

Hojat Mohammadnazar

IMPROVING FAULT PREVENTION WITH PROACTIVE
ROOT CAUSE ANALYSIS (PRORCA METHOD)

UNIVERSITY OF JYVÄSKYLÄ

DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION SYSTEMS

2016

ABSTRACT

Mohammadnazar, Hojat
Improving fault prevention with proactive root cause analysis (PRORCA method)
Jyväskylä: University of Jyväskylä, 2016, 95 p.
Information Systems, Master’s Thesis
Supervisor(s): Pulkkinen, Mirja
Measures taken to prevent faults from slipping through to operation can secure
development of highly reliable software systems. One such measure is analyzing
the root causes of reoccurring faults and preventing them from ever appearing
again. PRORCA method was developed in order to provide a proactive,
lightweight and flexible way for fault prevention. To this end, PRORCA method
relies on expert knowledge of the development context and development practices
to identify individuals’ erratic behaviors that can contribute to faults slipping
through to operation. The development of the method was done according to
teachings of design science research. Three expert interviews with representatives
of a case company supported the development of PRORCA. The first interview
helped the problem identification and solution generation, while the other two
interviews were carried out with the purpose of demonstrating the use of the
PRORCA method in two different projects. Using the PRORCA proved to be easy
and insightful findings were drawn from conducting it with respect to individuals’
erratic behavior in each project. Proactive analysis of faults using the PRORCA
method supports development of highly reliable software systems in a simple,
flexible and resource-friendly manner.
Keywords: Software reliability, fault prevention, contextual factors, proactive root
cause analysis

FIGURES

FIGURE 1 Fault and failure relationship adopted from Avižienis et al. 2004 12

FIGURE 2 Fault prevention model .. 15

FIGURE 3 Research phases mapped to DSRM (Peffers et al., 2007) stages 22

FIGURE 4 Actors in fault prevention model ... 33

FIGURE 5 Causal map template .. 45

FIGURE 6 Project one causal map ... 48

FIGURE 7 Project two causal map .. 51

TABLES

TABLE 1 Initial set of academic articles ... 24

TABLE 2 Topic areas reviewed .. 25

TABLE 3 RCA approaches and timing ... 27

TABLE 4 Root cause categories ... 29

TABLE 5 Actors delivering faults in each distinct root cause category 30

TABLE 6 Topic areas investigated for developing taxonomy of contextual factors 40

TABLE 7 template of the taxonomy of contextual factors ... 42

TABLE 8 Description of mismatches for the first project .. 49

TABLE 9 Description of erratic behaviors for the first project 51

TABLE 10 Description of mismatches for the second project 52

TABLE 11 Description of erratic behaviors for the second project 53

file:///C:/Users/hp/Desktop/Hojat-Thesis-V1.1.docx%23_Toc445470031
file:///C:/Users/hp/Desktop/Hojat-Thesis-V1.1.docx%23_Toc445470032
file:///C:/Users/hp/Desktop/Hojat-Thesis-V1.1.docx%23_Toc445470033

TABLE OF CONTENTS

ABSTRACT .. 2

FIGURES .. 3

TABLES .. 3

1 INTRODUCTION ... 6

2 FAULTS, ERRORS AND FAILURES .. 11

3 FAULT PREVENTION ... 14

4 ROOT CAUSE ANALYSIS... 17

5 RESEARCH APPROACH .. 20

5.1 Phase one .. 22

5.1.1 RCA difficulties .. 26

5.1.2 Individual’s erratic behavior .. 29

5.1.3 Objectives and solution ... 37

5.2 Phase two .. 38

5.2.1 Taxonomy of contextual factors ... 40

5.2.2 PRORCA method ... 42

5.3 Phase three .. 46

5.3.1 Demonstration .. 46

5.3.2 Evaluation.. 53

6 DISCUSSION ... 56

7 LIMITATIONS ... 59

8 CONCLUSION .. 61

REFERENCES .. 63

APPENDIX 1 TAXONOMY OF CONTEXTUAL FACTORS 72

APPENDIX 2 THE CONTEXT OF PROJECT ONE ... 75

APPENDIX 3 THE CONTEXT OF PROJECT TWO... 77

APPENDIX 4 INTERVIEW QUESTIONS FOR INTERVIEW ONE 79

APPENDIX 5 INTERVIEW QUESTIONS FOR INTERVIEW TWO AND THREE82

APPENDIX 6 LITERATURE SOURCES FOR THE MAPPING STUDY 85

1 INTRODUCTION

With increasing presence of automated computation and networked
communication, quality measures of systems responsible for delivering these
services become critical. Quality attributes often discussed for such systems are
dependability, and security (Avižienis, Laprie, Randell, & Landwehr, 2004). The
former, dependability, encompasses several attributes one of which is reliability
(Avižienis et al., 2004).

Reliability as the degree to which a system can continue to operate correctly
in a specified duration of time has been a matter of concern in computer
engineering literature and other related fields from the early ages of computer
evolution (Goel, 1985). In the early days, the focus of research was on hardware
reliability and performance (Goel, 1985). The focus, however, has shifted from
hardware to software from 1970’s onward as developers and users have come to
realize that even though, unlike hardware, software is not subject to wear and tear,
as a human activity, software development is not free of fault and malice
(Avižienis et al., 2004; Goel, 1985).

The correctness of operation as a defining characteristic of reliability is
faltered with occurrences of failures. Reliability of a system suffers with
occurrences of service failures (Avižienis et al., 2004). Unsatisfactory reliability
might have catastrophic consequences on the user(s) and the environment in
safety-critical (Bishop, 2013) and business-critical (Børretzen, Stålhane, Lauritsen,
& Myhrer, 2004) systems. Several instances of aircraft and spacecraft accidents due
to software failures are presented in Favarò, Jackson, Saleh and Mavris (2013) and
Leveson (2004), respectively. According to Lyu (2007), software reliability target in
many projects is set as five 9’s or six 9’s which could be understood as 10-5 to 10-6
failures per execution hour. However, the threshold that distinguishes between
high and low reliability is a matter of debate (Voas, & Miller, 1995). For example,
Butler and Finelli (1993), claim that ultrahigh reliability needed by safety-critical
applications is 10−7 to 10−9 failures for 1 to 10 hour missions.

Even though it is a common practice, setting a reliability target in terms of
failures and quantitative assessment of software reliability is not recognized as an

7

absolutely justified way to achieve reliability (Butler, & Finelli, 1993; Littlewood, &
Strigini, 1993). Stressing the differences between software and hardware, Butler
and Finelli (1993), challenged the software reliability community to leave the
prevalent idea of quantitative software reliability modeling and provide ‘credible’
methods for developing reliable software. To this end, some software standards,
such as ECSS software dependability and safety standard (ECSS-Q-HB-80-03A
2012), do not advise setting numerical reliability targets in terms of failures and
using reliability models. These standards assert that their rigorous design ensures
high reliability upon compliance with the practices and procedures. Bishop (2013)
reports that projects complying with IEC 61508 (2010) Level 4 will have a failure
rate as low as 10-9 per hour.

Similar to the existential nature of the relationship between failures and
deviation from correct operation, there is a relationship between faults and
failures. A fault could be considered as a flaw in the software that can potentially
lead to a failure (Avižienis et al., 2004). Consequently, it is possible to assume a
cause-effect relationship between faults and reliability. However, caution is
advised in drawing a direct cause-effect relationship between the number of faults
and reliability (Fenton, & Neil, 1999). Fenton and Neil (1999) argued that drawing
such a relationship necessitates a good understanding of the relationship between
faults and failures which is still not available. Hamill and Goseva-Popstojanova
(2009) addressed the complexity of the relationship between faults and failures and
noted the possibility of one-to-many, many-to-one and many-to-many
relationships between faults and failures. Adams (1984) demonstrated that a large
number of failures are caused by a small number of faults. Nevertheless, the
existence of the relationship between faults and failures and consequently faults
and reliability is undeniable.

Lyu (1996) suggested that (1) fault prevention, (2) fault tolerance, (3) fault
removal, and (4) fault forecasting are four technical areas that make development
of highly reliable software possible. While explaining reliability as an attribute of
dependability, Avižienis et al. (2004), presented the same means for development
of highly dependable systems. Fault prevention calls for the elimination of the
causes of the faults via process modifications, thus reducing the chances of fault
introduction during development. Fault tolerance techniques are used to develop
mechanisms into the software in order to avoid service failures in the presence of
faults. Fault removal refers to techniques and practices that are utilized to reduce
the number and severity of faults. Finally, Fault forecasting is estimating the
present number, the future incidence, and the likely consequences of faults. (Lyu,
2007; Avižienis et al., 2004.) Therefore, it can be inferred that ‘credible’ methods for
developing highly reliable software should be drawn from these four technical
areas.

There is a tendency in the research community to undermine fault prevention
(Alho, & Mattila, 2011). This tendency was criticized by Alho and Mattila (2011)

8

who described failing to care for prevention as ‘shortsighted’ and called for further
research into fault prevention. Alho and Mattila (2011) argued that fault tolerance
techniques cannot protect applications against all possible faults and prediction of
unexpected faults can be expensive. Furthermore, fault forecasting research has yet
to reach a consensus on the metrics with highest predictability (Catal, & Diri, 2009;
Fenton, & Neil, 1999; Hall, Beecham, Bowes, Gray, & Counsell, 2012; Radjenović,
Heričko, Torkar, & Živkovič, 2013).

At this point, it is necessary to note that there is a certain ambiguity in
referring to fault prevention which needs clarifying. Prevention could potentially
mean prevention of faults slipping-through to operation or preventing fault
introduction during implementation. Avižienis et al. (2004), considered prevention
as part of general engineering in which process modifications are made to reduce
fault introduction during implementation. However, evidently, general
engineering includes fault detection and fixing activities with the intention to
produce high quality products. Additionally, software development processes are
designed according to software development methods and standards, all of which
mandate existence of testing and review processes. As a result, it could be
postulated that fault prevention includes fault removal activities with the purpose
of preventing faults from slipping through to operation. In this research, fault
prevention and prevention of faults from slipping through to operation are used
interchangeably.

Process improvement models such as CMMI (2010), ISO/IEC 12207 (2008),
and Six Sigma are the prime candidates for delivering fault prevention. The effect
of Process improvement, particularly those presented in CMMI, on reducing the
number of faults slipping through to operation has been empirically approved.
Notably, Diaz and Sligo (1997), stressed that, in their case organization, each CMM
level upgrade in a project reduced the number of faults introduced to roughly half
the number in previous levels. In a similar vein, Harter, Kemerer, and Slaughter
(2012) reported significant reduction in likelihood of introducing severe faults in
higher levels of CMM. The effect of Consistency in adopting CMM practices on
introducing faults has also been the subject of studies. Krishnan and Kellner (1999)
studied consistent adoption of CMM practices and demonstrated that such
adoption is significantly associated with lower number of faults being introduced.
Huang, Liu, Wang, and Li (2015) demonstrated that lower number of total faults,
minor faults and severe faults slipping through to operation are achieved when
adoption of CMM practices is done consistently.

One of the practices included in many software process improvement models
is analysis of root causes of faults (Kalinowski, Travassos, & Card, 2008). For
example, one of the key process areas of the CMMI level 5 is ‘Causal Analysis and
Resolution’ (Shenvi, 2009). There are a myriad of methods in the literature, offering
systematic ways to identify the root causes of faults (Chillarege, et al. 1992; Card,
1998; Grady, 1996; Kalinowski et al., 2008; Lehtinen, Mäntylä, & Vanhanen, 2011).

9

Whichever method is chosen, the goal is identification of the root causes of
reoccurring faults and preventing them from being introduced in future projects or

in the same project by resolving their root causes. Such methods are known by the
names such as Root Cause Analysis (RCA), Defect Causal Analysis (DCA), and
Common Cause analysis to name a few. RCA methods do drive process
improvement but their merits are not limited to it. Most of the RCA methods rely
on statistical analysis of fault data for identifying reoccurring faults. To make such
statistical analysis, the fault data should be collected in a formulated manner. To
this end, several fault classification schemes such as Orthogonal Defect
Classification (Chillarege et al., 1992), and Defect Origins, Types, and Modes
(Grady, 1996) have been proposed by researchers.

Even though reliance on fault data is insightful (Grady, 1996), it comes at a
high price for RCA methods. Fault data is difficult to collect (Mohagheghi,
Conradi, & Børretzen, 2006); and its collection needs upfront investment and
personnel training (Carrozza, Pietrantuono, & Russo, 2015). These difficulties have
rendered the majority of existing RCA methods resource intensive and
inappropriate for small and medium-sized enterprises (SMEs) (Lehtinen et al.,
2011). More importantly, existing RCA methods are reactive in nature. In a
longitudinal study of software process improvement model implementation,
Fitzgerald and O'Kane (1999) found out that the prevention activities championed
by CMM are reactive in nature.

In this research, RCA as one of the key instruments available for fault
prevention is brought into the spotlight, and a new proactive RCA (PRORCA)
method is developed to address the difficulties of conducting RCA using existing
methods. This research is a response to Alho’s and Mattila’s (2011) call for further
research into fault prevention. For the purposes of the research, Design Science
Research Methodology (DSRM) (Peffers, Tuunanen, Rothenberger, & Chatterjee,
2007) is adopted as a nominal process and mental model. The research is carried
out in three phases which are mapped to stages of DSRM. The problem
identification and demonstration stages of the DSRM which are mapped to phase
one and phase three of this research, respectively, are supported by three
qualitative interviews with representatives of a case company in the domain of
avionics and embedded systems. Furthermore, a systematic mapping study
(Kitchenham, & Charters, 2007) is performed in the first phase for problem
identification and solution innovation. Moreover, directed content analysis (Hsieh,
& Shannon, 2005) is performed in phase two on a collection of academic articles.

The PRORCA method has three steps, namely, context mapping, erratic
behavior mapping and corrective action innovation. The main idea in PRORCA is
proactive identification of individuals’ erratic behaviors based on mismatches
between development context and development practices. Preventing such erratic
behaviors that can contribute to fault introduction, ineffective and inefficient fault
detection and, ineffective and inefficient fault fix would, in return, prevent faults

10

from slipping through to operation. In the course of the research, taxonomy of
contextual factors affecting fault slipping through to operation is developed using
directed content analysis (Hsieh and Shannon 2005) on existing publications. The
taxonomy is the key tool for identification of mismatches between the
development context and practices.

The rest of this document is organized as follows. First, the relationship
between errors, faults, and failures is outlined. A clear description of fault
prevention is outlined in the third section. Next, RCA will be explained. In the fifth
section the research approach is discussed. Three phases of the research are
included in this section. Problem identification, and objectives and solution
innovation are discussed in phase one. Design and development of taxonomy of
contextual factors and PRORCA are included in phase two. And demonstration of
the use of the PRORCA method and its evaluation are presented in phase three.
This section is then followed by discussion, limitations and finally conclusion.

11

2 FAULTS, ERRORS AND FAILURES

Central to development of highly-reliable software systems through prevention is
the relationship between faults, failures and errors. There exist two approaches to
explain the relationship between errors, faults and failures. A reader must be
vigilant with respect to which one of these approaches is taken when interpreting
the results in the literature. The distinction between the approaches is drawn by
the way errors are defined. In one approach errors are considered a wrong internal
state of a software system, while in the other errors are considered a wrong-doing
of a human that produces incorrect results.

Avižienis et al. (2004) is one of the advocates of the first approach. According
to Avižienis et al. (2004), a failure is a deviation from correct service which occurs
either when the specification is not complied with or when the specification is
wrong. In case of a failure, a system’s external state is incorrect. What precedes this
incorrect external state is usually an incorrect internal state which is known as an
error (Avižienis et al., 2004). It could be said that a failure occurs when an error
reaches the system’s interface (Hanmer, McBride, & Mendiratta, 2007). Faults are
potential flaws and/or imperfections that if activated might lead to errors
(Børretzen, & Dyre-Hansen, 2007). A fault might cause an error in the internal state
of the system which does not affect the external state (Avižienis et al., 2004). The
relationship between faults, errors and failures in this approach is shown in
FIGURE 1.

.The second approach is advocated by ISO/IEC 24765 (2010) standard. In this
approach an error is a wrong-doing of a human that produces incorrect results. A
fault, then, is a manifestation of an error which could possibly lead to a failure.
Alternatively, an error could be a wrong step, process or data definition that
manifests itself as a fault (ISO/IEC 24765 2010). A software failure, then, is

12

“termination of the ability of a product to perform a required function or its
inability to perform within previously specified limits” (ISO/IEC 25000 2005).

Regardless of the approach, a failure can occur due to a fault. In both
approaches a fault can exist both in executable code and documents including
specification and requirement. Fault introduction can occur at any stage during the
development process. An introduced fault might propagate to subsequent phases
(Van Moll, Jacobs, Kusters, & Trienekens, 2004). Additionally, in both approaches
it is emphasized that a fault might not necessarily cause a failure. Alternatively, a
failure might be due to several faults activated simultaneously. Another possibility
is that a fault remains dormant during the whole lifetime of a system without ever
causing any failures. Hammil and Goseva-Popstojanova (2009) noted the
possibility of one-to-many, many-to-one and many-to-many relationships between
faults and failures. In other words, there is a complex relationship between faults
and failures all aspects of which are not exactly known (Fenton, & Neil, 1999).

It is important to note that these approaches and the definitions provided are
not always adopted by different researchers as they are represented here.
Moreover, the definitions, particularly those in software standards, have been
subject to change over the years. For example, Boehm, Mcclean and Urfrig (1975)
used the term error to refer to what was described as fault above; a flaw that can
lead to a failure. Basili and Rombach (1987) adopt the second approach; however,
they adopt the definitions in IEEE-Std-729 (1983) which might have minor
differences with ISO/IEC 24765 (2010). Plus, the terms “fault”, “defect” and “bug”
are very often used interchangeably. Exceptions exist though. For instance, IEEE-
Std-1044 (2009) differentiates between defects and faults. Consequently,
interpretation of the pervious discussions and findings in the literature must be
done with careful attention.

In this research, errors are left out and when necessary to refer to the cause of
faults, the term root cause is deployed. Since faults and failures are defined almost
identically in both approaches, they are adopted as was explained in this section.
The terms fault and defect will be used interchangeably as well.

Fault Activated Error Failure Pass through

System interface

Incorrect

internal

state

Incorrect

external

state

FIGURE 1 Fault and failure relationship adopted from Avižienis et al. 2004

13

An example that can represent the fault and failure sequence is provided by
Favaro et al. (2013) in which a failure in an aircraft control software led to
uncontrolled maneuvers of a 777 Boeing aircraft. In this scenario, the aircraft
boarded with one failed accelerometer (#5) out of six. Such a failure was predicted
in the software requirements. In such a case the software was designed not to
consider the data coming from the failed accelerometer. However, when, in an
unpredicted event another accelerometer failed (#6) after engagement of auto-
pilot, a fault in the design of the control software was activated. This fault allowed
the data from accelerometer #5 to be included in calculation of acceleration values.
This failure of the software to comply with specification led to sudden
uncontrolled maneuvers of a 777 Boeing aircraft. Fortunately, this incident did not
lead to any casualties or physical damage.

14

3 FAULT PREVENTION

Avižienis et al. (2004) stated that ‘fault avoidance’ as a combination of ‘fault
prevention’ and ‘fault removal’ is a way to aim for development of systems that
are free from faults. It is noteworthy that ‘fault prevention’ from the viewpoint of
Avižienis et al. (2004) is one of the raison d’etre of development methods which
reduces the number of faults introduced during development. This conception of
fault prevention is limited to reducing ‘fault introduction’ during development.
Bearing in mind that Avižienis et al. (2004) conceptualized ‘fault removal’ as both
‘fault detection’ and ‘fault fixing’, it can be postulated that (1) reducing fault
introduction during development, (2) fault detection and (3) fault fixing can help to
‘avoid faults’. In other words, fault avoidance is preventing faults from slipping
through to operation. However, preventing faults from slipping through to
operation is essentially the same as ‘fault prevention’. From this perspective, fault
prevention is a larger system in which the goal is to prevent faults from slipping
through to operation. This larger system is what Avižienis et al. (2004) called ‘fault
avoidance’. However, since the conception of ‘fault prevention’ as prevention of
faults from slipping through to operation satisfies the needs of this research and
since adding a new term to the already dense and dark terminology jungle of
dependability and reliability research is not on this research’s agenda, the term
‘fault avoidance’ will not be used. Instead ‘fault prevention is used to refer to (1)
reducing fault introduction during development, (2) fault detection and (3) fault
fixing.

It follows, based on this new conception of fault prevention that (1) fault
introduction during development, (2) ineffective and inefficient fault detection and
(3) ineffective and inefficient fault fixing are contributing elements to faults
slipping through to operation. FIGURE 2 depicts the contributing elements to
faults slipping through to operation. FIGURE 2 is not a process model and is not
intended to show a sequence. The connectors in this model show a causal effect
and the model itself is a causal one. For example, inefficient and ineffective fix can

15

lead to fault introduction. Alternatively, it can lead to faults slipping through to
operation.

It is self-evident that unless a fault introduced during development is
effectively and efficiently detected and fixed, it slips through to operation.
Effectiveness of detection cannot be undermined. Ineffective detection, delivered
by inappropriate testing and review practices, means that an introduced fault can
go unnoticed and, eventually, slip through to operation. Effective fault detection
mandates sufficient fault detection activities. As a matter of fact, one of the
applications of software reliability growth models has always been notifying
managers that enough fault detection has taken place to secure reliable operation
of software (Butler, & Finelli, 1993; Carman, Dolinsky, Lyu, & Yu, 1995; Goel,
1985).

However, effectiveness is not all there is to fault detection; the efficiency of
detection is also a matter of concern. According to the infinite monkey theorem, if a
monkey is given infinite amount of time hitting keys randomly on a typewriter, it
will eventually input a legible text. Similarly, if testers are given infinite testing
time, they will eventually find all the faults in a piece of software. The same can be

Faults slipping

through to

operation

Inefficient

and

ineffective

detection

Fault introduction

Inefficient and

ineffective fix

Outcome Contributing

elements

FIGURE 2 Fault prevention model

16

argued for reviews. This is not, however, practical in today’s turbulent and
dynamic business environment. Testers can dedicate only a limited amount of time
to detection activities and reviews do not span more than a few hours. In fact,
Butler and Finelli (1993) argued that achieving ultrahigh reliability is not practical
because it would require “testing beyond what is practical”. It comes as no
surprise, then, that inefficient defect detection could lead to faults going unnoticed
during defect detection and slipping through to operation.

As much as fault detection is valuable, it is not enough to prove that if
detected, a fault, is prevented from slipping through to operation; a fault needs to
be fixed effectively and efficiently. If a fault is not fixed in time or with acceptable
quality it may very well slip through to operation. A bad fix, on the other hand,
could introduce additional faults (Christenson, & Huang, 1996; Whittaker, 2000).
Whittaker (2000) emphasized the possibility that even though a bad fix could
remove the original fault, still it can introduce new faults. Alternatively, a bad fix
might introduce new faults without actually fixing the original fault (Whittaker
2000). Additionally, several authors including Li, Sun, Leung, and Zhang (2013),
Kim, Zimmermann, Pan, and Whitehead (2006), and Canfora and Cerulo (2005)
have indicated that fault-fixing changes can introduce further faults.

