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ABSTRACT 

Mohammadnazar, Hojat 
Improving fault prevention with proactive root cause analysis (PRORCA method) 
Jyväskylä: University of Jyväskylä, 2016, 95 p. 
Information Systems, Master’s Thesis 
Supervisor(s): Pulkkinen, Mirja 
Measures taken to prevent faults from slipping through to operation can secure 
development of highly reliable software systems. One such measure is analyzing 
the root causes of reoccurring faults and preventing them from ever appearing 
again. PRORCA method was developed in order to provide a proactive, 
lightweight and flexible way for fault prevention. To this end, PRORCA method 
relies on expert knowledge of the development context and development practices 
to identify individuals’ erratic behaviors that can contribute to faults slipping 
through to operation. The development of the method was done according to 
teachings of design science research. Three expert interviews with representatives 
of a case company supported the development of PRORCA. The first interview 
helped the problem identification and solution generation, while the other two 
interviews were carried out with the purpose of demonstrating the use of the 
PRORCA method in two different projects. Using the PRORCA proved to be easy 
and insightful findings were drawn from conducting it with respect to individuals’ 
erratic behavior in each project. Proactive analysis of faults using the PRORCA 
method supports development of highly reliable software systems in a simple, 
flexible and resource-friendly manner. 
Keywords: Software reliability, fault prevention, contextual factors, proactive root 
cause analysis 
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1 INTRODUCTION 

With increasing presence of automated computation and networked 
communication, quality measures of systems responsible for delivering these 
services become critical. Quality attributes often discussed for such systems are 
dependability, and security (Avižienis, Laprie, Randell, & Landwehr, 2004). The 
former, dependability, encompasses several attributes one of which is reliability 
(Avižienis et al., 2004). 

Reliability as the degree to which a system can continue to operate correctly 
in a specified duration of time has been a matter of concern in computer 
engineering literature and other related fields from the early ages of computer 
evolution (Goel, 1985). In the early days, the focus of research was on hardware 
reliability and performance (Goel, 1985). The focus, however, has shifted from 
hardware to software from 1970’s onward as developers and users have come to 
realize that even though, unlike hardware, software is not subject to wear and tear, 
as a human activity, software development is not free of fault and malice 
(Avižienis et al., 2004; Goel, 1985).  

The correctness of operation as a defining characteristic of reliability is 
faltered with occurrences of failures. Reliability of a system suffers with 
occurrences of service failures (Avižienis et al., 2004). Unsatisfactory reliability 
might have catastrophic consequences on the user(s) and the environment in 
safety-critical (Bishop, 2013) and business-critical (Børretzen, Stålhane, Lauritsen, 
& Myhrer, 2004) systems. Several instances of aircraft and spacecraft accidents due 
to software failures are presented in Favarò, Jackson, Saleh and Mavris (2013) and 
Leveson (2004), respectively. According to Lyu (2007), software reliability target in 
many projects is set as five 9’s or six 9’s which could be understood as 10-5 to 10-6 
failures per execution hour. However, the threshold that distinguishes between 
high and low reliability is a matter of debate (Voas, & Miller, 1995). For example, 
Butler and Finelli (1993), claim that ultrahigh reliability needed by safety-critical 
applications is 10−7 to 10−9 failures for 1 to 10 hour missions.  

Even though it is a common practice, setting a reliability target in terms of 
failures and quantitative assessment of software reliability is not recognized as an 
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absolutely justified way to achieve reliability (Butler, & Finelli, 1993; Littlewood, & 
Strigini, 1993). Stressing the differences between software and hardware, Butler 
and Finelli (1993), challenged the software reliability community to leave the 
prevalent idea of quantitative software reliability modeling and provide ‘credible’ 
methods for developing reliable software. To this end, some software standards, 
such as ECSS software dependability and safety standard (ECSS-Q-HB-80-03A 
2012), do not advise setting numerical reliability targets in terms of failures and 
using reliability models. These standards assert that their rigorous design ensures 
high reliability upon compliance with the practices and procedures. Bishop (2013) 
reports that projects complying with IEC 61508 (2010) Level 4 will have a failure 
rate as low as 10-9 per hour.  

