kµ

is the Chern-Simons current that can be expressed as [23, 24]

Kµ =
1

16π2
εµναβ

(
GaνGaαβ +

gs
3
fabcG

aνGbαGcβ
)
. (75)

When integrating over the divergence of Eq. (75) in the theory action the
integral can be written as a surface-integral. One can then find boundary
conditions, e.g. Gµ

a = 0 at spatial infinity, that result in the surface-integral
vanishing without affecting physics [23] – again restoring the presence of the
U(1)A symmetry. However, here is where the subtleties of the QCD vacuum
come to play. The standard QCD vacuum is not gauge-invariant, and one
can find gauge conditions that allow the term in Eq. (74) to be non-vanishing
and to have physical consequences [20, 22].

The proper QCD vacuum can be constructed as a linear combination of the
|n〉 vacua, which is usually referred to as the θ-vacuum:

|θ〉 =
+∞∑

n=−∞

e−inθ |n〉 , (76)

where θ ∈ [0, 2π] and n is the winding number. As one can see, this vacuum
is periodic as |θ + 2π〉 = |θ〉. The non-vanishing configurations correspond
to topologically non-trivial solutions of the classical field equations in the
4-dimensional Euclidean space called instantons. These solutions describe
transitions between the different vacuum states. These non-trivial transitions
yield a non-vanishing value for the total-derivative integral in the action [18].
If one takes into account for the possible transitions in the θ-vacuum, it is
equivalent to including the so-called theta term in the theory Lagrangian:

Lθ = θq = θ
g2
s

32π2
Ga
µνG̃

µν
a . (77)

Here q is the so-called Pontryagin index that distinguishes between the dif-
ferent homotopy classes, i.e. is defined as the difference between the different
vacuum states corresponding to different winding numbers (see, e.g. Refs.
[18, 20, 25]).

4.2 The strong CP problem

As discussed above, due to the complex structure of the QCD vacuum one
has to include the θ-term into the total QCD Lagrangian

LQCD,tot = LQCD + Lθ. (78)
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The theta term violates both parity P and charge-parity CP conservation8

as the GG̃ term is CP-odd, while in the “naive“ QCD Lagrangian P and CP
are automatically conserved. Before discussing the effect of this term, let us
study more closely how the θ parameter gets additional contribution from
the weak interactions.

Let us first allow the fermion mass to be complex, i.e. mf = |mf | exp(iϕf ),
where ϕf is the phase of each fermion mass in the diagonal mass matrixM.
Then the fermion mass part of the Lagrangian can be written as

Lm,f = −1

2

∑
f

mfψf
(
1 + γ5

)
ψf −

1

2

∑
f

m∗fψ
(
1− γ5

)
ψf (79)

= −
∑
f

|mf |ψfeiϕfγ
5

ψf . (80)

If we redefine the fermion fields ψf by making the U(1) transformation given
in Eq. (72), i.e.

ψf → ei(αf/2)γ5ψf , ψf → ψfe
i(αf/2)γ5 , (81)

we see that the mass Lagrangian transforms as

Lm,f → Lm,f = −
∑
f

|mf |ψfeiαfγ
5

eiϕfγ
5

ψf . (82)

Due to the axial U(1) anomaly the effect of this redefinition changes the
path integration measure and one gets additional anomaly-type terms in
the Lagrangian [18, 26]. The transformation (81) is then equivalent to the
following shift in the QCD Lagrangian [18]

θ → θ +
∑
f

αf . (83)

From Eq. (82) we see that the chiral transformation changes ϕf to ϕf + αf .
As θ is not invariant under chiral transformation and a change of variables in
the path integral cannot yield any change in physics, we have that physical
observables cannot depend on the parameter θ alone [18]. However, we have

8Parity transformation P: inverting the spatial coordinates of a particle. Charge-
conjugation transformation C: interchanging a particle with its antiparticle
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that the quantity θ −
∑

f ϕf is invariant. Equivalently, we can say that the
following quantity remains invariant under U(1)A

e−iθ
∏
f

mf = e−iθ
∏
f

|mf | eiϕf = e−i(θ−
∑
f ϕf )

∏
f

|mf | . (84)

Let us then choose ϕf = −αf and define the effective angle θ̄ as

θ̄ ≡ θ +
∑
f

αf = θ −
∑
f

ϕf = θ − Arg

(∏
f

mf

)
= θ − Arg (detM) . (85)

Now the total QCD Lagrangian contains a gauge-invariant, physically rele-
vant CP violating term

Lθ̄ = θ̄
g2
s

32π2
Ga
µνG̃

µν
a . (86)

Through an effective pion-nucleon coupling the CP violating term (86) gives
an observable neutron electric dipole moment (NEDM). In the literature
there are numerous different estimates on the θ̄-dependent dipole moment
dn. One of the most recent and conservative ones being [3]

dn ≈ 4.5× 10−15θ̄ e cm. (87)

The experimental observations set a tight upper bound |dn| < 2.9×10−26 e cm
[27]9, which translates into the upper bound for θ̄,

θ̄ < 0.6× 10−11. (88)

Such a small value for θ̄ is of course not forbidden, but from the first principles
there is no reason to expect that the two terms in Eq. (85) should almost
exactly cancel each other. Solving the U(1)A problem thus leads to a new
fine-tuning problem, or a naturalness problem [21], referred to as the strong
CP problem.

The proposed solutions in the literature to the strong CP problem can be
roughly divided into two categories: the spontaneous (or soft) breaking of the
CP symmetry and an additional chiral symmetry. The former one assumes

9Different methods are used to measure NEDM, the one used by Ref. [27] gives most
stringent limits, but there are other methods that give similar results, see e.g. Ref. [28].
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that the CP symmetry is spontaneously broken and therefore one could set
θ = 0 [23]. This introduces additional CP-violating phases into the fermion
mass parameters, which in itself is not a problem. However, it seems that the
weak interaction CP-violation agrees with the one contained in the Cabibbo-
Kobayashi-Maskawa matrix [21, 3].

For the additional chiral symmetry there have been mainly two propositions
in the literature: one of the lightest quarks is massless or that the Standard
Model has a new global U(1) chiral symmetry10. We see from Eqs. (84) and
(85) that in the case of a zero-mass quark the θ parameter is not physical
and it can be removed with field redefinitions. However, the possibility of
a zero-mass quark is not preferred by the observations or lattice-simulations
[3, 31]. A more interesting solution is then the latter one, where a new global
U(1) symmetry is introduced to the theory. This was first studied by Peccei
and Quinn [1, 2], and their solution to the strong CP problem is referred to
as the PQ-mechanism.

4.3 The Peccei-Quinn solution and the axion

The original idea of Peccei and Quinn [1, 2] was effectively to promote the
coupling θ̄ to a dynamical parameter. The dynamical θ̄ theory means that the
different values of θ̄ do not describe different theories with different coupling
constants, but a single given theory, where θ̄ distinguishes different vacuum
states with different energies [21]. In Ref. [1] it was argued that from the two
possible stationary points (0 and π), which are obtained from the effective
potential given by the anomalous gluon term, the true vacuum lies at θ̄ = 0.
This has later been confirmed for example in Ref. [32]. This idea was taken
up by Weinberg [33] and Wilczek [34], who showed that the mechanism
proposed by in Refs. [1, 2] leads to the addition of a new pseudoscalar11

particle, the axion.

The PQ mechanism is based on the idea that the theory contains an addi-
tional global U(1) symmetry, that suffers from the chiral (or axial) anomaly
described above. However, because quarks are not massless, it happens that
the Standard Model does not contain such a symmetry. This additional sym-
metry, called the Peccei-Quinn symmetry or U(1)PQ, is usually implemented

10Recently there have been new propositions that introduce high-colour versions of the
conventional QCD, that are still conceptually close to these considerations – see Refs.
[29, 30].

11Pseudoscalars are CP-odd, i.e. a→ −a under a CP transformation.
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into the theory by additional scalar fields in the Higgs-sector. We will dis-
cuss these different ways of implementing the symmetry when we study the
different axion models in the next chapter.

Here we will follow the literature [21, 23] and sketch the PQ mechanism with
the already added axion field. Throughout this thesis we will consider the
axion field a(x) as the phase degree freedom of a new complex scalar field S,
that we will refer to as the PQ field. The field has the SSB-type potential
discussed in Section 3.1, and we present the field S in the form

S(x) = η(x)exp

(
i
a(x)

vS

)
, (89)

where vS = 〈0|S|0〉 is the symmetry breaking scale of the global U(1)PQ

symmetry. As discussed in Section 3.1, due to the SSB the axion field has a
shift symmetry a(x)→ a(x)+αvS. In addition to the spontaneous symmetry
breaking, U(1)PQ is also explicitly broken by the ABJ-anomaly and the low-
energy instanton effects, meaning that the axion field acquires the anomalous
coupling to gluons. The Lagrangian of the theory has then the form

LQCD,tot = LQCD + Lθ̄ + La (90)

= LQCD + θ̄
g2
s

32π2
Ga
µνG̃

µν
a +

a

vs

g2
s

32π2
Ga
µνG̃

µν
a −

1

2
∂µa∂

µa, (91)

where we have for now neglected other possible interaction terms, which will
be discussed in the next chapter.

One can then show that the effective potential for the axion field has a
minimum at 〈a〉 = −vS θ̄ [23]

〈∂Veff

∂a
〉 = − 1

vS

g2
s

32π2
〈Ga

µνG̃
µν
a 〉
∣∣∣∣
〈a〉=−vS θ̄

= 0, (92)

where 〈a〉 = 〈0|a|0〉. Due to the periodicity of θ̄, 〈a〉 is periodic with 〈a〉 =
2πkvS, where k is an integer. When we substitute the physical axion field
aphys = a − 〈a〉 [23] to the Lagrangian (91) the θ̄ term vanishes (in the
following we will denote aphys with a). We have thus seen that the axion field
can solve, through the PQ mechanism, the strong CP problem.
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Figure 5: Triangle loop diagram corresponding to the anomalous axion-gluon-
gluon coupling.

5 The axion

In this chapter we shall consider the axion in more detail. We start by re-
viewing the different propositions how to implement axions into the Standard
Model. First we consider the “visible“ axion model [1, 2, 33, 34], which pre-
dicts an axion with a mass of the electroweak scale. The model is, however,
ruled out by the experimental data, and is replaced by the “invisible“ axion
models, which predict a very light axion that avoids the collider constraints.
We also discuss the general properties and couplings of this light axion, and
conclude the chapter by presenting some astrophysical bounds for the axion
models and by introducing different experimental setups that try to directly
detect axions. The bounds coming from the cosmological considerations are
discussed in the next chapter, where we study the role of axions as a cold
dark matter candidate.

5.1 Axion models

5.1.1 The visible axion model

The original axion model was formulated by Peccei and Quinn [1, 2], Wein-
berg [33] and Wilczek [34]. This model introduces the Peccei-Quinn symme-
try through two Higgs doublets Hu and Hd, that give masses to the up- and
down-quarks. The relevant parts of the Yukawa-sector of the Lagrangian are
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[23]
LY = Γuij q̄LiHuuRj + Γdij q̄LiHddRj + ΓlijL̄LiHdlRj + h.c., (93)

where qL and LL are the left-handed SU(2) quark and lepton SM doublets,
uR, dR and lR are the corresponding right-handed quark and lepton fields.
The quark sector of the Lagrangian (93) remains invariant under the chiral
U(1)PQ transformation

uL → eiΓ1/2uL, uR → e−iΓ1/2uR (94)

dL → eiΓ2/2uL, dR → e−iΓ2/2dR (95)

Hu → eiΓ1Hu, Hd → eiΓ2Hd. (96)

In this model the axion field a is not realized as a phase of a new complex
scalar field as in Eq. (89), but as a common phase field of the two doublets
[23]:

Hu ∼ vue
iax̃/vEW [1 0]T , Hd ∼ vde

ia/x̃vEW [0 1]T , (97)

where x̃ = vd/vu and vEW =
√
v2
u + v2

d ≈ 246 GeV. In this model the
spontaneous breaking of the U(1)PQ symmetry occurs simultaneously with
the electroweak symmetry breaking when the doublets Hu and Hd acquire
non-zero vacuum expectation values vu and vd. This results in observational
signals of axions, and is in the literature therefore dubbed as the visible
axion [21]. These axions interact for example with mesons, and therefore
alter the branching ratios that can be measured to a high precision. The
constraints coming for example from the K, J/Ψ and Υ meson decays rule
out the visible axion models [21, 23]. These constraints can be avoided if
the symmetry-breaking scale of U(1)PQ is high enough, and the axions are
correspondingly very light and interact very weakly. This is usually achieved
by considering a complex scalar field S as in Eq. (89), which is singlet under
SU(2)L⊗U(1)Y . In the literature these models are referred to as the invisible
axion models.

