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Forbidden nonunique β decays feature shape functions that are complicated combinations of different nuclear
matrix elements and phase-space factors. Furthermore, they depend in a very nontrivial way on the values of the
weak coupling constants, gV for the vector part and gA for the axial-vector part. In this work we include also the
usually omitted second-order terms in the shape functions to see their effect on the computed decay half-lives and
electron spectra (β spectra). As examples we study the fourth-forbidden nonunique ground-state-to-ground-state
β− decay branches of 113Cd and 115In using the microscopic quasiparticle-phonon model and the nuclear shell
model. A striking new feature that is reported in this paper is that the calculated shape of the β spectrum is
quite sensitive to the values of gV and gA and hence comparison of the calculated with the measured spectrum
shape opens a way to determine the values of these coupling constants. This article is designed to show the
power of this comparison, coined spectrum-shape method (SSM), by studying the two exemplary β transitions
within two different nuclear-structure frameworks. While the SSM seems to confine the gV values close to the
canonical value gV = 1.0, the values of gA extracted from the half-life data and by the SSM emerge contradictory
in the present calculations. This calls for improved nuclear-structure calculations and more measured data to
systematically employ SSM for determination of the effective value of gA in the future.

DOI: 10.1103/PhysRevC.93.034308

I. INTRODUCTION

The problem related to the value of the axial-vector cou-
pling constant gA is an old and well-known one. The constant
gA enters the β-decay theory as means of re-normalizing
the hadronic current of the decaying nucleus [1,2]. Part of
this re-normalization comes from the nonnucleonic degrees of
freedom [3] and part from the nuclear many-body effects as
discussed below. The β-decay rates contain gA up to the second
power whereas the double-β-decay rates contain gA up to the
fourth power [4,5]. Thus it is of great importance to have a
good understanding of the value of gA when assessing the
potential experimental verification of the neutrinoless mode of
double β decay (check, e.g., Refs. [6,7]).

Although the so-called bare nucleon value, roughly
gA = 1.25, can readily be derived from theoretical considera-
tions, i.e., from the partially conserved vector current (PCVC)
hypothesis of the standard model [8], there are reasons to
suspect that this is not the appropriate value when working
inside the nuclear matter and finite nuclei. The attempts to
probe the value of gA have been done mainly in the context of
the proton-neutron quasiparticle random-phase approximation
(pnQRPA) [6,7,9–13], the nuclear shell model (NSM) [14–16],
and the interacting boson approximation (IBA) [17,18]. These
studies have compared the measured data with the corre-
sponding computed observables in the context of allowed and
first-forbidden unique β decays, as well as two-neutrino double
β decays. All these studies show consistently that gA has to be
(considerably) quenched in the calculations to match the wide
set of data used in the analyses. This quenching can be partly
explained by the nonnucleonic degrees of freedom that remove
some strength from the low-lying nuclear excitations [3] and
partly by the nuclear many-body effects: truncations in the
single-particle model space and/or deficiencies in the treatment
of the many-body quantum mechanics. There are also some

specific problems like the gpp problem of the pnQRPA [19]
that makes the determination of the value of gA somewhat
problematic. Limitations of the various models have been
discussed, e.g., in Ref. [20].

The discussion about the quenching of gA, or its effective
value, has recently been boosted by the attempts to calculate
the nuclear matrix elements related to the neutrinoless double
β decay. Because the decay rate of this decay mode depends
on the fourth power of gA it is of paramount importance
to know the effective value of this quantity in a nucleus.
There is no theory yet which would tell how the effective
value of gA, as probed in β decays and two-neutrino double
β decays, connects to the one of the neutrinoless double β
decays. The differences in the mentioned decays stem from
the quite different magnitudes of the exchanged momenta and
the different structure of the decay operators (the neutrinoless
double β decay includes additional neutrino potentials in the
transition operators from the propagation of the virtual neu-
trino between the two decaying nucleons). Because the neu-
trinoless double β decay can contain momentum exchanges
roughly up to 100 MeV, the higher-forbidden channels (0+ →
2+,3+,3−,4+,4−, etc.) are not much suppressed against the
allowed (0+ → 0+,1+) and first-forbidden (0+ → 0−,1−,2−)
channels. This makes the present study important: Are the
higher-forbidden transitions suppressed by the effective value
of gA or not? The high-forbidden β decays are a unique
chance to attack this problem and here we concentrate on
two exemplary fourth-forbidden transitions.