Lack of attention to any of the aforementioned activities can contribute to
faults slipping through to operation. This contribution, depicted in FIGURE 2
could eventually lead to software failures and poor software reliability. These
contributing elements are well-known and have been under investigation in
software quality research before. Jacobs, Van Moll, Kusters, Trienekens, and
Brombacher (2007) studied influential factors leading to defect introduction and
defect detection. According to Jacobs et al. (2007) “the injection of defects should be
minimized and the detection of defects should be maximized”. Furthermore,
implementation, testing and fixing activities were recognized as key improvement
points for software quality improvement in Carrozza et al. (2014). These authors
performed a defect analysis study in order to find effectiveness and efficiency
bottlenecks during implementation, testing and fixing activities.

17

4 ROOT CAUSE ANALYSIS

Root cause analysis (RCA) is considered to be a key instrument to defect
prevention and process improvement. RCA is a structured investigation to identify
the underlying causes of faults. RCA can be performed both during the
development and after product release. In the former case, RCA can result in in-
process improvements (Chillarege et al., 1992) while in the latter, it helps create an
organizational portfolio by which lessons learned from one project can be put into
practice in later projects (Leszak, Perry, & Stoll, 2002).

Lehtinen et al. (2011) identified three common steps to all RCA methods -
target problem detection, root cause detection and corrective action innovation.
The general idea behind RCA is to identify patterns that reoccur with respect to
faults, identify the root causes, and provide improvement suggestions.

Two forms of RCA have been reported in the literature: Qualitative RCA and
Quantitative RCA. Qualitative RCA is an effective but resource-intensive process
whereby root causes of faults are analyzed one-by-one by a team of experts
(Grady, 1996; Mays, Jones, Holloway, & Studinski, 1990). Reliance of this form of
RCA on human capabilities and high cost of implementation is considered as its
downsides (Chillarege et al., 1992). However, recently, ARCA method was
proposed by Lehtinen et al. (2011) as a lightweight approach to qualitative RCA.
This approach is different from the other qualitative methods in that, even though,
it is done qualitatively, it only relies on qualitative methods such as focus group
meetings for target problem identification. Not all faults are analyzed in the ARCA
method (Lehtinen et al., 2011); only the ones that a group of experts identify via a
systematic approach. Such an approach is supposed to make RCA more applicable
in SMEs that are often reluctant to conduct a resource-intensive analysis (Lehtinen
et al., 2011).

Quantitative RCA is guided by statistical fault data analysis in problem
identification stage. Statistical fault data analysis most often relies on data collected
via fault reports. Fault reporting is formalized via fault classification schemes. In

18

quantitative RCA, statistical methods are utilized to visualize patterns that might
reflect issues in development process. The root causes of such issues are then
identified. There are a myriad of methods for identifying the root causes. Most
famous among them is creating a fishbone diagram (Kalinowski et al., 2008) to
record cause-effect relationships. Lehtinen et al. (2001) reported cases where fault
tree diagrams, causal maps, matrix diagrams, scatter charts, logic trees, and a
causal factor charts were used. Unfortunately, not much has been said on
corrective action innovation (Lehtinen et al., 2011). Corrective actions are reported
to be derived using qualitative approaches such as brainstorming, brainwriting,
interviews, and focus group meetings (Card, 1998; Kalinowski et al., 2008; Lehtinen
et al., 2011).

Conducting quantitative RCA is tightly coupled with the fault classification
scheme of choice. The main function of a fault classification scheme is to determine
a minimum set of attributes that allow slicing the fault data in various ways to
provide visibility into problematic areas in the software development process
(Bridge, & Miller, 1998). There are numerous classification schemes in the
literature. The most well-known are Orthogonal Defect Classification (ODC)
proposed by Chillarege et al. (1992) and developed at IBM, the Defect Origins,
Types, and Modes scheme developed in HP, also known as the HP scheme (Grady,
1996), and the scheme proposed in IEEE Std. 1044. Other known schemes include
those presented by Binder (2000) and Beizer (1990).

In order to ease the selection of a classification scheme, researchers have
made efforts to evaluate them against each other. Huber (2000) compared ODC
and HP schemes across five dimensions- Data, Process,
Specification/Requirements, Defect Type, and Resource. Vallespir, Grazioli, and
Herbert (2009) proposed a framework for evaluating fault classification schemes
and compared the aforementioned schemes. Their comparison revealed that fault
type is included in all fault classification schemes. Furthermore, Kalinowski et al.
(2008) found two types of information being addressed by the fault classification
schemes they reviewed, namely, fault information to be collected and fault types.

The HP scheme defines three high-level attributes and provides a set of
possible values for each attribute. These attributes are Origin, Type and Mode
(Grady, 1996). Depending on what Origin value is selected for a fault, values
available for the Type attribute differ. On the other hand, the underlying idea in
ODC (Chillarege et al., 1992) is that defect data should be collected in a way that
allows classes of defects to be associated with stages of development process
(Chillarege et al., 1992). Orthogonality refers to the independence of value of each
attribute from the values of the other attributes (Vallespir et al., 2009). ODC calls
for collection of at least two attributes with utmost importance - Defect Type and
Defect Trigger. Six other attributes, namely, impact, target, activity, qualifier,
source, and age are also recommended to be collected but they are supporting
attributes and their collection is not of existential importance to ODC. Fault

19

classification in IEEE std. 1044 is similar to ODC in structure (Mellegård, & Torner,
2012). Among ODC, IEEE std. 1044 and HP scheme, collection of severity is only
addressed in IEEE std. 1044 classification, while mutually exclusive attribute
values are addressed in all (Vallespir et al., 2009). Mutually exclusive attribute
value means that if one value is selected for an attribute no other values can be
selected (Vallespir et al., 2009).

In practice, it is hard to believe that the well-known schemes are adopted
fully and completely. Card (2005), for example, stated that classification of fault
types should support analysis of fault data based on specific objectives of
organizations. Fault classification schemes need some tailoring to fit the different
needs and objectives of organizations (Mellegård, & Torner, 2012). Examples of
customized classification schemes exist in the literature. Both El Emam and
Wieczorek (1998) and Lutz and Mikulski (2004) customized ODC to fit their goals.
Freimut, Denger and Ketterer (2005) developed a customized classification scheme
based on ODC and HP schemes. Raninen, Toroi, Vainio and Ahonen (2012)
introduced their own customized classification scheme based already existing
schemes. Mellegård, and Torner (2012) tailored the IEEE std. 1044 classification to
be used in a company in automotive industry. Leszak et al. (2002) developed a
classification scheme and compromised the mutual-exclusivity of cause attribute
value. According to Leszak et al. (2002) a fault might have several causes or no
causes at all. Freimut et al. (2005) presented an approach for developing and
evaluating customized classification schemes.

With all the alternative RCA methods available, Software development
companies should adopt one that fits their goals and resources best. If there are
limited resources available for RCA, the decision to adopt or customize one of the
well-known fault classification schemes and perform quantitative RCA should be
studied beforehand with due attention to its downsides. Such a decision can add
overhead to developers’ work and if not fully complied with, might not be as
effective as expected.

20

5 Research approach

Software reliability and its related topics have historically been researched in the
software engineering community. Even though exceptions exist of research being
published in other fields such as information system (Zahedi, 1987), the
predominant approach has been following guidelines of software engineering
research.

A research effort intended for development of a solution to an engineering
problem could benefit from a framework that formalizes conducting, validating
and reporting the research (Kitchenham et al., 2002). For such a framework to
prove valuable a number of requirements should be satisfied. Such a framework
should:

1) promote theory building
2) have clear principles and rules
3) entail a clear process for carrying out research

Theory is the basic means for communicating knowledge (Sjøberg, Dybå,
Anda, & Hannay, 2008). It sets the foundations on which a sound solution can be
developed and communicated, hence, the first requirement. Declaring clear
principles and setting proper rules is an existential feature of a research
framework. Principles and rules often presented as guidelines that assist the
researcher to make the right decisions, avoid pitfalls and communicate correctly
(Kitchenham et al., 2002). However, to achieve this goal the principles and rules
should be complemented with a clear research process. A clear research process
provides an optimal roadmap that guides the researcher, from design, and
delivery to communication and evaluation of a solution. Accompanied by
guidelines and theory, such a roadmap promises a way to arrive at a robust and
rigorous solution.

Software engineering research is reluctant to build and adopt theories
(Hannay, Sjøberg, & Dybå, 2007). Even though guidelines do exist in software

21

engineering literature, they are either too abstract or too detailed (Kitchenham et
al., 2002) or they lack a defined process. Plus, according to Kitchenham et al. (2002),
the level of the standards in conducting empirical software engineering and
subsequent meta-analysis of software engineering studies is low. Design Science
research (DSR), on the other hand, as an alternative, while rooted in engineering
(Hevner, March, Park, & Ram, 2004; Peffers et al., 2007), showed signs of satisfying
the three requirements set above.

DSR is one side of the coin in information system research (Hevner et al.,
2004). While the behavioral science research in information system research
examines behaviors and attitudes related to a business need, DSR focuses on utility
and provides pragmatic solutions in the form of artifacts to satisfy that business
need. The focus in DSR is essentially on developing an artifact. An artifact could be
a set of constructs, models, methods or an instantiation of a system (Hevner et al.,
2004). Design science research emphasizes adoption and building of theories and
stresses the importance of prior knowledge base (Hever et al., 2004; Peffers et al.,
2007). Plus, as argued by Walls, Widmeyer and El Sawy (1992), DSR entails both a
product aspect and a process aspect. The features of DSR provided evidence that it
can provide a suitable framework that satisfies the three requirements set for
carrying out this research.

DSRM proposed by Peffers et al. (2007) satisfies all of the requirements
described above. As a result DSRM is selected as a framework of reference and
mental model to guide the researcher in this research endeavor. DSRM (Peffers et
al., 2007) is comprised of six stages, namely, (1) problem identification and
motivation, (2) definition of objectives and solution, (3) design and development of
an artifact, (4) demonstration, (5) evaluation, and (6) communication.

This research is carried out in three phases. As depicted in FIGURE 3, in each
phase, one or two of the stages of DSRM are completed. In phase one, the
researcher sets out to identify problems in fault prevention that would lead to
lower software reliability. From the identified problems a solution is inferred and
objectives are set. At the end of phase one, a model of elements and actors
contributing to faults slipping through to operation is developed. Faults slipping
through to operation are the main phenomenon that needs to be addressed in fault
prevention. During the second phase, which is a one-to-one mapping of stage three
in DSRM, taxonomy of contextual factors affecting faults slipping through to
operation is developed based on the model presented at the end of phase 1. In the
same phase, a proactive RCA (PRORCA) method is developed as a solution. The
taxonomy of contextual factors is used as the underlying tool in conducting
PRORCA. The third phase is a demonstration of using PRORCA in two small
projects in a case company. A small project refers to a project that “a single
individual can encompass and resolve any and all of the significant macro and
micro issues involved in developing the system” (Boehm, 1975). An evaluation of
applying PRORCA in these projects is done in phase three as well.

22

 Even though each phase of this study relies on a specific set of data, there are
commonalities between all the phases which help form the cohesive whole of the
research. The sources used for collecting data are interviews and published
articles. The interviewees are representatives of a case company which is an
international, privately-owned SME operating in avionics and embedded systems
industry. They provide engineering services for their customers, mainly the
European Space Agency (ESA), at different centers. Further detail on the research
methods used in each phase is provided in the following sections in which each
phase is discussed.

5.1 Phase one

The first phase of the research entails stages one and two in DSRM in which firstly
the problems are identified and then further objectives and solutions are inferred
from the identified problems. It is important to note that according to Peffers et al.
(2007) entry point into the DSRM could be different in every research effort. In this
research, the entry point to DSRM was stage one. In order to complete phase one,
firstly, a review of the literature on software reliability and fault prevention were

Phase Three Phase Two Phase One

Identify

problem

and

motivate

Define

objectives

and

solution

Design and

development
Demonstration Evaluation Communication

Model of

faults slipping

through to

operation
Difficulties

of RCA and

individual’s

erratic

behavior

Taxonomy

of contextual

factors and

PRORCA

method

Conducting

PRORCA

 in two

small-scale

projects

Evaluation

of

PRORCA

FIGURE 3 Research phases mapped to DSRM (Peffers et al., 2007) stages

23

carried out. Further, an interview with a representative of the case company was
conducted.

The decision of conducting both literature review and interview in the first
phase is well-justified. Since in stage one of DSRM the goal is identifying the
problem, a review provided a wide variety of topics each addressing different
problems in software reliability. This allowed capturing a big picture of reliability
research and acquiring knowledge about underlying common problems in fault
prevention. Kitchenham and Charters (2007), recommended that in cases where
the scope of the topic is very wide, a systematic mapping study be conducted. By
providing an overview of a topic, a systematic mapping study, establishes the
research evidence in a topic (Kitchenham, & Charters, 2007). A systematic
literature review is a stand-alone study that synthesizes the material in the
literature (Okoli, & Schabram, 2010). Since the subject area of software reliability
and fault prevention is wide and varied in scope, a decision was made to conduct a
systematic mapping study rather than a comprehensive literature review.

Even though mapping studies and literature review studies are essentially
different in their goals and comprehensiveness, their differences do not expand to
guidelines. The systematic approaches recommended by Kitchenham and Charters
(2007), and Okoli and Schabram (2010) both require a defined protocol for material
extraction, material inclusion, and material exclusion.

For the purpose of material extraction, Webster and Watson (2002),
recommended a three staged approach which starts with a keyword search and is
later complemented by backward and forward reviewing of the citations.
Kitchenham and Charters (2007), and Levy and Ellis (2006) made similar
recommendations. Levy and Ellis (2006) emphasized the prominence of the studies
in the initial set, though. Having a stopping rule for extracting new material is also
of utter importance (Okoli, & Schabram, 2010). Following these guidelines, in this
study, the following approach was taken:

1) Initial set generation: The initial set of papers was extracted from google
scholar database using keyword search. The keywords were ‘software
reliability, ‘fault prevention’, ‘software reliability engineering’. TABLE 1
shows the initial set.

2) Backward search: the references that were found relevant or that revealed
important information were reviewed.

3) Forward search: using the ‘cited by’ feature of google scholar database
relevant papers were identified and reviewed.

4) As the research unfolded new keywords, forward and backward search
were complemented with further keyword search.

5) The stopping rule for extracting material was increasing frequency of
repeating and irrelevant entries in backward and forward search. However,
later on a calendar date constraint was also set to stop the backward and
forward search.

24

In the beginning, the review was driven by the question: ‘what are fault
prevention techniques and capabilities recommended in the literature?’ As the
review was extended, it became clear that the problem was not that the techniques
and capabilities were not known, but that they were not practiced or complied
with. As the reasons for such behavior began to surface phase one began to take
form.

Inclusion and exclusion in all the steps presented above was done based on
the researcher’s knowledge of the area. For inclusion of a study, first the title was
investigated, if the title revealed new or relevant information regarding software
reliability, fault prevention, fault detection, and RCA, that study was selected for
abstract review. If the same conditions proved right for the abstract then the
reference was included. Furthermore, if a study was considered to be seminal work
in the field, it was included. Naturally, the exclusion occurred when a paper was
not included for abstract review, or complete review.

TABLE 1 Initial set of academic articles

source

1 Carpenter, & Dagnino, 2014

2 Babu, Kumar, & Murali, 2012

3 Alho, & mattila, 2011

4 Hammil, & Goseva-Popstojanova, 2009
5 Lyu, 2007

6 Zelkowitz, & Rus, 2004

7 Dunn, 2004

8 Hermann, & Peercy, 1999

9 Musa, 1996
10 Leveson, & Turner, 1993

11 Zahedi, 1987
12 Goel, 1985
13 Børretzen, 2007

At the end of the review process a total of 168 academic articles and one PhD
dissertation were reviewed. After analysis of the subject matter, these reviewed
publications were categorized into 13 topic areas. TABLE 2 shows the topic areas
that were covered and the number of articles reviewed in each one. The table
indicates that most articles reviewed were in the ‘fault detection’, ‘fault reporting
and RCA’, ‘fault prediction’ and ‘fault reduction’ topic areas. A complete list of
reviewed articles is presented in appendix 6. Appendix 6 is organized in
accordance with the topic areas represented in TABLE 2.

25

TABLE 2 Topic areas reviewed

Topic area number of articles reviewed

fault detection 45

human factors 5

reliability modeling 7

Fault reporting and RCA 31

agile 9

fault prediction (change analysis,) 24

safety 7

maintenance 2

defect analysis 7

fault reduction 18

process improvement 3

tools 5

software reliability engineering 6

It is acknowledged that the approach taken for material extraction is vulnerable to
lack of reliability, because its coverage of literature relies heavily on the initial set.
In such a case, if the initial set is not well-chosen, the chance of missing important
areas of research and seminal articles grows. Plus, this strategy for material
extraction tends toward backward research rather than forward research (Jalali, &
Wohlin, 2012). These problems were handled by conducting an expert interview.
The interviewee was the leader of a team of four developers in the case company
with years of experience as software engineer and system engineer in the avionics
and aerospace industry. The prime function of the team under his leadership was
research and development which in certain instances included safety-critical
software development.

The benefits of the interview were threefold. Firstly, based on the
interviewee’s responses new research paths were investigated. Secondly, the
interview increased the confidence of the researcher about the nature of the
problem that was found and confirmed some of the problems recorded in
literature. For example, it was after the analyzing the interview data that the
mismatch between contextual factors and development practices came to light as
an improvement opportunity. Plus, the interviewee pointed out the problems in
fault reporting and reluctance to perform RCA. Lastly, the input provided by the
interviewee prevented the researcher from going deep into research directions that
had little value. For instance, the decision to abandon the topic of reliability
modeling was founded on the responses of the interviewee.

All in all, the combination of the reactive nature of RCA techniques and the
difficulties in its execution came to light as problems that can impede effective
fault prevention. These problems coupled with the discovery that focusing on
mismatches between the development context and the development practices is an

26

effective way to prevent individuals’ erratic behavior, uncovered a solution for
improving fault prevention. The solution is a proactive RCA technique that relies
on identifying the mismatches between the development context and development
practices to prevent faults from slipping through to operation. The difficulties in
executing RCA, individual’s erratic behavior and objectives and solutions are
discussed in the following three sub-sections.

5.1.1 RCA difficulties

Despite highlighting the significance of proactive rather than reactive prevention
of faults (Grady, 1996) the RCA literature has fallen short of instrumenting a shift
from reactive approaches to proactive ones. RCA methods are still essentially
reactive in analyzing root causes of faults and introducing countermeasures. RCA,
as discussed in the literature, can be performed both during the development (in-
process) and after product release (retrospective). Among the 31 academic articles
reviewed in the topic area ‘fault reporting and RCA’, 17 of them, either presented
an RCA method or carried out RCA in practice. TABLE 3 demonstrates that while
9 studies delivered retrospective RCA in practice, only 4 conducted in-process
RCA. Two studies conducted RCA both retrospectively and in-process. There is an
inconsistency between 8 studies that openly advocated in-process RCA and the
number of in-process studies carried out. Lack of in-process studies is not very
surprising though. It can be explained by reluctance of software companies to
share sensitive fault data about their ongoing projects. Such fault information is the
necessary requirement for carrying out RCA in all but one of the studies reviewed.

Retrospective RCA is openly reactive, thus the time of conducting RCA is not
a matter of concern. It is championed to create an organizational portfolio by
which lessons learned from one project can be put into practice in later projects
(Leszak et al., 2002). In today’s turbulent business environment where each project
is different in nature and execution, however, the advantage gained by performing
retrospective RCA is a matter of debate. It is arguable that the benefit of
retrospective RCA is maximized in release-based projects in which RCA on past
releases can provide improvement suggestions for future releases (Yu, 1998).

Meanwhile, the advocates of the in-process method claim that their approach
would result in improvements and eventually fault prevention while the project is
still under way (Chillarege et al., 1992). The question that begs to be answered then
is when the RCA should be performed for in-process improvements to be
delivered. TABLE 3 shows that among the papers advocating in-process RCA, only
three explicitly recommended a time to perform RCA. Closer inspection of the
recommended time reveals the reactive nature of in-process RCA. If RCA is
supposed to be delivered at the end of each development stage then not much can

27

be done regarding the completed stages in an ongoing project. In case it is done
after each iteration, in an iterative development project, yet again, the outcome of
RCA will be useful in future iterations. The benefit of such an approach is
maximized in complex projects in which several teams are working concurrently
on a product but at different stages of development.

Furthermore, Lehtinen et al. (2011) identified three common steps in RCA
methods, namely, (1) target problem detection, (2) root cause detection and (3)
corrective action innovation. These steps imply the underlying assumption that a
problem already exists, root causes of which should be identified. This assumption
reveals the reactive nature of RCA methods as well.

TABLE 3 RCA approaches and timing

Source
Approach
recommended

Approach
taken

Timing

Basili, & Rombach, 1987 Retrospective Retrospective -

Bridge, & Miller, 1998 NA Retrospective -

Chillarege, et al., 1992 In-process Retrospective NA

Freimut et al., 2005 In-process In-process NA

Hayes Raphael, Holbrook,
& Pruett, 2006

NA Retrospective -

Li, Li, & Sun, 2010 NA
Retrospective
and In-process

NA

Bhandari et al., 1993 In-process In-process After each phase

Grady, 1996
Retrospective
and In-process

NA NA

Hong, Xie, & Shanmugan,
1999

NA In-process NA

Kalinowski et al., 2008 In-process NA
right after each
of phases or within a
phase in exceptional cases

Lehtinen et al., 2011 In-process
Retrospective
and In-process

NA

Leszak et al., 2002 In-process Retrospective NA

Lutz, & Mikulski, 2004 NA Retrospective -

Shenvi, 2009 In-process Retrospective NA

Yu, 1998 NA Retrospective -

Jalote, & Agrawal, 2005 In-process In-process After each iteration

Raninen et al., 2012 NA Retrospective -

In addition to the reactive nature, there are many reports of the difficulty of
conducting RCA. First and foremost, reliance of RCA techniques on fault data,
except that of Lehtinen et al. (2011), makes them vulnerable to fault reporting
mechanisms of organizations. According to Børretzen et al. (2007), in practice, fault

28

reports are usually collected just for removal and unfortunately are not further
analyzed to gain process improvement insights. Plus, fault reports that are
collected in organizations usually have comprehensibility and inaccuracy issues
(Børretzen, & Dyre-Hansen, 2007). Mohagheghi et al. (2006) have identified a
number of problems in fault reporting processes. They reported ambiguous
problem report fields as a source of confusion for developers. Definitions and
terms might mean different things to different groups of stakeholders. Lack of
attention to product releases, changes in report fields between releases, coarse-
grained information in reports, and different report formats and reporting tools are
other issues that these researchers witnessed in fault reporting practices of
organizations (Mohagheghi et al., 2006). Lehtinen et al. (2011) argued that reliance
of RCA on fault reports imposes a considerable amount of upfront investment, i.e.
defect classification scheme definitions, procedure setup, establishment of data
collection mechanisms, and personnel training. As a consequence, even though it
might be effective for larger companies that have defined and strict processes, RCA
methods relying on fault data might not be favorable in SMEs. Raninen et al. (2012)
shared a similar view and claimed that fault reports are not efficiently analyzed in
smaller software companies. Furthermore, non-immediate visible gains, required
customization, change in people’s routines (Carrozza et al., 2015), and impractical
assumption of full knowledge of defects (Mellegård, & Torner, 2012) are other
factors that make performing RCA difficult.