5.1.2 KSVZ

The first invisible axion model, where the symmetry breaking energy scale is
high above the electroweak one, the so-called KSVZ model, was introduced
by Kim [35] and Shifman, Vainshtein and Zakharov [36]. In this model one
introduces a new heavy quark field Q and a new complex Higgs-like scalar
singlet S field. One also introduces a discrete R symmetry, QL → −QL,
QR → +QR, S → −S, that guarantees the absence of a bare-mass term
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mQQ̄Q [35]. The presence of a bare mass would spoil the realization of the
PQ symmetry.

The terms in the KSVZ model relevant to us are [37]

LKSVZ = −1

4
Ga
µνG

µν
a + θ̄

g2
s

32π2
Ga
µνG̃

µν
a + iQ̄γµ∂µQ−

1

2
∂µS

∗∂µS

− λS
(
S∗S − v2

S

)
2 + gsG

a
µQ̄γ

µλaQ− λQS
(
Q†LSQR + h.c.

)
, (98)

where Q is a heavy quark Dirac field and vS = 〈0|S|0〉. This Lagrangian is
invariant under the global chiral U(1)PQ symmetry:

QL → eiα/2QL, QR → e−iα/2QR, S → eiαS. (99)

Just to recap, we write the complex scalar field in its polar form as in Eq.
(89). At temperatures lower than vS, it is the radial part of the field η(x)
that freezes in the vacuum expectation value, while the phase of the field
remains free. As mentioned, we recognize the phase degree of freedom as
the axion field a(x), which is identified as the Nambu-Goldstone boson as-
sociated with the spontaneous breaking of U(1)PQ. For the axion field the
PQ-transformation given in Eq. (99) corresponds to the shift a→ a+ αvS.

After the spontaneous breaking of U(1)PQ we can write the part of the La-
grangian in Eq. (98) that contains the axion field as

LKSVZ,a = −1

2
∂µa∂

µa− vSλQS
(
Q†Leia/vSQR +Q†Re−ia/vSQL

)
. (100)

If we redefine the chiral heavy quark fields as

QL → eia/2vsQL, QR → e−ia/2vsQR, (101)

we see the heavy quark to obtain an effective mass, which is proportional to
the symmetry breaking scale of the PQ-field. This field transformation adds
both a derivative interaction term between axion and heavy quark fields and
also an anomaly-type term (see the discussion in the previous chapter):

LaGG =
g2
s

32π2

a

vS
Ga
µνG̃

µν
a . (102)

The disadvantage of this model might be the existence of a heavy quark with
a very large effective mass, mQ ∼ vSλQS, as vS � vEW ≈ 246 GeV, not well
motivated theoretically. Also, in this model the axions are entirely decoupled
from the other SM particles - apart from the generic low-energy axion-gluon
coupling. This may lead to the question why there is no tree-level coupling
of axions to SM quarks.
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5.1.3 DFSZ

Another invisible axion model is the DFSZ model, first proposed by Zhitnit-
sky [38] and Dine, Fischler and Srednicki [39]. Again the Standard Model is
made invariant under the U(1)PQ by additional Higgs sectors. In this case
the symmetry is implemented into the theory with two Higgs doublets, Hu

and Hd and a Higgs-like scalar singlet S.

The most general potential for two doublets and a singlet Higgs fields can be
written as [37]

V (Hu, Hd, S) = λu
(
H†uHu − v2

u

)
2 + λd

(
H†dHd − v2

d

)
2 + λS

(
S∗S − v2

S

)
2

+ λuu
(
H†uHu

) (
H†dHd

)
+ λud

(
H†uHd

) (
H†dHu

)
+
[
λuS

(
H†uHu

)
+ λdS

(
H†dHd

)]
S∗S + λ

[(
H†uHd

)
S2 +

(
H†dHu

)
(S∗) 2

]
,

(103)

where λi’s are dimensionless parameters. The corresponding relevant Yukawa-
sector, where the light-quarks couple directly to the two Higgs doublets is
given in Eq. (93).

The above Higgs-potential (103) is invariant under the transformation

Hu → eiX1Hu, Hd → eiX2Hd, S → ei(X1−X2)/2S. (104)

In order to maintain the invariance of the Yukawa-sector, this transformation
should be accompanied by the following transformation of the right-handed
quark fields

uR → e−iX1uR, dR → e−iX2dR, lR → e−iX2lR. (105)

The left-handed fields being inert.

Again, below the PQ phase transition we assume the radial part of the sin-
glet S to acquire a certain vev vS, while the phase remains free. After
the electroweak phase transition at the phenomenologically required scale
vEW =

√
v2
u + v2

d � vS, there exist additional physical neutral Higgs fields
and orthogonal Nambu-Goldstone bosons as the phase degrees of freedom
[40]. This mixing of the two phases is due to the last term in the Lagrangian
(103). One of these massless degrees of freedom is absorbed into the gauge
bosons, while the other is the axion-like field [40]. By redefining the Higgs
fields and lepton fields, like in Eq. (101), one adds a derivative interaction
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term between the axion and SM quarks and the needed anomalous axion
couplings [37].

Advantage of this model is that one does not have to include any new ex-
otic heavy quarks, as the SM fermions are assumed to carry the PQ-charge.
However, some parameter fine-tuning is required to keep vS � vEW [41]. Ad-
ditional insight may come from the fact that two-Higgs doublet models are
studied in the physics beyond the Standard Model, especially in the super-
symmetric extensions.

5.1.4 A general low-temperature model

While the high-energy axion model is not known, we can use an effective
low-energy Lagrangian for the phenomenological studies. If we continue to
interpret the axion as a phase degree freedom of the PQ-field S, we can
write the low-energy axion Lagrangian during the epoch between the EW
and QCD phase transitions as

La = −1

2
∂µa∂

µa+
g2
s

32π2

a

fa
Ga
µνG̃

µν
a + Lint, (106)

where Lint is given in Eq. (115). Around and after the confinement of the
quarks and gluons the instanton-induced effective potential (see Section 5.2)
can be calculated yielding:

La = −1

2
∂µa∂

µa− f 2
am

2
a

[
1− cos

(
a

fa

)]
+ Lint + Laπ. (107)

Where we have added the interaction between axions and pions [5], which
we shall leave unspecified for the present.

Note that compared with the earlier case we have replaced the vacuum ex-
pectation value vS with the PQ-symmetry breaking scale parameter12 fa,
defined as

fa ≡
vS
N
, (108)

where N counts the number of PQ-charged particles species. For example,
by adding another heavy quark to the standard KSVZ model with one exotic
quark one also gets additional anomaly-terms as in Eq. (102). This means
that in the standard KSVZ model N = 1, while in the DFSZ model N = 6,
if there are three different quark and lepton families.

12Also referred to as the PQ scale or the axion decay constant.
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5.2 Axion mass and potential

The effective axion potential can be calculated, in principle, from Eq. (92),
but due to the complex non-perturbative nature of the low-energy QCD
phenomena one cannot get an exact analytical expression [11]. In this thesis
we will follow the standard way to express the axion potential:

V (a) = f 2
am

2
a(T )

[
1− cos

(
a

fa

)]
, (109)

where we have replaced the zero-temperature axion mass with a temperature-
dependent mass, as the instanton-effects generating the mass depend on the
temperature of the plasma. The periodicity of the potential is inherited from
the periodicity of the θ vacuum.

The axion mass can be computed by expanding the effective potential around
its minimum:

m2
a = 〈∂

2Veff

∂a2
〉 = − 1

fa

g2
s

32π2

∂

∂a
〈Ga

µνG̃
µν
a 〉
∣∣∣∣
〈a〉=−faθ̄

. (110)

The mass induced by the neutral pion mixing can be calculated using current
algebra methods [33, 42]. The standard estimate13 for the zero-temperature
axion mass in the standard KSVZ model is [43]

ma ≈
fπmπ

fa

(
z̃

(1 + z̃)(1 + z̃ + w̃)

)1/2

≈ 6× 10−6 eV

(
1012 GeV

fa

)
, (111)

where fπ and mπ are the pion decay constant and pion mass, z̃ ≡ mu/md ≈
0.48 [3, 31] and w̃ ≡ mu/ms ≈ 0.02 [31].

The zero-temperature axion mass is applicable only well after the QCD phase
transition. The axion mass that is generated by the non-perturbative instan-
ton effects in the primordial quark-gluon plasma are temperature dependent.
As mentioned, to study the temperature-dependent axion mass in the com-
plicated QCD plasma one usually needs to rely on lattice simulations. The
axion mass dependency on the instanton effects is highly non-linear, as in
the high-energy limit the axion mass is usually considered to be given by
non-interacting instantons, while nearer the QCD confinement their interac-
tions need to be taken into account [11]. These complicated issues have led
to different mass-extraction methods yielding slightly different results (see
for example Ref. [44]).

13Usually referred to as the Bardeen-Tye estimate.
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In this thesis we use the parametrization for the temperature-dependent ax-
ion mass obtained in Ref. [11], where the interacting instanton liquid model
(IILM) is used. The dilute gas power-law approximation for the high-energy
regime is

m2
a(T ) = 1.68× 10−7

(
Λ4

QCD

f 2
a

)(
ΛQCD

T

)n
. (112)

where n = 6.68 and ΛQCD ≈ 400 MeV [11]. In the low-energy regime, where
the dilute gas estimate breaks down, the mass is given by

m2
a(T ) = 1.46× 10−3

(
Λ4

QCD

f 2
a

)(
1 + 0.50T/ΛQCD

1 + (3.53T/ΛQCD)7.48

)
, (113)

giving

m2
a(0) = 1.46× 10−3

(
Λ4

QCD

f 2
a

)
. (114)

For ΛQCD ∼ O(100) MeV this parametrization agrees with the standard
current algebra estimation given in Eq. (111).

5.3 The domain wall number

As discussed in Section 3.5, in a cosmological setting potentials with degen-
erate discrete minima might result in a domain wall formation. We see that
the cosine-potential given in Eq. (107) is periodic with 2πkfa, where k is an
integer. For the axion models considered here, i.e. Eq. (89), the domain wall
number NDW that gives the number of domain walls attached to strings, is
determined by the colour anomaly term N , i.e. N = NDW [15, 21].

In the standard KSVZ model, where there is one new exotic heavy quark,
the domain wall number is NDW = 1. This means that there is only one
minimum of the axion field near the QCD phase transition, and as mentioned
earlier, there is one domain wall related to each cosmic string that result
from the spontaneous breaking of the global U(1)PQ symmetry. However,
in the standard DFSZ model NDW = 6. As discussed earlier, the domain
wall number NDW is also related to the evolution of the string-wall network.
Assuming that the Peccei-Quinn symmetry is broken after inflation, in the
standard KSVZ model, NDW = 1, the formed string-wall configurations are
usually taken to be short-lived. However, in the DFSZ model, NDW > 1, it
is possible to have long-lived configurations – see Section 6.3
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Figure 6: Axion mixing with the bound state qq̄, which results in axions
mixing with neutral pions and thus axions having a small effective mass.
This mixing is present in all axion models due to the integral axion coupling
to the gluons.

5.4 Axion interactions

The effective Lagrangian for the interactions between axions and the Stan-
dard Model particles is given by14 [5]

Lint = −1

4
gaγaFµνF̃

µν+i
gaN
2mN

∂µa
(
N̄γµγ5N

)
+i

gaf
2mf

∂µa
(
ψ̄fγ

µγ5ψf
)
, (115)

where N and ψf represent the nucleon and fermion fields, respectively, F µν is
the electromagnetic field strength tensor and all the coupling constants gaγ,
gaN and gaf are proportional to f−1

a . Usually one is interested in the case
where fermion f is the electron.

A generic feature of axion models is the two-photon coupling of the axion,

Laγ = −1

4
gaγaFµνF̃

µν = gaγa ~E · ~B. (116)

This is the coupling through which the existence of axions is experimentally
studied.

The axion-photon coupling constant is given by [43, 46, 47]

gaγ =
α

2πfa

(
E

N
− 2

3

4 + z̃ + w̃

1 + z̃ + w̃

)
, (117)

14Sometimes one also includes an additional EDM-type term in the interaction La-
grangian, −(i/2)gdaN̄σµνγ

5NFµν [45].
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where α is the fine-structure constant. The quantities E and N correspond
to the electromagnetic and colour anomalies associated with the axion field.
The term E/N is a model dependent quantity that stems from the loop
triangle diagrams, and it is present in models where there are quarks and
leptons that carry both PQ charges (Xj) and electric charges (Qj). The
parameters E and N are given by [43]

E ≡ 2
∑
j

XjQ
2
jDj (118)

N ≡
∑
j

Xj, (119)

where Dj describes whether the fermion j in the triangle loop is a charged
lepton (color singlet, Dj = 1) or a quark (color triplet, Dj = 3).

We can see how the axion-photon coupling constant differs between the KSVZ
and DSFZ models. In the standard KSVZ model15 the PQ charge is car-
ried by the new exotic heavy quark fields that do not carry EM charge,
i.e. E = 0 and E/N = 0. However, in the standard DFSZ model the EM
charge carrying Standard Model fermions also carry a PQ charge, and one
has E/N = 8/3.