Similar to the existential nature of the relationship between failures and 
deviation from correct operation, there is a relationship between faults and 
failures. A fault could be considered as a flaw in the software that can potentially 
lead to a failure (Avižienis et al., 2004).  Consequently, it is possible to assume a 
cause-effect relationship between faults and reliability. However, caution is 
advised in drawing a direct cause-effect relationship between the number of faults 
and reliability (Fenton, & Neil, 1999). Fenton and Neil (1999) argued that drawing 
such a relationship necessitates a good understanding of the relationship between 
faults and failures which is still not available. Hamill and Goseva-Popstojanova 
(2009) addressed the complexity of the relationship between faults and failures and 
noted the possibility of one-to-many, many-to-one and many-to-many 
relationships between faults and failures. Adams (1984) demonstrated that a large 
number of failures are caused by a small number of faults. Nevertheless, the 
existence of the relationship between faults and failures and consequently faults 
and reliability is undeniable.  

Lyu (1996) suggested that (1) fault prevention, (2) fault tolerance, (3) fault 
removal, and (4) fault forecasting are four technical areas that make development 
of highly reliable software possible. While explaining reliability as an attribute of 
dependability, Avižienis et al. (2004), presented the same means for development 
of highly dependable systems. Fault prevention calls for the elimination of the 
causes of the faults via process modifications, thus reducing the chances of fault 
introduction during development. Fault tolerance techniques are used to develop 
mechanisms into the software in order to avoid service failures in the presence of 
faults. Fault removal refers to techniques and practices that are utilized to reduce 
the number and severity of faults. Finally, Fault forecasting is estimating the 
present number, the future incidence, and the likely consequences of faults. (Lyu, 
2007; Avižienis et al., 2004.) Therefore, it can be inferred that ‘credible’ methods for 
developing highly reliable software should be drawn from these four technical 
areas.  

There is a tendency in the research community to undermine fault prevention 
(Alho, & Mattila, 2011). This tendency was criticized by Alho and Mattila (2011) 
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who described failing to care for prevention as ‘shortsighted’ and called for further 
research into fault prevention. Alho and Mattila (2011) argued that fault tolerance 
techniques cannot protect applications against all possible faults and prediction of 
unexpected faults can be expensive. Furthermore, fault forecasting research has yet 
to reach a consensus on the metrics with highest predictability (Catal, & Diri, 2009; 
Fenton, & Neil, 1999; Hall, Beecham, Bowes, Gray, & Counsell, 2012; Radjenović, 
Heričko, Torkar, & Živkovič, 2013).  

At this point, it is necessary to note that there is a certain ambiguity in 
referring to fault prevention which needs clarifying. Prevention could potentially 
mean prevention of faults slipping-through to operation or preventing fault 
introduction during implementation. Avižienis et al. (2004), considered prevention 
as part of general engineering in which process modifications are made to reduce 
fault introduction during implementation. However, evidently, general 
engineering includes fault detection and fixing activities with the intention to 
produce high quality products. Additionally, software development processes are 
designed according to software development methods and standards, all of which 
mandate existence of testing and review processes. As a result, it could be 
postulated that fault prevention includes fault removal activities with the purpose 
of preventing faults from slipping through to operation. In this research, fault 
prevention and prevention of faults from slipping through to operation are used 
interchangeably.  

Process improvement models such as CMMI (2010), ISO/IEC 12207 (2008), 
and Six Sigma are the prime candidates for delivering fault prevention. The effect 
of Process improvement, particularly those presented in CMMI, on reducing the 
number of faults slipping through to operation has been empirically approved. 
Notably, Diaz and Sligo (1997), stressed that, in their case organization, each CMM 
level upgrade in a project reduced the number of faults introduced to roughly half 
the number in previous levels. In a similar vein, Harter, Kemerer, and Slaughter 
(2012) reported significant reduction in likelihood of introducing severe faults in 
higher levels of CMM. The effect of Consistency in adopting CMM practices on 
introducing faults has also been the subject of studies. Krishnan and Kellner (1999) 
studied consistent adoption of CMM practices and demonstrated that such 
adoption is significantly associated with lower number of faults being introduced. 
Huang, Liu, Wang, and Li (2015) demonstrated that lower number of total faults, 
minor faults and severe faults slipping through to operation are achieved when 
adoption of CMM practices is done consistently. 