In this research, the interviewee’s responses confirmed that fault data
collection in small-scale development is not an institutionalized activity. In this
case, the interviewee clarified his experience from the case company and other
companies. Furthermore, the interviewee mentioned that no formal analysis of
faults data is performed in the case company. He stressed the importance of being
proactive when a fault trend is observed, though.

What I have seen it the past is quite informal so you start collecting the fault data when
your customer says ‘hey what’s going on’ or when you have to report to your customer.
But I have usually worked in very small teams, maybe at most three developers; in such
a small scale development it tends not to be done in my experience. (interview 1)

It’s just common sense. If you see there are many faults in one part of the software
maybe it’s time to really put some more effort and to be more proactive in solving
problems but I have not seen anything formal. (interview 1)

In order to liberate organizations from collecting fault data, Lehtinen et al. (2011)
proposed the ARCA method. Instead of relying on fault reports, in the ARCA
method (Lehtinen et al., 2011), identification of the problem is done by relying on
knowledge of participants in focus group meetings. This approach has the benefit
of being lightweight and is not prone to vulnerabilities of fault reporting.
Identifying problems based on the knowledge of participants in focus group
meetings has the benefit of identifying potential future problems, thus, liberating

29

the RCA from being reactive. Because of this characteristic, even though, proactive
RCA was not addressed by Lehtinen et al. (2011) explicitly, it is arguable that the
ARCA method comes closest to proactive fault prevention. Therefore, relying on
the knowledge of participants rather than fault data was considered as the solution
to proactive prevention of faults from slipping through to operation in this
research.

5.1.2 Individual’s erratic behavior

Investigation into the common root causes of faults in the literature revealed
evidence that matching the development context and the development practices is
a promising way to prevent individuals’ erratic behavior, thus, preventing faults
slipping through to operation. TABLE 4 shows several studies that have provided
the academic community with categorizations of the common root causes of faults.
These categories, in fact, exhibit their creators’ implicit and explicit beliefs
regarding the common root causes of faults.

TABLE 4 Root cause categories

Source Developed artifact Root cause category

Boehm, 1975 Taxonomy of software
error Causes

Consistency, completeness,
communication, clerical

Basili, & Rombach, 1987 Root cause scheme Application errors, Problem-Solution
errors, Semantics error, syntax error,
Environment errors, Information
Management errors and Clerical
errors

Leszak et al., 2002 Classes of root cause Phase-related, Human-related,
Project-related, review-Related

Kalinowski et al., 2008 Most cited cause-
categories in the literature

tools, input, people, and methods

Hayes, et al., 2006 Requirements common
causes

noncompliant process,
lack of understanding, human error

Walia, & Carver, 2013

requirement error
taxonomy

people errors, process errors,
documentation errors

Huang, Liu, & Huang,
2012

Root cause taxonomy for
software defects

Human error, process error, tool
problems, task problems

In order to investigate how faults are delivered, the distinct root cause categories
identified in the literature are extracted from TABLE 4 and presented in column
one of TABLE 5. Based on the definitions provided for each category of root
causes, the actors who can deliver faults were identified. Column three of TABLE 5
shows the actor who can deliver faults caused by each distinct category of root

30

causes. As it is clear from TABLE 5, tools, individuals and processes are those who
deliver the faults.

TABLE 5 Actors delivering faults in each distinct root cause category

Distinct root cause category Description Actor

Consistency “The requirements were well
understood, but conceptual errors
were made in implementing them at
the next stage” Boehm (1975)

Individual

Completeness “There was an incomplete grasp of
the requirements expressed or
implicit in the previous stage.”
Boehm (1975)

Individual

Communication “There was a misunderstanding of
the requirements expressed in the
previous stage.” Boehm (1975)

Individual

Application errors “due to a misunderstanding of the
application or problem domain”
Basili & Rombach (1987)

Individual

Problem-Solution errors “due to not knowing,
misunderstanding, or misuse of
problem solution processes” Basili &
Rombach (1987)

Individual

Semantics error “due to a misunderstanding or
misuse of the semantic rules of a
language” Basili & Rombach (1987)

Individual

Syntax error “due to a misunderstanding or
misuse of the syntactic rules of a
language” Basili & Rombach (1987)

Individual

Environment errors “due to a misunderstanding or
misuse of the hardware or software
environment of a given project.”
Basili & Rombach (1987)

Individual

Information Management errors “due to a mishandling of certain
procedures” Basili & Rombach (1987)

Tool|Individual

Phase-related Causes relevant to each phase. This is
not essentially a root cause category.
It does not provide information
about the actual causes but only the
phase in which the fault was
introduced.

Non-relevant

Project-related “time pressure, management
mistake, caused by other product. “

Tool|Individual

Review-Related “no or incomplete review, not
enough preparation, inadequate
participation” Leszak, et al. (2002)

Individual

31

Distinct root cause category Description Actor

Human errors Human mistakes due to cognitive
limitations, insufficient knowledge
and communication and etc.

Individual

Process errors Bad process design, employees’ non-
compliance with defined processes,
process non-compliance with the
standards

Individual|process

Documentation errors Mistakes in documenting and
organizing the documents

Tool|Individual

Tool problems Mistakes induced by tools directly
such as Compiler induced defects

Tools

Task problems Mistakes due to characteristics of the
task such as ambiguity, difficulty,
etc.

Individual

Input Faults caused by wrong inputs Tool|Individual

Tools can induce faults directly (Huang et al., 2012). These faults are not
introduced due to an individual’s misuse of the tool and its features; rather, they
are caused by a malfunction or a problem in the tool itself. It is important to note
that tools are, normally, developed outside of the company and their internal
working mechanisms are not visible. This characteristic of tools places them out of
the control of the company and means that tool-induced faults for the most part
cannot be prevented.

Processes can induce faults directly as well. Existence of faulty processes or
lack of a certain process can lead to faults slipping through to operation (Huang et
al., 2012; Walia, & Carver, 2013). It is important to notice that process-induced
faults are not due to wrong execution or non-compliance. It is the lack of a process
and/or a defective process that can induce faults. An example of such a situation is
when proper review and testing processes are not included at the ‘transitions’
between related life cycles (Van Moll, Jacobs, Freimut, & Trienekens, 2002). In this
case, one can contend, if a fault is not detected and slips through to operation, it is
induced directly by the process.

Processes hold certain similarities and differences with tools in terms of
inducing faults. Processes are often adopted from a standard or are imposed by a
regulatory body. In these cases, processes like tools are developed outside the
company. However, unlike tools, internal mechanisms of processes are not
invisible to the company. This distinction between the two means that individuals
inside the company have control over the processes and are able to prevent
process-induced faults. Defective processes can be identified and improved, and
new ones can be introduced to fill their absence. These actions should take place by
individuals inside the company and if they are not, then individuals are to be held
accountable for them. Plus, it happens very rarely for processes to be fully adopted
from standards. In fact, most standards and process models do not provide

32

detailed information of techniques to carry out an activity. It is the responsibility of
the individuals within the company to adopt and tailor the processes to maximize
performance and quality. Consequently, prevention of individuals’ erratic
behavior could prevent process-induced faults as well.

Individuals are the main actors who deliver faults. As is clear from TABLE 5,
individuals appear in all root cause categories. This central role of individuals
suggests that by preventing the individuals’ erratic behaviors, faults can be
prevented from slipping through to operation.

Focusing on individuals’ erratic behaviors in order to prevent faults slipping
through to operation is not a radically new idea and has been the subject of study
in the literature before. Lanubile, Shull, and Basili (1998) presented a method called
‘error abstraction’ in which common patterns of individuals’ erratic behaviors are
abstracted from existing fault data. These common patterns, then, provide valuable
input for better fault detection (Lanubile et al., 1998). The error abstraction method
was later complemented by Walia and Carver (2013) who proposed taxonomy of
individuals’ erratic behaviors with respect to requirement faults. Even though,
both Lanubile et al. (1998) and Walia and Carver (2013) have focused solely on
requirement faults, and did not cover all development faults, there is promising
evidence that common patterns exist in individuals’ erratic behavior in other
stages, such as coding, as well. Pan, Kim and Whitehead (2008), for example,
demonstrated that developers consistently make mistakes when specific code
situations occur. Moreover, Huang et al. (2015) showed that in the company they
studied most of the severe and minor faults were caused due to human errors and
noncompliance with processes.

Based on the findings that individuals, tools and processes contribute to
faults slipping through to operation, the fault prevention model presented in
FIGURE 2 was updated. FIGURE 4 depicts the updated model that includes the
actors as well as contributing elements to faults slipping through to operation.
FIGURE 4 presents a causal model similar to that of FIGURE 2. For example, an
individual’s action causes an ineffective fault fix which in turn causes a new fault
to be introduced. This new fault can then slip through to operation.

In order to prevent individuals’ erratic behavior, it is best to start with human
errors in the existing root cause categories presented in TABLE 5. An investigation
of human errors as presented by Huang et al. (2012) and Walia and Carver (2013)
shows that individuals’ erratic behavior occur partly due to cognitive constraints
of the human mind and partly due to factors in the context. While cognitive
constraints of the human mind are not malleable, introduction of appropriate
practices can resolve the problems occurring due to factors in the context.

Consider constituents of human error category presented by Huang et al.
(2012); among these, ‘schema mismatching’, ‘working memory overload’,
‘evaluation error’, and ‘problem representation error’ are caused due to the
mechanics of the human mind. Such errors occur if the circumstances to which

33

they are vulnerable emerge; therefore, the focus should be on preventing those
circumstances from emerging rather than changing the characteristics of the
human mind! The same principle applies to the erratic behavior caused by
“constraints on the cognitive abilities of requirement authors” (Walia and Carver
2012).

FIGURE 4 Actors in fault prevention model

The rest of the people errors, on the other hand, occur with respect to factors in the
context. Shortage of knowledge, for example, as an error that was considered by all
of the authors in TABLE 4, is relative to many factors in the context such as the
complexity of the task, ambiguity of the task, domain of the project, application of
the software system under development and programming language of choice, to
name a few. Leszak et al. (2002) reported that mismatch between the skill-level
needed in the project and the available skill of individuals can lead to systematic
introduction of faults. A developer who is skillful in the domain of avionics might
introduce faults when working in the domain of banking services. This developer’s
lack of domain knowledge can be catered for by introducing suitable practices
such as adding extra reviews or training the developer. For example, Yu (1998)

Faults slipping

through to

operation

Inefficient

and

ineffective

detection

Fault

introduction

Inefficient

and

ineffective

fix

Tools

processes

Individuals

Actors Outcome Contributing

elements

34

reports a case in which “coding fault prevention guidelines” were introduced in a
company to reduce faults slipping through to operation.

Communication problem was another category of people errors mentioned
by the authors in TABLE 4. Communication problems occur with respect to
communication mechanisms and the social context of the project. Managers can
tailor their development processes to include practices that promote clear
communication. Scrum’s (Schwaber, & Beedle, 2002) daily stand up meetings, for
example, can be introduced into a project for this purpose (Carpenter, & Dagnino,
2014). However, introduction of new practices should also be done in accordance
with other contextual factors. Scrum’s daily standup meetings might not be a
suitable communication mechanism for an environment consisting virtual teams
(Jacobs et al., 2005) or a project in which individuals have responsibilities in several
projects (Sidky, & Arthur, 2007). In such cases, other measures should be
considered such as acquisition of a secure online teleconference tool.

Inattention and tool misusing (Huang et al., 2012) occur with respect to the
context of development, as well. For instance, one of the reasons the underlying
reasons for inattention, according to Huang et al. (2012), is individuals’
involvement in more than one task. Project pressure can also lead to inattention
(Leszak et al. 2002). Clearly, project pressure and involvement in several projects
are specific to a certain development context.

Procedure violation (Huang et al., 2012), on the other hand, except for the
cases where it is done intentionally, is due to lack of procedure knowledge and
inattention. Lack of procedure knowledge can occur in an environment where
there is not enough training, or when documentation about procedures is not
publicly available to everyone.

Drawing upon what was explained above, it can be postulated that human
errors occur when contextual factors are not addressed with suitable practices.
Individuals’ erratic behaviors are for the most part raised due to mismatches
between development context and existing development practices. Fenton and
Neil (1999) claimed that while the mismatch between design effort and problem
complexity leads to introduction of defects, the mismatch between design size and
testing effort leads to ineffective detection of defects. Design effort and testing
effort are development practices that are asked by Fenton and Neil (1999) to be
matched to design size, and problem complexity that are factors of the context.
Similarly, the mismatch between design effort and functionality was argued by
Avižienis et al. (2004) as one of the prime causes of development failures.

If individuals’ erratic behaviors indeed occur to mismatches between
development practices and the context then it is reasonable to believe that
mismatches can signal potential erratic behaviors. As a consequence, by
identifying mismatches, one can essentially identify potential erratic behavior. It
follows that such erratic behaviors can be prevented, simply, by tailoring the
development method so that the development practices fit the context.

35

The interviewee’s responses, indeed, showed that in the case company
mismatches could potentially lead to erratic behaviors and eventually faults. For
example, the interviewee explained a mismatch between time and resources and
the practice of code reviewing. Such a mismatch results in abandoning code
reviews in favor of catching deadlines and could lead to ineffective fault detection.
Ineffective fault detection, in return, could lead to faults slipping through to
operation.

We have envisaged to use code review in projects and we finally don’t have time to do it;
or resources. (interview 1)

In another instance when asked about adopting agile practices the interviewee
hinted that a mismatch between an organizational structure which allows a person
to work in three projects and a communication channel of choice (Scrum’s daily
standup meetings in this case) could be problematic. Such a mismatch could lead
to miscommunication and eventually a fault slipping through to operation.

You cannot do daily [stand up] meetings […] when one person is working for three
projects. (interview 1)

Moreover, possible erratic behavior regarding defect detection effectiveness was

addressed when the interviewee pointed out a mismatch between ideal testing

practices and the project size. (interview 1)

If you are developing a software, it is difficult to define tests that will discover problems
because the problems you can think about, you have already put in there. But, also in
that case, we didn’t have the size scale to have two separate parts of organization [testers
and developers]. (interview 1)

Another example brought about was that of mismatch between tool support and
coding standards. The interviewee expressed his concern that a lack of tool support
would essentially lead to noncompliance with coding standards which is an erratic
behavior.

In general, we see that if you don’t have an automatic way to perform this verification of
your work, you end up not doing it; so even if we have tried to define some things in the
past in practice they are not applied. (interview 1)

When asked about developers’ compliance with defined procedures and
guidelines, the interview noted that assignment of tasks should match the
background and ways of working of developers. Otherwise, a mismatch between
the two might result in noncompliance. (interview 1)

It’s a matter of also assigning, to each person working in the project, the activities that
are more suited to the way of working, to the background. (interview 1)

36

Moreover, in another instance the interviewee implied that a mismatch between
time pressure, and the audit practices could lead to minimal unit testing. Lack of
sufficient unit testing could lead to faults slipping through to operation.

I think it’s more time pressure, because, well, let’s say, for unit test which is probably the
most useful, it requires a lot of maintenance and usually if you don’t have someone
behind that really sees that you invest some effort in doing unit testing, the result is that
you end up testing for the, well, for having the system working more or less; you don’t
care about finding all the defects, but, you say when problem appears in the future, I will
solve this specific problem; I won’t invest effort in developing a test suite that will
double my maintenance work. (interview 1)

The data from the interview confirms that in the case company mismatches
between the context and development practices can signal potential erratic
behavior of individuals which could lead to faults slipping through. Therefore, a
proactive prevention solution is recommended based on identifying and resolving
such mismatches by appropriate tailoring of the development method.

The idea of matching the software development to the needs of the context is
well-established in the research community (Austin, & Devin, 2009; Hardgrave,
Wilson, & Eastman, 1999; Iivari, 1989). According to Fitzgerald, Hartnett and
Conboy (2006), method engineering and contingency theories dominate this
research stream. While the contingency theory approach suggests selection of
development to take place according to factors in the context from a portfolio of
methods, the method engineering approach advocates method tailoring by adding
and removing already verified and tested method ‘fragments’ (Fitzgerald et al.,
2006).

In practice, there is indeed very little chance that a method is fully adopted
and development methods are almost always subject to tailoring (Fitzgerald,
Russo, & O'Kane, 2000). Tailoring allows adoption of practices according to
contingencies in the context in order to maximize performance and quality (Austin,
& Devin, 2009; Hardgrave, Wilson, & Eastman, 1999). Even standards are subject to
tailoring. Fitzgerald et al. (2000) provided an example of a company that tailored
the IEEE-std-1074 (1991) to the contingencies of the development context of each of
their projects. Adoption of fault detection practices based on the contingencies in
the context is not strange to tailoring either. Runeson, Andersson, Thelin, Andrews
and Berling (2006), for example, recommended fault detection practices to be
chosen based on Artifact, Types of defects, Actor, Technique, Purpose, Defect
detection activity and Evaluation criteria factors. Sidky and Arthur (2007), on the
other hand, proposed a three stage model to guide the selection of appropriate
agile practices that fit the context of safety-critical projects.

The interviewee confirmed that tailoring of the standards does take place in
the case company in the early stages of development based on criticality level of
system under development.

37

So usually there is request for performance and criticality analysis of the system. This
means, in this space standards, four levels of criticality that depends on the
consequences of the failure of the systems or parts of the system. So once you perform
this analysis and decide what is your criticality level then it drives what practices you
have to follow per standard. You tailor the standard. (interview 1)

In terms of quality, Fitzgerald et al. (2006) reported a case in which fault density
was reduced by a factor of 7 by tailoring agile practices. Even though such
achievement could be attributed to the use of agile methods, Fitzgerald et al. (2006)
argued that the synergistic effect of tailoring could not be overlooked.
Nevertheless, not much is known about practical ways of performing the tailoring
(Fitzgerald et al., 2000). To respond to this challenge a number of studies have
tried to identify the contextual factors that drive the tailoring of the development
process (Bern, Pasi, Nikula, & Smolander, 2007; Clarke, & O’Connor, 2012). Even
though the authors of such studies have done comprehensive work for identifying
contextual factors, their findings are often too broad in scope and scale to be
applicable in practice. Therefore, it would be beneficial if the scope is narrowed
down to factors that affect faults slipping through to operation. To this end, in this
research, taxonomy of contextual factors affecting faults slipping through to
operation is developed. This taxonomy is instrumental to identifying and resolving
mismatches between development context and practices which can in return drive
the tailoring of the development process.

5.1.3 Objectives and solution

With RCA being the main instrument toward identification of root causes of faults,
proactive RCA appears to be a legitimate goal to prevent faults from slipping
through to operation. Based on the findings in the first phase of this research
endeavor, the solution to such a proactive approach can capitalize on identifying
mismatches between the context of development and practices. To this end, three
objectives are defined as follows:

(1) developing a taxonomy of contextual factors that can affect faults slipping
through to operation in the literature

(2) defining a method for proactive RCA (PRORCA)
(3) demonstrating the use of the PRORCA method

Completing the first objective assists the researcher and practitioners to get a
strong foothold for identifying mismatches between development context and
practice with respect to faults slipping through to operation. Without any doubt,
the list of identified contextual factors is not a definitive list; nonetheless, it
provides the research and practice community with a platform, upon which future
activities can be launched. Developing taxonomy is well-justified since it is a

38

language for communication. Taxonomy of contextual factors that affect
prevention of faults slipping through to operation helps differentiate between
different factors and between factors and practices. The second objective is self-
explanatory and upon its completion PRORCA as a proactive RCA method is
developed. The first two objectives will be addressed in second phase of this
research endeavor.

In design science research development of an artifact requires demonstration
of its use (Peffers et al., 2007). Therefore, in phase three of this study the use of the
PRORCA method will be demonstrated for two project of the case company. In the
same phase the PRORCA method is evaluated.

5.2 Phase two

This phase of the research maps to the design and development stage in DSRM.
The outcome of Phase two is taxonomy of contextual factors that can affect faults
slipping through to operation and the PRORCA method. The taxonomy is an
analyst’s guiding light to find mismatches between context and practice which,
itself, is the main tool at the analyst’s disposal for proactive RCA. Development of
the taxonomy was done using directed qualitative content analysis (Hsieh and
Shannon 2005).

Content analysis is one of the semiotic modes of analysis used in qualitative
research (Myers, 1997). Semiotics is a mode of analysis in which signs and symbols
in language are scanned with the purpose of drawing conceptual categories from
them (Myers, 1997). Such categories can be used for testing different aspects of a
theory. Content analysis is used to understand or explain a phenomenon through a
systematic process of coding and identifying patterned regularities in text (Hsieh,
& Shannon, 2005; Myers, 1997). There exists three different approaches to content
analysis, namely, conventional, directed, and summative (Hsieh, & Shannon,
2005). The main distinction between a directed content analysis and a conventional
one is that in the directed approach, previous research findings or theory is used to
initialize a set of predetermined categories (Hsieh, & Shannon, 2005). It is based on
this set of predetermined categories that the researcher starts the coding process in
order to understand or explain a phenomenon.

Since a set of predetermined categories initialize the analysis, a directed
approach to content analysis can provide evidence for supporting or
nonsupporting previous research findings or theory (Hsieh, & Shannon, 2005).
Additionally, if new text is identified that cannot be coded according to the
predetermined categories, new categories can be defined. “Newly identified
categories either offer a contradictory view of the phenomenon or might further
refine, extend, and enrich the theory“(Hsieh, & Shannon, 2005). Due to such

39

convincing practicalities of directed content analysis, it was adopted for
developing taxonomy of contextual factors. Adoption of this technique resulted in
a taxonomy that was developed by confirming and/or extending the
predetermined code categories derived from the findings of previous research.

In order to define the initial set of code categories for developing the
taxonomy of contextual factors, it was found necessary to determine the best way a
development context can be understood. It was decided that such an
understanding can be achieved by examining the context in terms of its constituent
elements from different perspectives.