Two-photon vertex allows axions to decay into two photons, which allows us
to estimate the lifetime of axions. For KSVZ axions the order of magnitude
of the decay rate in this channel is given by [43]

Γa→γγ =
g2
aγm

3
a

64π
≈ 1.1× 10−24 s−1

(ma

eV

)5

. (120)

In terms of the age of the Universe tU, the average axion lifetime is then
given by

τa→γγ ≈ 2.1× 106tU

(
eV

ma

)5

. (121)

For masses ma ∼ O(10) eV or lower, axions are stable on cosmological time
scales and are viable candidates for dark matter.

As we recognize the axion as the Nambu-Goldstone boson relic of the bro-
ken U(1)PQ symmetry, there are derivative-type interactions, that include
derivatives of the axion field, present in the interaction Lagrangian (115)

15Note that there are also variations of the KSVZ model, where additional heavy quarks
that carry both charges are added. For example, one can consider a model with E/N = 2.
[43]
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that satisfy the shift a → a + constant. It is possible to express the deriva-
tive interactions in the Lagrangian in a different bilinear form through field
redefinitions [43]. In the literature these are often written in the lowest-order
pseudoscalar-bilinear form

Laf = −i
gaf
2

aψ̄fγ
5ψf ≡ −i

Cfmf

2fa
aψ̄fγ

5ψf

LaN = −i
gaN
2

aN̄γ5N ≡ −i
CNmN

2fa
aN̄γ5N,

where we defined the effective model-dependent PQ charges Cx = gaxfa/mx,
where x = f,N .

As axions do not couple to the SM fermions at tree-level in the KSVZ model,
one has CKSVZ

f = 0. These axion models, where the axion does not have a
tree-level coupling to fermions are usually referred to as the hadronic axion
models. However, the tree-level coupling is present in the DFSZ model, and
there the couplings to fermions are given by [43]

CDFSZ
e = CDFSZ

d = CDFSZ
s =

cos2β

Nf

(122)

CDFSZ
u =

sin2β

Nf

, (123)

where Nf is the number of families, usually taken to be Nf = 3, and β =
tan−1(x̃), where x̃ = vd/vu. The nucleon-axion couplings CN are given by
[43]

Cp = (Cu − η̃) ∆u+ (Cd − η̃z̃) ∆d+ (Cs − η̃w̃) ∆s (124)

Cn = (Cu − η̃) ∆d+ (Cd − η̃z̃) ∆u+ (Cs − η̃w̃) ∆s, (125)

where η̃ ≡ (1 + z̃ + w̃)−1. Here ∆q is the fraction of the proton spin carried
by a quark flavour q, obtained from the axial vector current matrix element
Sµ∆q = 〈p|q̄γµγ5q|p〉, where Sµ is the proton spin.

By plugging in the rough values for z̃, w̃ and ∆q [43], where q = u, d, s, we
obtain the following estimates for the effective axion-nucleon couplings for
hadronic and DFSZ axion models

CKSVZ
p ≈ −0.43, CKSVZ

n ≈ 0.002 (126)

CDFSZ
p ≈ −0.15− 0.45cos2β, CDFSZ

n ≈ −0.13 + 0.39cos2β, (127)
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Figure 7: Axion-photon coupling. Left: photons coupling to axions via the
pion mixing. Right: in models where the fermions carry both the PQ and
electric charges also the ABJ-anomaly triangle loops contribute to the axion-
photon coupling.

where we also used equations (122) and (123) with Nf = 3. We see that
despite the differences between the couplings in the models, the DFSZ and
KSVZ models are allowed to have comparable nucleon couplings.

One should note that there are large uncertainties involved with the quan-
tities ∆q and the above values are really rough estimates. Also, the values
of the coupling constants are sensitive to the ratio mu/md. This means that
the frequently quoted results from Ref. [43] in the literature are slightly
different that the ones obtained here, as Ref. [43] uses a larger value for
the ratio16. This varying range for the nucleonic charges was also noted in
Ref. [48], where they reported that for hadronic axions the couplings vary
between −0.51 . Cp . −0.36 and −0.05 . Cn . 0.1.

5.5 Astrophysical Bounds

After thirty years of axion studies the emergence of the direct detection ex-
periments and the cosmological high-precision measurements have allowed to
probe the axion model parameter space. The contribution of the astrophysi-
cal observables is still significant and in some cases gives the most stringent
axion parameter constraints. In this section we discuss how the astrophysical
objects, e.g. stars, act as distant laboratories for the axion models.

16For example, Ref. [43] obtains CKSVZ
n ≈ −0.04 with z̃ ≈ 0.568. However, the smaller

value for z̃ seems to be preferred according to Ref. [31]
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Figure 8: Feynman diagram of the Primakoff effect.

5.5.1 Axions from the Sun

If axions exist, they might be produced through different processes in the
Sun’s core. If the Sun were perturbed by the new pseudoscalar emission
channel, it would try to restore equilibrium by contracting, simultaneously
raising its temperature and nuclear energy liberation, resulting in an en-
hanced photon luminosity. This in turn would affect the lifespan of the Sun,
allowing to constrain the axion couplings so that the addition of axions does
not tarnish the Standard Solar Model.

For hadronic axions the dominant production process is the so-called Pri-
makoff process (see Fig. 8), where photons are converted into axions by
the external electromagnetic field generated by the charged particles in the
plasma [5]. For the DFSZ model also the Compton-like scattering γ + e →
a+ e and the electron bremsstrahlung e+ Ze→ Ze+ e+ a contribute [49].
Requiring the total axion luminosity to be less than the known solar lumi-
nosity leads to the limit gaγ . 1 × 10−9 GeV−1 [43] for the axion-photon
coupling behind the Primakoff process. In the DFSZ model this requirement
constrain the axion-electron coupling, gae . 4.5× 10−7 [49].

The solar neutrino production rate of 8B also constrains gaγ. Ref. [50] used
the neutrino flux measurements of the SNO (Sudbury Neutrino Observatory)
to obtain the limit gaγ . 7 × 10−10 GeV−1. All in all, the limits for gaγ
translate into a limit for the axion mass, roughly ma . O(10) eV.
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5.5.2 Globular clusters

A globular cluster is a gravitationally tightly bound collection of about 106

stars formed at about the same time. The globular clusters form spherical
halos around galaxies. The Milky Way halo consists of about 150 globular
clusters [43]. These clusters contain relatively old stars, which have already
exhausted their central hydrogen supply and have moved from the main
sequence (MS) to the red giant branch (RGB) and to the following horizontal
branch (HB) and asymptotic giant branch (AGB) stages. As with the Sun,
the addition of axions would affect the evolution of these stellar objects. It
happens that the RGB and HB stars offer an excellent way to probe the
axion parameter space.

As the RGB stars have used their central hydrogen supply, they usually de-
velop a degenerate helium core with a hydrogen burning shell that fuses hy-
drogen into helium [43]. During this phase the helium core grows in mass and
the core temperature and density increase. When the temperature and den-
sity of the star’s core are high enough, i.e. when the core reaches its so-called
limiting mass, the helium ignites and the helium burning commences17. If
axions exist, they provide an additional channel to transfer energy and could
stall or prevent the helium ignition. The axion cooling follows dominantly
from the electron bremsstrahlung, which can then be used to constrain the
axion-electron coupling, yielding an upper limit gae . 3× 10−13 [43]. For the
DFSZ model this corresponds to the constraint fa & 0.8 × 109 GeV cos2β
[51].

After the helium ignition the star with both the hydrogen burning shell and
helium burning core moves to the horizontal branch. The Primakoff effect
that converts photons in the plasma to axions, γ+Ze→ a+Ze, is present in
both RGB and HB stars. However, this conversion is negligle in RGB stars
compared with the bremmsstrahlung, and it is significantly more effective
in HB stars [51]. The addition of axions to the model would therefore give
HB stars an additional energy loss channel and could therefore decrease their
lifetime, and also decrease the number of HB stars compared with RGB stars.
Measuring the number of the RGB and HB stars yields an upper bound for
the photon-axion coupling constant, gaγ . 0.6× 10−10 Gev−1 [43].

17As the process of the helium ignition happens on a very short time scale, it is sometimes
referred to as “helium flash“.
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5.5.3 Cooling of white dwarfs and neutron stars

Additional restrictions for the axion-electron coupling are obtained from the
cooling of the stars that have moved from the AGB-stage to the white dwarf
stage. In these compact remnants of low-mass stars the carbon and oxygen
reserves never ignited, and the cooling of the dense carbon-oxygen star is
dictated by the neutrino emission from the high-temperature interior and
photon emission from the surface. If axions are emitted instead of neutrinos,
the temperature dependence of the white dwarf energy-loss rate is modified
[43]. The modified cooling of white dwarfs results in the limit gae . 3.5×10−13

[51] for the axion-electron coupling.

The main processes needed to take into account in the axion cooling of the
neutron stars are the nucleon bremsstrahlung and the axion counterpart of
the Cooper pair-breaking-formation (PBF), which is usually discussed in the
context of neutrino pair emission via PBF [52, 53]. In the high-density and
low-temperature core the neutron star may exhibit superfluidity, i.e. the
nucleons form Cooper pairs. The neutrino pair (or axions) is emitted from
the neutron pair breaking and formation processes, i.e. n+n→ n+n+ν+ ν̄.
In the literature, this approach has not gathered as much as attention as the
other stellar evolution probes. However, one can find similar bounds as with
the other stellar sources, e.g. recently Ref. [48] found a lower bound for fa in
KVSZ-models, fa & 5×107 GeV, and Ref. [54] obtained a similar constraint
fa & 7.6× 107 GeV by using the Fermi-LAT gamma-ray data.

5.5.4 Supernova 1987A

A type-II supernova results from the violent core-collapse and explosion of
a massive star, M & 7 − 8M�, which then leads to a neutron star. In
the high nucleon density post-core collapse neutron star, the nucleon-axion
bremsstrahlung, N + N → N + N + a, is the dominant way of producing
axions. The creation of the weakly-interacting axions would provide a more
efficient cooling channel than the neutrino channel. This would affect the
cooling time of the SN and the neutrino burst duration in the SN process
[43].

The measurement of antineutrino flux from SN1987A by the Kamiokande II
and Irvine-Michigan-Brookhaven experiments allowed one to test the axion-
nucleon coupling gaN . Annihilations to the axion channel would shorten the
duration of the neutrino burst. However, if axions are strongly coupled to the
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Figure 9: Astrophysical and cosmological bounds with experimental projec-
tions. Bounds with green label are less model-dependent, while orange labels
indicate strong model-dependency. Figure from Ref. [55].

nucleons they will get trapped in the star’s medium and form a so-called axion
sphere. In this trapping regime the axions are unable to affect the neutrino
signal duration. These considerations and the fact that strongly interact-
ing axions would have produced additional events in the water Cherenkov
detectors of the experiments mentioned above yield an excluded range of [51]

3× 10−10 . gaN . 3× 10−7. (128)

5.6 Direct detection of axions

As the original PQWW-axions were ruled out by the experimental data,
the interest shifted towards the new high-scale axions models. For a brief
period it was thought that the “invisible“ axions predicted by these models
are so light and weakly-coupled that they could avoid any direct observation
techniques. However, it was soon shown by Ref. [56] that the detection of the
galactic and solar axions was indeed possible by exploiting the axion-photon
coupling, which allows the conversion of axions to monochromatic photons
in a microwave cavity encompassed by a strong external magnetic field.

The present experimental axion search strategies can be divided into three
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categories depending on the source of axions: the haloscope experiments look
for cold dark matter axions in the galactic halo, the helioscope experiments
search for the solar axions, and the laboratory experiments try to produce and
detect axions. Basically the detection strategies of all of these experiments
are based on the coherent mixing of axions and photons in strong magnetic
fields. There are also experiments planned that exploit the nuclear magnetic
resonance techniques to detect dark matter axions.

5.6.1 Axion haloscope

The haloscope experiments are based on the idea of Ref. [56] that the ax-
ions with masses in the µeV range that permeat the galactic halo could be
detected in the microwave cavity experiments. The detection techniques of
these non-relativistic axions, gravitationally bound to the Milky Way, were
first used and developed in the experiments at the Brookhaven National Lab-
oratory, University of Florida and CARRACK experiment in Kyoto [57]. To-
day the most sensitive experimental setup is offered by the Axion Dark Mat-
ter eXperiment (ADMX), with two different experimental platforms, ADMX
(1995-) and ADMX-HF (commissioned) [57].

For the experiments to detect axions through the resonant conversion, the
cavity frequency has to be tuned exactly to the energy of the galactic axions,
i.e. axion mass [56]. This means that the size of the cavity and therefore
the magnetic field has to be adjustable in order to scan a range of different
axion masses. During its two operational phases ADMX has scanned and
excluded KSVZ dark matter axion masses between the range 1.96−3.69 µeV
[58, 59]. However, one should note that these results assume that axions are
the dominant CDM component in the galactic halo.