One of the practices included in many software process improvement models 
is analysis of root causes of faults (Kalinowski, Travassos, & Card, 2008). For 
example, one of the key process areas of the CMMI level 5 is ‘Causal Analysis and 
Resolution’ (Shenvi, 2009). There are a myriad of methods in the literature, offering 
systematic ways to identify the root causes of faults (Chillarege, et al. 1992; Card, 
1998; Grady, 1996; Kalinowski et al., 2008; Lehtinen, Mäntylä, & Vanhanen, 2011). 
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Whichever method is chosen, the goal is identification of the root causes of 
reoccurring faults and preventing them from being introduced in future projects or 

in the same project by resolving their root causes. Such methods are known by the 
names such as Root Cause Analysis (RCA), Defect Causal Analysis (DCA), and 
Common Cause analysis to name a few. RCA methods do drive process 
improvement but their merits are not limited to it. Most of the RCA methods rely 
on statistical analysis of fault data for identifying reoccurring faults. To make such 
statistical analysis, the fault data should be collected in a formulated manner. To 
this end, several fault classification schemes such as Orthogonal Defect 
Classification (Chillarege et al., 1992), and Defect Origins, Types, and Modes 
(Grady, 1996) have been proposed by researchers.  

Even though reliance on fault data is insightful (Grady, 1996), it comes at a 
high price for RCA methods. Fault data is difficult to collect (Mohagheghi, 
Conradi, & Børretzen, 2006); and its collection needs upfront investment and 
personnel training (Carrozza, Pietrantuono, & Russo, 2015). These difficulties have 
rendered the majority of existing RCA methods resource intensive and 
inappropriate for small and medium-sized enterprises (SMEs) (Lehtinen et al., 
2011). More importantly, existing RCA methods are reactive in nature. In a 
longitudinal study of software process improvement model implementation, 
Fitzgerald and O'Kane (1999) found out that the prevention activities championed 
by CMM are reactive in nature. 

In this research, RCA as one of the key instruments available for fault 
prevention is brought into the spotlight, and a new proactive RCA (PRORCA) 
method is developed to address the difficulties of conducting RCA using existing 
methods. This research is a response to Alho’s and Mattila’s (2011) call for further 
research into fault prevention. For the purposes of the research, Design Science 
Research Methodology (DSRM) (Peffers, Tuunanen, Rothenberger, & Chatterjee, 
2007) is adopted as a nominal process and mental model. The research is carried 
out in three phases which are mapped to stages of DSRM. The problem 
identification and demonstration stages of the DSRM which are mapped to phase 
one and phase three of this research, respectively, are supported by three 
qualitative interviews with representatives of a case company in the domain of 
avionics and embedded systems. Furthermore, a systematic mapping study 
(Kitchenham, & Charters, 2007) is performed in the first phase for problem 
identification and solution innovation. Moreover, directed content analysis (Hsieh, 
& Shannon, 2005) is performed in phase two on a collection of academic articles. 

The PRORCA method has three steps, namely, context mapping, erratic 
behavior mapping and corrective action innovation. The main idea in PRORCA is 
proactive identification of individuals’ erratic behaviors based on mismatches 
between development context and development practices. Preventing such erratic 
behaviors that can contribute to fault introduction, ineffective and inefficient fault 
detection and, ineffective and inefficient fault fix would, in return, prevent faults 
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from slipping through to operation. In the course of the research, taxonomy of 
contextual factors affecting fault slipping through to operation is developed using 
directed content analysis (Hsieh and Shannon 2005) on existing publications. The 
taxonomy is the key tool for identification of mismatches between the 
development context and practices. 