According to Sjøberg et al. (2008), in a typical software engineering situation
“an actor applies technologies to perform certain activities on an (existing or
planned) software system”. From this statement, four key elements of a typical
software engineering situation are understood to be actor, technology, activity and
software system. On the other hand, people, processes and products (3Ps) as the
key elements in software development have repeatedly been linked to quality of
software (Allen, 2009; Norris, Rigby, & Stockman, 1994; Shah, 2014). The 3Ps are
also the main categories of metrics used in fault prediction literature for predicting
the number and occurrence of faults (Herrmann, 1998). The similarities between
the four components of software engineering as identified by Sjøberg et al. (2008)
and 3Ps are uncanny; the actors of Sjøberg et al. (2008) are in fact the people aspect
of the 3Ps; the software system is the product; and the activities are the processes.
Since it seemed to the researcher that the 3Ps were broader in scope compared to
the four elements of Sjøberg et al. (2008), 3Ps were chosen as the constituent
elements of software development.

Additionally, the development context can be described from different
perspectives. One shall examine the context from all perspectives if they intend to
get a complete view of it. It could be argued that (1) region, (2) organization, (3)
project and (4) team perspectives can provide the best viewpoints to software
development context. These perspectives, in fact, represent social groups of which
an individual is a member of during software development. An individual could
be a member of many social groups; however, these four groups are of significance
because they relate to development. For instance, a developer can belong to a
certain political party but there is little to no direct way that factors in the political
party context can affect that developer’s erratic behavior. Each of these social
groups is a subgroup of the higher level group and can affect an individual’s
behaviors and preferences in a manner different from the other. Therefore, these
four perspectives, region, organization, project and team, were considered
sufficient to provide a window to the context of development.

To summarize, the four perspectives of context and the 3Ps of software
development were considered to be two dimensions by which the context can be
understood. While the 3Ps could guide us to understand the context in terms of its
constituent’s elements, the four perspectives of context could provide a

40

comprehensive view of it. These two dimensions were, therefore, selected as the
predetermined code categories based on which directed content analysis (Hsieh, &
Shannon, 2005) was conducted.

5.2.1 Taxonomy of contextual factors

The development of the taxonomy was carried out in four steps using directed
content analysis (Hsieh, & Shannon, 2005). The initial coding categories necessary
to perform directed content analysis were selected to be 4 perspectives of
development context and 3Ps as key constituent elements of development. For the
purpose of coding, a factor was defined as any phenomena, stimulant or
circumstance that can be characterized as part of the context.

In order to identify the contextual factors eight distinct areas of research
related to fault prevention were scanned. The academic articles reviewed in this
phase were the same ones reviewed in phase one. However, a number of topic
areas from phase one were excluded on the grounds of being irrelevant to fault
prevention. Furthermore, a number of studies were removed. These studies were
Zhang, & pham (2000) and Jacob et al (2006) and were left out because they
introduced a set of factors which could influence the development of the
taxonomy. TABLE 6 shows the topic areas and the number of papers in each topic
area that was subject to directed content analysis (Hsieh and Shannon 2005).

TABLE 6 Topic areas investigated for developing taxonomy of contextual factors

Topic area number of articles reviewed

fault detection 45

human factors 5

reliability modeling 6

Fault reporting and RCA 31

fault prediction (change analysis,) 24

defect analysis 7

fault reduction 17

software reliability engineering 6

The first step in conducting directed content analysis was highlighting all the phrases
from each study that gave the impression of introducing or explaining a potential
contextual factor. Hsieh and Shannon (2005), proposed that in cases where
identifying all instances of a phenomenon is favorable, the coding begin after
highlighting all the text that appears to represent that phenomenon. Highlighting
the phrases in the text before starting to code increases trustworthiness of a

41

directed content analysis (Hsieh, & Shannon, 2005). A phrase was considered for
highlighting if it belonged to any of the following groups of phrases.

 Phrases that specifically drew a causal relationship between fault
introduction, detection and fix.

 Phrases that explained characteristics of the environment in which the study
took place, the system that was the subject of study, and the people
involved

 Phrases that explained a reason for error-proneness or fault proneness or
drew a correlation between them

 Phrases that addressed improvement in failure rate, fault rate, severity,
priority and reliability in general

 Phrases that directly or indirectly mentioned influential factors using terms
like influence, affect, cause, result in and etc.

 Phrases that addressed lack of a practice, tool or phenomena and its
consequences

 Phrases that addressed problems and difficulties in development

 Phrases that addressed efficiency and effectiveness of detection, analysis,
and fix

The second step included scanning the highlighted phrases in the first step and
coding potential contextual factors according to predetermined code categories.
The predetermined code categories considered in this step were 3Ps. Coding
according to four perspectives of context was performed later on. Upon
identification of a factor, it was recorded in a master file along with the source in
which it was found. Any factor that could not be categorized in accordance with
the predetermined code categories was also recorded in the master file to be
revised later. In total, a whopping 455 factors were found from 86 sources were
recorded in the master file.

Phase three of content analysis was carried out to refine the 455 factors.
Refining was initiated by removing duplicate factors and was later complemented
by reexamining the uncategorized factors and redefining the predetermined codes.
At this stage, it was revealed that 3Ps of context characteristics (people, process,
and product) were inadequate to describe all the factors identified. After
comparison and analysis of all factors, including the uncategorized ones, context
characteristics were extended to human, artifact, environment, and activity.

Environment factors, as the name implies, refer to phenomena or stimulants
in the surroundings of the people involved, the practices and deliverables. Factors
related to high level strategies and supporting technologies are included as
environment factors. Human factors are those relating to individual’s
characteristics, behaviors, duties and their interactions with other individuals. The
activity factors characterize the context in terms of the practices carried out and the
processes followed to develop a product. It is important to emphasize that these
factors do not refer to technicality of activities and how they are done, rather the

42

existence and quality of activities that are known to affect the development
practices and other contextual factors. Finally, artifact factors address
characteristics of any deliverable produced during development. The artifact could
be a simple document which is the outcome of requirement analysis, or design. It
could be the source code or the whole software system in general. It is note-worthy
that the context is dynamic. It changes synchronically as the development
progresses. One cannot map the context according to the contextual factors
statically and expect them to remain unchanged during the whole development.
Therefore, it is necessary to treat the context as a living organism that needs care
and nurturing. Mismatches between the context and development practices cannot
all be figured out during the planning phase; rather they should be revisited as
deemed necessary as the development progresses. All in all, after refining the
taxonomy and duplicate removal, 144 factors remained.

The third step was coding the factors again; this time according to the four
perspectives of context. The four perspectives of context adequately covered all the
factors and as a result were left unchanged. Finally, in the fourth step, the
identified factors were reexamined to find factors that were conceptually similar.
This step was different than duplicate removal. The factors that are conceptually
similar are not duplicate factors; rather they refer to different aspects of the same
phenomena or stimulant that affects fault prevention. Consequently, conceptually-
similar factors were merged by choosing an umbrella term to describe them.

At the end of the four steps of directed content analysis, 85 factors were
identified and taxonomy of contextual factors was developed. Due to space
limitations the complete taxonomy of contextual factors that can affect fault
prevention is presented in appendix 1. An empty template of the taxonomy is
presented as TABLE 7. On one dimension the perspectives of the context and on
the other the constituent elements are visible. The taxonomy will aid an analyst in
identifying mismatches between context and practices.

TABLE 7 template of the taxonomy of contextual factors

 Environment
factors

Artifact factors Activity factors Human factors

Region
Organization
Project
Team

5.2.2 PRORCA method

43

RCA is one of the main instruments proposed in the literature to prevent faults
from slipping through to operation. The PRORCA method is a solution to the
difficulties of conducting RCA. It is developed to shift the predominantly reactive
nature of RCA to proactive and to liberate it from reliance of fault data. The
difficulties of conducting RCA are discussed in section 5.1.1 in more detail. The
mechanism of the PRORCA method is adapted, to a large extent, from the ARCA
method (Lehtinen et al., 2011) as it offers flexibility and freedom from fault data.

Founded on the finding that mismatches between context and practice can
signal individual’s erratic behavior, the PRORCA method comprises three steps:
(1) context mapping (2) Erratic behavior mapping and, (3) Corrective action
innovation. In the first step, the context of the development is mapped. This task
can be completed using the taxonomy of contextual factors developed in section
5.2.1. In the second step, mismatches between the context and practices and in
elements of the context itself, is identified and using causal maps (Bjørnson, Wang,
& Arisholm, 2009) the relationship between mismatches and individuals’ erratic
behaviors will be mapped. In the last step, corrective actions will be introduced.
These corrective actions will be derived from the mismatches mapped in the
previous step.

Two roles are defined for carrying out PRORCA: the participant and the RCA
facilitator. The distinction between the participant and the facilitator roles is in the
logical design of the method and in reality the facilitator can take the role of the
participant, as well, and vice versa. Such a design allows logical distribution of
responsibilities between the participant(s) and the facilitator while allowing the
responsibilities to be assigned to individuals flexibly with respect to available
project resources and structure. The role of Facilitator is similar to that of
Moderator in inspection (Aurum, Petersson, & Wohlin, 2002). The facilitator guides
and controls the RCA. The participant, on the other hand, has the knowledge and
know-how of context and practices of development. The facilitator enters the realm
of the participant in order to make it possible for the participant to identify the
mismatches, map the relationship between mismatches and erratic behaviors, and
innovate corrective actions. It is essentially the participant(s) that fulfill(s) the goals
of the RCA. The participant(s) can be any of the stakeholders in the development.
Project managers, quality managers, analysts, designers, developers, testers,
reviewers, team leaders could all take the role of participant. The decision of who
actually becomes a participant depends on the resources available and is up to the
facilitator to decide.

As discussed in section 5.1.2 individuals are actors whose erratic behaviors
lead to fault introduction, ineffective, and inefficient detection and ineffective and
inefficient fix. Identifying mismatches between the development context and
practices can signal potential erratic behavior of individuals. Acquiring a good
understanding of the context is necessary for identification of such mismatches. In
step one of PRORCA, the goal is to map the context based on which mismatches

44

can be identified later. To this end, the RCA facilitator selects the participants and
outlines meetings. The meetings can be in the form of qualitative interviews, focus
group meetings, or any other form according to available resources. Plus, as
proposed by Lehtinen et al. (2011), the data can be collected and handled either
anonymously or publicly. The number of meetings is also a decision for the
facilitator to take. If deemed sufficient for mapping the whole context, one meeting
will wrap this step. Otherwise, further meetings are held. During the meeting(s),
the facilitator provides the participant(s) with the taxonomy of contextual factors,
presented in appendix 1, and records the participants’ perceptions of the context.
The recording could be done in an Excel file in which the value of each contextual
factor is inputted in a key-value pair fashion. Any other method of recording is
acceptable as long as the facilitator consider it sufficient. As soon as the facilitator
perceives the context to be well understood, step one is complete. Mapping the
context would help identifying the mismatches between the context and practices
in the next step.

The prerequisite of step two is a good understanding of context and practices.
So far, as a result of completing step one, the context has already been understood
and the wise selection of participants has ensured a good knowledge of
development practices. The second step is carried out with the purpose, firstly, to
identify mismatches between the context and practices and, secondly, to map the
relationship between mismatches and individuals’ erratic behaviors. To this end,
the RCA facilitator plans and holds meetings with the participants. Similar to step
one, the form and the number of the meetings are flexible and are up to the
facilitator to decide.

During the meetings, the participant(s), with the help of the facilitator,
identify the mismatches. The mismatches can be written of post-it notes which
later will be used for mapping. Next, the relationship between mismatches and
erratic behaviors will be mapped using a causal map (Bjørnson et al., 2009) to
potential erratic behaviors. The potential erratic behaviors, coupled with other
mismatches, can lead to other erratic behaviors.

FIGURE 5 shows the template of a causal map. Causal maps are used in
Lehtinen et al. (2011) and Bjørnson et al. (2009) to structure the cause-effect
relationships. In PRORCA, a simple freehand variety of causal maps similar to the
one used in Bjørnson et al. (2009) is used. The nodes, in this map, are either
mismatches or individuals’ erratic behaviors and each node appears just once in a
causal map. The directed arrows, on the other hand, indicate cause-effect
relationships. The arrows in PRORCA can indicate boolean operations if necessary.
For example, in FIGURE 5, mismatch 1 and mismatch 2 together can cause erratic
behavior 1. Or, alternatively, mismatch 3 can cause erratic behavior 1. Unlike,
mapping the cause-effect relationships in Bjørnson et al. (2009), in which mapping
is done knowing the problem, in PRORCA, the individuals’ erratic behaviors are
unknown beforehand. The information that is available for mapping in PRORCA is

45

the mismatches and the contributing elements to faults slipping through to
operation. Therefore, in PRORCA the causal map is constructed bottom-up and
proactively in the light of fault introduction, ineffective and inefficient detection
and ineffective and inefficient fix.

FIGURE 5 Causal map template

Both the facilitator and the participant(s) can draw upon their experience and
knowledge to map the mismatches to erratic behaviors. The facilitator should
promote discourse at this stage. The participant should convince the facilitator and
other participants that an erratic behavior would occur due to a certain mismatch
or combination of mismatches using reasonable arguments. If the participant
manages to convince others of the possibility of an erratic behavior, the facilitator
draws an arrow between the mismatch and that erratic behavior. Both the
mismatches and erratic behaviors can be written on post-it notes and put on a
board. This process will be iterated until the participants come into a conclusion
that all mismatches are mapped to possible erratic behaviors.

The final step of PRORCA is innovation of corrective actions. Not much has
been said in the RCA literature about developing corrective actions (Lehtinen et al.,
2011). However, In PRORCA, innovating corrective actions is done in a
straightforward manner by deriving corrective actions from the mismatches
leading to individuals’ erratic behaviors. In this step, the facilitator guides the
participant(s) to innovate feasible corrective actions. Corrective actions should
either prevent the emergence of circumstances that give rise to human cognitive
constraints or resolve a mismatch. To this end, meetings are held by the facilitator,
in accordance with the resources available. Yet again, the form and the number of
the meetings are for the facilitator to decide. During the meetings the participant(s)
prioritize the erratic behaviors. The prioritization of erratic behaviors drives the
agenda of the meeting and the innovation of corrective actions.

It is note-worthy, that the three steps need not be conducted in separate
meetings. In one single qualitative interview or focus group meeting all the steps
can be completed. The facilitator should plan the PRORCA according to the
available resources, and participants’ schedules. This makes PRORCA a flexible

Mismatch 3

Mismatch 1

Mismatch 2

Erratic behavior 1

Erratic behavior 2

Mismatch 3

46

and lightweight method to be used in SMEs as well as large enterprises. As regards
the appropriate time for carrying out PRORCA, the dynamic and constantly
changing nature of the development context should be considered. In TABLE 3, it
was shown that reactive RCA methods in the literature are recommended to be
performed either after each stage or after each iteration (Bhandari et al., 1993,
Jalote, & Agrawal, 2005). Kalinowski et al. (2008) added that RCA can be done in
the wake of an unprecedented event as well. Following the reverse of these
suggestions, PRORCA is recommended to be conducted before each major stage of
development or iteration. Additionally, PRORCA can be conducted when signs of
problems begin to surface in a project.

5.3 Phase three

In this phase firstly, the use of the PRORCA method was demonstrated in line with
the purpose of the demonstration stage in DSRM (Peffers et al., 2007). To this end,
the PRORCA method was applied in two ongoing projects of the case company in
order to demonstrate its applicability in the field. The case company was the same
company represented before. Later on, an evaluation of the PRORCA method was
done at the end of this phase.

5.3.1 Demonstration

The PRORCA method is used in two small-scale projects of the case company.
Small in this context refers to a project that one person can handle all the macro
and micro development tasks (Boehm 1975).

Project 1 was a prototype project in the domain of avionics in which onboard
software system prototypes were being developed to be used in future spacecrafts.
Project two was also in the domain of avionics, however, in this project a system
including both hardware and software was under development. This system is a
replacement for a currently onboard system on the International Space Station
(ISS), hence, a low level of tolerable risk and necessity for backward compatibility.
In both cases, the software developer had close contact with the team leader and
participated in meetings with their respective clients. At the time of conducting the
PRORCA, project one was in late stages of development and mainly validation
activities was taking place, while project two was still in the early stages.
Therefore, corrective actions would still benefit both projects.

The PRORCA method comprise of three steps: (1) context mapping (2) Erratic
behavior mapping and, (3) Corrective action innovation. For the purpose of
mapping the development context, the RCA facilitator held two online interviews

47

with the main software developer in each project. In this step, the researcher took
the role of the RCA facilitator and the main developer in charge of each project was
the participant. The choice of online interview over focus group meetings or face-
to-face meetings was made based on the availability of participants and the
geographical distance between the researcher and the participants.

The interviewee for the first project was a software engineer with over 20
years of experience in defense and space industry. The interviewee had been
working for the case company for four years at the time of the interview and was
the fourth engineer assigned to this project in three years. The interviewee for the
second project was a system engineer with more than six years of experience in
telecommunication and space industries. He was responsible for design and
development of the software and selection of the hardware in the second project
which was running for over two years.

The interviews were semi-structured and in order to avoid interviewer bias,
the questions were not directly addressing the context; rather they were general
questions about how development was being carried out. In this step, as opposed
to the guidelines of step one, the researcher did not share the taxonomy of
contextual factors with the interviewees in any of the projects to avoid
confirmation bias. However, in retrospect, the experience of the analysis of the data
in later stages showed that sharing the taxonomy with the participants would have
been constructive. The interviews were recorded and later transcribed.

In order to map the context, the text of the interviews was subject to directed
content analysis (Hsieh, & Shannon, 2005). In directed content analysis, coding
begins based on a set of predetermined code categories. Taxonomy of contextual
factors, presented in appendix 1, was used for this purpose. At the end of this step,
for each project an Excel file was created, holding the key-value pairs of contextual
factors. Appendices 2 and 3 show the key value pairs for identified contextual
factors for each project. It is important to note that due to time limitations, the
interview was limited to the project and team perspectives of the taxonomy and
did not cover region and organization perspectives.

In step two of PRORCA, erratic behaviors are mapped using directed graphs.
Before the mapping starts, mismatches between practices and the context must be
identified. Due to unavailability of further interviews with the company
representatives in each project, the researcher took both RCA facilitator and
participant roles to find the mismatches and map potential erratic behaviors.
Needless to say that this was not an ideal situation but the time limitations of
participants did not allow further meetings. In order to find the mismatches, the
researcher used personal knowledge and experience to find the mismatches
between key-value pairs available in the Excel files created at the end of step one.
As soon as no further mismatches could be identified, mapping the erratic
behaviors started. FIGURE 6 and FIGURE 7 demonstrate the map of erratic behaviors

48

and their relationship with mismatches and other erratic behaviors in the first and
second project, respectively.

FIGURE 6 Project one causal map

The causal map of project 1 (FIGURE 6) shows three separate paths, each of which
leading to different erratic behaviors. The first path is visible on the top of the
figure and shows that mismatch 1 leads to erratic behavior 1. Furthermore, this
path indicates that erratic behavior 1, mismatch 2 and mismatch 3 could result in

Mismatch 8 Erratic behavior 7

Mismatch 1

Mismatch 2

Erratic behavior 1

Erratic behavior 2

Mismatch 3

Mismatch 6

Mismatch 5

Erratic behavior 5

Mismatch 4
Erratic behavior 3

Erratic behavior 4

Mismatch 7 Erratic behavior 6

Erratic behavior 11

Erratic behavior 10 Mismatch 12

Mismatch 10

Erratic behavior 8

Mismatch 11

Mismatch 9

Erratic behavior 9

49

erratic behavior 2. The second main path in FIGURE 6, which is visible in the
middle of the figure, depicts a complicated network of mismatches and erratic
behaviors. Erratic behavior 4 stands out in this path, having a central role and
leading to erratic behavior 5, 11 and 8. Lastly, the third path shows mismatch 8
leading to erratic behavior 7. This path can be viewed at the very bottom of the
figure. Description of mismatches for the first project is provided in TABLE 8.

TABLE 8 Description of mismatches for the first project

Mismatch # Between Description

Mismatch 1 Project schedule
and developer
tasks

If the schedule is tight and the developer has a lot of tasks
to complete, the level of commitment to defect data
collection falls

Mismatch 2 level of
commitment to
defect data
collection and the
practice of
prioritizing the
defect fixes

It was stated by the interviewee that as the schedule
becomes tighter, the level of commitment to defect data
collection falls. Lack of commitment to defect data
collection might primarily cause a problem when you
consider that in the project defect fixes are prioritized. A
defect that has not been reported might go unnoticed in
planning and scheduling of fault fixes and subsequently
slip through to the final product.

Mismatch 3 Level of
commitment to
defect data
collection and
staff changes

If faults are not collected properly, considering that the
project has seen several staff changes before, there is a
chance defects would go unnoticed

Mismatch 4 evolvability and
frequency of
changes in staff
members

When members sacrifice commenting in expense of
catching deadlines there is a threat that if a staff change
occurs, the next person will have difficulty understanding
what was supposed to go on, what was supposed to be
developed and etc. Such misunderstanding of the works of
previous developers can lead to introduction of faults.

Mismatch 5 Project schedule
and
documentation
practices

Quality of documentation drops at the expense of catching
deadlines

Mismatch 6 Reliance on
documentation,
quality of
documentation
and frequency of
staff changes

If quality of documentation drops at the expense of
catching deadlines then reliance on documentation can
introduce problems. The interviewee however claimed
that he relies less on documentation in the latest phases.
This does not solve the problem however. If the
documentation is not relied upon for development, then
development becomes a matter of developer’s experience
and skills, considering the frequency of staff changes even
if the current developer is highly skilled and experienced,
the staff who are supposed to continue development in

50

Mismatch # Between Description

future or maintain and update the product in future might
inadvertently introduce faults.

Mismatch 7 Degree of trust in
other members
and
documentation
quality

High trust in what previous members have done coupled
with documentation quality that drops at the expense of
deadlines, might inhibit critical analysis of documentation
and result in faults.

Mismatch 8 Availability of
feedback with
number of project
members

Since there is only one person doing everything in this
project, if that person does not receive constructive
feedback, he is prone to not noticing his own mistakes. The
interviewee admitted that this is not ideal. Even though
the meetings with the customer can act as a feedback
process, it might simply be too little too late.

Mismatch 9 Developer
experience with
DSDM and
development
method chosen

The interviewee stated that an agile development method
called DSDM with a number of iterations were planned for
the project in the beginning, he also admitted his lack of
experience with this method. Had they actually stuck by
their plans to develop using DSDM, such lack of
experience with the chosen development method of the
sole and main developer of the project could have led to
ad-hoc development practices. However the interviewee
mentioned that they went through one V-cycle at the end.

Mismatch
10

Intention to reuse
in future and
availability of
definitions and
guidelines

Even though the interviewee expressed his lack of
information whether this prototype project would
continue, he did express that they intend to reuse several
components in future. If this is the case, then lack of high
quality documentation and non-evolvability of source
code could lead to introduction of faults. Plus definitions
and guidelines would be necessary. As the interviewee
mentioned they are not doing any extra effort.