The microwave cavity based experiments are not sensitive to the lower axion
frequencies, and they may hence miss ultralight axions and axion-like parti-
cles [57]. The search for these high-scale axions is highly motivated, as the
string-theory motivated theories that contain axions and ALPs prefer much
higher energy scale such as fa ∼ 1015 − 1016 GeV, which would result in a
nanoelectronvolt range axion mass [57]18. Additional motivation for these
high-scale axions may come from the possible observation of transparency of
the Universe to very high-energy photons - for example see Ref. [62].

18For these values the standard axions tend to overclose the Universe, but there are
suggested mechanisms that allow the existence of these high-scale axions [60, 61].
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For this reason there have been proposals for new search concepts for the
detection of lighter dark matter axions. One of these is the Cosmic Axion
Spin Precession Experiment (CASPEr), which aims to detect spin preces-
sion induced by axions using nuclear magnetic resonance (NMR) techniques.
The two experiments, CASPER-Wind and CASPER-Electric, are able to
detect the effects induced by the direct coupling of axions to the spin of
the nucleus and electric dipole moment interaction term (see Eq. (115) and
the corresponding footnote) and measure the precession of the nuclear spin
in the sample material [57]. Final CASPEr experiment should have sensi-
tivity to detect axions with a mass ma ∼ 10−9 − 10−12 eV [57]. Another
recently proposed experimental design for the dark matter axion detection,
ABRACADABRA19, uses broadband (or resonant) detection of an oscillating
magnetic flux [63]. The sensitivity of this experiment will be in the range of
masses from 10−13 eV to 10−6 eV [63].

5.6.2 Axion helioscope

The principle idea of the helioscope detection technique is to use the generic
axion-photon coupling and convert solar axions with energies up to keV
regime to photons in an electromagnetic field [56]. Axions are produced
in the solar interior mainly by the Primakoff process, but for non-hadronic
axions, which have a tree-level coupling with the electrons other processes
such as the bremsstrahlung, Compton scattering and axion recombination
need to be taken into account [64].

Helioscope experiments are usually sensitive to the axion masses of 10−3 −
1 eV, and they are able to scan a wider range of the axion parameter space
than the haloscope experiments as the observed signal is independent of
the axion mass, contrary to the haloscope case [57]. The first generation
experimental setup was build at the Brookhaven National Laboratory, with
the University of Tokyo following with a second generation experiment, the
SUMICO axion helioscope [57]. Solar axions have also been searched with the
Bragg scattering technique used by many dedicated WIMP experiments, such
as the SOLAX [65], COSME [66], DAMA [67], CDMS [68] and EDELWEISS
[69]. However, the limits obtained by these experiments are less stringent
than the ones obtained from the astrophysical analyses.

The most stringent constraints from the helioscope experiments come from

19A Broadband/Resonant Approach to Cosmic Axion Detection with an Amplifying
B-field Ring Apparatus.
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the third generation CAST (CERN Axion Solar Telescope) [57, 70]. It has
been able to compete with the limits from astrophysical data, and the scanned
parameter range covers models with fa ∼ 107−108 GeV. For example, CAST
has reported to exclude ranges gaγ < 8.8 × 10−11 GeV−1 for ma < 0.02 eV
[70], gaγ < 2.3 × 10−10 GeV−1 for 0.39 eV . ma . 0.64 eV [71] and gaγ <
3.3× 10−10 GeV−1 for 0.64 eV . ma . 1.17 eV [72].

A proposed next-generation helioscope detector is the CERN-based IAXO
experiment (International AXion Observatory) [73]. The expected goal of
IAXO is to lower the axion-photon coupling sensitivity to the level of gaγ ∼
10−12 GeV−1 for ma ∼ 10−3 eV axions [73]. This increase in sensitivity allows
IAXO in addition to standard QCD axions also search for lighter ALPs.

5.6.3 Laboratory experiments

The principle idea of the laboratory axion experiments is to investigate how
the axion-photon conversion in a magnetic field affects a photon beam. This
is achieved by directing the photon beam into a transverse magnetic field,
where a fraction of the photons should convert into axions. The task is
then to reconvert axions back to observable photons. For this part there
are two methods used in the experiments. First one is the so-called Light-
Shining-through-Wall (LSW) experimental setup, where photons are regen-
erated from the converted axions by inserting an optical barrier in the front of
the axion-photon beam that blocks the beam photons but allow the weakly-
interacting axions to pass through. Behind the barrier a second transverse
magnetic field is used to regenerate detectable photons from the propagating
axions.

The LSW setups have been realized in the ALPS-I at DESY and the OS-
QAR20 and CROWS21 at CERN. The next-generation LSW experiments the
ALPS-II and JURA should be able to surpass the limits obtained for ALPs
from the astrophysical data [57]. However, the searches of the standard QCD
axion may lead to less stringent limits on the parameters [57].

Another way to study the effects of the axion-photon coupling is to look
at the polarization of the photon beam in a magnetic field. If the photon-
axion-photon conversion is present in the beam, the once-converted photons

20Optical Search of QED vacuum magnetic birefringence, Axion and photon Regenera-
tion.

21CERN Resonant WISP Search.
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Figure 10: Existing and projected limits on the photon-axion coupling as a
function of axion mass. Figure from Ref. [57].

should have E and B components deviating from those of the non-converted
photons in the polarized beam. This is the idea of the PVLAS experiment
[74].
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6 Axion dark matter

Due to the high-scale symmetry breaking axions have many properties re-
quired from dark matter: they are massive, non-baryonic, stable on cos-
mological time scales and extremely weakly-interacting. However, we know
that axions have to be extremely light, which is worrying as we would like the
axion dark matter population to be cold, i.e. particles which relax to non-
relativistic velocities quickly in the early Universe – see Section 2.4. This
actually happens in the case of thermally produced axions generated from
the interactions in the primordial plasma. The small axion population pro-
duced constitutes hot dark matter. However, the story of axion CDM does
not end here.

Through the coherent oscillation of the axion field and the decay of topo-
logical defects the Universe can have a significant cold axion population. In
the former mechanism (Section 6.2), the evolution of the axion field in the
early Universe allows the emergence of an axion population that behaves like
cold dark matter, albeit the particles themselves are extremely light. After
the PQ phase transition the axion field evolves like a massless scalar field
in the expanding Universe. However, close to the QCD phase transition it
generates an effective potential due to the anomalous interactions discussed
earlier. One can then follow the evolution of the so-called zero-momentum
mode axions, that are solutions to the equations of motion in the expand-
ing Universe. The effective potential then results in the coherent oscillation
of the zero-modes. This oscillation of the field behaves effectively like non-
relativistic matter, and is then suitable as cold dark matter. In the literature
this coherent oscillation of the zero-modes is sometimes referred to as the
misalignment mechanism.

The non-thermal production mechanisms are sensitive to the critical temper-
ature when the U(1)PQ symmetry breaks spontaneously. If inflation occurs
after the PQ symmetry breaking, the randomly chosen initial value of the
axion field within the causal horizon is homogenized over all the different
causal patches. In this scenario, we can treat the axion field as having one
initial value and assume that the defects produced in the PQ phase transition
are diluted away. A problem is that this initial value is not known. Luckily,
in estimating the energy density of the axions in this scenario we can couple
this initial value to the inflationary model constraints – see Section 6.5. As
we assume that inflation smoothens the field space out of any momentum
dependence, the evolution of the axion field is determined by the so-called
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zero-momentum modes of the field.

If the PQ symmetry breaks after inflation, the axion field chooses an un-
correlated random initial value in every causal region. In the zero-mode
computation we can average over all the possible initial values and get an
estimate for the zero-mode axion contribution to the overall energy density.
In this case there can also be additional non-zero momentum modes of the
field, that can contribute to the energy density. This scenario also leads to
the formation of cosmic strings and string-wall systems, which provide an
additional channel to produce axions. These axions should also be consid-
ered as a CDM constituent, as the energy spectrum of the radiated axions is
midly relativistic.

6.1 Thermal production

6.1.1 Freeze-out scenario

The non-thermally produced axions are thought to have a greater role than
thermally produced axions as the dark matter constituent, but it is possible to
have an additional populations of axions as thermal relics from the primordial
plasma. This production of the thermal axions follows the standard freeze-
out scenario so we will sketch the steps of this somewhat routine calculation.

The number density of the thermal axions na obeys the Boltzmann equation,
which connects the expansion of the Universe to the microphysics of particle
interactions [5]

dna
dt

+ 3Hna = −
∑
i

〈vσi〉 (nani − neq
a n

eq
i ) , (129)

where neq
a is the number density of the axions in thermal equilibrium, 〈vσi〉

is the flux-averaged cross-section for the scattering of the axions with the
i-species particle ni in the thermal bath.

The axion self-interactions are heavily suppressed and we neglect them in the
calculation and set i 6= a. In our treatment we also assume that the axions
interact only with particles in thermal equilibrium and set ni = neq

i . We can
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then write the Boltzmann equation in the following form

dna
dt

+ 3Hna = −
∑
i

〈vσi〉ni (na − neq
a ) (130)

≡ Γ (neq
a − na) , (131)

where we have defined

Γ ≡
∑
i

Γi ≡
∑
i

〈vσi〉ni, (132)

the total interaction rate between the axions and all the particle species
present in the bath. Both Γ and H depend on the plasma temperature.

From Eq. (132) we see that if the expansion rate H is much larger than the
total interaction rate Γ, one can approximatively neglect the right hand side
and obtain the so-called dilution solution, where the change of the particle
number density is given by the ratio of the scale factor R(t) at different times,

na(t2) = na(t1)

(
R(t1)

R(t2)

)3

, (133)

where t2 > t1.

If the interactions between axions and other particles in the bath at given
temperature or time are larger than the expansion rate of the Universe, i.e.
Γ > H, the axion number density follows the thermal equilibrium one. How-
ever, as the temperature of the Universe drops down there is an epoch, where
Γ < H. During this epoch, axion loses contact with the thermal bath of
other particle species and its interactions are said to freeze-out. This process
is called the particle decoupling, and the temperature TD at this occurs is
usually defined through Γ(TD) = H(TD)22.

After decoupling the evolution of the particle number density is described
by the dilution solution (133) and the number density in a co-moving vol-
ume remains (effectively) constant. If we can then compute the decoupling
temperature TD of the axions, we also obtain their present number density.
However, as the time-dependent quantity Γ depends on the interactions be-
tween the axions and the particles in the bath, in order to solve Eq. (132)

22Note that we do not distinguish between freeze-out temperature and decoupling tem-
perature. However, in a more general case, i.e. when studying more massive WIMPs,
this difference usually needs to be taken into account. Decoupling temperature is the
temperature when the particle drops out-of-equilibrium, while the freeze-out temperature
describes the temperature after which the final yield of particles is constant.
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we need to study the different interactions that the axions can have with the
available particle content during different epochs of the early Universe, as
discussed below. In a general case this way of computing the relic number
density should be considered as an approximation and the rigorous treatment
would require numerical work. In the case of light axions that will decouple
at very early times compared with the standard WIMPs, this approximation
actually yields a reasonably accurate result.

Note that here we have only discussed the particle production from thermal
axions interacting with other particles. It is of course also possible to produce
axions when they are already decoupled from the bath, i.e. via scatterings
and decays of the particles in thermal equilibrium that couple to the axions.

6.1.2 Different interactions epochs of axions

The axion interactions in the early Universe can be roughly divided into
three different epochs, where the watershed is given by the QCD phase tran-
sition: T & ΛQCD, ΛQCD & T & mπ, mπ & T , where mπ is the neutral
pion mass. During the last epoch, where the temperature of the Universe
has dropped below the pion mass, the axion interactions, such as the Pri-
makoff process and the Compton-like process, are the most model-dependent.
Fortunately, the astrophysical observations provide stringent limits for these
interactions23, showing that these processes are not significant in the thermal
axion production [76].

In the range ΛQCD & T & mπ, where the confinement of quarks and gluons
to hadrons has taken place, the main processes involving axions are the scat-
terings of axions on pions and nucleons, a+ π ⇔ π + π and a+N ⇔ N + π
[76]. In order the axions to decouple during this phase, the parameter fa
should be in the range fa would be fa ∼ 104 − 107 GeV and consequently
the contribution to the overall energy density could be significant [37]. Nev-
ertheless, this window for the thermal axions is effectively ruled out by the
CMB and LSS measurements [76, 77, 78]. The most recent constraints comes
from the temperature and polarization measurements of the Planck satellite
experiment, which sets a lower bound fa > 1.13×107 GeV at 95 % C.L. [78].

The lower bound for the decay constant fa implies that the thermal ax-

23Historically, the first thermal axion production calculations were done in Ref. [75],
where they considered the heavily model-dependent Primakoff process q + γ ⇔ q + a and
photoproduction of axions Q+ γ ⇔ Q+ a, where Q is a new heavy quark.
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Figure 11: Feynman diagrams of processes in the primordial quark-gluon
plasma involving axions.

ion production should have a decoupling temperature T & ΛQCD, which
translates to fa ∼ 108 − 1012 GeV. The upper bound is to avoid axions
overclosing the Universe. During this epoch, T & ΛQCD, the most signifi-
cant contribution is given by the interactions of the axions in the primordial
quark-gluon plasma [79, 80]. Luckily, these processes (see Figure 11) involve
the almost model-independent axion-gluon interaction, which alleviates the
model-dependencies of the calculations.