The conserved vector current (CVC) hypothesis protects the
value of the vector coupling constant gV = 1.0 [8]. However,
like gA, gV could attain effective values in practical nuclear-
structure calculations, pertaining to various truncations in
the nuclear many-body problem. Quenched values of gV

were early on obtained in extensive shell-model calculations
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of spin-dipole and first-forbidden β transitions in the lead
region [21,22]. In the more recent calculations [23,24] this
analysis was extended to N = 80,82,126 nuclei by com-
paring the available data with shell-model calculations for
Gamow-Teller and first-forbidden β-decay rates. The obtained
quenchings for gV were sizable. It is thus of great interest to see
if such quenching pertains to higher-forbidden β transitions,
and in particular can the quenching be seen in the β spectrum
of a given high-forbidden β transition. Inspired by these
observations, we further extended the present spectrum-shape
method (SSM) analysis to probe the possible effects of the
vector coupling. Thus in the current work the computed
results are subject to the potential quenching of both gV

and gA.
Referring to the above discussion, we want to inspect

the role of the weak coupling constants gV and gA in the
ground-state-to-ground-state β decays of 113Cd and 115In.
Both of these are fourth forbidden nonunique transitions
with partial half-lives t

β
1/2 = (8.04 ± 0.05)×1015 yr and t

β
1/2 =

(4.41 ± 0.25)×1014 yr, respectively [25]. These decays were
previously studied in Ref. [26], and in the current work
we revisit the same subject. More notably, we present two
different methods for the extraction of the effective value of
gA from the experimental data. At the same time we aim
at exploring the effects of gV on the decay half-life and β
spectrum. We extend the previous study [26] by performing
the calculations with two different nuclear models, namely the
microscopic quasiparticle-phonon model (MQPM) [27] and
the nuclear shell model (NSM). For the latter we use the code
NUSHELLX [28]. In addition, we also inspect the contributions
that stem from the previously unaccounted-for second-order
terms of the β-decay shape function. Finally, we also want to
point here to the sensitivity of the computed β spectrum to the
values of gV and gA. This feature was overlooked in [26].

The first method for probing the value of gA is the
straightforward comparison of the theoretically computed
partial half-life with the experiment. In the current work
this is implemented by plotting the partial half-life values as
functions of the effective value of gA. The second method is a
completely new approach, and it utilizes the dependence of the
computed β-spectrum shape on the value of gA. By plotting the
computed β spectra for different values of gA we have noticed
that the dependence of the spectrum on the effective value of gA

can be very strong. This raises the intriguing question of how
the effective value of gA can be extracted by using this strong
dependence. The obvious way to do this is to compare with
experimental data, in this particular case with the spectrum
shape extracted by Belli et al. [29] for 113Cd. This comparison
we coin the spectrum-shape method. In the same way we can
extend the half-life and SSM analyses to take into account
the effect of a possible quenching in the value of the vector
coupling constant gV.

This article is organized as follows. In Sec. II we give a short
overview on the theoretical formalism. We concentrate mainly
on the theory of forbidden β decays and describe some of
the basic principles involved. This formalism was previously
applied to the studies of such decays, e.g., in Refs. [30–32].
We do not discuss the properties and details of the two nuclear
models in the current work but rather refer the reader to

take a look at, e.g., [27] for the MQPM and [33] for the
NSM. In Sec. III we lay out the numerical background of
the calculations and in Sec. IV we present the results of our
calculations and perform the comparison with experimental
data. Finally, in Sec. V we draw the conclusions.

II. THEORETICAL FORMALISM

The general theoretical formalism for the β-decay process
in the context of both allowed and forbidden types of decays is
described in full detail in Ref. [2] (check also Ref. [1]). Based
on this thorough treatment of the subject a more streamlined
discussion concentrating on the practical aspects of the theory
can be found, e.g., in Ref. [34]. It is worth noting, however,
that Ref. [34] does not discuss the second-order terms of the
shape factor, included in this work.

When the β−-decay process is described as a pointlike
interaction vertex with an effective coupling constant GF, the
Fermi coupling constant, the probability for the electron to be
emitted in the energy interval We to We + dWe is given by

P (We)dWe = G2
F

(�c)6

1

2π3�
C(We)

×pecWe(W0 − We)2F0(Z,We)dWe. (1)

The quantity pe in Eq. (1) is the electron momentum and W0

is the end-point energy of the β spectrum corresponding to the
maximum electron energy in the decay transition. The function
F0(Z,We) is the Fermi function for β− decays [see Eq. (32) in
Ref. [34]] and Z is the proton number of the daughter nucleus.