The rest of this document is organized as follows. First, the relationship 
between errors, faults, and failures is outlined. A clear description of fault 
prevention is outlined in the third section. Next, RCA will be explained. In the fifth 
section the research approach is discussed. Three phases of the research are 
included in this section. Problem identification, and objectives and solution 
innovation are discussed in phase one. Design and development of taxonomy of 
contextual factors and PRORCA are included in phase two. And demonstration of 
the use of the PRORCA method and its evaluation are presented in phase three.  
This section is then followed by discussion, limitations and finally conclusion. 
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2 FAULTS, ERRORS AND FAILURES 

Central to development of highly-reliable software systems through prevention is 
the relationship between faults, failures and errors. There exist two approaches to 
explain the relationship between errors, faults and failures. A reader must be 
vigilant with respect to which one of these approaches is taken when interpreting 
the results in the literature. The distinction between the approaches is drawn by 
the way errors are defined. In one approach errors are considered a wrong internal 
state of a software system, while in the other errors are considered a wrong-doing 
of a human that produces incorrect results. 

Avižienis et al. (2004) is one of the advocates of the first approach. According 
to Avižienis et al. (2004), a failure is a deviation from correct service which occurs 
either when the specification is not complied with or when the specification is 
wrong. In case of a failure, a system’s external state is incorrect. What precedes this 
incorrect external state is usually an incorrect internal state which is known as an 
error (Avižienis et al., 2004). It could be said that a failure occurs when an error 
reaches the system’s interface (Hanmer, McBride, & Mendiratta, 2007). Faults are 
potential flaws and/or imperfections that if activated might lead to errors 
(Børretzen, & Dyre-Hansen, 2007). A fault might cause an error in the internal state 
of the system which does not affect the external state (Avižienis et al., 2004).  The 
relationship between faults, errors and failures in this approach is shown in 
FIGURE 1. 

.The second approach is advocated by ISO/IEC 24765 (2010) standard. In this 
approach an error is a wrong-doing of a human that produces incorrect results. A 
fault, then, is a manifestation of an error which could possibly lead to a failure. 
Alternatively, an error could be a wrong step, process or data definition that 
manifests itself as a fault (ISO/IEC 24765 2010). A software failure, then, is 
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“termination of the ability of a product to perform a required function or its 
inability to perform within previously specified limits” (ISO/IEC 25000 2005).  

Regardless of the approach, a failure can occur due to a fault. In both 
approaches a fault can exist both in executable code and documents including 
specification and requirement. Fault introduction can occur at any stage during the 
development process. An introduced fault might propagate to subsequent phases 
(Van Moll, Jacobs, Kusters, & Trienekens, 2004). Additionally, in both approaches 
it is emphasized that a fault might not necessarily cause a failure. Alternatively, a 
failure might be due to several faults activated simultaneously. Another possibility 
is that a fault remains dormant during the whole lifetime of a system without ever 
causing any failures.  Hammil and Goseva-Popstojanova (2009) noted the 
possibility of one-to-many, many-to-one and many-to-many relationships between 
faults and failures. In other words, there is a complex relationship between faults 
and failures all aspects of which are not exactly known (Fenton, & Neil, 1999).  

It is important to note that these approaches and the definitions provided are 
not always adopted by different researchers as they are represented here. 
Moreover, the definitions, particularly those in software standards, have been 
subject to change over the years. For example, Boehm, Mcclean and Urfrig (1975) 
used the term error to refer to what was described as fault above; a flaw that can 
lead to a failure. Basili and Rombach (1987) adopt the second approach; however, 
they adopt the definitions in IEEE-Std-729 (1983) which might have minor 
differences with ISO/IEC 24765 (2010). Plus, the terms “fault”, “defect” and “bug” 
are very often used interchangeably. Exceptions exist though. For instance, IEEE-
Std-1044 (2009) differentiates between defects and faults. Consequently, 
interpretation of the pervious discussions and findings in the literature must be 
done with careful attention.   

In this research, errors are left out and when necessary to refer to the cause of 
faults, the term root cause is deployed. Since faults and failures are defined almost 
identically in both approaches, they are adopted as was explained in this section. 
The terms fault and defect will be used interchangeably as well.  