6.1.3 Production from the quark-gluon plasma

In this section we compute the yield of thermal axions produced from the
quark-gluon plasma. In the period of interest, i.e. before the confinement,
we neglect the possible Primakoff and photoproduction processes. We shall
assume that there actually is a window of time, in which the axions are in
thermal equilibrium with the other particles [79].

The three essential axion processes taking place in the hot quark-gluon
plasma are

a+ g ⇔ q + q̄

a+ q(/q̄)⇔ g + q(/q̄)

a+ g ⇔ g + g,

depicted in Fig. 11. In total there are seven different diagrams, from which
the different channel and crossing diagrams can be obtained from the ones
in Fig. 11.

Let us define
Y ≡ na

s
, (134)

where na is the axion number density and s is the entropy density, given in
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Eqs. (132) and (26), respectively. We then have

Ẏ =
1

s

(
ṅa − na

ṡ

s

)
=

1

s
(ṅa + 3Hna) , (135)

where we have used Eq. (29). Eq. (132) can then be written as

Ẏ = Γ (Y eq − Y ) . (136)

In the ultrarelativistic limit we can express the equilibrium value Y eq as

Y eq =
neq
a

s
' 1

s

ζ(3)

π2
T 3 =

45ζ(3)

2π4

1

g∗s (T )
. (137)

We assume that during the axion production the entropy degrees of freedom
does not change, i.e. g∗s(T ) = g∗s, implying that the equilibrium Y eq is
approximately constant.

Let us introduce a new variable x ≡ fa/T . In terms of it Eq. (136) has the
form

x
d

dx

(
Y

Y eq

)
=

Γ

H

(
1− Y

Y eq

)
. (138)

To compute the thermal yield we need to know the interaction rate Γ(T ) of
the axions in the quark-gluon plasma. According to Ref. [79],

Γ(T ) ≈ 7.1× 10−6T
3

f 2
a

. (139)

Let us define

k ≡ x
Γ

H
≈ 7.1× 10−6

(
45

4π3

)1/2
mPl

g∗(T )fa
, (140)

and β ≡ Y/Y eq. Then, Eq. (138) can be written as

x2 dβ

dx
= k (1− β) , (141)

whose solution is
β (x) = 1− Cek/x, (142)

where C is a constant.

The relic yield given by Eq. (142) depends on the thermal history of the
Universe. We assume that the PQ symmetry is broken after inflation only
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if the condition TRH > fa is satisfied, where TRH is the inflationary reheat
temperature. We end up with six different alternatives where the order of
the reheating temperature TRH, the Peccei-Quinn scale fa and the decoupling
temperature TD: (i) TRH > fa > TD, (ii) TRH > TD > fa, (iii) TD > TRH > fa,
(iv) TD > fa > TRH, (v) fa > TD > TRH and (vi) fa > TRH > TD.

However, this is a simplification, as it is possible that the maximum tem-
perature after inflation is much higher than the reheating temperature [81],
thus allowing PQ symmetry breaking even if TRH < fa. This does not take
into account the possibility that the PQ symmetry is broken before inflation,
then restored during inflation, with axion field fluctuations growing larger
than fa, and broken again at the end of inflation [82].

To find the decoupling temperature TD we use Γ ≈ H,

Γ(TD) ' 7.1× 10−6T
3
D

f 2
a

≈

√
4π3

45g∗(TD)

T 2
D

mPl

= H(TD), (143)

which yields

TD ' 1.4× 105

√
4π3

45g∗(TD)

f 2
a

mPl

' 2× 1011 GeV

(
fa

1012 GeV

)2

. (144)

In the above we have approximated that g∗ ≈ 100. This assumes that above
the electroweak scale the new degrees of freedom do not significantly con-
tribute to the value of g∗, and thus its value is close to the Standard Model
value g∗ = 106.75.

Let us now briefly discuss the results obtained from the two scenarios where
axions may enter thermal equilibrium, (i) TRH > fa > TD and (vi) fa >
TRH > TD. Other scenarios lead to non-equilibrium configurations. The
following treatment can be easily carried to these non-equilibrium cases [82],
and it is also possible to take a different approach yielding to similar results
(see e.g. Ref. [80]).

If TRH > fa > TD, axions are created at T ∼ fa. We then have the initial
condition β (x) = 0 for x = 1, and Eq. (142) can be written as

β = 1− ek(1/x−1). (145)

At x = k the axions decouple from the thermal bath and we have

β(x = k) =
Y (TD)

Y eq
= 1− e1−k. (146)
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After the decoupling, β is roughly constant with the decoupling value β(x =
k). Following Ref. [79], we are interested in the situation where the axions
follow the thermal spectrum. Requiring that deviation from the spectrum is
at most 5 % yields the constraint

Y (TD)

Y eq
> 0.95 → k > 4. (147)

This condition guarantees that a thermal population of axions can be created
in the early Universe [79]. Combining this with Eq. (144) gives an upper
bound for the symmetry breaking scale fa

fa < 1.25× 1012 GeV. (148)

In the case of (vi) the PQ symmetry is broken before inflation, which is
assumed to dilute the axion number density. This scenario results in a upper
bound for fa that depends on the reheating temperature:

fa < 1.15× 106 T
1/2
RH GeV1/2. (149)

The present day relic number density of thermal axions na,th for the cases (i)
and (vi) is approximately given by

na,th ≈ Y (TD)s(t0) ≈ Y eq(TD)s(t0) ≈ 829

g∗s(TD)
cm−3, (150)

where we used s(t0) = 2985 cm−3.

The present contribution of thermal axions, which are considered to be part
of HDM, to the mass density is [5]

Ωa,thh
2 =

mana,th
ρc,0/h2

≈ 4.7× 10−9

(
100

g∗s(TD)

)(
1012 GeV

fa

)
. (151)

We see that, if the value of g∗s at the time of decoupling is O(100), the
typical PQ symmetry breaking scale, i.e. fa ∼ 108 − 1012 GeV, lead to a
thermal axion density Ωa,thh

2 ∼ 5 × 10−5 − 5 × 10−9. It is clear that for
these parameter values, while comparing with the observed CDM density
(31), thermal axions are not a significant contributor to the overall energy
density.
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6.2 Coherent oscillation of the axion field

6.2.1 Axion field evolution

After the breaking of the PQ symmetry the Universe contains an extra scalar
field, the axion field. In a FLRW universe the equation of motion of this the
axion field is given by[

∂2

∂t2
+ 3H

∂

∂t
− 1

R2(t)
∇2
~x

]
a(x) +

dV

da
= 0, (152)

where the subscript ~x of the Laplacian refers to operating with respect to co-
moving coordinates, x = (t, ~x). In principle, there could be a term Γȧ(t) that
describes the decay of the axion field, included in the above [5]. However,
as we mentioned earlier in Section 5.4, the axions are stable on cosmological
time scales and therefore the decay (damping) term is negligible.

Assuming that the axion field values are smaller than the symmetry breaking
scale fa, we can approximate the potential given in Eq. (109) to be quadratic

V (a(x)) = f 2
am

2
a(T )

(
1− cos

(
a(x)

fa

))
≈ 1

2
m2
a(T )a2(x), (153)

where the parametrization of the temperature-dependent axion mass ma(T )
is given in Eq. (112). The equation of motion for the axion field is therefore[

∂2

∂t2
+ 3H

∂

∂t
− 1

R2(t)
∇2
~x +m2

a(T )

]
a(x) = 0. (154)

During the radiation domination era the scale factor scales as R(t) ∝ t1/2

and the Hubble parameter is therefore H = 1/2t. Using Eq. (23) we can
see that the first three terms in Eq. (154) scale as t−2, while the axion mass
term is proportional to tn/2 ∼ t3.34. It is therefore reasonable to assume that
there is an era, during which the mass term can be neglected. This period
ends at a critical time t1 when the axion mass turns on. We will define t1 to
be the time, when the time-dependent axion mass is proportional to t−1 24,

ma(t1)t1 = 1. (155)

24In literature one can usually see two kinds of definitions for the critical time. First is
the one used here, and second is ma(t1) = 3H(t1). However, as H = 1/2t these definitions
are more or less the same.
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We expect that this is not that far above of the temperature of the QCD
phase transition, as it is the low-energy QCD effects that generate the axion
mass.

By using Eqs. (23), (112) and (155) we can find the following expressions for
the critical temperature T1 and critical time t1

T1 = 1.058 GeV

(
70

g∗(T1)

)1/(4+n) (
1012 GeV

fa

)2/(4+n) (
ΛQCD

400 MeV

)
(156)

t1 = 2.584× 10−7 s

(
70

g∗(T1)

)n/(8+2n) (
fa

1012 GeV

)4/(4+n) (
400 MeV

ΛQCD

)2

.

(157)

It is assumed that the critical temperature T1 to be well above the region
where one considers the zero-temperature value of the axion mass [44, 82].
For the usually quoted values fa ∼ 1010 − 1012 GeV, ΛQCD ∼ O(100) MeV
and g∗(T1) ≈ 70−80 the critical temperature is T1 ∼ 1 GeV. With the above
values the axion mass at time t1 is around ma(t1) ∼ 1.5×10−8−3×10−9 eV.

6.2.2 Inflation after the PQ phase transition

If the inflation occurs after the Peccei-Quinn phase transition, the axion field
can be thought to be a spatially homogeneous field with one initial value,
i.e. a(t, ~x) = a(t). Dropping the gradient term and considering the radiation
dominated era the Eq. (152) then reduces to[

d2

dt2
+

3

2t

d

dt
+m2

a(t)

]
a(t) = 0. (158)

In the epoch t � t1 the axion mass can be neglected and the equation
simplifies to [

d2

dt2
+

3

2t

d

dt

]
a(t) = 0, (159)

which has a solution
a(t) = c0 + c−1/2t

−1/2, (160)

where c0 and c−1/2 are constants. This solution implies that when t � t1,
the expansion of the Universe makes the axion field to evolve to a constant
value.
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When the critical time t1 is approached, the axion mass term becomes non-
negligible. Defining Ψ(t) ≡ t3/4a(t), Eq. (158) can be written in the following
form [

d2

dt2
+ ω2(t)

]
Ψ(t) = 0, (161)

where

ω2(t) ≡ 3

16t2
+m2

a(t). (162)

We can use WKB(J)-approximation to solve this. For the sake of clarity, let
us briefly mention the few steps required for this solution. For a field trapped
between t1 and t the effective solution is given by

Ψ(t) ≈ C√
ω(t)

cos

(∫ t

t1

ω(t′)dt′
)
, (163)

where C is a constant. In the standard quantum mechanical framework the
WKB-approximation assumes that the particle’s de Broglie wavelength is
slowly varying with respect to its position. In our scenario this translates
into the requirement that ∣∣∣∣ d

dt

(
1

ω(t)

)∣∣∣∣� 1. (164)

This can be also expressed in the form

d

dt
log(ω(t)) =

1

ω(t)

dω(t)

dt
� ω(t), (165)

called the adiabatic condition.

It is quite clear from the expression (162) that well after t1 the mass term
dominates and the axion field oscillates with a frequency proportional to its
mass, w(t) ≈ ma(t). The adiabatic condition (165) then implies that the
change of the mass is small compared with the value of the mass. One can
check using numerical results that in the region t � t1 the above condition
is satisfied. However, around t ∼ t1 it is not valid and obviously numerical
studies are required for a more thorough treatment.

In terms of the axion field a(t) the approximative solution for Eq. (161) in
the regime t� t1, where ω(t) ≈ ma(t), is

a(t) ≈ a(t1)

[
ma(t1)

ma(t)

(
R(t1)

R(t)

)3
]1/2

cos

(∫ t

t1

ω(t′)dt′
)
≡ A(t)αosc(t), (166)
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where we defined the amplitude of the oscillation as A(t) and the oscillating
cosine term as αosc(t).

Let us next study the energy density of the zero-momentum mode axion field
ρa,0. According to Eq. (166),

ρa,0 =
1

2
ȧ2(t) + V (a) ≈ 1

2
ȧ2(t) +

1

2
m2
a(t)a

2(t) ≈ 1

2
A2(t)m2

a(t), (167)

where we have neglected the sub-leading terms proportional to the derivatives
of A(t) as in the regime t� t1 we have ma(t)� H.