To render the subsequent derivations more convenient
and systematic a set of unitless kinematic quantities is
usually introduced. These quantities are we = We/mec

2, w0 =
W0/mec

2, and p = pec/mec
2, i.e., the ones appearing in

Eq. (1) divided by the electron rest-mass energy mec
2. Using

this convention the partial half-life of the decay can be
expressed as t1/2 = κ/C̃, where the constant,

κ = 2π2
� ln 2

(mec2)5G2
F

/
(�c)6

, (2)

and the unitless integrated shape factor is defined as

C̃ =
∫ w0

1
C(we)pwe(w0 − we)2F0(Z,we)dwe. (3)

Nuclear-structure information, and hence, the characteristics
of the decay are contained in the shape factor of Eq. (3). The
general expression for this factor is given by

C(we) =
∑

ke,kν ,K

λke (MK (ke,kν)2 + mK (ke,kν)2

− 2γke

kewe
MK (ke,kν)mK (ke,kν)), (4)

where the terms MK (ke,kν) and mK (ke,kν) are com-
plicated combinations of kinematic factors and nuclear
form factors. The quantity γke = √

k2
e − (αZ)2 and λke =

Fke−1(Z,we)/F0(Z,we), where Fke−1(Z,we) is the generalized
Fermi function. The positive integers ke and kν are related to
the partial wave expansions of the electron (e) and neutrino
(ν) wave functions.
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In impulse approximation the decaying nucleus is inde-
pendent of the rest of the nucleons. The other nucleons act
only as spectators, and thus the meson exchange and other
many-body effects are neglected. The form factors themselves
can be expanded as power series of the quantity qR/�, where
q is the neutrino momentum and R the nuclear radius:

FKLS(q2) =
∑
N

(−1)N (2L + 1)!!

(2N )!!(2L + 2N + 1)!!
(qR/�)2NF (N)

KLS.

(5)

Because qR/� � 1 is for typical β decays, the leading
contributions come essentially from the first few form factor
coefficients F (N)

KLS [2].
In practice the shape factor C(we) as a whole can be

expressed as a power series in the small quantities ηi=1,2,3,4,5 =
αZ, peR/�, qR/�, mecR/�, and WeR/�c. Excluding the
prefactors dependent on the integers ke, kν , and K the functions
MK (ke,kν) and mK (ke,kν) appearing in Eq. (4) thus consist of
the terms

∏
i η

αi

i × F (N)
KLS with αi = 0,1,2, . . .. Furthermore,

the summation of Eq. (4) is restricted to two distinct cases:
For a given level of forbiddeness K one only needs to add up
the terms that satisfy ke + kν = K + 1 and ke + kν = K + 2.
In the earlier applications (see, e.g., [30–32,34]) only the
first-order terms in Eq. (4) are taken into account. These
are the ones related to the lowest powers of the small
quantities ηi , i.e., terms

∏
i η

αi

i = (peR/�)ke−1(qR/�)kν−1 and
(peR/�)ke−1(qR/�)kν−1ηj for the summation ke+kν = K+1
and only (peR/�)ke−1(qR/�)kν−1 for ke + kν = K + 2. It is
worth noting that in this case the formalism for unique decays
with the change of angular momentum equal to K + 1 is
drastically simplified because only one term of Eq. (4) is
nonvanishing and contributes to the decay probability.

When the shape factor is cut by these order-of-magnitude
considerations the remaining form-factor coefficients can be
related to the nuclear matrix elements (NMEs). This is done
by assigning

V/AF
(N)
KLS(ke,m,n,ρ) = (−1)K−L V/AM(N)

KLS (ke,m,n,ρ). (6)

In this way all the NMEs with superscript A carry a prefactor
λ = gA/gV. These are the vector (V) and axial-vector (A)
coupling constants that were used to re-normalize the hadronic
current. The appearance of these constants in Eq. (4) modulates
the effect of the NMEs. When the value of gA is increased
the impact of the corresponding NMEs increases. The exact
opposite happens when the value is decreased.

The NMEs for a transition between an initial (i) and a final
(f) nuclear state can be decomposed as

V/AM(N)
KLS = 1√

2Ji + 1

∑
pn

V/Am
(N)
KLS(pn)(ψf ||[c†pc̃n]K ||ψi),

(7)
where the summation runs over the different proton (p) and
neutron (n) model-space single-particle states. The single-
particle matrix elements V/Am

(N)
KLS(pn) are model independent,

and in this work they are calculated using relativistic nuclear
single-particle wave functions. These wave functions are

written as

φnljm(r) =
(

Gnljm(r)

Fnljm(r)

)
, (8)

where Gnljm(r) are the large and Fnljm(r) the small components
of the four spinor. These components are the same as those used
in Ref. [34], i.e.,

Gnljm(r) = ilgnl(r)
[
Ylχ 1

2

]
jm

, (9a)

Fnljm(r) = σ · p
2MNc

Gnljm(r), (9b)

where gnl(r) are taken to be the radial parts of the
harmonic-oscillator wave functions. The one-body transition
densities (OBTDs) (ψf ||[c†pc̃n]K ||ψi), on the other hand, need
to be calculated from a nuclear-structure model. In this work
both MQPM and NSM are used to describe the initial- and
final-state wave functions. The explicit expressions for the
derivation of the OBTDs from the MQPM wave functions are
found, e.g., in Ref. [34], while the corresponding NSM quan-
tities are computed using the computer code NUSHELLX [28].