Mismatch
11

Quality of
documentation,
reliance on
documentation
and timespan
between updates:

As the interviewee mentioned some inconsistencies in the
documents goes unnoticed until they are reported by the
customer, in such a case the inconsistencies are fixed in
next stages, however, this lag coupled with non-reliance
on documentation toward the final stages by the developer
might come at a high price of developing using ad-hoc
processes. Some things might be forgotten or go unnoticed.

Mismatch
12

Commenting
practices and
project schedule

When members sacrifice commenting in expense of
catching deadlines

Descriptions of erratic behaviors for the first project, presented in FIGURE 6, are
provided in TABLE 9. The last column of the table includes the cause of each erratic
behavior. As mentioned before each erratic behavior can be caused by different
causes. For example, erratic behavior 3 can be caused either by mismatch 4 or
erratic behavior 5. Alternatively, existence of mismatches and erratic behaviors

51

might have a synergistic effect leading to other erratic behaviors. Erratic behavior
5, for instance, is cause by the existence of both erratic behavior 4 and mismatch 6.

TABLE 9 Description of erratic behaviors for the first project

Erratic behavior # Description Cause

Erratic behavior 1 Noncompliance with defect
reporting procedures

Mismatch 1

Erratic behavior 2 Defects go unnoticed in planning
and scheduling of defect fixes

Erratic behavior 1 and mismatch 2
and mismatch 3

Erratic behavior 3 Lack of sufficient knowledge about
the current state of development

Mismatch 4 or Erratic behavior 5

Erratic behavior 4 Noncompliance with
documentation procedures

Mismatch 5

Erratic behavior 5 Non-reliance on documentation for
development

Erratic behavior 4 and mismatch 6

Erratic behavior 6 Lack of critical analysis of
documents

Mismatch 7 and Erratic behavior 4

Erratic behavior 7 Not noticing self-mistakes Mismatch 8

Erratic behavior 8 Non-compliance with the
development method and defined
procedures

Mismatch 9 or Erratic behavior 4
and mismatch 11

Erratic behavior 9 Delayed delivery Erratic behavior 8

Erratic behavior 10 Non-evolvability of the source
code

Mismatch 12

Erratic behavior 11 Possible reuse of components
without sufficient knowledge

Erratic behavior 10 and Erratic
behavior 4 and mismatch 10

FIGURE 7 Project two causal map

Mismatch 1

Mismatch 2

Erratic behavior 1

Erratic behavior 2

Mismatch 3
Mismatch 4

Erratic behavior 3

Erratic behavior 4

Erratic behavior 5

Mismatch 5
Erratic behavior 6

52

The causal map of project 2 (FIGURE 7) shows two separate paths. The first patch
depicted on the top shows the interconnections between mismatches 1, 2, 3, 4 and
erratic behaviors 1, 2, 3, 4, 5. The second path, visible on the bottom of the figure,
shows the potential cause-effect relationship between mismatch 5 and erratic
behavior 6. Description of mismatches for the second project is provided in TABLE

10.

TABLE 10 Description of mismatches for the second project

Mismatch # Between Description

Mismatch 1 Necessity of
backward
compatibility and
concurrency of
development

While part of the system needs to hold backward
compatibility with scripts developed by experiment
container developers, since these developers are working
in parallel to the team, no such script is provided to the
development team. This inconsistency could result in
faults in the form of unsupported previous behavior.

Mismatch 2 Selection of defect
detection
practices and
reliance on
customer
feedback

Late reviews held with the customer and reliance on such
meetings for feedback results in long time-span between
updates to documents and late delivery

Mismatch 3 Reliance on
documentation
and time-span
between updates
to documents

Considering that the developer relies heavily on
documentation, long time-span between updates to
documents might lead to faults being introduced

Mismatch 4 Availability and
quality of
documentation
and tool support

The interviewee wished for better tool support for
documentation. In case the tool is difficult to use and
handle, considering that high quality and availability of
documentation is necessary for this project and
considering that the developer relies heavily on
documentation, this inconsistency might lead to improper
handling or update of the document and eventually a
fault.

Mismatch 5 Availability of
feedback with
number of project
members

No one inside the company is reviewing the works of the
developer, this means that the point of departure is
meetings and reviews with the customer, however such
meetings are too little, too late.

Descriptions of erratic behaviors for the second project, presented in FIGURE 7, are
provided in TABLE 11. The last column of the table includes the cause of each
erratic behavior.

53

TABLE 11 Description of erratic behaviors for the second project

Erratic behavior # Description Cause

Erratic behavior 1 Development without regards to
requirements

Mismatch 1

Erratic behavior 2 Late update of documents Mismatch 2 or mismatch 4

Erratic behavior 3 Delayed delivery Erratic behavior 2 or Mismatch 1

Erratic behavior 4 Development based on incorrect
information

Erratic behavior 2 and mismatch 3

Erratic behavior 5 Non-compliance with
documentation procedure

Mismatch 4

Erratic behavior 6 Not noticing self-mistakes Mismatch 5

The goal in the last step of PRORCA is innovation of corrective actions. The

corrective actions can be derived from the mismatches in order to prevent erratic
behaviors. Yet again for completing this step, the researcher was both the
participant and the RCA facilitator. In this step corrective actions could be
prioritized so that a sudden change of routines does not distress the development.
Since, deriving corrective actions without further knowledge of possibilities in the
project is hardly possible, and because no further interviews were available, only
few examples of possible corrective actions were innovated in this step.

Looking at the causal map of the first project developed in the previous step
indicates that ‘erratic behavior 4’ is of central importance. Since only ‘mismatch 5’
is considered as the root of this erratic behavior, the top priority in project one
should be addressing that mismatch. To this end, the recommended corrective
actions could be (1) changing the documentation practices or (2) increasing the
number of developers in order to decrease the workload of the current developer.

In the second project, ‘erratic behavior 2’ has a central role. Since ‘mismatch 2’
or ‘mismatch 4’ could lead to this erratic behavior, solutions should address both
of these mismatches. Corrective action for ‘mismatch 2’ could be adding extra
review sessions with internal reviewers. On the other hand, ‘Mismatch 4’ could be
resolved by introducing new documentation tools or recruiting new members into
the project to care for and handle the documentation.

In this step the researcher, demonstrated the straight-forward manner in
which corrective actions can be innovated for ‘erratic behavior 4’ in the first project
and ‘erratic behavior 2’ in the second project as examples. Corrective actions for
other erratic behaviors can be generated in the same fashion.

5.3.2 Evaluation

Evaluation of the PRORCA method is done in terms of the difficulties of carrying
out RCA outlined in section 5.1.1. First and foremost, it should help the analyst

54

prevent faults proactively. Secondly, it should be resource-friendly. Furthermore, it
should benefit SMEs as well as larger companies. And, lastly, the degree of its
vulnerability to fault reporting mechanisms should be low.

PRORCA with its reliance on mismatches between the development context
and practices is not only theoretically proactive, but, proved to be proactive in
practice too. In section 5.3.1 potential erratic behaviors that could lead to fault
introduction, ineffective and inefficient detection and ineffective and inefficient fix
were identified in two ongoing projects using PRORCA and corrective measures
were recommended. This feature of PRORCA is in stark distinction to the existing
RCA methods in the literature that are all reactive in nature. This is, by no means,
diminishing the value of other RCA methods; rather it shows that PRORCA can
complement reactive RCA methods by adding a forward feed to fault prevention
activities.

Resource-wise, PRORCA benefits from the same advantages attributed to
ARCA method (lehtinen et al., 2011) and more. It can be as lightweight or as
heavyweight as necessary. It was demonstrated, in section 5.3.1, that even one
interview with a knowledgeable participant can surface erratic behaviors. The total
amount of time spent on each of the interviews was 90 minutes only. Mismatch
identification and erratic behavior mapping for both of the projects took less than 4
man hours. Plus, non-reliance of PRORCA on fault data means there is no need for
heavy startup costs. It is, also, liberating for the staff because there would be no
need for the time-consuming task of reporting faults in accordance with a specific
classification schema (Chillarege, et al., 1992). It is evident that PRORCA is not
vulnerable to the problems inherent in fault reporting mechanisms because it does
not mandate collection of fault data.

Resource-friendliness, flexibility and non-reliance on fault data are
characteristics that make PRORCA not only applicable in large companies but also
SMEs. In fact the case company in this research is an SME and the size of each
project was small in terms of the number of project staff. But still, it was
demonstrated that projects and companies of this size can benefit from applying
PRORCA. All in all, PRORCA is not subject to difficulties of applying reactive,
fault-data-oriented RCA methods.

Even with due consideration of all of its merits, PRORCA is vulnerable to
being left out of fault prevention mechanisms in companies due to its invisible
gains. Since PRORCA is a proactive method and does not address an existing
problem, it can easily be considered as a luxurious practice by management. The
situation is exacerbated by the lack of empirical results approving its effectiveness
in preventing faults from slipping through to operation. For these reasons,
longitudinal studies investigating the benefits of applying RCA and its effect on
fault rate and fault severity is necessary. This task, however, is left to future
research for now.

55

The taxonomy of contextual factors developed in this research endeavor is
instrumental to conducting PRORCA. However, it is by no means exhaustive or
finalized. As an example, one might think that language as a contextual factor
should be included in the region perspective. Even though, it is arguable that
language is covered in the taxonomy as the communication factor represented in
the project perspective, the staff of a company might think otherwise. In such a
case the taxonomy provides enough flexibility for the language factor to be added
to the region perspective. In fact, based on the knowledge and experience of the
staff of the context, the taxonomy can be customized in a way to represent the
context in the best possible way.

56

6 Discussion

This research is an extension to the works of Lanubile et al. (1998), Jacobs et al.
(2007), Lehtinen et al. (2011), and Clarke and O’Connor (2012). Furthermore, the
model of fault prevention presented in this study holds familiarity to fault
prediction literature.

Similar to the ‘Error abstraction’ method proposed by Lanubile et al. (1998),
in this study the main underlying theme is identification of common individual
errors. However, while the error abstraction method relies on abstracting common
errors from a set of already existing faults, in this research the goal is identification
of individuals’ erratic behaviors with due consideration to the mismatches
between the context of development and practices. It is arguable that this
difference between the two studies marks a difference in a reactive approach in
Lanubile et al. (1998) and a proactive approach in this study. Another point of
departure between the two is the scope of application. Lanubile et al. (1998)
focused solely on requirement faults; however, fault prevention should be
extended to all stages of development. Identification of individuals’ erratic
behaviors in this study is done proactively for all development stages.

As regards mapping the context, Clarke and O’Connor (2012) developed a
reference framework of situational factors that can be used as a tool for defining
software development processes or to deliver improvements. Jacobs et al. (2007),
on the other hand, developed lists of factors that can positively or negatively affect
fault introduction and fault detection. The taxonomy of contextual factors
developed in this research effort is similar to the situational factors reference
framework of Clarke and O’Connor (2012) in providing a tool for mapping the
context of development. However, in doing so, the taxonomy of contextual factors,
presented in this research, limits factors to those that can affect fault prevention in
terms of fault introduction, inefficient and ineffective detection and inefficient and
ineffective fix, hence, is similar to the work of Jacobs et al. (2007). Narrowing down
the scope of the taxonomy improves its utilization for the purpose of finding the

57

mismatches between the development context and practices. The reference
framework of Clarke and O’Connor (2012) has 8 factor classifications, 44 factors,
and 172 sub-factors. The large scale of this framework compared to 85 factors and
two dimensions presented in the taxonomy of contextual factors render it
inapplicable for the purposes of this study. Even though 85 contextual factors
might still be too many to handle in practice, since the taxonomy is presented in
two dimensions, practitioners can focus on the dimensions which they find most
important.

Even though, lists of influential factors identified by Jacobs et al. (2007) is
suitable in scope and scale, the authors’ focus on influential factors limits the
applicability of their findings for identification of mismatches in the context.
Admittedly, though, the contextual factors identified in this research turned out to
hold many similarities to the influential factors of Jacobs et al. (2007).
Consequently, practitioners unwilling to adopt the taxonomy of contextual factors
for mismatch identification might benefit from investigating the influential factors
of Jacobs et al. (2007) as a replacement.

The PRORCA method is an extension of the ARCA method (Lehtinen et al.
2011). While the ARCA method (Lehtinen et al., 2011) was designed to be
lightweight, resource-friendly and applicable in SMEs, it still assumed the
existence of problems and emphasized on reactive identification of problems. The
PRORCA method, while benefiting from the merits of the ARCA method (Lehtinen
et al., 2011) is designed to be proactive. It does not assume the existence of
problems. Instead, PRORCA can be used on a quest to identify and resolve erratic
behaviors that could potentially contribute to faults slipping through to operation.
Another, point of departure between the two methods is that in the ARCA method
(Lehtinen et al., 2011), problems are under investigation, but in PRORCA, the goal
is fault prevention. The problems that the ARCA method (Lehtinen et al., 2011)
seeks to resolve include but are not limited to faults. However, there is no reason
why the PRORCA method cannot focus on broader problems than faults. This
would be a matter of future studies though.

The PRORCA method focuses on individuals’ erratic behavior, however, as
was shown in section 5.1.2, tools and processes can also lead to faults slipping
through to operation. The contribution of tools and processes to faults slipping
through to operation shall not be overlooked. Companies should maintain active
communication lines with tool vendors and report possible misbehaviors of tools.
Such communication is done with the goal of tool improvement. Similarly, process
contribution to faults slipping through to operation shall be recorded and reported
to standardization and regulatory bodies. Models and standards are not free from
faults by design, they are someone’s ideal of a development process (Grady, 1996).
The company’s active participation in a consortium and reporting their experience
can, therefore, contribute to fixing the defective processes and filling the absence of
others, in their source.

58

The emphasis of the PRORCA method on future faults brings similarities
with fault forecasting (Avižienis et al., 2004; Lyu, 1996) to mind. However, the
focus in fault forecasting (or fault prediction) literature is on making
measurements of the current state of the software or development process in order
to estimate the future number or presence of faults using statistical analysis (Catal,
& Diri, 2009; Fenton, & Neil, 1999; Hall et al., 2012). Such analysis can be used to
predict the number of faults in a module, file or a piece of software in terms of
fault density and fault rate (Fenton, & Neil, 1999; Fenton, & Ohlsson, 2000).
Alternatively, the analysis can be done to distinguish fault-prone and non-fault-
prone modules (Munson, & Khoshgoftaar, 1992) and files (Hammil, & Goseva-
Popstojanova, 2009) or to rank pieces of software according to their fault-proneness
(Zhou, & Leung, 2006). The measurements required for such analysis can be done
according to different sets of metrics. The most common metrics found are
extracted from fault reports (Fenton, & Neil, 1999). The idea is to extract
information like defect rate from fault reports and perform mathematical
extrapolation. In recent years, efforts have been taken to make fault predictions
based on the number and type of changes made in the source code (Graves, Karr,
Marron, & Siy, 2000; Kidwell, Hayes, & Nikora, 2014; Kim et al., 2006; Ostrand,
Weyuker, & Bell, 2005). In cases where fault data is not available researchers have
suggested product, process and people metrics (Herrmann, 1998). Product metrics
are those that are extractable from an artifact of the software product. Product
metrics include size (Shen, Yu, Thebaut, & Paulsen, 1985) and complexity metrics
(Mccabe 1976) and object-oriented design metrics (Nugroho, & Chaudron, 2014) to
name a few. People metrics deal with the development team and other
stakeholders involved (Herrmann, 1998). Process metrics try to make predictions
based on the effectiveness and efficiency of development processes (Leszak, et al.
2002). Clearly, the PRORCA method does not fit this profile. In PRORCA the
potential future faults are predicted by identification of individuals’ erratic
behaviors. The PRORCA is not performed in order to estimate the number of faults
with respect to size (fault density), or to distinguish between fault-prone and non-
fault-prone modules. The ultimate goal in PRORCA is to resolve the mismatches
between development context and practices to prevent future faults. There is no
denying, though, that fault prediction studies can contribute to PRORCA,
however, studying the possibilities raised from such contribution is left to future
research for now.

It could not be overstated that rather than being a replacement for the
existing RCA methods in the literature, the PRORCA method is a complement to
them. While the benefits of reactive RCA has already been well-recognized,
proactive RCA can provide a feed forward for companies to look into the future
and see what potential problems might lay ahead.

59

7 Limitations

This study has a number of limitations. Firstly, material extraction for the mapping
study was subject to reliability concerns. The forward and backward search
technique deployed in this study is vulnerable to the comprehensiveness of the
initial set of articles chosen and tends to favor backward search. To address these
concerns, an expert interview was conducted in phase one. Even though the input
of the interviewee did effectively direct material extraction for the better, still, the
task was completed subjectively by the researcher.

Furthermore, the reliability of the taxonomy of contextual factors developed
in this study was subject to vulnerabilities. The directed content analysis
conducted for the purpose of developing the taxonomy was done by one
researcher, solely. This is not ideal and may introduce biases in coding. In such a
situation a contextual factor might be missed or wrongly included. It is arguable,
however, that the large number of factors coded alleviates the problem of missing
a factor by increasing the chance of covering it in analysis of other studies. On the
other hand, there is a high chance for the wrongly included factors to have been
dropped during the later steps of the development of the taxonomy.

Other major limitations were faced in the demonstration phase. The two
projects for which PRORCA was conducted were not sufficient in scale and scope
to surface all the potential difficulties of the method. Both projects were small in
size. Project one was a prototype project for which the level of tolerable risk was
fairly high. Even project two, in which, the level of tolerable risk was low, the focus
was on hardware rather than software.

Other limitations in demonstration stage included few numbers of and short
time available for interviews. Due to time limitations, the interviews were limited
to the project and team perspectives of the taxonomy and did not cover region and
organization perspectives. Additionally, in steps two and three of the PRORCA,
the researcher took both RCA facilitator and participant roles because no further
interviews were possible. Even though this situation showed the flexibility of

60

PRORCA, it evidently limited the possibility of finding erratic behaviors and
innovating corrective actions.

Lastly, the interviewees might have been biased to present a better picture of
the project than reality. The interviewees were the responsible individuals for their
respective projects and it is understandable if they viewed the interviews as
evaluation of their work. Plus, the projects were both held with representatives of
one company and software reliability is a sensitive topic in software development,
specifically in the domain of avionics and embedded software. Therefore, it could
be possible that some information was withheld from the researcher.

61

8 Conclusion

In this research, the task of developing a proactive RCA method was undertook in
response to a call for further research into fault prevention by Alho and Mattila
(2011). The PRORCA method as the main outcome of this endeavor is lightweight,
flexible and proactive and relies on finding the mismatches between the
development context and the practices to prevent faults from slipping through to
operation. Proactive prevention of faults slipping through to operation is done
with the ultimate purpose of developing fault-free software systems. Even though,
development of a system that is completely free from faults is far from reality,
prevention of faults slipping through to operation can still make considerable
contributions to development of highly reliable systems.

The PRORCA method was developed in accordance with the teachings of
DSRM (Peffers et al., 2007) and comprises three steps (1) context mapping (2)
Erratic behavior mapping and, (3) Corrective action innovation. In step one, the
context of development is mapped using taxonomy of contextual factors. The
taxonomy of contextual factors affecting faults slipping through to operation was
developed in this research as well as the PRORCA method. The taxonomy consists
of two dimensions – four perspectives of context and four constituent elements of
development. Four perspectives of context are region, organization, project and
team and the four constituent elements of context are environment, activities,
artifacts and humans. In PRORCA’s second step, potential erratic behaviors of
individuals that can lead to faults slipping through to operation are mapped, in a
bottom up approach, using directed graphs. The erratic behaviors are mapped
based on mismatches between the development taxonomy and practices identified
at the beginning of this step. Step three includes deriving corrective actions in
accordance to mismatches that lead to erratic behaviors.

The use of the PRORCA method was demonstrated in this research in two
small software development projects in the domain of avionics and embedded
systems. Admittedly, these two projects were not sufficient in scale and scope to

62

surface all the potential difficulties and problems of the PRORCA method,
however, they did prove the flexibility and resource-friendliness of the method.

63

REFERENCES

Adams, E. N. (1984). Optimizing preventive service of software products. IBM
Journal of Research and Development, 28(1), 2-14.

Alho, P., & Mattila, J. (2011). Dependable control systems design and evaluation.
In Conference on Systems Engineering Research (CSER) 2011.

Allen, M. (2009). From substandard to successful software. CrossTalk, 22(4), 29-32.
Aurum, A., Petersson, H., & Wohlin, C. (2002). State‐of‐the‐art: software

inspections after 25 years. Software Testing, Verification and Reliability, 12(3),
133-154.

Austin R., & Devin, L. (2009). Weighing the Benefits and Costs of Flexibility in
MakingSoftware: Toward a Contingency Theory of the Determinants of
Development Process Design. Information Systems Research, 20(3), 462-477.

Avižienis, A., Laprie, J. C., Randell, B., & Landwehr, C. (2004). Basic concepts and
taxonomy of dependable and secure computing. Dependable and Secure
Computing, IEEE Transactions on, 1(1), 11-33.

Babu, P. A., Kumar, C. S., & Murali, N. (2012). A hybrid approach to quantify
software reliability in nuclear safety systems. Annals of Nuclear Energy, 50,
133-140.

Basili, V. R., & Rombach, H. D. (1987, March). Tailoring the software process to
project goals and environments. In Proceedings of the 9th international conference
on Software Engineering (pp. 345-357). IEEE Computer Society Press.

Beizer, B. (1990) Software Testing Techniques. International Thomson Computer
Press

Bern, A., Pasi, S. J. A., Nikula, U., & Smolander, K. (2007, June). Contextual Factors
Affecting the Software Development Process–An Initial View. In 2nd AIS
SIGSAND European Symposium on Systems Analysis and Design, Gdansk, Poland,
June (Vol. 5).

Bhandari, I., Halliday, M., Tarver, E., Brown, D., Chaar, J., & Chillarege, R. (1993).
A case study of software process improvement during development. Software
Engineering, IEEE Transactions on, 19(12), 1157-1170.

Binder, R. (2000). Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley Professional.

Bishop, P. (2013). Does Software Have to Be Ultra Reliable in Safety Critical
Systems?. In Computer Safety, Reliability, and Security (pp. 118-129). Springer
Berlin Heidelberg.

Bjørnson, F. O., Wang, A. I., & Arisholm, E. (2009). Improving the effectiveness of
root cause analysis in post mortem analysis: A controlled experiment.
Information and Software Technology, 51(1), 150-161.

64

Boehm, B. W., Mcclean, R. K., & Urfrig, D. E. (1975). Some experience with
automated aids to the design of large-scale reliable software. Software
Engineering, IEEE Transactions on, (1), 125-133.

Børretzen, J. A. Software Fault Reporting Processes in Business-Critical Systems
(Doctoral dissertation, Norwegian University for Science and Technology).