As we want the axion to act as a CDM component, we expect it to behave like
non-relativistic matter. We can check this by considering the time-averaged
form of the pressure pa,0 = (1/2)ȧ2(t)− V (a). Substituting Eq. (166) to this
equation and taking time-average we get

〈pa,0〉 = 〈1
2
Ȧ2(t)α2

osc〉 ≈
1

4
Ȧ2(t). (168)

The equation of state parameter ωeos,a can then be solved from the equation
of state, pa = weos,aρa, and is now given by

ωeos,a =
〈pa,0〉
〈ρa,0〉

≈ 1

4

(
Ȧ(t)

ma(t)A(t)

)2

≈ 0. (169)

As discussed earlier in Section 2.1, the vanishing equation of state param-
eter implies that the zero-momentum mode axion field behaves like non-
relativistic matter, which is the wanted scaling behaviour for cold dark mat-
ter.

6.2.3 Inflation before the PQ phase transition

As the PQ phase transition occurs after inflation, there is no mechanism that
would spatially homogenize the scalar field over large distances. Therefore
there are different k-modes present in the field. This means there might
be additional contribution to the energy density coming from the non-zero
modes of the axion field, as we cannot straight away neglect the gradient
terms present in the equation of motion[

∂2

∂t2
+ 3H

∂

∂t
− 1

R2(t)
∇2
~x +m2

a(t)

]
a(t, ~x) = 0. (170)
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In the period t� t1, when the axion mass can be neglected, this becomes[
∂2

∂t2
+ 3H

∂

∂t
− 1

R2(t)
∇2
~x

]
a(t, ~x) = 0. (171)

The solution of this equation is found by expanding a(t, ~x) in the Fourier
k-space

a(t, ~x) =
1

(2π)3/2

∫
d3k a(t,~k) ei~k·~x, (172)

where ~k is the co-moving wavevector. The equation of motion for a single
independently evolving k-mode is[

∂2

∂t2
+ 3H

∂

∂t
+

k2

R2(t)

]
a(t,~k) = 0. (173)

For the modes outside the horizon, for which H � k/R(t), the third term
can be neglected, yielding the solution

a(t,~k) = c0(~k) + c−1/2(~k)t−1/2. (174)

This is the same behaviour that was observed in the previous zero-momentum
mode calculation. In this period, i.e. when t� t1, the modes that are outside
of the horizon are frozen to a constant value. Obviously, as the axion mass
turns on at t ∼ t1, the field starts to oscillate, similarly as the zero-momentum
modes discussed in Section 6.2.2.

For the modes inside the horizon, for which H � k/R(t), the third term in

Eq. (173) cannot be neglected. Defining Ψ̃(t,~k) ≡ R3/2(t)a(t,~k), Eq. (173)
can be written in the form[

∂2

∂t2
+ ω2(t)

]
Ψ̃(t,~k) = 0, (175)

where ω2(t) is defined as

ω2(t) ≡ k2

R2(t)
+

3

16t2
=

k2

R2(t)
+

3

4
H2. (176)

As these modes are well within the horizon, we can approximate ω(t) ≈
k/R(t). Substituting this into Eq. (164) yields ω(t) � H(t), allowing us to
use WKB-approximation yielding the following solution:

a(t) ≈ a(t1)

[
ω(t1)

ω(t)

(
t1
t

)3/2
]1/2

cos

(∫ t

t1

ω(t′)dt′
)

(177)
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The number of axions in each mode produced in this regime is conserved
if one assumes the adiabaticity condition to hold [83], and one can follow
the evolution of these modes and estimate their overall contribution to the
energy density – see Ref. [83] for further discussion. However, the so-called
gradient energy in Eq. (170) related to the k-modes is negligible compared
with the potential energy near the time of the QCD phase transition, as the
gradient energy is roughly of the order of (faH)2, while the mass potential
is proportional to (mafa)

2 [84]. In the literature one then usually neglects
the contribution of these modes in the discussion of cold dark matter axions,
and the treatment reduces again to cover only the zero-momentum modes.

6.3 Production from topological defects

6.3.1 Formation of axionic strings and domain walls

Axionic strings25 are formed from the spontaneous symmetry breaking of the
familiar global U(1)PQ symmetry. The Lagrangian of the complex Peccei-
Quinn field S is given by

L = −1

2
∂µS

∗∂µS − V (S, T ), (178)

where the effective high-temperature potential V (S, T ) is given by

V (S, T ) =
1

4
λ
(
|S|2 − v2

S

)2
+

1

6
λT 2|S|2. (179)

As discussed earlier, for T �
√

3vS ≡ Tc the equilibrium value of the scalar
field is at the false vacuum |〈S〉| = 0. When the temperature drops below the
critical temperature Tc, the PQ phase transition occurs and the field starts
to roll towards its new equilibrium value. After some time, the PQ field
acquires vacuum expectation value |〈S〉| = vS and the U(1)PQ symmetry is
spontaneously broken, with the field phase recognized as the axion field.

As described in Section 3, axionic cosmic strings are formed during the PQ
phase transition, when the phase of the PQ field, the axion, lies in the degen-
erate circle of minima in the mexican hat potential described by Eq. (179).
As the symmetry breaks in different regions of space, there is a non-trivial
winding around the false vacuum, which corresponds to the formation of a

25In this section we will mainly follow Ref. [85] and references therein.
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Figure 12: Potential of the PQ-scalar before (orange) and after (grey) the
spontaneous symmetry breaking.

cosmic string. These strings then decay to axions, which is the their pre-
ferred decay channel. Let us do a small modification to the string linear
energy density and add the scaling term ξs in Eq. (54) to Eq. (53) [85]

µs = πv2
S log

(
t

δs
√
ξs

)
. (180)

Note that there is a factor of two differences between this and the expression
given in Eq. (53). This is due to the normalization convention used in Eq.
(178), where the extra factor of 1/2 in front of the kinetic term finds its way
to the energy density.

Near the QCD phase transition the axion potential is generated and is given
in Eq. (109) with fa = vS/NDW. The axion potential is then of the same
form as the periodic potential in Eq. (65). Referring to the earlier discussion
in Section 3.5, these kind of periodic potentials give rise to string-wall config-
urations, where the domain walls are attached to and bounded by the cosmic
strings formed in the earlier phase transition. In the case of the axion, this
means that the axionic domain walls emerge around the QCD phase transi-
tion, when the axion field chooses one minimum of its periodic potential, i.e.
discrete set of minima. These walls are then connected to the axionic strings
formed in the PQ phase transition.
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6.3.2 Production from the strings

As discussed in Section 3.4, there are uncertainties involved in the study of
the evolution of global strings, and the studies rely heavily on field-theoretic
lattice simulations. As expected, this has led to different treatments in the
literature, but it seems that most of the studies do agree with the magnitude
of the string-radiated axion contribution to the axion energy density. In this
section we choose to mainly follow the treatment used in Ref. [85]. Different
estimates on the axionic string production are given for example in Refs.
[11, 83, 86].

The equations governing the evolution of the energy densities of the long
strings ρs and axions produced from these strings ρa,s can be modelled as
[83, 85]

dρs
dt

= −2Hρs −
dρs→a

dt
, (181)

and
dρa,s

dt
= −4Hρa,s +

dρs→a
dt

. (182)

Hence the term dρs→a/dt describes the conversion of the string energy to
axions. This term effectively contains the discussed loop production (Γloopρs)
and NGB emission (ΓNGρs) terms that are present in Eq. (55). We have also
assumed that the strings are slowly moving, i.e. c2 � 〈v2〉.

By substituting Eq. (54) into Eq. (181) we can find

dρs→a
dt

= πv2
S

ξs
t3

[
log

(
t

δs
√
ξ

)
− 1

]
. (183)

Let us define the comoving energy of the radiated axions as [82]

Ea,s(t) ≡ R4(t)ρa,s(t), (184)

in terms of which Eq. (182) takes the form

dEa,s
dt

= R4(t)

(
dρs→a

dt

)
. (185)

Then the differential number the axions radiated is

dNa,s(t) = R3(t) dna,s(t) = R3(t)
dρa,s
ωa,s(t)

=
dEa,s

R(t) ωa,s(t)
, (186)
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where ωa,s(t) is the mean energy of axions radiated at the time t. The
amount of the NGB axions that the strings radiate between the time of the
spontaneous symmetry breaking tc and the time when the axion mass turns
on at t1 is obtained from the integral

Na,s =

∫ t1

tc

dt
1

R(t) ωa,s(t)

(
dEa,s

dt

)
=

∫ t1

tc

dt

(
R3(t)

ωa,s(t)

)
πv2

S

ξs
t3

[
log

(
t

δs
√
ξs

)
− 1

]
. (187)

In the literature there has been discussion about the shape of the energy
spectrum of the radiated axions. Some studies assume that the energy spec-
trum is peaked around the horizon, and therefore the typical mean energy is
comparable to the curvature size of the string, wa,s ∼ t−1 [13, 87, 88, 89, 90].
In Refs. [91, 92, 93] it was argued that the global strings lose their energy
more quickly, in just few oscillations, and the energy spectrum of radiated
axions is consequently “hard“, wa,s ∼ k−1. In this case all scales between
string core width scale and largest horizon scale give similar contribution to
the spectrum. This actually suppresses the number of produced axions and
leads to a smaller total axion abundance.

Numerical studies seem the prefer the former view, where the axion spectrum
is peaked [12, 14, 94]. We will follow here Ref. [85] and assume that

ωa,s(t) = εs
2π

t
, (188)

where εs is a numerical factor to be determined in lattice simulations.

The number of produced axions via radiation from strings is then given by

Na,s =
v2
Sξs
εs

[
R3(t)

t

(
log

(
t

δs
√
ξs

)
− 3

)]∣∣∣∣t1
t=tc

≈ v2
Sξs
εs

R3(t1)

t1

[
log

(
t1

δs
√
ξs

)
− 3

]
, (189)

where we have ignored the small contribution of axions created at the critical
time tc. The present energy density of the axions radiated between tc and t1
is then given by

ρa,s(t0) = ma(0)na,s(t0) = ma(0)R−3(t0)Na,s

≈ ma(0)
v2
S

t1

ξs
εs

(
R(t1)

R(t)

)3 [
log

(
t1

δs
√
ξs

)
− 3

]
. (190)
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Since bulk of the contribution to the energy density comes from the axions
that have a mean energy ωa,s ∼ t−1

1 , these axions become non-relativistic
fairly quick due to the momentum redshift and the acquired mass. We thus
assume that axions produced in the string decays contribute to the cold dark
matter.

6.3.3 Production from the string-wall configurations

The formation of the domain walls and their role in the axion physics was first
addressed in Ref. [15]. The formed string-wall configurations may be either
short- or long-lived, with the long-lived systems being usually incompatible
with the standard cosmological picture. As mentioned earlier, the structure
and evolution of string-wall systems depend on the domain wall number
NDW. It happens that if the configuration is specified by NDW = 1, where
there is one string attached to each wall, the string-wall network is unstable
and vanishes rapidly due to the fragmentation and decay into axions [17].
However, stable long-lived systems are created in scenarios where NDW > 1,
which introduces the so-called axionic domain wall problem [15, 21].

The contribution of the collapsing domain wall systems to the overall axion
abundance has not received as much as attention as the axionic strings in
the literature. Earlier studies have been performed for example in Refs.
[95, 96, 97, 98, 99, 100], and in section we will follow Ref. [85].

Due to the low-energy mixing between pions and axions, the domain wall
surface mass density given in Eq. (67) needs to be modified, as the neutral
pion field affects the domain wall structure [101]. In a general model the
surface density of an axionic domain wall is given by [101]

σw ' 2
√

2

(
vS
NDW

)
fπmπ

∫ π

0

dx

1−

(
cos2(x) +

(
1− z̃
1 + z̃

)2

sin2(x)

)1/2
1/2

≈ 4.195

(
vS
NDW

)
fπmπ ≈ 8.96maf

2
a , (191)

where on the second line the Bardeen-Tye estimation (111) is used. As
we are interested in the epoch where the zero-temperature axion mass is not
valid, we will replace the above zero-temperature mass with the temperature-
dependent axion mass:

σw → σw(T ) ' 8.96ma(T )f 2
a . (192)
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After the domain wall formation at around t1 there is a short epoch where
the string tension governs the evolution of the whole string-wall configuration
[85, 99]. However, the domain wall surface tension quickly becomes the
dominating component of the system [99]. Following Ref. [99], we define
the time t2 as the time when the string linear energy density (µs) is equal
to the domain wall surface energy density (σw) times the curvature radius.
Assuming that the curvature radius is comparable to the horizon scale at t2,
this translates into the condition [99]

σw(t2) =
µs(t2)

t2
. (193)

We can express the corresponding temperature T2 to the time t2 as

T2 ≈ 1.296 GeV N
−4/(n+4)
DW

(
65

g∗(T2)

)1/(n+4)(
1012 GeV

fa

)2/(n+4)

×
(

ΛQCD

400 MeV

)[
log

(
t2

δs
√
ξs

)]−2/(n+4)

. (194)

As mentioned earlier, the production of axions from the string-wall config-
urations depends on the evolution of system. This evolutionary history is
notably different for the cases NDW = 1 and NDW > 1, and here we will
only consider the case with NDW = 1. The latter case leads to the formation
of long-lived string-wall systems, where the string-wall network enters the
discussed scaling regime and can then dominate the energy density. These
configurations can be made unstable with potential modifications, but this
might introduce additional fine-tuning to the theory. For the treatment of
string-wall configurations in the case NDW > 1 see Refs. [82, 85, 95].