In the present work we increase the accuracy of the
shape function (4) by going beyond the above-described
lowest-power expansion and add the second-order terms,
i.e., (pR/�)ke−1(qR/�)kν−1ηjηk for the ke + kν = K + 1 and
(pR/�)ke−1(qR/�)kν−1ηj for ke + kν = K + 2. This way the
number of NMEs involved in the calculations increases
drastically. In the case of fourth-forbidden nonunique decays
the number NMEs is increased from 12 to 45. As a rule of
thumb the second-order terms involve matrix elements that
are taken from the first-order NMEs (for all of these N = 0)
by adding an extra factor of (r/R)2N to the integrands of the
first-order single-particle matrix elements [1]. However, for
several terms the higher-degree Coulombic factors are also
taken into account. The relevant factors are tabulated, e.g., in
Ref. [2].

It should be noted that we do not consider the radiative
corrections of Coulomb interaction in the current work.
Neither are the actual electron screening corrections included
in the theory. The latter corrections stem from the interaction
between the emitted β particle and the atomic electrons, and
are generally considered important only for very low Q-value
decays. For example, in Ref. [31] an effect of only less than
1% to the decay half-life was observed in the β− decay of 48Ca
with a ground-state-to-ground-state Q value of 278 ± 5 keV.
It can be further argued that these corrections contribute
more to electron-capture (EC) decay and much less to the
β− one [2].

III. NUMERICAL APPLICATION OF THE FORMALISM

The basic procedures involved in the application of the
MQPM theory, using a realistic Bonn one-boson exchange
potential with the G-matrix techniques, is described, e.g., in
Ref. [27]. Its recent application on the β decay branches of
115Cd can be found in Ref. [30]. Following the guidelines of
Ref. [26], where the work was previously carried out, we chose
to perform the calculations using an extensive valence space of
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orbitals 1p − 0f − 2s − 1d − 0g − 0h for both of the protons
and neutrons in the reference nuclei 112Cd and 116Sn. The
adopted parametrization for the Coulomb-corrected Woods-
Saxon potential was the one by Bohr and Mottelson [35].

In each case some of the computed Woods-Saxon single-
particle energies were slightly modified to improve the
quality of the BCS one-quasiparticle spectra. The aim of this
adjustment was to fit the lowest one-quasiparticle states closer
to the experimental ones. Some further phenomenological fine
tuning was likewise applied to the QRPA calculations. In
practice this was implemented by scaling the particle-particle
and particle-hole interaction matrix elements separately by
parameters gpp and gph for each of the few lowest multipoles.
At the very last step the total amount of basis states involved
in the subsequent MQPM calculations was restricted by
introducing a 3.0-MeV cutoff energy for the QRPA states.

The shell-model OBTDs were calculated with an inert
core 78Ni by taking proton orbitals 1p3/2, 0f5/2, 1p1/2, 0g9/2

and neutron orbitals 0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2. We
performed calculations with the NSM code NUSHELLX [28]
and effective interaction jj45pna [36,37] which is a CD-
Bonn potential, re-normalized using the perturbative G-matrix
approach. This interactions has four parts, corresponding
to the neutron-neutron, neutron-proton and proton-proton
nuclear force, and the Coulomb repulsion between the protons.
Recently the shell-model results with the jj45pna interaction
for 122−126Ag were reported in Ref. [37].

Because of the large dimensions involved in the present
NSM calculation we had to enforce a controlled truncation
of the neutron configurations. For the A = 113 nuclei we
forced complete filling of the 0g7/2 orbital and allowed no
neutron excitations to the 0h11/2 orbital. In the case of 115In
and 115Sn we opened the 0g7/2 orbital for excitations, but still
did not allow neutron excitations to the 0h11/2 orbital. With
these truncations the present NSM calculations manage to
predict correctly the ground state for 113Cd as 1/2+ (νs1

1/2) and

9/2+(πg−1
9/2) for 113In. Similarly for 115In we predict correctly

the ground state as 9/2+(πg−1
9/2) and for 115Sn the ground state

as 1/2+ (νs1
1/2).