Børretzen, J. A., & Dyre-Hansen, J. (2007). Investigating the software fault profile of
industrial projects to determine process improvement areas: an empirical
study. In Software Process Improvement (pp. 212-223). Springer Berlin
Heidelberg.

Børretzen, J. A., Stålhane, T., Lauritsen, T., & Myhrer, P. T. (2004, November).
Safety activities during early software project phases. In Proceedings,
Norwegian Informatics Conference.

Bridge, N., & Miller, C. (1998). Orthogonal defect classification using defect data to
improve software development. Software Quality, 3(1), 1-8.

Butler, R. W., & Finelli, G. B. (1993). The infeasibility of quantifying the reliability
of life-critical real-time software. Software Engineering, IEEE Transactions on,
19(1), 3-12.

Canfora, G., & Cerulo, L. (2005, September). Impact analysis by mining software
and change request repositories. In Software Metrics, 2005. 11th IEEE
International Symposium (pp. 9-pp). IEEE.

Card, D. N. (1998). Learning from our mistakes with defect causal analysis.
Software, IEEE, 15(1), 56-63.

Card, D. N. (2005). Defect Analysis: Basic Techniques for Management and
Learning. Advances in Computers, 65, 259-295.

Carman, D. W., Dolinsky, A. A., Lyu, M. R., & Yu, J. S. (1995, October). Software
reliability engineering study of a large-scale telecommunications software
system. In Software Reliability Engineering, 1995. Proceedings., Sixth International
Symposium on (pp. 350-359). IEEE.

Carpenter, S. E., & Dagnino, A. (2014, September). Is Agile too Fragile for Space-
Based Systems Engineering?. In Space Mission Challenges for Information
Technology (SMC-IT), 2014 IEEE International Conference on (pp. 38-45).
IEEE.

Carrozza, G., Pietrantuono, R., & Russo, S. (2015). Defect analysis in mission‐
critical software systems: a detailed investigation. Journal of Software: Evolution
and Process, 27(1), 22-49.

Catal, C., & Diri, B. (2009). A systematic review of software fault prediction studies.
Expert systems with applications, 36(4), 7346-7354.

Chillarege, R., Bhandari, I. S., Chaar, J. K., Halliday, M. J., Moebus, D. S., Ray, B. K.,
& Wong, M. Y. (1992). Orthogonal defect classification-a concept for in-
process measurements. Software Engineering, IEEE Transactions on,18(11),
943-956.

65

Christenson, D. A., & Huang, S. T. (1996). Estimating the fault content of software
using the fix-on-fix model. Bell Labs Technical Journal, 1(1), 130-137.

Clarke, P., & O’Connor, R. V. (2012). The situational factors that affect the software
development process: Towards a comprehensive reference framework.
Information and Software Technology, 54(5), 433-447.

CMMI Product Team. (2010). CMMI for Development, Version 1.3 (CMU/SEI-
2010-TR-033). Retrieved February 13, 2016, from the Software Engineering
Institute, Carnegie Mellon University website:
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661

Diaz, M., & Sligo, J. (1997). How software process improvement helped Motorola.
IEEE software, 14(5), 75.

Dunn, W. R. (2004). Software safety and reliability.
ECSS-Q-HB-80-03A. (2012). Space product assurance–Software dependability and

safety ECSS-Q-HB-80-03A:2012. The European Space Agency Requirements &
Standards Division

El Emam, K., & Wieczorek, I. (1998, November). The repeatability of code defect
classifications. In Software Reliability Engineering, 1998. Proceedings. The
Ninth International Symposium on (pp. 322-333). IEEE.

Favarò, F. M., Jackson, D. W., Saleh, J. H., & Mavris, D. N. (2013). Software
contributions to aircraft adverse events: Case studies and analyses of
recurrent accident patterns and failure mechanisms. Reliability Engineering &
System Safety, 113, 131-142.

Fenton, N. E., & Neil, M. (1999). A critique of software defect prediction
models. Software Engineering, IEEE Transactions on, 25(5), 675-689.

Fenton, N. E., & Ohlsson, N. (2000). Quantitative analysis of faults and failures in a
complex software system. Software Engineering, IEEE Transactions on,26(8),
797-814.

Fitzgerald, B., & O'Kane, T. (1999). A longitudinal study of software process
improvement. IEEE software, 16(3), 37.

Fitzgerald, B., Hartnett, G., & Conboy, K. (2006). Customising agile methods to
software practices at Intel Shannon. European Journal of Information Systems,
15(2), 200-213.

Fitzgerald, B., Russo, N., & O'Kane, T. (2000). An empirical study of system
development method tailoring in practice. ECIS 2000 Proceedings, 4.

Freimut, B., Denger, C., & Ketterer, M. (2005, September). An industrial case study
of implementing and validating defect classification for process improvement
and quality management. In Software Metrics, 2005. 11th IEEE International
Symposium (pp. 10-pp). IEEE.

Goel, A. L. (1985). Software reliability models: Assumptions, limitations, and
applicability. Software Engineering, IEEE Transactions on, (12), 1411-1423.

Grady, R. B. (1996). Software failure analysis for high-return process improvement
decisions. Hewlett Packard Journal, 47, 15-24.

66

Graves, T. L., Karr, A. F., Marron, J. S., & Siy, H. (2000). Predicting fault incidence
using software change history. Software Engineering, IEEE Transactions on,
26(7), 653-661.

Hall, T., Beecham, S., Bowes, D., Gray, D., & Counsell, S. (2012). A systematic
literature review on fault prediction performance in software engineering.
Software Engineering, IEEE Transactions on, 38(6), 1276-1304.

Hamill, M., & Goseva-Popstojanova, K. (2009). Common trends in software fault
and failure data. Software Engineering, IEEE Transactions on, 35(4), 484-496.

Hanmer, R. S., McBride, D. T., & Mendiratta, V. B. (2007). Comparing reliability
and security: Concepts, requirements, and techniques. Bell Labs Technical
Journal, 12(3), 65-78.

Hannay, J. E., Sjøberg, D. I., & Dybå, T. (2007). A systematic review of theory use in
software engineering experiments. Software Engineering, IEEE Transactions on,
33(2), 87-107.

Hardgrave, B. C., Wilson, R. L., & Eastman, K. (1999). Toward a contingency model
for selecting an information system prototyping strategy. Journal of
Management Information Systems, 16(2), 113-136.

Harter, D. E., Kemerer, C. F., & Slaughter, S. A. (2012). Does software process
improvement reduce the severity of defects? A longitudinal field study.
Software Engineering, IEEE Transactions on, 38(4), 810-827.

Hayes, J. H., Raphael, I., Holbrook, E. A., & Pruett, D. M. (2006, August). A case
history of International Space Station requirement faults. In Engineering of
Complex Computer Systems, 2006. ICECCS 2006. 11th IEEE International
Conference on (pp. 10-pp). IEEE.

Herrmann, D. S. (1998, January). Sample implementation of the Littlewood holistic
model for assessing software quality, safety and reliability. In Reliability and
Maintainability Symposium, 1998. Proceedings., Annual (pp. 138-148). IEEE.

Herrmann, D. S., & Peercy, D. E. (1999, January). Software reliability cases: the
bridge between hardware, software and system safety and reliability. In
Reliability and Maintainability Symposium, 1999. Proceedings. Annual (pp. 396-
402). IEEE.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in
information systems research. MIS Quarterly, 28(1), 75-105.

Hong, G. Y., Xie, M., & Shanmugan, P. (1999). A statistical method for controlling
software defect detection process. Computers & industrial engineering, 37(1),
137-140.

Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content
analysis. Qualitative health research, 15(9), 1277-1288.

Huang, F., Liu, B., & Huang, B. (2012). A taxonomy system to identify human error
causes for software defects. In Proceedings 18th Issat International Conference on
Reliability & Quality in Design, Boston, USA (pp. 44-49).

67

Huang, F., Liu, B., Wang, S., & Li, Q. (2015). The impact of software process
consistency on residual defects. Journal of Software: Evolution and Process, 27(9),
625-646.

Huber, J. T. (2000). A comparison of IBM’s orthogonal defect classification to
Hewlett Packard’s defect origins, types, and modes. In Proceedings of
International Conference on Applications of Software Measurement. San Jose,
CA (pp. 1-17).

IEC 61508. (2010). Functional safety of electrical/electronic/programmable
electronic safety-related systems. IEC 61508 ed. 2.0, International
Electrotechnical Commission

IEEE Std 1044 (2009). IEEE Standard Classification for Software Anomalies.
IEEE Std 729 (1983). IEEE Standard Glossary of Software Engineering Terminology
IEEE Std-1074 (1991). IEEE Standard for Developing Software Life Cycle Processes.
Iivari, J. (1989). A methodology for IS development as organizational change: A

pragmatic contingency approach. Information Systems Development for Human
Progress in Organisations, Amsterdam: North-Holland, 197-217.

ISO, I. (2005). IEC 25000 Software and system engineering–Software product
Quality Requirements and Evaluation (SQuaRE)–Guide to SQuaRE.
International Organization for Standarization.

ISO, I. (2008). IEC 12207 Systems and software engineering-software life cycle
processes. International Organization for Standardization: Geneva.

ISO, I. (2010). IEEE, Systems and Software Engineering--Vocabulary. ISO/IEC/IEEE
24765: 2010 (E)) Piscataway, NJ: IEEE computer society.

Jacobs, J., Van Moll, J., Krause, P., Kusters, R., Trienekens, J., & Brombacher, A.
(2005). Exploring defect causes in products developed by virtual teams.
Information and Software Technology, 47(6), 399-410.

Jacobs, J., Van Moll, J., Kusters, R., Trienekens, J., & Brombacher, A. (2007).
Identification of factors that influence defect injection and detection in
development of software intensive products. Information and Software
Technology, 49(7), 774-789.

Jalali, S., & Wohlin, C. (2012, September). Systematic literature studies: database
searches vs. backward snowballing. In Proceedings of the ACM-IEEE
international symposium on Empirical software engineering and measurement (pp.
29-38). ACM.

Jalote, P., & Agrawal, N. (2005, December). Using defect analysis feedback for
improving quality and productivity in iterative software development.
InInformation and Communications Technology, 2005. Enabling
Technologies for the New Knowledge Society: ITI 3rd International
Conference on (pp. 703-713). IEEE.

Kalinowski, M., Travassos, G. H., & Card, D. N. (2008, September). Towards a
defect prevention based process improvement approach. In Software

68

Engineering and Advanced Applications, 2008. SEAA'08. 34th Euromicro
Conference (pp. 199-206). IEEE.

Kidwell, B., Hayes, J. H., & Nikora, A. P. (2014, October). Toward Extended
Change Types for Analyzing Software Faults. In Quality Software (QSIC), 2014
14th International Conference on (pp. 202-211). IEEE.

Kim, S., Zimmermann, T., Pan, K., & Whitehead Jr, E. J. (2006, September).
Automatic identification of bug-introducing changes. In Automated Software
Engineering, 2006. ASE'06. 21st IEEE/ACM International Conference on (pp. 81-
90). IEEE.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., El
Emam, K., & Rosenberg, J. (2002). Preliminary guidelines for empirical
research in software engineering. Software Engineering, IEEE Transactions on,
28(8), 721-734.

Kitchenham, B., & Charters, S., (2007) “Guidelines for Performing Systematic
Literature Reviews in Software Engineering (Version 2.3),” Technical Report
EBSE-2007-01, Keele Univ., EBSE.

Krishnan, M. S., & Kellner, M. I. (1999). Measuring process consistency:
Implications for reducing software defects. Software Engineering, IEEE
Transactions on, 25(6), 800-815.

Lanubile, F., Shull, F., & Basili, V. R. (1998, November). Experimenting with error
abstraction in requirements documents. In Software Metrics Symposium, 1998.
Metrics 1998. Proceedings. Fifth International (pp. 114-121). IEEE.

Lehtinen, T. O., Mäntylä, M. V., & Vanhanen, J. (2011). Development and
evaluation of a lightweight root cause analysis method (ARCA method)–field
studies at four software companies. Information and Software
Technology,53(10), 1045-1061.

Leszak, M., Perry, D. E., & Stoll, D. (2002). Classification and evaluation of defects
in a project retrospective. Journal of Systems and Software, 61(3), 173-187.

Leveson, N. G. (2004). Role of software in spacecraft accidents. Journal of spacecraft
and Rockets, 41(4), 564-575.

Leveson, N. G., & Turner, C. S. (1993). An investigation of the Therac-25
accidents. Computer, 26(7), 18-41.

Levy, Y., & Ellis, T. J. (2006). A systems approach to conduct an effective literature
review in support of information systems research. Informing Science:
International Journal of an Emerging Transdiscipline, 9(1), 181-212.

Li, B., Sun, X., Leung, H., & Zhang, S. (2013). A survey of code‐based change
impact analysis techniques. Software Testing, Verification and Reliability, 23(8),
613-646.

Li, N., Li, Z., & Sun, X. (2010, December). Classification of software defect detected
by black-box testing: An empirical study. In Software Engineering (WCSE),
2010 Second World Congress on (Vol. 2, pp. 234-240). IEEE.

69

Littlewood, B., & Strigini, L. (1993). Validation of ultrahigh dependability for
software-based systems. Communications of the ACM (CACM), 36(11), 69-80.

Lutz, R. R., & Mikulski, I. C. (2004). Empirical analysis of safety-critical anomalies
during operations. Software Engineering, IEEE Transactions on, 30(3), 172-180.

Lyu, M. R. (1996). Handbook of software reliability engineering (Vol. 222). CA: IEEE
computer society press.

Lyu, M. R. (2007, May). Software reliability engineering: A roadmap. In 2007
Future of Software Engineering (pp. 153-170). IEEE Computer Society.

Mays, R. G., Jones, C. L., Holloway, G. J., & Studinski, D. P. (1990). Experiences
with defect prevention. IBM Systems Journal, 29(1), 4-32.

McCabe, T. J. (1976). A complexity measure. Software Engineering, IEEE
Transactions on, (4), 308-320.

Mellegard, N., Staron, M., & Torner, F. (2012, November). A light-weight defect
classification scheme for embedded automotive software and its initial
evaluation. In Software Reliability Engineering (ISSRE), 2012 IEEE 23rd
International Symposium on (pp. 261-270). IEEE.

Mohagheghi, P., Conradi, R., & Børretzen, J. A. (2006, May). Revisiting the problem
of using problem reports for quality assessment. In Proceedings of the 2006
international workshop on Software quality (pp. 45-50). ACM.

Munson, J. C., & Khoshgoftaar, T. M. (1992). The detection of fault-prone
programs. Software Engineering, IEEE Transactions on, 18(5), 423-433.

Musa, J. D. (1996). Software reliability-engineered testing. Computer, 29(11), 61-68.
Myers, M. D. (1997). Qualitative research in information systems. Management

Information Systems Quarterly, 21(2), 241-242.
Norris, M., Rigby, P., & Stockman, S. (1994). Life after ISO 9001: British Telecom's

approach to software quality. Communications Magazine, IEEE, 32(10), 58-63.
Nugroho, A., & Chaudron, M. R. (2014). The impact of UML modeling on defect

density and defect resolution time in a proprietary system. Empirical Software
Engineering, 19(4), 926-954.

Okoli, C., & Schabram, K. (2010). A guide to conducting a systematic literature
review of information systems research. Sprouts Work. Pap. Inf. Syst, 10, 26.

Ostrand, T. J., Weyuker, E. J., & Bell, R. M. (2005). Predicting the location and
number of faults in large software systems. Software Engineering, IEEE
Transactions on, 31(4), 340-355.

Pan, K., Kim, S., & Whitehead Jr, E. J. (2009). Toward an understanding of bug fix
patterns. Empirical Software Engineering, 14(3), 286-315.

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design
science research methodology for information systems research. Journal of
management information systems, 24(3), 45-77.

Radjenović, D., Heričko, M., Torkar, R., & Živkovič, A. (2013). Software fault
prediction metrics: A systematic literature review. Information and Software
Technology, 55(8), 1397-1418.

70

Raninen, A., Toroi, T., Vainio, H., & Ahonen, J. J. (2012). Defect data analysis as
input for software process improvement. In Product-Focused Software
Process Improvement (pp. 3-16). Springer Berlin Heidelberg.

Runeson, P., Andersson, C., Thelin, T., Andrews, A., & Berling, T. (2006). What do
we know about defect detection methods?. IEEE software, 23(3), 82.

Schwaber, K., & Beedle, M. (2002). gilè Software Development with Scrum.
Shah, S. M. A. (2014). EMPIRICAL CHARACTERIZATION OF SOFTWARE

QUALITY (Doctoral dissertation, Politecnico di Torino).
Shen, V. Y., Yu, T. J., Thebaut, S. M., & Paulsen, L. R. (1985). Identifying error-

prone software—an empirical study. Software Engineering, IEEE
Transactions on, (4), 317-324.

Shenvi, A. A. (2009, February). Defect prevention with orthogonal defect
classification. In Proceedings of the 2nd India software engineering conference (pp.
83-88). ACM.

Sidky, A., & Arthur, J. (2007, March). Determining the applicability of agile
practices to mission and life-critical systems. In Software Engineering
Workshop, 2007. SEW 2007. 31st IEEE (pp. 3-12). IEEE.

Sjøberg, D. I., Dybå, T., Anda, B. C., & Hannay, J. E. (2008). Building theories in
software engineering. In Guide to advanced empirical software engineering (pp.
312-336). Springer London.

Vallespir, D., Grazioli, F., & Herbert, J. (2009). A framework to evaluate defect
taxonomies. In XV Congreso Argentino de Ciencias de la Computación.

Van Moll, J. H., Jacobs, J. C., Freimut, B., & Trienekens, J. J. M. (2002, October). The
importance of life cycle modeling to defect detection and prevention. In
Software Technology and Engineering Practice, 2002. STEP 2002. Proceedings. 10th
International Workshop on (pp. 144-155). IEEE.

van Moll, J., Jacobs, J., Kusters, R., & Trienekens, J. (2004). Defect detection oriented
lifecycle modeling in complex product development. Information and Software
Technology, 46(10), 665-675.

Voas, J. M., & Miller, K. W. (1995). Software testability: The new verification.IEEE
software, 12(3), 17-28.

Walia, G. S., & Carver, J. C. (2013). Using error abstraction and classification to
improve requirement quality: conclusions from a family of four empirical
studies. Empirical Software Engineering, 18(4), 625-658.

Walls, J. G., Widmeyer, G. R., & El Sawy, O. A. (1992). Building an information
system design theory for vigilant EIS. Information systems research, 3(1), 36-59.

Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future:
Writing a. MIS quarterly, 26(2), 13-23.

Whittaker, J. A. (2000). What is software testing? And why is it so hard?.Software,
IEEE, 17(1), 70-79.

Yu, W. D. (1998). A software fault prevention approach in coding and root cause
analysis. Bell Labs Technical Journal, 3(2), 3-21.

71

Zahedi, F. (1987). Reliability of information systems based on the critical success
factors-formulation. Mis Quarterly, 187-203.

Zelkowitz, M. V., & Rus, I. (2004). Defect evolution in a product line
environment. Journal of Systems and Software, 70(1), 143-154.

Zhou, Y., & Leung, H. (2006). Empirical analysis of object-oriented design metrics
for predicting high and low severity faults. Software Engineering, IEEE
Transactions on, 32(10), 771-789.

72

APPENDIX 1 TAXONOMY OF CONTEXTUAL FACTORS

Region

Environment
factors

Time zone

Human

factors
culture (collective behavior and behavioral norms, differences in mental models)

Organization

Environment
factors

org size;

org domain;

organization strategy: improvement of the quality, lower cost

org structure (resulting in communication delays)

involvement of external organizations

Activity

factors

Maturity of processes (change in processes, data tracking and management
practices)

quality of intra-project communication
Quality of analysis on inter-related projects (impact analysis, RCA, etc.)

Quality of fault reporting process
Existence of Reactive/Proactive processes

Human

factors

trust in other projects

Involvement of staff on several projects
reactive/proactive thinking

organizational culture (continual improvement, reactive thinking)

Project

Environment
factors

project size

project structure (complexity of organization's projects: multi-project
development, single project development, or etc.)

standards in place;

budget and schedule

Involvement of different stakeholders

Degree of customer involvement

level of tolerable risk

office ergonomics,

tool support

education and training

Artifact

factors

programming language used and its features
criticality of subsystems

scope of system's possible behaviors

Testability

quality of defect reports

73

operational usage

design problem history (persistency and stability),

fault proneness of modules

expected lifetime of system

product size

product complexity (clarity of interactions between subsystems)

application domain

backward compatibility

Availability and Quality of documentation (requirements, design, test cases, etc.)

volatility of requirements
source code evolvability

defect classification scheme used for fault reporting

defect profile
modeling paradigm

Activity

factors

information flow between requirements and tests;

interaction of developers with testing staff

division of responsibilities between teams

quality of communication within project
assignment and handling of priorities

selection process of defect detection practices (test approach and strategy)

Independent defect detection
availability of definitions and guidelines
degree of compliance with guidelines and standards

availability of feedback

size of developed increments;

alignment of testing and requirement analysis

availability and usage of automated tests

synchronicity of communication

quality of defect and test case tracing

Time span between updates to documents

Concurrency of activities (code modification, coding and testing, etc.)
coordination of testing activities

development strategy (multiple release, open source, reuse, distributed and

concurrent development, virtual development)

defect fixing strategy (fixing low severity defects later and attend to high severity
for now);

Human

factors

Frequency of change in staff members
level of commitment to defect data collection

staff knowledge, skill and experience

degree of attention to detail and priority of procedures
fear of data misuse;

Commitment toward high-quality development

Degree of trust in other staff

defined responsibilities

conflicting schedules of experts

74

availability of full time testing staff

the number of people working on the project

Team

Environment
factors

team size

Virtual/Co-located teams

Human

factors

Frequency of change in team members

team variation of skills and experience
commitment to teamwork

tendency of teams toward production blocking and evaluation apprehension;

reviewers' collusion

group synergy

75

APPENDIX 2 THE CONTEXT OF PROJECT ONE

Project

Environment
factors

project size Small

project structure no other related projects

standards in place tailored ECSS E-40 standards

Involvement of different
stakeholders

minor support from other engineers

Degree of customer involvement Regular meetings

level of tolerable risk prototype project so high

office ergonomics cubicles and ergonomics campaign

tool support Redmine

education and training Non

Artifact factors Testability Not considered

operational usage Prototype

expected lifetime of system NA

product size Not large

product complexity (clarity of
interactions between subsystems)

Low, subsystems and interactions are
known

application domain Avionics

backward compatibility NA

Availability and Quality of
documentation

high at the beginning but low at the
end, might be problems because
members have left

volatility of requirements low

source code evolvability A matter of schedule, no reviews for
this matter. But the customer has
specific requirement for percentage of
comments

defect classification scheme used
for fault reporting

Provided by Redmine tool

modeling paradigm UML

Activity factors interaction of developers with
testing staff

NA

division of responsibilities
between teams

1 Person responsible for all tasks

quality of communication within
project

good but still miscommunication is
reported

76

assignment and handling of
priorities

At the beginning of the project for bug
fixes but a chance they would be
ignored later

selection process of defect
detection practices (test approach
and strategy)

No defined process

Independent defect detection No

availability of definitions and
guidelines

Available in certain cases like coding
rules but no official procedure to
review compliance.

availability of feedback No, customer reviews

synchronicity of communication synchronic with project leader, not
synchronic with the customer

Time span between updates to
documents

either immediately or next release

coordination of testing activities NA

 Human factors Frequency of change in staff
members

Frequent

level of commitment to defect
data collection

time pressure can stop collection

staff knowledge, skill and
experience

High

Degree of trust in other staff High

defined responsibilities

availability of full time testing
staff

No

the number of people working on
the project

2

Project

 Environment
factors

Virtual/Co-located teams

Co-located

77

APPENDIX 3 THE CONTEXT OF PROJECT TWO

Project

Environment
factors

project size small

standards in place tailored ECSS E-40 standard

budget and schedule schedule is very tight

Involvement of different
stakeholders

Sub-contractors and customers

Degree of customer involvement High

level of tolerable risk Low

office ergonomics, all members in one office

tool support Redmine, Doors, Doxygen

education and training Non

Artifact

factors

programming language used and
its features

C, C++

scope of system's possible
behaviors

predictable by using a state
machine

Testability No, no time for analysis
operational usage known by operational scenarios

expected lifetime of system 10 years

product size Large

product complexity (clarity of
interactions between subsystems)

A lot of interfaces and challenges
of open source libraries

application domain onboard flight system

backward compatibility Yes

Availability and Quality of
documentation

everything in word docs

volatility of requirements volatile for new parts of the system

source code evolvability
coding rules are defined, Doxygen
documentation style

defect classification scheme used
for fault reporting

That of Redmine tool

modeling paradigm Not a model-driven development

Activity

factors

information flow between
requirements and tests;

Doors is used for manageability

division of responsibilities between
teams

no division. One person is
responsible for all

quality of communication within
project

high, daily standup meeting,
meetings within the project; with
subcontractor and customer and
phone calls and emails

78

selection process of defect
detection practices

mainly oriented around customer
requirements (reviews) but tests
are designed in-house

Independent defect detection
Yes, another team will test the
system in the end but not at this
stage

availability of feedback
Non, reliance on customer
feedback

synchronicity of communication

synchronous with other members
of the project, synchronous with
subcontractors, bi-weekly meeting
with customer,

Concurrency of activities

Yes, concurrent with customer and
sub-contractors, experiment
container developers (customer)
are working in parallel

development strategy
heavy use of open source software
and libraries

Human

factors

Frequency of change in staff
members

No staff change

Degree of trust in other staff High

availability of full time testing staff No
the number of people working on
the project

3

Team

Environment
factors

team size Small

Virtual/Co-located teams Co-located

79

APPENDIX 4 INTERVIEW QUESTIONS FOR INTERVIEW ONE

I. Background

1. Could you please introduce yourself and let us know about your background and role at

[company name]?