Let us assume that the domain wall energy density at t1 to be of the form
[99]

ρw(t1) = A
(
σw(t1)

t1

)
, (195)

whereA is the scaling area parameter, similar to the length scaling parameter
ξs in Eq. (54). We assume that for a short period after t1 the energy density
of the whole-string wall system ρsw is given by the sum of energy densities
of strings and domain walls:

ρsw(t) ' ξs
µs(t)

t2
+Aσw(t)

t
. (196)
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Numerical studies show these configurations collapse quickly after the walls
start to dominate the energy density [85, 99]. This happens around td ∼ t2, as
this is the time when the tension between walls and strings is equal [85]. The
total energy density of the string-wall configuration at the time of collapse
can then be estimated to be

ρsw(td) = ξs
µs(t2)

t22
+Aσw(t2)

t2
. (197)

Assuming that the dominating decay channel is to axions we can estimate
the the number density of produced axions

na,sw(t) =
Na,sw

R3(t)
=

1

wa,sw

(
R(td)

R(t)

)3 [
ξs
µs(t2)

t22
+Aσw(t2)

t2

]
, (198)

where wa,sw is the mean energy of the emitted axions.

As in the case of the global axionic strings, there is no overall agreement in
the literature concerning the shape of the axion energy spectrum. In Ref. [95]
it is argued that also in this case the spectrum is “hard“, dE/dk ∼ 1/k. This
argument relies on the reasoning that the domain walls bounded by strings
transfer their energy into the strings, which then radiate axions. However,
this requires that the energy spectrum of the axions radiated by strings follow
the “hard“ spectrum (see Section 6.3.2).

Let us parametrize the average momentum carried by the emitted axions at
td as [99]

εsw ≡
1

ma(td)

k(td)

R(td)
. (199)

The mean energy is then written as

wa,sw =
√
m2
a(Td) + (k(td)/R(td))2 = ma(Td)

√
1 + ε2sw. (200)

Assuming td ' t2, the energy density of axions produced from the collapse
of the string-wall network today would be

ρa,sw(t0) ' ma(0)na,sw(t0)

=
ξs +A√
1 + ε2sw

(
ma(0)

ma(T2)

)(
R(t2)

R(t0)

)3
πv2

S

t22
log

(
t2

δs
√
ξs

)
. (201)

As mentioned, the values of the quantities ξs, A and εsw are to be determined
from the numerical simulations. As in the case of axionic strings, we assume
that the axions created from the string-wall system become non-relativistic
fairly quickly, and thus contribute to the cold dark matter.
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6.4 Axion cold dark matter abundance

6.4.1 Zero-momentum modes of the axion field

Let us move to estimate the contribution of the zero-modes to the overall
axion dark matter abundance, limiting the discussion to the zero-momentum
mode axions. In Eq. (167) we saw that the the energy density of the zero-
momentum mode axions is

ρa,0 ≈
1

2
A2(t)m2

a(t) =
1

2
a2(t1)ma(t)ma(t1)

(
R(t1)

R(t)

)3

. (202)

As one can see, the energy density is not conserved in a comoving volume,
ρa,0R

3(t). However, the axion number density

na,0 =
ρa,0
ma(t)

=
1

2
a2(t1)ma(t1)

(
R(t1)

R(t)

)3

(203)

is conserved. By defining the initial misalignment angle of the axion field as
θ̄ini ≡ a(t1)/fa, the present axion number density is given by

na,0(t0) =
1

2
ma(t1)θ̄2

inif
2
a

(
R(t1)

R(t)

)3

. (204)

The contribution of the zero-mode axions to the total energy density is then

Ωa,0h
2 ≈ 0.061×θ̄2

ini

(
g∗(T1)

70

)−(n+2)/(8+2n)(
fa

1012 GeV

)(6+n)/(4+n)(
ΛQCD

400 MeV

)
.

(205)
These results suffer from uncertainties, which stem mainly from the anhar-
monic axion potential and the adiabaticity condition that was assumed in
the calculation. The anharmonic effects originate in the quadratic approxi-
mation of the axion potential. This linearization of the sine-function in the
equation of motion for the axion field results in a smaller energy density
than in the case of the non-quadratic sine-potential due to the fact that for
larger values of the argument a/fa the sine-function is flatter than the used
potential, resulting in the axion field oscillations starting later [102].

The standard way to incorporate the anharmonic effects to the approximative
calculation was devised in Refs. [102, 103]26. The idea is to include a function

26Similar calculations of the anharmonic evolution of the axion field have also been
performed for example in Refs. [44, 104, 105, 106].
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f(θ̄ini) that parametrizes the anharmonicities, i.e. θ̄ini → f(θ̄ini)θ̄ini. For small
values of θ̄ini the function converges to one, f(θ̄ini)→ 1, and diverges for larger
values.

In the scenario where the PQ symmetry is broken after inflation, the Universe
is comprised of a vast number of distinct causal patches with an independent
value for the angle θ̄ini. It might then be reasonable to replace f(θ̄ini)θ̄

2
ini with

the root-mean-square value 〈θ̄2
ini〉RMS, which assumes a uniform distribution

of the possible values for the misalignment angle:

〈θ̄2
ini〉RMS =

1

π

∫ π

0

f(θ̄ini)θ̄
2
inidθ̄ini. (206)

If there are no anharmonic effects, i.e. the linearization of sine-function is
acceptable, the anharmonicity function is just an identity and the rms-value
is

〈θ̄2
ini〉RMS =

1

3
π2. (207)

However, if we take into account the anharmonic effects, the averaged value
for the misalignment angle receives a correction factor, which was estimated
in Ref. [102] to be αanh ≡ 〈f(θ̄ini)θ̄

2
ini〉/〈θ̄2

ini〉 = 1.9 − 2.4. We will use the
value αanh = 2.2, i.e. instead of Eq. (207) we assume

f(θ̄ini)θ̄
2
ini = 2.2× π2

3
. (208)

Another improvement to the analysis is to numerically study the regime
around the critical time t1. In our calculation we just assumed fulfillment
of the adiabatic condition during the instantaneous axion mass turn-on at
t1. Ref. [106] showed that when the expansion of the Universe around t1 is
taken into account, the energy density is corrected by the factor αadi ≈ 1.85.

Taking the correction factors mentioned above into account, we end up with
the following estimate for the contribution of the zero-momentum mode ax-
ions to the cold dark matter in the case when the Peccei-Quinn phase tran-
sition happens after the inflation:

Ωa,0h
2 ≈ 0.74

(
g∗(T1)

70

)−(n+2)/(8+2n)(
fa

1012 GeV

)(6+n)/(4+n)(
ΛQCD

400 MeV

)
.

(209)

If inflation occurs after the PQ phase transition, the entire observable Uni-
verse has the same value of the misalignment angle θ̄ini. In this case we
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cannot average over different regions and do not have an estimate for the
value of θ̄ini. However, we can couple θ̄ini through the perturbations of the
axion field to the inflationary models as will be explained later on.

6.4.2 Axionic strings and string-walls configurations

From Eq. (190) we can estimate the energy density of the string-radiated
axions today:

Ωa,sh
2 ≈ 0.122N2

DW

ξs
εs

(
g∗(T1)

70

)−(n+2)/(8+2n)(
fa

1012 GeV

)(6+n)/(4+n)

×
(

ΛQCD

400 MeV

)[
log

(
t1

δs
√
ξ

)
− 3

]
, (210)

where η = faNDW. To avoid the creation of long-lived string-wall configura-
tions, we limited our discussion to the case with NDW = 1. This effectively
reduces our estimates to cover only the standard KSVZ model, if we want to
include the contribution of axions coming from the decay of string-wall con-
figurations. Substituting the previous values and the other numerical factors
obtained by Ref. [85], g∗(T1) ≈ 80, log(t1/δs

√
ξs) ≈ 61, ξs = 1.0 ± 0.5 and

εs = 4.02± 0.70, we obtain

Ωa,sh
2 ≈ 1.667×

(
fa

1012 GeV

)(6+n)/(4+n)

×
(

ΛQCD

400 MeV

)
. (211)

In our estimation we have neglected the error margins and used the central
values of the numerical quantities. Taking into account the different error
sources, the result may deviate up to 30–40 % from the one reported here
(see e.g. Ref. [85]).

The contribution of the axions from the string-wall network collapse to the
present axion dark matter energy density can be computed from Eq. (201):

Ωa,swh
2 ≈ 0.924

ξs +A√
1 + ε2sw

(
g∗(T2)

65

)−(n+2)/(8+2n)(
fa

1012 GeV

)(n+6)/(n+4)

×
(

ΛQCD

400 MeV

)[
log

(
t2

δs
√
ξs

)]2/(4+n)

. (212)

As mentioned, this estimation covers only models where NDW = 1. The com-
putation of axion production from the long-lived string-wall configurations
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in models where NDW > 1, such as the DFSZ model, is given, e.g. in Ref.
[85].

Substituting the values obtained by Ref. [85], A = 0.50± 0.25, εsw = 1.96±
0.23, log(t1/δs

√
ξs) ≈ 62 and g∗(T2) ≈ 75, into Eq. (212), we get

Ωa,swh
2 ≈ 1.287×

(
fa

1012 GeV

)(6+n)/(4+n)

×
(

ΛQCD

400 MeV

)
. (213)

Where we again used the central values of the numerical quantities. We
see that the contribution of the string-wall configurations to the axion dark
matter can be comparable with that of the string-radiated axions. However,
the axion production from the string-wall network is still often omitted in
the literature, with the focus being on the zero-momentum mode and string-
radiated axions.

6.5 Axion isocurvature fluctuations

If the PQ symmetry is broken before inflation, axions can produce isocurva-
ture fluctuations due to quantum effects. This can be used to constrain the
parameters of axion models. In this section we will discuss27 how to couple
the axion parameters to the parameters of the inflationary model through
the initial misalignment angle.

For now we neglect the anharmonic effects, i.e. set f(θ̄ini) = 1, and replace
the value of the initial misalignment angle to include variance:

〈θ̄2
ini〉 → 〈θ̄2〉 = θ̄2

ini + σ2
θ , (214)

where σθ is the amplitude of the fluctuations in the misalignment angle θ̄, or
in the axion field.

During inflationary stage, the spectrum of the quantum fluctuations of the
massless, weakly-coupled scalar axion field is described by [5]

〈|δa(t,~k)|
2
〉 =

∫
d3~x

(2π)3
〈δa(t, ~x)δa(t, ~x′)〉e−i~k·(~x−~x′) =

(
HI

2π

)2
2π2

k3
, (215)

27We will follow mainly Refs. [11, 84, 107, 108, 109].
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where HI is the Hubble parameter during inflation. The amplitude of the
misalignment angle fluctuation in real space is then given by28 [11]

σθ = δ

(
a(x)

fa

)
=

HI

2πfa
. (216)

As discussed earlier, the isocurvature perturbations are characterized by the
fixed total energy density, δρ = 0, in the very early Universe. In order to
maintain the fixed energy density, the fluctuations in the axion energy density
need to be compensated by the fluctuations in other fields [109]. The different
constituents in the isocurvature fluctuations in the total energy density then
arrange such that [5, 109]

δρiso = 0 = δρa +
∑
i 6=a

δρi + δρr, (217)

where δρa, δρi and δρr are the perturbations of the energy densities of axions,
other massive species and radiation, respectively. As ρr ∝ T 4, we can express
the radiation energy perturbation also as δρr = 4ρr(δT/T ). Assuming that
all species have become massive (non-relativistic), we have δρa = maδna and
δρi = miδni, where na and ni are the number densities of axions and other
massive species, respectively.

It is customary to define the following entropy quantity when studying isocur-
vature perturbations [5]:

Si ≡
δ(ni/s)

(ni/s)
=
δni
ni
− δsi

s
=
δni
ni
− 3

δT

T
, (218)

where in the last stage we used Eq. (26). This is zero for adiabatic species
and non-zero for isocurvature species. Assuming that all other fields than
axions have adiabatic perturbations, i.e. δρi/ρi = (3/4)δρr/ρr, allows us to
organize Eq. (217) as(

Sa + 3
δT

T

)
ρa + 3

δT

T

∑
i 6=a

ρi + 4
δT

T
ρr = 0. (219)

If we define the non-relativistic energy density ρM ≡ ρa +
∑

i 6=a ρi we then
have

δT/T

Sa
= −1

4

ρa/ρr
1 + (3/4)(ρM/ρr)

. (220)

28Note that in the literature there are sometimes different O(1) factors in front of Eq.
(216), e.g. [109] has a factor of two.
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In the early Universe the energy density is dominated by radiation, i.e. ρr �
ρa, ρM . Thus (δT/T )/Sa � 1 and we can approximate29

Sa =
δna
na
− 3

δT

T
≈ δna

na
. (221)

Next we relate Sa to the observed perturbation spectrum.