IV. RESULTS

Below we present the results of our calculations concerning
the β-decay half-lives and β spectra of the two exemplary
fourth-forbidden nonunique ground-state-to-ground-state
β− transitions in 113Cd and 115In.

A. General features of the β-decay half-lives

The MQPM and NSM computed partial half-lives for the
fourth-forbidden nonunique β−-decay branches of 113Cd and
115In, without and with the second-order corrections to the
shape function, are presented in Fig. 1. The partial half-lives are
plotted as functions of the axial-vector coupling constant gA,
and a comparison with experiment is performed by drawing the
experimental values, with their experimental errors included,
as horizontal shaded stripes in the same figures. In this
analysis we keep the vector coupling constant in its CVC value

TABLE I. Values of gA which reproduce the experimental partial
half-lives for the decay branches of Fig. 1. The results are tabulated
for both the MQPM and the NSM, and for the two cases of including
(the rows with 2nd) and excluding (1st) the second-order terms in the
shape factor. Both the lower-than-unity and higher-than-unity values
of gA are tabulated.

Effective gA

Nuclear model Order 113Cd 115In

MQPM 1st 0.28 1.46 0.76 1.16
2nd 0.27 1.45 0.75 1.15

NSM 1st 0.61 1.33 0.58 1.24
2nd 0.60 1.32 0.57 1.23

gV = 1.0. It is interesting to note that in each case there are
actually two crossing points with the experiment. The larger
effective values of gA are found to be close to the bare nucleon
value, whereas the more strongly quenched results are in the
less-than-unity range. The extracted values are all tabulated in
Table I. This table, together with Fig. 1, shows that the effects
of the second-order terms appear to be relatively small when
only the partial half-lives are considered.

It should be noted that, although the choice gA � 1 is
considered to be the more conservative alternative for the
effective value of the coupling constant, much stronger
quenching is many times recorded in other studies (check,
e.g., Refs. [6,7,9–11,13,17,18] pertaining to either allowed
or first-forbidden unique decays. In Ref. [13] a systematic
examination of the Gamow-Teller β− and EC decay branches
within the mass range A = 100–136 yields consistently less
than unity values for gA for all the examined decay branches.
The same is essentially true also in the other studies mentioned.
The question then arises whether the same type of effective
values of gA are needed to reproduce decay transitions of
higher forbiddeness.

In all the mentioned earlier studies only one physical ob-
servable per decay transition was considered. The β-spectrum
shape could not be used as another observable because of
the universal structure of the involved shape functions. In the
current work we consider nonunique forbidden decay channels
where no universal shape of the β spectrum occurs because
now the complicated dependence on the angular momentum
transfer allows for a much more complex expression for the
β-decay shape factor of Eq. (4). The shape factor, and thus the
inverse half-life, attains the form of a second-order polyno-
mial, i.e., (t1/2)−1 ∝ c1 × g2

A + c2 × gA + c3, in terms of gA.
The general behavior of the quantity t1/2 as a function
of the coupling constant becomes then exactly the bell-shaped
curve depicted in Fig. 1. A total of two crossing points with
the experiment can be found from the nonzero first-order term
c2. In contrast to this the general shape factor for the allowed
decays is b1 × g2

A + b2 [38]. If only Gamow-Teller decays are
considered, then t1/2 ∝ 1/g2

A holds directly, as also happens
for the forbidden unique decays [38]. Thus, only one solution
with a positive value of gA is available in these cases.

The previous half-life analyses can be extended to the case
of a freely varying value of the vector coupling constant gV.
To enable a clear-cut access to the effects of the simultaneous
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FIG. 1. MQPM and NSM computed partial half-lives of the fourth-forbidden nonunique ground-state-to-ground-state β−-decay branches
of 113Cd (a) and 115In (b) as functions of the value of the axial-vector coupling constant gA. The value gV = 1.0 was adopted in the calculations.
The notation 1st (2nd) refers to inclusion of the first-order (both the first- and second-order) terms of the shape factor. Experimental half-lives
are given as gray horizontal areas in the same figures.

variation of the values of both gV and gA we can inspect the
contributions of the vector (V) and axial-vector (A) dependent
terms to the integrated shape factor (3). It can be decomposed
into a form,

C̃ = g2
VC̃V + g2

AC̃A + gVgAC̃VA, (10)

where the coupling-constant independent coefficients C̃V, C̃A,
and C̃VA are tabulated in Table II. It can be seen that the
contributions coming from the vector and axial-vector parts
are of the same sign and order, and that in each case the
cross term C̃VA is roughly twice as large as the vector and
axial-vector parts and of opposite sign. Thus much of the
contribution coming from the first two terms is canceled out
by the cross term. This is strikingly seen in the last line of
Table II where the value of the total integrated shape factor
is given for gV = gA = 1.0, i.e., it is directly the sum of the
three terms above it in the table. Furthermore, it can be seen
that the second-order terms affect essentially only the vector
part of the shape factor. Considering the results of Fig. 1 and
Table II the most decisive part of the theory is well contained
in the NMEs of the first-order terms.