2. Could you please briefly introduce [company name]?

II. General information

1. Could you please explain the development method currently being practiced at [company

name]?

2. Are there any contractors involved in the development? For example in coding, testing, etc.

3. How are sub-projects and development of sub-components dealt with (Contractors,

separate teams in a serial manner, teams working in parallel, distributed development)?

How does this affect the development method?

4. How frequently are components reused at [company name] or are they at all? Do reused

components go through a defect detection process too?

5. What standards are complied with?

6. Could you please explain the verification and validation practices at [company name]?

7. What mechanisms are in place at [company name] to help developer1 teams prevent, detect

and remove faults?

8. What are the general practices at [company name] to make sure developers comply with

practices and policies?

9. Are there practices in [company name] that promote and encourage developers to enhance

their personal disciplines? (education, training, feedback on frequent mistakes)

III. Detailed questions

Agile methods

1. Does [company name] have any experience with or considered using agile methods

and/or practices for development? For example, pair programming, Test-Driven

Development, scrum sprints, daily stand-up meetings, etc.

2. If yes, how are such practices chosen and adopted?

Customer reliability requirements

1 The term developer refers to anyone involved in development of a system including analysts,
designer, coders, testers and etc.

80

3. How does [COMPANY NAME] determine customer reliability requirements? For

example, the customer asks for a certain reliability level, certification standards

determine the necessary reliability, or by contacting the customer and extracting the

requirements from discussions.

4. How is reliability measured at [COMPANY NAME]?

5. Is criticality analysis of functions and components performed at [COMPANY NAME]?

Is there a difference between critical components and non-critical ones in terms of

development and reliability practices?

6. Are the most frequently used functions of a system under development identified?

Fault data and changes

7. How do you deal with changes during development at [COMPANY NAME]2 ? Do you

have mechanisms like a Change Control Board (CCB), use agile processes, or there is a

customer proxy involved in the project?

8. Are defects, failures and changes traceable? What are the mechanisms used? What

tools are used? How do you ensure that the traces are kept up to date (Is there a certain

role that is responsible for keeping them up to date or each developer must make sure

he/she submits the changes to a repository)?

9. How fault data is collected at [COMPANY NAME] or is it at all? What tools are used?

10. Could you please explain briefly what sort of information is collected for defects? Do

developers fill in different forms at different stages of development?

11. How often does the structure of fault reports change or does it at all?

12. Who is responsible for defect detection (testers, inspectors, all project stakeholders)?

13. Who can report defects or failures (coders, designers, testers, sales persons, or anyone

in the company)? Who has access to tools for fault reporting?

14. How is fault reporting enforced? What happens if a developer does not fill in fault

reports or does not provide the necessary information?

15. In general how do you see developers’ perception of fault reporting (as an overhead or

important part of work)?

16. Does the quality of defect data filled in by developers allow analysis of data or is it

ambiguous, too coarse-grained, etc.?

17. What kind of analysis is performed on fault/change data at [COMPANY NAME]?

18. Do you look for root causes of problems (frequent, severe, etc.) at [COMPANY

NAME]? How? Do you perform Root Cause Analysis?

19. Do you deliver process improvements to prevent faults? How?

Defect detection

20. How is testing performed (in-house testing department or testing team, independent

contractors)?

2 A change can be a requirement change, an enhancement request, refactoring, fault removal, etc.

81

21. Do you use theorem proving and/or model checking techniques for verification? Do

you use any tools helping with that?

22. Is inspection performed at [COMPANY NAME] in order to detect defects?

23. Could you please explain a typical inspection meeting?

24. Who do the inspection teams consist of?

25. At what points during development an inspection meeting is held (after each

milestone, each sprint, iteration, etc.)?

26. Is analysis of defect data used to guide defect detection?

27. Are test cases traceable? What tools are used? Who is responsible?

28. How is the testing strategy determined?

29. Are static code analysis tools used?

Developer communication

30. What are the communication mechanisms between developers, used at [COMPANY

NAME] (Official meeting, unofficial meetings, Scrum standup meetings)? What are the

tools that enable such communication?

31. In particular what mechanisms exist in [COMPANY NAME] to allow testers and other

developers (coders, designer, analysts, etc.) communicate? For example, how do the

developers let testers know of changes? Are testers involved in early planning stages?

32. Is testability considered during requirements specification, design, and coding?

Other practices

33. What are the commenting practices at [COMPANY NAME]? What if a developer does

not comply with commenting policies or best practices? How do make sure comments

are kept up to date?

34. Are there any coding standards defined for coders? How are they enforced? What if

someone does not comply?

82

APPENDIX 5 INTERVIEW QUESTIONS FOR INTERVIEW TWO
AND THREE

I. Background

1. Could you please introduce yourself and let us know about your background and role

at [company name] and the project you are involved with?

2. Could you please briefly introduce [company name] and the project?

3. What is the application domain of the system under development?

3.1 How many people (approx.) are working on the project?

3.2 How complex is the system under development? (scope of system’s possible

behaviors large or small, interactions between system’s sub-systems, etc.)

3.3 How large is the system under development?

3.4 What is the expected lifetime of the system?

3.5 Are there any external parties involved in the development? For example in

coding, testing, etc.

3.6 Is independent defect detection performed in the project?

3.7 Contractors?

3.8 Is it a multiple release project or just one release at the end of the project?

3.9 Who/what is the user of the system being developed?

3.10 Is the operational usage known to developers including the frequency of

usage?

3.11 Do you need to take backward compatibility in mind?

3.12 How does the customer get involved in the project? During, before and after.

II. General information

4. Could you please explain the development method currently being practiced at the

project?

4.1 Do you use agile methods and/or practices for development? For example,

pair programming, Test-Driven Development, scrum sprints, daily stand-up

meetings, etc. If yes, how are such practices chosen and adopted?

4.2 How frequently are components reused at [company name] or are they at

all?

4.3 Do reused components go through a defect detection process too?

5. How are the teams managed (assigned responsibilities) in the project in which you are

involved (division of responsibilities between teams, etc.)?

5.1 Is there a virtual development environment? Do you have virtual teams?

6. What precautions are taken to reduce the number of faults introduced?

83

6.1 Do you care for testability during development (all stages)?

6.2 Do you look for root causes of failures and faults? Do you perform Root

Cause Analysis? Is there a defined feedback process (for example to let

developers know what type of mistakes they have made and etc.)?

7. What are the defect detection practices used in the project? (testing strategies, testing

techniques, type of reviews, people involved, , automatic scripts, etc.) How are they

chosen?

7.1 How are test activities coordinated?

7.2 Are lower and upper bounds for defects detected during reviews?

8. What are the mechanisms to ensure high quality of documentation?

8.1 How much do you rely on documentation in the project?

8.2 How long does it take for a document (requirement, design, etc.) to be

updated if there is any change?

8.3 How committed are project members to document?

8.4 What are the defect reporting mechanisms?

8.5 How good are the defect reports in terms of quality?

8.6 How committed are project members to defect data collection?

9. What are the defect fixing mechanisms?

9.1 What information is relied on for fixing?

9.2 What is the defect fixing strategy (for example fixing low severity defects later and

attend to high severity defects now)?

10. What are the general practices at [company name] to make sure developers comply

with practices and policies?

10.1 Are there defined guidelines and procedures available to members of the

project?

10.2 Are there project specific standards that you have to comply with?

11. Is this a critical project in terms of reliability?

11.1 What percentage of the components of the system is critical?

11.2 Is there a difference between the way you handle critical components and

non-critical ones in terms of development practices including requirements

analysis, design, defect detection, fault reporting, etc.?

12. What are the mechanisms that ensure information flow between requirements analysis

and testing?

12.1 Are the defects detected traced back to test cases that detected them?

III. Detailed questions

13. How volatile are the requirements? How do you deal with changes during

development in this project3?

3 A change can be a requirement change, an enhancement request, refactoring, etc.

84

13.1 Do you have mechanisms like a Change Control Board (CCB), league of

experts or you use agile processes for this purpose?

13.2 Are the defects traced back to requirements?

14. What are the communication mechanisms (Face-2-face, email, a proprietary system,

Official meeting, unofficial meetings, Scrum standup meetings)?

14.1 Is communication synchronic or is it deferred?

14.2 How friendly is the interaction between project members; specifically testing

staff and developers?

14.3 How hard is it to organize a meeting in the project considering the busy

schedules of parties involved?

15. What are the evolvability practices (commenting for code, coding standards, coding

styles, design paradigm, etc.)?

15.1 How much do you rely on them, for example on code comments in the

project?

15.2 Are there any coding standards defined for coders?

16. Is there a priority list or a similar mechanism to handle high priority tasks?

17. How often do the project members change? What about other staff members who have

an influence on the project?

18. How much do you rely on and trust other project members? Is there a fear of data

misuse by other members among project staff?

19. Please describe the office ergonomics.

85

APPENDIX 6 LITERATURE SOURCES FOR THE MAPPING
STUDY

The list is presented in accordance with topic areas TABLE 2

Fault detection

Arthur, J. D., Gröner, M. K., Hayhurst, K. J., & Holloway, C. M. (1999). Evaluating the
effectiveness of independent verification and validation. Computer, 32(10), 79-83.

Aurum, A., Petersson, H., & Wohlin, C. (2002). State‐of‐the‐art: software inspections after 25
years. Software Testing, Verification and Reliability, 12(3), 133-154.

Basili, V. R., & Selby, R. W. (1987). Comparing the effectiveness of software testing strategies.
Software Engineering, IEEE Transactions on, (12), 1278-1296.

Beer, A., & Peischl, B. (2011). Testing of Safety-Critical Systems–a Structural Approach to Test
Case Design. In Advances in Systems Safety (pp. 187-211). Springer London.

Bjarnason, E., Runeson, P., Borg, M., Unterkalmsteiner, M., Engström, E., Regnell, B., ... &
Feldt, R. (2014). Challenges and practices in aligning requirements with verification and
validation: a case study of six companies. Empirical Software Engineering, 19(6), 1809-1855.

Chang, J. R., Huang, C. Y., Hsu, C. J., & Tsai, T. H. (2012). Comparative performance
evaluation of applying extended PIE technique to accelerate software testability analysis.
International Journal of Systems Science, 43(12), 2314-2333.

Chernak, Y. (1996). A statistical approach to the inspection checklist formal synthesis and
improvement. Software Engineering, IEEE Transactions on, 22(12), 866-874.

Cotroneo, D., Pietrantuono, R., & Russo, S. (2013). Testing techniques selection based on ODC
fault types and software metrics. Journal of Systems and Software, 86(6), 1613-1637.

Dhambri, K., Sahraoui, H., & Poulin, P. (2008, April). Visual detection of design anomalies. In
Software Maintenance and Reengineering, 2008. CSMR 2008. 12th European Conference on
(pp. 279-283). IEEE.

Fang, Q., Zhang, C., Ye, X., Shi, J., & Zhang, X. (2014, June). A new approach for developing
safety-critical software in automotive industry. In Software Engineering and Service Science
(ICSESS), 2014 5th IEEE International Conference on (pp. 64-69). IEEE.

Felderer, M., & Beer, A. (2013). Using defect taxonomies to improve the maturity of the system
test process: results from an industrial case study. In software quality. Increasing value in
software and systems development (pp. 125-146). Springer Berlin Heidelberg.

Felderer, M., & Schieferdecker, I. (2014). A taxonomy of risk-based testing. International Journal
on Software Tools for Technology Transfer, 16(5), 559-568.

Fu, J., Lu, M., & Liu, B. (2009, December). Software Testability Measurement Based on Rough
Set Theory. In Computational Intelligence and Software Engineering, 2009. CiSE 2009.
International Conference on (pp. 1-4). IEEE.

Gelperin, D., & Hetzel, B. (1988). The growth of software testing. Communications of the ACM,
31(6), 687-695.

Grechanik, M., Jones, J. A., Orso, A., & van der Hoek, A. (2010, November). Bridging gaps
between developers and testers in globally-distributed software development. In

86

Proceedings of the FSE/SDP workshop on Future of software engineering research (pp. 149-154).
ACM.

Hovemeyer, D., & Pugh, W. (2004). Finding bugs is easy. ACM Sigplan Notices, 39(12), 92-106.
Janzen, D., & Saiedian, H. (2005). Test-driven development: Concepts, taxonomy, and future

direction. Computer, (9), 43-50.
Joshi, M., & Sardana, N. (2014, March). Design and code time testability analysis for object

oriented systems. In Computing for Sustainable Global Development (INDIACom), 2014
International Conference on (pp. 590-592). IEEE.

Kukkanen, J., Vakevainen, K., Kauppinen, M., & Uusitalo, E. (2009, December). Applying a
systematic approach to link requirements and testing: a case study. In Software
Engineering Conference, 2009. APSEC'09. Asia-Pacific (pp. 482-488). IEEE.

Laitenberger, O. (1998, November). Studying the effects of code inspection and structural
testing on software quality. In Software Reliability Engineering, 1998. Proceedings. The Ninth
International Symposium on (pp. 237-246). IEEE.

Laitenberger, O., & DeBaud, J. M. (2000). An encompassing life cycle centric survey of software
inspection. Journal of systems and software, 50(1), 5-31.

Mäntylä, M. V., & Itkonen, J. (2014). How are software defects found? The role of implicit
defect detection, individual responsibility, documents, and knowledge. Information and
Software Technology, 56(12), 1597-1612.

Mantyla, M. V., & Lassenius, C. (2009). What types of defects are really discovered in code
reviews?. Software Engineering, IEEE Transactions on, 35(3), 430-448.

Miller, S. P., Tribble, A. C., Whalen, M. W., & Heimdahl, M. P. (2006). Proving the shalls.
International Journal on Software Tools for Technology Transfer, 8(4-5), 303-319.

Musa, J. D. (1996). Software reliability-engineered testing. Computer, 29(11), 61-68.
Porter, A. A., Siy, H. P., Toman, C. A., & Votta, L. G. (1997). An experiment to assess the cost-

benefits of code inspections in large scale software development. Software Engineering,
IEEE Transactions on, 23(6), 329-346.

Post, H., Sinz, C., Merz, F., Gorges, T., & Kropf, T. (2009, August). Linking functional
requirements and software verification. In Requirements Engineering Conference, 2009.
RE'09. 17th IEEE International (pp. 295-302). IEEE.

Pullum, L. L., & Dugan, J. B. (1996, January). Fault tree models for the analysis of complex
computer-based systems. In Reliability and Maintainability Symposium, 1996 Proceedings.
International Symposium on Product Quality and Integrity., Annual (pp. 200-207). IEEE.

Rafi, D. M., Moses, K. R. K., Petersen, K., & Mäntylä, M. V. (2012, June). Benefits and
limitations of automated software testing: Systematic literature review and practitioner
survey. In Proceedings of the 7th International Workshop on Automation of Software Test (pp.
36-42). IEEE Press.

Runeson, P., Andersson, C., Thelin, T., Andrews, A., & Berling, T. (2006). What do we know
about defect detection methods?. IEEE software, 23(3), 82.

Siy, H., & Votta, L. (2001, November). Does the modern code inspection have value?. In
Proceedings of the IEEE international Conference on Software Maintenance (ICSM'01) (p. 281).
IEEE Computer Society.

Uusitalo, E. J., Komssi, M., Kauppinen, M., & Davis, A. M. (2008, September). Linking
requirements and testing in practice. In International Requirements Engineering, 2008.
RE'08. 16th IEEE (pp. 265-270). IEEE.

van Genuchten, M., Van Dijk, C., Scholten, H., & Vogel, D. (2001). Using group support
systems for software inspections. Software, IEEE, 18(3), 60-65.

87

Van Moll, J. H., Jacobs, J. C., Freimut, B., & Trienekens, J. J. M. (2002, October). The importance
of life cycle modeling to defect detection and prevention. In Software Technology and
Engineering Practice, 2002. STEP 2002. Proceedings. 10th International Workshop on (pp. 144-
155). IEEE.

van Moll, J., Jacobs, J., Kusters, R., & Trienekens, J. (2004). Defect detection oriented lifecycle
modeling in complex product development. Information and Software Technology, 46(10),
665-675.

Vegas, S., Juristo, N., & Basili, V. (2006). Packaging experiences for improving testing
technique selection. Journal of Systems and Software, 79(11), 1606-1618.

Voas, J. M., & Miller, K. W. (1995). Software testability: The new verification. IEEE software,
12(3), 17.

Vorobyov, K., & Krishnan, P. (2010). Comparing model checking and static program analysis:
A case study in error detection approaches. Proc. SSV, 1-7.

Whittaker, J. A. (2000). What is software testing? And why is it so hard?. Software, IEEE, 17(1),
70-79.

Wilkerson, J. W., Nunamaker Jr, J. F., & Mercer, R. (2012). Comparing the defect reduction
benefits of code inspection and test-driven development. Software Engineering, IEEE
Transactions on, 38(3), 547-560.

Williams, L., Maximilien, E. M., & Vouk, M. (2003, November). Test-driven development as a
defect-reduction practice. In Software Reliability Engineering, 2003. ISSRE 2003. 14th
International Symposium on (pp. 34-45). IEEE.

Wood, M., Roper, M., Brooks, A., & Miller, J. (1997, November). Comparing and combining
software defect detection techniques: a replicated empirical study. In ACM SIGSOFT
Software Engineering Notes (Vol. 22, No. 6, pp. 262-277). Springer-Verlag New York, Inc.

Xie, Y., & Engler, D. (2002). Using redundancies to find errors. ACM SIGSOFT Software
Engineering Notes, 27(6), 51-60.

Zelkowitz, M. V., & Rus, I. (2004). Defect evolution in a product line environment. Journal of
Systems and Software, 70(1), 143-154.

Zheng, J., Williams, L., Nagappan, N., Snipes, W., Hudepohl, J. P., & Vouk, M. A. (2006). On
the value of static analysis for fault detection in software. Software Engineering, IEEE
Transactions on, 32(4), 240-253.

Human factors

Amrit, C., Daneva, M., & Damian, D. (2014). Human factors in software development: On its
underlying theories and the value of learning from related disciplines. A guest editorial
introduction to the special issue. Information and Software Technology, 56(12), 1537-
1542.

França, A. C. C., Da Silva, F. Q., de LC Felix, A., & Carneiro, D. E. (2014). Motivation in
software engineering industrial practice: A cross-case analysis of two software
organisations. Information and Software Technology, 56(1), 79-101.

Huang, F., Liu, B., & Huang, B. (2012). A taxonomy system to identify human error causes for
software defects. In Proceedings 18th Issat International Conference on Reliability &
Quality in Design, Boston, USA (pp. 44-49).

88

Huang, F., Liu, B., Song, Y., & Keyal, S. (2014). The links between human error diversity and
software diversity: Implications for fault diversity seeking. Science of Computer
Programming, 89, 350-373.

Spichkova, M., Liu, H., Laali, M., & Schmidt, H. W. (2015). Human factors in software
reliability engineering. arXiv preprint arXiv:1503.03584.

Reliability modeling

Babu, P. A., Kumar, C. S., & Murali, N. (2012). A hybrid approach to quantify software
reliability in nuclear safety systems. Annals of Nuclear Energy, 50, 133-140.

Banerjee, S., Srikanth, H., & Cukic, B. (2010, November). Log-based reliability analysis of
software as a service (saas). In Software Reliability Engineering (ISSRE), 2010 IEEE 21st
International Symposium on (pp. 239-248). IEEE.

Bishop, P. (2013). Does Software Have to Be Ultra Reliable in Safety Critical Systems?. In
Computer Safety, Reliability, and Security (pp. 118-129). Springer Berlin Heidelberg.

Butler, R. W., & Finelli, G. B. (1993). The infeasibility of quantifying the reliability of life-critical
real-time software. Software Engineering, IEEE Transactions on, 19(1), 3-12.

Goel, A. L. (1985). Software reliability models: Assumptions, limitations, and applicability.
Software Engineering, IEEE Transactions on, (12), 1411-1423.