Fault Activated Error Failure Pass through 

System interface 

Incorrect 

internal 

state 

Incorrect 

external 

state 

FIGURE 1 Fault and failure relationship adopted from Avižienis et al. 2004 
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An example that can represent the fault and failure sequence is provided by 
Favaro et al. (2013) in which a failure in an aircraft control software led to 
uncontrolled maneuvers of a 777 Boeing aircraft. In this scenario, the aircraft 
boarded with one failed accelerometer (#5) out of six. Such a failure was predicted 
in the software requirements. In such a case the software was designed not to 
consider the data coming from the failed accelerometer. However, when, in an 
unpredicted event another accelerometer failed (#6) after engagement of auto-
pilot, a fault in the design of the control software was activated. This fault allowed 
the data from accelerometer #5 to be included in calculation of acceleration values. 
This failure of the software to comply with specification led to sudden 
uncontrolled maneuvers of a 777 Boeing aircraft. Fortunately, this incident did not 
lead to any casualties or physical damage. 
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3 FAULT PREVENTION 

Avižienis et al. (2004) stated that ‘fault avoidance’ as a combination of ‘fault 
prevention’ and ‘fault removal’ is a way to aim for development of systems that 
are free from faults. It is noteworthy that ‘fault prevention’ from the viewpoint of 
Avižienis et al. (2004) is one of the raison d’etre of development methods which 
reduces the number of faults introduced during development. This conception of 
fault prevention is limited to reducing ‘fault introduction’ during development. 
Bearing in mind that Avižienis et al. (2004) conceptualized ‘fault removal’ as both 
‘fault detection’ and ‘fault fixing’, it can be postulated that (1) reducing fault 
introduction during development, (2) fault detection and (3) fault fixing can help to 
‘avoid faults’. In other words, fault avoidance is preventing faults from slipping 
through to operation. However, preventing faults from slipping through to 
operation is essentially the same as ‘fault prevention’. From this perspective, fault 
prevention is a larger system in which the goal is to prevent faults from slipping 
through to operation. This larger system is what Avižienis et al. (2004) called ‘fault 
avoidance’. However, since the conception of ‘fault prevention’ as prevention of 
faults from slipping through to operation satisfies the needs of this research and 
since adding a new term to the already dense and dark terminology jungle of 
dependability and reliability research is not on this research’s agenda, the term 
‘fault avoidance’ will not be used. Instead ‘fault prevention is used to refer to (1) 
reducing fault introduction during development, (2) fault detection and (3) fault 
fixing. 

It follows, based on this new conception of fault prevention that  (1) fault 
introduction during development, (2) ineffective and inefficient fault detection and 
(3) ineffective and inefficient fault fixing are contributing elements to faults 
slipping through to operation. FIGURE 2 depicts the contributing elements to 
faults slipping through to operation. FIGURE 2 is not a process model and is not 
intended to show a sequence. The connectors in this model show a causal effect 
and the model itself is a causal one. For example, inefficient and ineffective fix can 
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lead to fault introduction. Alternatively, it can lead to faults slipping through to 
operation. 

It is self-evident that unless a fault introduced during development is 
effectively and efficiently detected and fixed, it slips through to operation. 
Effectiveness of detection cannot be undermined. Ineffective detection, delivered 
by inappropriate testing and review practices, means that an introduced fault can 
go unnoticed and, eventually, slip through to operation. Effective fault detection 
mandates sufficient fault detection activities. As a matter of fact, one of the 
applications of software reliability growth models has always been notifying 
managers that enough fault detection has taken place to secure reliable operation 
of software (Butler, & Finelli, 1993; Carman, Dolinsky, Lyu, & Yu, 1995; Goel, 
1985).  