TABLE II. The vector (C̃V), axial-vector (C̃A), and vector-axial-
vector (C̃VA) dependent terms of the integrated shape factor. Again
the computed results are presented both including (the columns with
2nd) and excluding (1st) the second-order terms of the shape factor.
The values on the fourth row correspond to the sum of the three
components, i.e., the total integrated shape factor for gV = gA = 1.0.
All the values are given in units of 10−21.

MQPM NSM

Factor 1st 2nd 1st 2nd

C̃V 52.064 50.857 171.762 167.834
C̃A 68.146 68.146 182.544 182.544
C̃VA −118.801 −117.413 −353.457 −349.385
�C̃i 1.409 1.590 0.849 0.993

In Fig. 2 we study the effects of the variation of the value of
gV on the β-decay half-life. First of all, in Fig. 2 it is evident
that the shift in the value of gV results in a shift in the half-
life curve, roughly preserving its shape and only altering its
peak height. Even more interestingly, the half-life of the 113Cd
decay transition is peaked whenever roughly equal values of
the two coupling constants are used. The (universal) symmetry
of the half-life curves indicates that the experimental half-life is
obtained for an infinite number of (gV,gA) pairs by increasing
or decreasing the value of gA by roughly three units relative
to a given value of gV. Similar results are obtained for the
115In decay. This means that the half-life analysis alone is not
able to determine uniquely the values of gV and gA when their
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FIG. 2. NSM computed partial half-lives of the fourth-forbidden
nonunique ground-state-to-ground-state β−-decay branch of 113Cd
as functions of the value of the axial-vector coupling constant gA for
selected values of gV. Both the first-order and second-order terms of
the shape factor are taken into account in the results. The experimental
half-life is given as a gray horizontal stripe in the same figure.
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values are allowed to vary freely. The situation is changed
drastically when the inspection of the shape of the β spectrum
is introduced, as shown in the following subsection.

B. General features of the β-decay electron spectra

The nontrivial structure of the shape function for forbidden
nonunique β decays opens up a potential extra route to
investigate the effective values of the weak coupling constants
gV and gA. As mentioned in the introduction, we call this
analysis tool the spectrum-shape method. The viability of this
method depends on how sensitive the β-spectrum shape is to
the values of gV and gA. To have a feeling of the sensitivity
of the spectrum to gA in our two exemplary cases we keep
the CVC value gV = 1.0 of the vector coupling constant and
plot for the exemplary cases the integrand of Eq. (3) as a
function of the electron energy for several values of gA. The
results are given in Fig. 3. To draw attention to the changes
in the shape of the spectra itself we chose to normalize the
areas under each of the curves to unity. As it can be seen from
these figures the spectrum shape is very strongly dependent
on the adopt value of the coupling constant gA, showing the

power of SSM. Furthermore, it can be seen that the inclusion
or exclusion of the second-order terms also contributes to the
spectral shape. This effect is slightly more conspicuous when
looking at the actual values of the integrands without the unity
normalization.

A closer look at Fig. 3 shows that in each case the behavior
of the spectrum shape is very similar. At low values, i.e.,
gA < 0.8, the spectrum shape resembles that of a single down-
ward slope. The most interesting behavior starts to occur when
gA verges on the unity. At these values there is a formation of a
very distinct maximum point at the midsection of the spectra.
At the values greater than unity the mid-maximum starts to
vanish, and when the value of gA is further increased the spectra
again attain the shape of a single downward slope. It is worth
noting that values of gA with most notable mid-maximum
points coincide with the partial half-life maxima of Fig. 1.
That is, the partial half-lives of the two transitions are at
their longest when these particular values of gA are used. The
observed behavior can be related to the actual values of the
shape factors. In these cases the NMEs are multiplied by gA