Zahedi, F. (1987). Reliability of information systems based on the critical success factors-
formulation. Mis Quarterly, 187-203.

Zhang, X., & Pham, H. (2000). An analysis of factors affecting software reliability. Journal of
Systems and Software, 50(1), 43-56.

Fault reporting and RCA

Basili, V. R., & Rombach, H. D. (1987, March). Tailoring the software process to project goals
and environments. In Proceedings of the 9th international conference on Software
Engineering (pp. 345-357). IEEE Computer Society Press.

Bhandari, I., Halliday, M., Tarver, E., Brown, D., Chaar, J., & Chillarege, R. (1993). A case study
of software process improvement during development. Software Engineering, IEEE
Transactions on, 19(12), 1157-1170.

Børretzen, J. A. Software Fault Reporting Processes in Business-Critical Systems (Doctoral
dissertation, Norwegian University for Science and Technology).

Bridge, N., & Miller, C. (1998). Orthogonal defect classification using defect data to improve
software development. Software Quality, 3(1), 1-8.

Card, D. N. (1998). Learning from our mistakes with defect causal analysis. Software, IEEE,
15(1), 56-63.

Chillarege, R., Bhandari, I. S., Chaar, J. K., Halliday, M. J., Moebus, D. S., Ray, B. K., & Wong,
M. Y. (1992). Orthogonal defect classification-a concept for in-process
measurements. Software Engineering, IEEE Transactions on,18(11), 943-956.

89

El Emam, K., & Wieczorek, I. (1998, November). The repeatability of code defect classifications.
In Software Reliability Engineering, 1998. Proceedings. The Ninth International
Symposium on (pp. 322-333). IEEE.

Freimut, B., Denger, C., & Ketterer, M. (2005, September). An industrial case study of
implementing and validating defect classification for process improvement and quality
management. In Software Metrics, 2005. 11th IEEE International Symposium (pp. 10-pp).
IEEE.

Grady, R. B. (1996). Software failure analysis for high-return process improvement
decisions. Hewlett Packard Journal, 47, 15-24.

Granda, M. F., Condori-Fernandez, N., Vos, T. E., & Pastor, O. (2015, May). What do we know
about the defect types detected in conceptual models?. In Research Challenges in
Information Science (RCIS), 2015 IEEE 9th International Conference on (pp. 88-99). IEEE.

Hayes, J. H., Raphael, I., Holbrook, E. A., & Pruett, D. M. (2006, August). A case history of
International Space Station requirement faults. In Engineering of Complex Computer
Systems, 2006. ICECCS 2006. 11th IEEE International Conference on (pp. 10-pp). IEEE.

Hong, G. Y., Xie, M., & Shanmugan, P. (1999). A statistical method for controlling software
defect detection process. Computers & industrial engineering, 37(1), 137-140.

Huang, L., Ng, V., Persing, I., Chen, M., Li, Z., Geng, R., & Tian, J. (2015). AutoODC:
Automated generation of orthogonal defect classifications. Automated Software
Engineering, 22(1), 3-46.

Huber, J. T. (2000). A comparison of IBM’s orthogonal defect classification to Hewlett
Packard’s defect origins, types, and modes. In Proceedings of International Conference
on Applications of Software Measurement. San Jose, CA (pp. 1-17).

Jalote, P., & Agrawal, N. (2005, December). Using defect analysis feedback for improving
quality and productivity in iterative software development. InInformation and
Communications Technology, 2005. Enabling Technologies for the New Knowledge
Society: ITI 3rd International Conference on (pp. 703-713). IEEE.

Kalinowski, M., Travassos, G. H., & Card, D. N. (2008, September). Towards a defect
prevention based process improvement approach. In Software Engineering and
Advanced Applications, 2008. SEAA'08. 34th Euromicro Conference (pp. 199-206). IEEE.

Kidwell, B., & Hayes, J. (2015, March). Toward a learned project-specific fault taxonomy:
application of software analytics. In 2015 IEEE 1st International Workshop on Software
Analytics (SWAN) (pp. 1-4). IEEE.

Lehtinen, T. O., Mäntylä, M. V., & Vanhanen, J. (2011). Development and evaluation of a
lightweight root cause analysis method (ARCA method)–field studies at four software
companies. Information and Software Technology,53(10), 1045-1061.

Leszak, M., Perry, D. E., & Stoll, D. (2002). Classification and evaluation of defects in a project
retrospective. Journal of Systems and Software, 61(3), 173-187.

Lewis, N. D. (1999). Assessing the evidence from the use of SPC in monitoring, predicting &
improving software quality. Computers & industrial engineering, 37(1), 157-160.

Li, N., Li, Z., & Sun, X. (2010, December). Classification of software defect detected by black-
box testing: An empirical study. In Software Engineering (WCSE), 2010 Second World
Congress on (Vol. 2, pp. 234-240). IEEE.

Ma, L., & Tian, J. (2007). Web error classification and analysis for reliability improvement.
Journal of Systems and Software, 80(6), 795-804.

Margarido, I. L., Faria, J. P., Vidal, R. M., & Vieira, M. (2011, June). Classification of defect
types in requirements specifications: Literature review, proposal and assessment. In

90

Information Systems and Technologies (CISTI), 2011 6th Iberian Conference on (pp. 1-6).
IEEE.

Mellegard, N., Staron, M., & Torner, F. (2012, November). A light-weight defect classification
scheme for embedded automotive software and its initial evaluation. In Software
Reliability Engineering (ISSRE), 2012 IEEE 23rd International Symposium on (pp. 261-
270). IEEE.

Ploski, J., Rohr, M., Schwenkenberg, P., & Hasselbring, W. (2007). Research issues in software
fault categorization. ACM SIGSOFT Software Engineering Notes, 32(6), 6.

Raninen, A., Toroi, T., Vainio, H., & Ahonen, J. J. (2012). Defect data analysis as input for
software process improvement. In Product-Focused Software Process Improvement (pp.
3-16). Springer Berlin Heidelberg.

Shenvi, A. A. (2009, February). Defect prevention with orthogonal defect classification. In
Proceedings of the 2nd India software engineering conference (pp. 83-88). ACM.

Thung, F., Lo, D., & Jiang, L. (2012, October). Automatic defect categorization. In Reverse
Engineering (WCRE), 2012 19th Working Conference on (pp. 205-214). IEEE.

Vallespir, D., Grazioli, F., & Herbert, J. (2009). A framework to evaluate defect taxonomies.
In XV Congreso Argentino de Ciencias de la Computación.

Wagner, S. (2008, July). Defect classification and defect types revisited. In Proceedings of the
2008 workshop on Defects in large software systems (pp. 39-40). ACM.

Yu, W. D. (1998). A software fault prevention approach in coding and root cause analysis. Bell
Labs Technical Journal, 3(2), 3-21.

Agile

Arnold, R. S. (1989). Software restructuring. Proceedings of the IEEE, 77(4), 607-617.
Bowers, J., May, J., Melander, E., Baarman, M., & Ayoob, A. (2002). Tailoring XP for large

system mission critical software development. In Extreme Programming and Agile
Methods—XP/Agile Universe 2002 (pp. 100-111). Springer Berlin Heidelberg.

Cao, L., & Ramesh, B. (2008). Agile requirements engineering practices: An empirical study.
Software, IEEE, 25(1), 60-67.

Carpenter, S. E., & Dagnino, A. (2014, September). Is Agile too Fragile for Space-Based Systems
Engineering?. In Space Mission Challenges for Information Technology (SMC-IT), 2014
IEEE International Conference on (pp. 38-45). IEEE.

Gary, K., Enquobahrie, A., Ibanez, L., Cheng, P., Yaniv, Z., Cleary, K., ... & Heidenreich, J.
(2011). Agile methods for open source safety‐critical software. Software: Practice and
Experience, 41(9), 945-962.

Lindvall, M., Muthig, D., Dagnino, A., Wallin, C., Stupperich, M., Kiefer, D., ... & Kähkönen, T.
(2004). Agile software development in large organizations. Computer, 37(12), 26-34.

Mens, T., & Tourwé, T. (2004). A survey of software refactoring. Software Engineering, IEEE
Transactions on, 30(2), 126-139.

Rech, J. (2007). Handling of software quality defects in agile software development. Agile
Software Development Quality Assurance, 90.

Sidky, A., & Arthur, J. (2007, March). Determining the applicability of agile practices to mission
and life-critical systems. In Software Engineering Workshop, 2007. SEW 2007. 31st
IEEE (pp. 3-12). IEEE.

91

Fault prediction

Canfora, G., & Cerulo, L. (2005, September). Impact analysis by mining software and change
request repositories. In Software Metrics, 2005. 11th IEEE International Symposium (pp.
9-pp). IEEE.

Catal, C., & Diri, B. (2009). A systematic review of software fault prediction studies. Expert
systems with applications, 36(4), 7346-7354.

Chaturvedi, K. K., & Singh, V. B. (2012, September). Determining bug severity using machine
learning techniques. In Software Engineering (CONSEG), 2012 CSI Sixth International
Conference on (pp. 1-6). IEEE.

Eick, S. G., Loader, C. R., Long, M. D., Votta, L. G., & Vander Wiel, S. (1992, June). Estimating
software fault content before coding. In Proceedings of the 14th international conference
on Software engineering (pp. 59-65). ACM.

Fenton, N. E., & Neil, M. (1999). A critique of software defect prediction models. Software
Engineering, IEEE Transactions on, 25(5), 675-689.

Fenton, N. E., & Ohlsson, N. (2000). Quantitative analysis of faults and failures in a complex
software system. Software Engineering, IEEE Transactions on,26(8), 797-814.

Fluri, B., & Gall, H. C. (2006, June). Classifying change types for qualifying change couplings.
In Program Comprehension, 2006. ICPC 2006. 14th IEEE International Conference on
(pp. 35-45). IEEE.

Graves, T. L., Karr, A. F., Marron, J. S., & Siy, H. (2000). Predicting fault incidence using
software change history. Software Engineering, IEEE Transactions on, 26(7), 653-661.

Hall, T., Beecham, S., Bowes, D., Gray, D., & Counsell, S. (2012). A systematic literature review
on fault prediction performance in software engineering. Software Engineering, IEEE
Transactions on, 38(6), 1276-1304.

Herrmann, D. S. (1998, January). Sample implementation of the Littlewood holistic model for
assessing software quality, safety and reliability. In Reliability and Maintainability
Symposium, 1998. Proceedings., Annual (pp. 138-148). IEEE.

Jacobs, J., Van Moll, J., Krause, P., Kusters, R., Trienekens, J., & Brombacher, A. (2005).
Exploring defect causes in products developed by virtual teams. Information and
Software Technology, 47(6), 399-410.

Khoshgoftaar, T. M., & Seliya, N. (2004). Comparative assessment of software quality
classification techniques: An empirical case study. Empirical Software Engineering, 9(3),
229-257.

Kidwell, B., Hayes, J. H., & Nikora, A. P. (2014, October). Toward Extended Change Types for
Analyzing Software Faults. In Quality Software (QSIC), 2014 14th International
Conference on (pp. 202-211). IEEE.

Kim, S., Zimmermann, T., Pan, K., & Whitehead Jr, E. J. (2006, September). Automatic
identification of bug-introducing changes. In Automated Software Engineering, 2006.
ASE'06. 21st IEEE/ACM International Conference on (pp. 81-90). IEEE.

Li, B., Sun, X., Leung, H., & Zhang, S. (2013). A survey of code‐based change impact analysis
techniques. Software Testing, Verification and Reliability, 23(8), 613-646.

Lutz, R. R., & Mikulski, I. C. (2004). Empirical analysis of safety-critical anomalies during
operations. Software Engineering, IEEE Transactions on, 30(3), 172-180.

Munson, J. C., & Khoshgoftaar, T. M. (1992). The detection of fault-prone programs. Software
Engineering, IEEE Transactions on, 18(5), 423-433.

92

Nagappan, N., & Ball, T. (2005, May). Use of relative code churn measures to predict system
defect density. In Software Engineering, 2005. ICSE 2005. Proceedings. 27th International
Conference on (pp. 284-292). IEEE.

Ostrand, T. J., Weyuker, E. J., & Bell, R. M. (2005). Predicting the location and number of faults
in large software systems. Software Engineering, IEEE Transactions on, 31(4), 340-355.

Rana, R., Staron, M., Hansson, J., Nilsson, M., & Meding, W. (2014, August). A framework for
adoption of machine learning in industry for software defect prediction. In Software
Engineering and Applications (ICSOFT-EA), 2014 9th International Conference on (pp.
383-392). IEEE.

Rapu, D., Ducasse, S., Gîrba, T., & Marinescu, R. (2004, March). Using history information to
improve design flaws detection. In Software Maintenance and Reengineering, 2004.
CSMR 2004. Proceedings. Eighth European Conference on (pp. 223-232). IEEE.

Shen, V. Y., Yu, T. J., Thebaut, S. M., & Paulsen, L. R. (1985). Identifying error-prone software—
an empirical study. Software Engineering, IEEE Transactions on, (4), 317-324.

Vander Wiel, S. A., & Votta, L. G. (1993). Assessing software designs using capture-recapture
methods. Software Engineering, IEEE Transactions on, 19(11), 1045-1054.

Zhou, Y., & Leung, H. (2006). Empirical analysis of object-oriented design metrics for
predicting high and low severity faults. Software Engineering, IEEE Transactions on,
32(10), 771-789.

Safety

Alemzadeh, H., Iyer, R. K., Kalbarczyk, Z., & Raman, J. (2013). Analysis of safety-critical
computer failures in medical devices. Security & Privacy, IEEE, 11(4), 14-26.

Dunn, W. R. (2004). Software safety and reliability.
Favarò, F. M., Jackson, D. W., Saleh, J. H., & Mavris, D. N. (2013). Software contributions to

aircraft adverse events: Case studies and analyses of recurrent accident patterns and
failure mechanisms. Reliability Engineering & System Safety, 113, 131-142.

Herrmann, D. S., & Peercy, D. E. (1999, January). Software reliability cases: the bridge between
hardware, software and system safety and reliability. In Reliability and Maintainability
Symposium, 1999. Proceedings. Annual (pp. 396-402). IEEE.

Ibrahim, W. M., Bettenburg, N., Adams, B., & Hassan, A. E. (2012). On the relationship
between comment update practices and software bugs. Journal of Systems and Software,
85(10), 2293-2304.

Ishimatsu, T., Leveson, N. G., Thomas, J. P., Fleming, C. H., Katahira, M., Miyamoto, Y., ... &
Hoshino, N. (2014). Hazard analysis of complex spacecraft using systems-theoretic
process analysis. Journal of Spacecraft and Rockets, 51(2), 509-522.

Leveson, N. G., & Turner, C. S. (1993). An investigation of the Therac-25
accidents. Computer, 26(7), 18-41.

maintenance
Mathur, S., & Malik, S. (2010). Advancements in the V-Model. International Journal of

Computer Applications, 1(12).
Wears, R. L., & Leveson, N. G. (2008). Safeware”: safety-critical computing and healthcare

information technology. Advances in patient safety: new directions and alternative
approaches, 4, 1-10.

93

Defect analysis

Damm, L. O., Lundberg, L., & Wohlin, C. (2004). Determining the improvement potential of a
software development organization through fault analysis: a method and a case study.
In Software Process Improvement (pp. 138-149). Springer Berlin Heidelberg.

Hamill, M., & Goseva-Popstojanova, K. (2009). Common trends in software fault and failure
data. Software Engineering, IEEE Transactions on, 35(4), 484-496.

Lange, C. F., & Chaudron, M. R. (2006, May). Effects of defects in UML models: an
experimental investigation. In Proceedings of the 28th international conference on
Software engineering (pp. 401-411). ACM.

Moha, N., Gueheneuc, Y. G., Duchien, L., & Le Meur, A. F. (2010). DECOR: A method for the
specification and detection of code and design smells. Software Engineering, IEEE
Transactions on, 36(1), 20-36.

Nugroho, A., & Chaudron, M. R. (2014). The impact of UML modeling on defect density and
defect resolution time in a proprietary system. Empirical Software Engineering, 19(4),
926-954.

Ott, D. (2012, September). Defects in natural language requirement specifications at mercedes-
benz: An investigation using a combination of legacy data and expert opinion. In
Requirements Engineering Conference (RE), 2012 20th IEEE International (pp. 291-296).
IEEE.

Pan, K., Kim, S., & Whitehead Jr, E. J. (2009). Toward an understanding of bug fix patterns.
Empirical Software Engineering, 14(3), 286-315.

Fault reduction

Alho, P., & Mattila, J. (2011). Dependable control systems design and evaluation. In Conference
on Systems Engineering Research (CSER) 2011.

Asthana, A., & Okumoto, K. (2012). Integrative Software Design for Reliability: Beyond Models
and Defect Prediction. Bell Labs Technical Journal, 17(3), 37-59.

Boehm, B. W., Mcclean, R. K., & Urfrig, D. E. (1975). Some experience with automated aids to
the design of large-scale reliable software. Software Engineering, IEEE Transactions on,
(1), 125-133.

Boehm, B., & Basili, V. R. (2005). Software defect reduction top 10 list. Foundations of empirical
software engineering: the legacy of Victor R. Basili, 426.

Carrozza, G., Pietrantuono, R., & Russo, S. (2015). Defect analysis in mission‐critical software
systems: a detailed investigation. Journal of Software: Evolution and Process, 27(1), 22-
49.

Dutertre, B., & Stavridou, V. (1997). Formal requirements analysis of an avionics control
system. Software Engineering, IEEE Transactions on, 23(5), 267-278.

Hayes, J. H., Chemannoor, I. R., & Holbrook, E. A. (2011). Improved code defect detection with
fault links. Software Testing, Verification and Reliability, 21(4), 299-325.

Heimdahl, M. P., & Heitmeyer, C. L. (1998). Formal methods for developing high assurance
computer systems: Working group report. In Industrial Strength Formal Specification
Techniques, 1998. Proceedings. 2nd IEEE Workshop on (pp. 60-64). IEEE.

94

Jacobs, J., Van Moll, J., Kusters, R., Trienekens, J., & Brombacher, A. (2007). Identification of
factors that influence defect injection and detection in development of software intensive
products. Information and Software Technology, 49(7), 774-789.

Johnson, P. M., Kou, H., Agustin, J., Chan, C., Moore, C., Miglani, J., ... & Doane, W. E. (2003,
May). Beyond the personal software process: Metrics collection and analysis for the
differently disciplined. In Proceedings of the 25th international Conference on Software
Engineering (pp. 641-646). IEEE Computer Society.

Selby, R. W., Basili, V. R., & Baker, F. T. (1987). Cleanroom software development: an empirical
evaluation. Software Engineering, IEEE Transactions on, (9), 1027-1037.

Shull, F., Basili, V., Boehm, B., Brown, A. W., Costa, P., Lindvall, M., ... & Zelkowitz, M. (2002).
What we have learned about fighting defects. In Software Metrics, 2002. Proceedings.
Eighth IEEE Symposium on (pp. 249-258). IEEE.

Walia, G. S., & Carver, J. C. (2013). Using error abstraction and classification to improve
requirement quality: conclusions from a family of four empirical studies. Empirical
Software Engineering, 18(4), 625-658.

Zhang, X., Stafford, T. F., Dhaliwal, J. S., Gillenson, M. L., & Moeller, G. (2014). Sources of
conflict between developers and testers in software development. Information &
Management, 51(1), 13-26.

Lanubile, F., Shull, F., & Basili, V. R. (1998, November). Experimenting with error abstraction
in requirements documents. In Software Metrics Symposium, 1998. Metrics 1998.
Proceedings. Fifth International (pp. 114-121). IEEE.

Stavely, A. M. (1999, March). High-quality software through semiformal specification and
verification. In Software Engineering Education and Training, 1999. Proceedings. 12th
Conference on (pp. 145-155). IEEE.

Walia, G. S., & Carver, J. C. (2013, November). Using error information to improve software
quality. In Software Reliability Engineering Workshops (ISSREW), 2013 IEEE
International Symposium on (pp. 107-107). IEEE.

AlShathry, O. (2014, March). Operational profile modeling as a risk assessment tool for
software quality techniques. In Computational Science and Computational Intelligence
(CSCI), 2014 International Conference on (Vol. 2, pp. 181-184). IEEE.

Process improvement

Harter, D. E., Kemerer, C. F., & Slaughter, S. A. (2012). Does software process improvement
reduce the severity of defects? A longitudinal field study. Software Engineering, IEEE
Transactions on, 38(4), 810-827.

Huang, F., Liu, B., Wang, S., & Li, Q. (2015). The impact of software process consistency on
residual defects. Journal of Software: Evolution and Process, 27(9), 625-646.

Lohmann, N. (2013). Compliance by design for artifact-centric business processes. Information
Systems, 38(4), 606-618.

Tools

95

Cousot, P. (2007, September). Proving the absence of run-time errors in safety-critical avionics
code. In Proceedings of the 7th ACM & IEEE international conference on Embedded
software (pp. 7-9). ACM.

Hallem, S., Chelf, B., Xie, Y., & Engler, D. (2002). A system and language for building system-
specific, static analyses (Vol. 37, No. 5, pp. 69-82). ACM.

Johnson, B., Song, Y., Murphy-Hill, E., & Bowdidge, R. (2013, May). Why don't software
developers use static analysis tools to find bugs?. In Software Engineering (ICSE), 2013
35th International Conference on (pp. 672-681). IEEE.

Novak, J., Krajnc, A., & Zontar, R. (2010, May). Taxonomy of static code analysis tools. In
MIPRO, 2010 Proceedings of the 33rd International Convention (pp. 418-422). IEEE.

Wassyng, A., & Lawford, M. (2006). Software tools for safety-critical software development.
International Journal on Software Tools for Technology Transfer, 8(4-5), 337-354.

Software reliability engineering

Musa, J. D., & Everett, W. W. (1990). Software-reliability engineering: Technology for the 1990s.
Software, IEEE, 7(6), 36-43.

Herrmann, D. S. (1996). A methodology for evaluating, comparing, and selecting software
safety and reliability standards. Aerospace and Electronic Systems Magazine, IEEE,
11(1), 3-12.

Hanmer, R. S., McBride, D. T., & Mendiratta, V. B. (2007). Comparing reliability and security:
Concepts, requirements, and techniques. Bell Labs Technical Journal, 12(3), 65-78.

Carman, D. W., Dolinsky, A. A., Lyu, M. R., & Yu, J. S. (1995, October). Software reliability
engineering study of a large-scale telecommunications software system. In Software
Reliability Engineering, 1995. Proceedings., Sixth International Symposium on (pp. 350-
359). IEEE.

Vouk, M. A. (2000, January). Software reliability engineering. In a tutorial presented at the
Annual Reliability and Maintainability Symposium http://renoir. csc. ncsu.
edu/Faculty/Vouk/vouk_se. html.

Lyu, M. R. (2007, May). Software reliability engineering: A roadmap. In 2007 Future of
Software Engineering (pp. 153-170). IEEE Computer Society.