Let us assume that the cold dark matter sector consists of axions and other
“ordinary“ CDM species, i.e. the total CDM energy density is given by
Ωc = Ωa,0 + Ωx. We assume that only axions contribute to the isocurvature
mode. In this case the total cold dark matter entropy perturbation Ik,CDM

can be written in terms of the axion entropy quantity Sa [84]:

Ik,CDM ≡
δρc
ρc

=
δ(ρa + ρx)

ρa + ρx
=

Ωa,0

Ωc

δρa
ρa

=
Ωa,0

Ωc

Sa. (222)

The CDM isocurvature spectrum is then given by [84]

〈|Ik,CDM|2〉 =

(
Ωa,0

Ωc

)2

〈|Sa|2〉. (223)

We can express Eq. (221) in terms of the misalignment angle θ̄ [11, 108, 109]

Sa ≈
δna
na

=
θ̄2 − 〈θ̄2〉
〈θ̄2〉

. (224)

Then, assuming a Gaussian distribution and that mean value 〈θ̄〉 = θ̄ini, we
can calculate the entropy perturbation spectrum:

〈|Sa(~k)|2〉 =

∫
dθ̄

∣∣∣∣ θ̄2 − 〈θ̄2〉
〈θ̄2〉

∣∣∣∣2 1√
2πσθ

e−(θ̄−〈θ̄〉)2/(2σ2
θ) (225)

=
2σ2

θ(σ
2
θ + 2θ̄2

ini)

(θ̄2
ini + σ2

θ)
2

. (226)

The relative magnitude of the isocurvature perturbations is usually paramet-
rized as [110]

βiso =
〈|Ik,CDM|2〉

〈|Ik,CDM|2〉+ 〈|Rk|2〉
, (227)

29Note that due to this approximation, isocurvature perturbations are sometimes re-
ferred to as isotermal fluctuations [5].
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where 〈|Rk|2〉 describes the adiabatic perturbation spectrum. In the above
we have already taken into account, that only the dark sector may produce
isocurvature perturbations. The recent Planck measurements [8, 110] set
an upper bound for the relative isocurvature magnitude at the pivot scale
k = 0.002 Mpc−1 as βiso < 0.035, meaning that most of the seen perturba-
tions are in the form of adiabatic fluctuations. Taking into account that the
magnitude of the isocurvature perturbations is almost negligible compared
to the adiabatic ones, and substituting Eqs. (223) and (226) into Eq. (227)
yields

βiso ≈
(

Ωa,0

Ωc

)2
1

〈|Rk|2〉
2σ2

θ(σ
2
θ + 2θ̄2

ini)

(θ̄2
ini + σ2

θ)
2

. (228)

If θ̄2
ini � σ2

θ we find that

βiso ≈
(

Ωa,0

Ωc

)2
4

〈|Rk|2〉
σ2
θ

θ̄2
ini

. (229)

On the other hand, if σ2
θ � θ̄2

ini we have

βiso ≈
(

Ωa,0

Ωc

)2
2

〈|Rk|2〉
. (230)

From the observed value for the amplitude of the adiabatic fluctuations
〈|Rk|2〉 ≈ 2.4× 10−9 [8, 110], we can see that the case σ2

θ � θ̄2
ini is in tension

with the observations.

Assuming that θ̄2
ini � σ2

θ we obtain the following bound from Eqs. (216) and
(229): (

HI

θ̄inifa

)2

< 2.9× 10−5 Ωc

Ωa,0

. (231)

If the zero-mode axions are the dominant component of CDM the Eq. (231)
implies a tight bound for the combination of the model parameters. However,
if Ωc � Ωa,0 the bound is not that restrictive. Let us next assume Ωc ≈ Ωa,0.
It is then possible to estimate the bounds for either the misalignment angle
θ̄ini or the axion decay constant fa from the expression (205) (including the
factor αadi). With g∗(T1) ≈ 80 and ΛQCD ≈ 400 MeV [11, 85] we obtain

fa > 1.31× 1011HI

(
HI

1012 GeV

)(n+6)/(n+2)

(232)

θ̄ini < 2.44× 10−7

(
1012 GeV

HI

)(n+6)/(n+2)

. (233)
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6.6 Discussion

If the PQ symmetry breaks after the inflation, the total energy density of
axions is the sum of the zero-momentum mode and topological defect axions,

Ωa,toth
2 = Ωa,0h

2 + Ωa,sh
2 + Ωa,swh

2. (234)

From the condition Ωa,tot . Ωc, it follows

fa . 5.6× 1010 GeV (235)

where we used ΛQCD ≈ 400 MeV [11, 85]. Eq. (235) can also be expressed
as a lower bound for the axion mass:

ma & 1.1× 10−4 eV. (236)

We can see that the contribution of the defects can be of the same order
magnitude as the contribution of the zero-momentum modes. There are
still large uncertainties in the computation of axion production from the
strings and string-wall configurations, so one cannot really determine which
one is the most dominant production mechanism. Often in the older axion
literature one can see that only the zero-momentum contribution is given.
If one neglects the defect contribution, the bounds on the parameters are
alleviated, as in our case we would get fa . 2.2× 1011 GeV and ma & 2.7×
10−5 eV. In Section 5.5 we mentioned that the astrophysical observations
give the lower bound fa & 108 GeV, meaning that the so-called “classical“
axion parameter window, where the axion mass is considered to be ma ∼
10−3 − 10−6 eV, is now quite narrow.

If the PQ symmetry is broken before inflation, the contribution of the topo-
logical defects on the axion production can be neglected. However, in this
case we face the problem of the value of the initial misalignment angle.
We have seen that we can use the isocurvature fluctuations to couple the
axion model parameters to inflationary models and obtain constraints for
the symmetry-breaking scale or the misalignment angle. These bounds de-
pend on whether the zero-momentum axions are a dominant or sub-dominant
CDM component. In the former case the bounds given in Eq. (232) imply
that high-scale inflationary models, HI > 108 GeV, are disfavoured as they
would yield a very-high symmetry breaking scale fa which in turn would
lead to the axions overclosing the Universe. The constraints can be avoided
by fine-tuning the misalignment angle θ̄ini � 1, but this would effectively
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reinstate the original θ parameter fine-tuning problem. The case of a high-
value fa and very small θ̄ini is sometimes referred to as the anthropic ax-
ion window. There are proposed mechanisms in the literature, such as an
additional short inflationary period [61], which would allow the axion and
axion-like particle models to achieve a GUT-scale symmetry-breaking scale,
i.e. fa ∼ 1015 − 1016 GeV, without fine-tuning the value of θ̄ini.
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7 Bose-Einstein condensate of axions

It is an interesting question if it is possible to distinguish between dark matter
axions and other candidates, such as WIMPs, in astrophysical and cosmo-
logical dark matter observations. In the absence of direct detection of dark
matter particles, the nature of the dark matter could be probed with the
possible distinguishable observables, which could for example be seen in the
LSS observations. As we will discuss in this section, one possible difference
between axions and WIMPs is the proposed idea of axionic Bose-Einstein
condensate (BEC) and long-range correlations that can affect the non-linear
galaxy evolution [111].

It has been proposed that the cold dark matter population is made up of a
Bose-Einstein condensate [112, 113, 114]. This could alleviate some CDM
problems, such as cusp-core halo problem [115]. According to Ref. [111]
the zero-momentum mode axions are a promising candidate for BEC dark
matter. They are non-relativistic, and produced in high occupancy, and as we
have seen, their number density is approximately conserved. It was proposed
in Refs. [111, 116] that the axions form a condensate by reaching thermal
equilibrium via gravitational self-interactions.

So far we have assumed that the classical field equations hold for axions,
i.e. we treat axion as a classical field. This has generated slight confusion
in the literature, as differing jargon and computational techniques are used,
and the distinction between the coherently oscillating classical field and the
axion Bose-Einstein condensate is not clear. Ref. [117] tackles this issue by
proposing that the classical axion field generated by the misalignment mech-
anism is a Bose-Einstein condensate, at least to the appropriate level that is
needed to describe the dynamics of the axion system. This also makes the
interpretation of Ref. [116] that the gravitational interaction thermalizes the
system moot, as in the interpretation of Ref. [117] it is just the gravitational
interaction between the axions in the already formed condensate.

Whatever the interpretation or calculational technique, in the literature there
seems to be agreement with the observation of Ref. [116] that the stress-
energy tensors for the axions and WIMPS are different in the case of a
condensate formation. This can be seen from the Euler-like equation for
a classical scalar field

∂t~v + (~v · ∇)~v = −∇ψ −∇QQP − ρ−1∇QSI, (237)

where ψ is the Newtonian potential, QQP is referred to as “quantum pressure“
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of the field, that is related to the Heisenberg principle and the tendency of
a field wavepacket to spread [118], and QSI arises from the self-interaction
of the field [117]. The quartic axion self-interaction term is obtained by
expanding the cosine-potential to a higher order:

V (a) ≈ 1

2
m2
aa

2 +
λ

4!
a4, (238)

where λ = −m2
a/f

2
a < 0.

In the case of non-relativistic non-interacting particles, i.e. dust or CDM,
the Euler equation (237) does not contain the latter two terms in Eq. (237)
[111, 117]. It is not clear how the extra terms of the classical axion field affect
the structure growth and whether they are observable at any scale. It seems
that in the period of the linear structure growth these additional pressure and
viscosity effects do not contribute, and the classical axion field behaves like
the standard CDM from the structure growth point of view [117]. However,
it is possible that during the epoch of the non-linear growth, the standard
cold dark matter particles and classical field can have different affect on
the growth of galaxies due to gravitational interactions and self-interactions
[119, 120, 121, 122]. In Refs. [111, 116, 123] it was argued that the long-
range correlation length between the BEC axions in a rotating galaxy results
in a creation of unique ring-like caustics via mergence of small vortices into
a single large vortex.

Recently the argued dramatic growth of the axion correlation length and
the affect that it has on the galaxy evolution has been questioned [124]. In
Ref. [124] it is argued that while the Bose-Einstein condensate does form,
the attractive interactions of the axions - the gravitation and quartic self-
interaction - do not lead to long-range correlation length between the BEC
axions. It is also proposed that axions form a different type of BEC, where
the axions group into smaller clumps, which could be of a solitonic nature or
Bose stars depending on their interactions [124].

There is an additional problem of how to include the axions originating from
the topological defects. Virtually all the studies consider situations, where
the Peccei-Quinn symmetry breaks after inflation, so in addition to the zero-
mode axions there should be other axion populations as well. However, these
populations do not have condensate characteristics that the zero-mode axions
have [117]. The modified dynamics of the BEC resulting from interactions
between the BEC axions (or classical axion field) and string axions have been
recently studied in Refs. [125, 117]. It then seems that the question of the
axion Bose-Einstein condensate and its observable effects is still an open one.
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8 Conclusion

In this thesis we have studied the properties and cosmological consequences
of the axion, the scalar particle that appears in the U(1)PQ extension of the
Standard Model. We have seen that the axion studies are theoretically mo-
tivated, as the axion provides an elegant solution to the naturalness problem
that is referred to as the strong CP problem. We described in detail the
historical background of the strong CP problem and solution provided by
the so-called Peccei-Quinn mechanism.

After the discussion on the strong CP problem, we moved to describe the
properties and details of axion models. Despite the discussed model-de-
pendencies of the axion models, such as the KSVZ and DFSZ models, the
parameter space related to these extensions of the Standard Model is rel-
atively minimal. As discussed, the parameter space has been probed and
constrained by the astrophysical observations, but recently there has been
great progress in the development and realization of direct detection experi-
ments, such as CAST and IAXO, which are able to detect QCD axions and
axion-like particles. In addition to the observations of astrophysical objects,
the observation of large-scale structure dynamics deviating from the stan-
dard cold dark matter picture could also be interpreted as hints of axions
through the discussed Bose-Einstein condensation of axions.

We have shown that the axion is an excellent cold dark matter candidate. If
the U(1)PQ symmetry is broken after inflation, the axion cold dark matter
density gets contribution from both the zero-momentum modes of the axion
field and the decay of topological defects. As we have seen, in the case of the
KSVZ model, the contribution of the zero-momentum modes, string-radiated
axions and the axions coming from the decay of string-wall configurations can
be of the same order. However, the computation includes significant uncer-
tainties originating from the numerical simulations. In the axion models
where NDW > 1, such as the DFSZ model, there is the additional problem of
long-lived string-wall configurations, which we did not discuss in great detail.
However, if inflation occurs after the PQ phase transition, one needs to con-
sider only the computationally straightforward zero-momentum modes of the
axion field. In this case we are left with the question of the value of the initial
misalignment angle θ̄ini, but as we have shown, the isocurvature fluctuations
of the axion field can be used to couple the axion model parameters to the
parameters of the inflationary models. In addition to the CDM axions, we
have also shown how to obtain a population of hot dark matter axions.
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