in a way that the integrand of Eq. (3) yields overall the lowest
values.
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FIG. 3. β spectra of the two fourth-forbidden decay branches of 113Cd (a)–(e) and 115In (f)–(j) for gV = 1.0. The spectra are plotted using
several values of gA and they include results from both the MQPM and NSM nuclear models. Areas under each of the curves are normalized
to unity.
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In the case of 113Cd the NMEs are larger for the MQPM
than for the NSM. Thus in the case of the half-lives the extreme
values of gA are extracted from the MQPM calculations as
shown in Table I. The NSM predicts less drastic effective
values of gA. For 115In, on the other hand, the situation is
completely reversed. In that case the extreme values of gA

stem from the NSM calculations. However, although the two
nuclear models and model spaces used in the calculations are
very different the overall results emerging from the two models
still seem to be somewhat similar. Even the half-life peaks in
Fig. 1 seem to be shifted only by 0.05–0.1 units in the value
of gA. A similar shift is also visible in the behavior of the β
spectra in Fig. 3. Extension of the present pilot study to other
nuclear transitions and other nuclear models would certainly
shed light on the model dependence of the effective value of
gA in nuclear-structure calculations.

Extending the previous spectrum-shape analysis to the free
variation of gV is somewhat straightforward: Taking different
combinations of the (gV,gA) pairs and recording the emerging
spectrum shape leads to the general overall observation that
the number of possible (gV,gA) combinations that reproduces
the experimental spectrum shape, discussed in the following
subsection, is drastically reduced. The key feature in this is that
the humped structure of the β spectrum, visible in the region
gA ∼ 0.85–1.00 for 113Cd and in the region gA ∼ 0.90–1.00
for 115In in Fig. 3, is obtained only when the two coupling
constants have roughly the same value. For values of gV and
gA differing more than 10% the spectrum shape becomes a
dull monotonously decreasing curve.

C. Extraction of the effective values of the weak
coupling constants

To assess the very intriguing possibility of extracting the
effective value of gA (and possibly gV) by using SSM, we
performed a comparison with the available experimental data
of Belli et al. [29] for the 113Cd β spectrum by including also
the second-order terms. It should immediately be noted that

the experimentally measured Q value in that study is 343.1 ±
0.6 keV. Thus, it differs from the more established value of
322 ± 1 keV [25] that is used in the present work. To allow for
the comparison between the computed β spectrum and the data
the theoretical β spectra were recalculated using the Q value
343.1 ± 0.6 keV of Ref. [29]. We start by keeping the canoni-
cal value gV = 1.0. The results are presented in Fig. 4. As it can
be seen the shell model succeeds in providing an excellent
match with the experiment when the value of the axial
coupling is taken to be gA = 0.90. For the MQPM the match
is not as perfect, but a relatively close match can be found at
around gA = 0.83. Again, the areas under both the theoretical
and the experimental curve are normalized to unity.

Despite the fact that SSM allows for the extraction of the
effective values of gA within the range deduced from the half-
life, there is a notable contradiction between the results that
these methods provide. The values of gA, suggested by SSM,
fall in the middle of the extreme values of gA, suggested by
the half-life method. Thus, for gV = 1.0, it is not possible to
decide whether the effective value of gA is closer to its bare
value or the strongly quenched value. More experimental data
on these type of decay transitions are needed to perform a more
systematic study. One particular problem of the experiments
is to extract the β spectrum below 100 keV. Thus one can
expect notable uncertainties in the low-energy β spectra of the
current experiments. To render SSM its full power, a systematic
improvement and extension of the future experiments is thus
called for.

It is interesting to see if the above conclusions remain valid
when the value of the vector coupling constant gV is allowed
to vary around its CVC value gV = 1.0. As mentioned at the
end of Sec. IV B the humped shape of the experimental β
spectrum in Fig. 4 is only attained when the values of gV and
gA are sufficiently close to each other. According to the current
results (see Fig. 5) the shape of the experimental β spectrum
is well reproduced when (a) the difference between the values
of gV and gA is equal to 0.1, and (b) both values are close to
unity. If either one of the coupling constants is more drastically
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FIG. 4. Computed β spectra of the fourth-forbidden 113Cd β− branch compared with the experiment. The second-order terms have been
included in the computations and only the best matches are shown in the figure. The canonical value gV = 1.0 is used in the calculation. The
experimental data are from Ref. [29], and the theoretical β spectra had to be recalculated by using the Q value adopted in that study.
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quenched the agreement with the experiment is sharply lost
and the computed β spectra swiftly acquire the shape of a
monotonously decreasing curve. Therefore it should be noted
that although the predicted partial half-life can be brought
down to match the experimental value by the quenching of gV

the inspection on the shape of the β spectra strongly contradicts
these quenched choices of gV values. For the presently used
nuclear models, inspection of the β spectra for different values
of the pairs (gV,gA) leads to the conclusion that the values
gV = 1 (the CVC value of gV) and gA = 0.9 bring the β
spectrum closest to the currently available experimental data.
This best matching is displayed in the middle panel of Fig. 5
for the NSM.

Finally, it is interesting to speculate about the possible
reason(s) for the contradictory half-life and spectrum-shape
results of the present pilot study. If the entire half-life curves
of Fig. 1 were brought down by suitable values of the NMEs,
then in the extreme case of only one touching point with
the experiment the two methods practically yield the same
effective values of gA for the 113Cd decay. Hence, it can be
argued that the discrepancies between the results of the two
methods are related to the inaccuracies in the nuclear-structure
calculations.

It is reasonable to expect that a successful description of
the nucleus and its decay processes can make the half-life
and spectrum-shape sets of results to coincide. Special care
must, however, be also taken when assessing the quality of
the experimental data. The energy resolution in Ref. [29]
is relatively low, and some alteration of the β spectrum at
low energies (below 50–100 keV) is not excluded when more
precise data becomes available. This is a crucial improvement
because it is the low-energy part of the β spectrum that depends
very strongly on the value of gA (and gV, keeping in mind
the need for close-by values of the two coupling constants).
Regrettably this is also the part where most difficulties in the
experimental work occur.

V. CONCLUSIONS

In this article we have conducted a pilot study on the
possibility of using β spectra of forbidden nonunique β-decay
transitions to access the effective values of weak coupling
constants gV (vector) and gA (axial vector) in nuclear-model
calculations. We coin this method the spectrum-shape method.
This method is complementary to the derivation of gA

values through measured β-decay half-lives. The complex
dependence of the shape function of the forbidden nonunique
β-decay transitions on gA (and gV), the phase-space factors,
and the nuclear matrix elements makes the shape of the
computed β spectrum depend on gA (and gV) in a highly
nontrivial way. Computing the β spectrum for different
values of gV and gA and comparing with the measured
spectrum can give information on the effective values of
these coupling constants. The potential of SSM depends on
the sensitivity of the β-spectrum shape to the values of gV

and gA.
To access the sensitivity of the β spectrum to gV and gA we

have studied in this work two exemplary forbidden nonunique
β−-decay transitions, namely the fourth-forbidden nonunique
ground-state-to-ground-state β-decay branches of 113Cd and
115In by using the microscopic quasiparticle-phonon model
and the nuclear shell model. We have also added the usually
omitted second-order terms in the computed shape function to
see their effect on the half-life and shape function. It turned
out that the second-order terms have a negligible effect on the
half-life but noticeable effect on the shape of the β spectrum
in both nuclear models. Furthermore, the two exemplary cases
showed a very high sensitivity of the β-spectrum shape to
the values of gV and gA for both nuclear models, rendering
SSM potentially a very powerful tool for determination of the
effective value of these two coupling constants. In both nuclear
models the sensitivity was found to be strongest, for a given
value of gV, close to the value of gA that corresponds to the
longest computed partial half-life.
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The computed β-spectrum shape could be compared with
the measured one of Ref. [29] for 113Cd. The comparison
revealed that an excellent agreement with the experiment is
obtained with the values gV = 1.0 and gA = 0.90 in the case of
NSM. The agreement was not as perfect in the case of MQPM
but a relatively close resemblance was found with gV = 1.0
and gA = 0.83. Contrariwise, the comparison of the quadratic
dependence of the theoretical decay half-life on gA with half-
life data produced two values of gA, either highly quenched
or unquenched. The contradicting results of SSM and half-life
analyses are most likely associated with the deficiencies in
the nuclear-structure calculations and more calculations with
different nuclear Hamiltonians and different nuclear-structure
frameworks are called for in the future. At this point it is
important to note that the contradiction between the SSM and
half-life results is not rectified in any obvious way by the
quenching of the vector coupling constant gV as it happens in
some other studies involving β decays of low forbiddeness.
Although in practice the half-lives can be brought down to
experiment by either raising or lowering the value of gV, the
match between the predicted and the experimental β spectra is

lost in the process. Interestingly, the present inspection using
the 113Cd data seems to strongly favor the choice gV ≈ 1 in
accordance with the CVC hypothesis of the standard model [8].

More experimental data are needed on the electron-
spectrum shapes of the nonunique β-decay transitions of
various degrees of forbiddeness to facilitate a systematic study
of the effective value of gA (and gV) in various nuclear models.
A particular experimental challenge in the future is to obtain
accurate enough data on the spectrum shape at low electron
energies, below 50–100 keV, to fully exploit the power of
SSM.
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