However, effectiveness is not all there is to fault detection; the efficiency of 
detection is also a matter of concern. According to the infinite monkey theorem, if a 
monkey is given infinite amount of time hitting keys randomly on a typewriter, it 
will eventually input a legible text. Similarly, if testers are given infinite testing 
time, they will eventually find all the faults in a piece of software. The same can be 

Faults slipping 

through to 

operation 

Inefficient  

and  

ineffective 

detection 

Fault introduction 

Inefficient and 

ineffective fix 

Outcome Contributing 

elements 

FIGURE 2 Fault prevention model 
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argued for reviews. This is not, however, practical in today’s turbulent and 
dynamic business environment. Testers can dedicate only a limited amount of time 
to detection activities and reviews do not span more than a few hours. In fact, 
Butler and Finelli (1993) argued that achieving ultrahigh reliability is not practical 
because it would require “testing beyond what is practical”. It comes as no 
surprise, then, that inefficient defect detection could lead to faults going unnoticed 
during defect detection and slipping through to operation.  

As much as fault detection is valuable, it is not enough to prove that if 
detected, a fault, is prevented from slipping through to operation; a fault needs to 
be fixed effectively and efficiently. If a fault is not fixed in time or with acceptable 
quality it may very well slip through to operation. A bad fix, on the other hand, 
could introduce additional faults (Christenson, & Huang, 1996; Whittaker, 2000). 
Whittaker (2000) emphasized the possibility that even though a bad fix could 
remove the original fault, still it can introduce new faults. Alternatively, a bad fix 
might introduce new faults without actually fixing the original fault (Whittaker 
2000). Additionally, several authors including Li, Sun, Leung, and Zhang (2013), 
Kim, Zimmermann, Pan, and Whitehead (2006), and Canfora and Cerulo (2005) 
have indicated that fault-fixing changes can introduce further faults. 

Lack of attention to any of the aforementioned activities can contribute to 
faults slipping through to operation. This contribution, depicted in FIGURE 2 
could eventually lead to software failures and poor software reliability. These 
contributing elements are well-known and have been under investigation in 
software quality research before. Jacobs, Van Moll, Kusters, Trienekens, and 
Brombacher (2007) studied influential factors leading to defect introduction and 
defect detection. According to Jacobs et al. (2007) “the injection of defects should be 
minimized and the detection of defects should be maximized”. Furthermore, 
implementation, testing and fixing activities were recognized as key improvement 
points for software quality improvement in Carrozza et al. (2014). These authors 
performed a defect analysis study in order to find effectiveness and efficiency 
bottlenecks during implementation, testing and fixing activities.  
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4 ROOT CAUSE ANALYSIS 

Root cause analysis (RCA) is considered to be a key instrument to defect 
prevention and process improvement. RCA is a structured investigation to identify 
the underlying causes of faults. RCA can be performed both during the 
development and after product release. In the former case, RCA can result in in-
process improvements (Chillarege et al., 1992) while in the latter, it helps create an 
organizational portfolio by which lessons learned from one project can be put into 
practice in later projects (Leszak, Perry, & Stoll, 2002). 

Lehtinen et al. (2011) identified three common steps to all RCA methods - 
target problem detection, root cause detection and corrective action innovation. 
The general idea behind RCA is to identify patterns that reoccur with respect to 
faults, identify the root causes, and provide improvement suggestions.  

Two forms of RCA have been reported in the literature: Qualitative RCA and 
Quantitative RCA. Qualitative RCA is an effective but resource-intensive process 
whereby root causes of faults are analyzed one-by-one by a team of experts 
(Grady, 1996; Mays, Jones, Holloway, & Studinski, 1990). Reliance of this form of 
RCA on human capabilities and high cost of implementation is considered as its 
downsides (Chillarege et al., 1992). However, recently, ARCA method was 
proposed by Lehtinen et al. (2011) as a lightweight approach to qualitative RCA. 
This approach is different from the other qualitative methods in that, even though, 
it is done qualitatively, it only relies on qualitative methods such as focus group 
meetings for target problem identification. Not all faults are analyzed in the ARCA 
method (Lehtinen et al., 2011); only the ones that a group of experts identify via a 
systematic approach. Such an approach is supposed to make RCA more applicable 
in SMEs that are often reluctant to conduct a resource-intensive analysis (Lehtinen 
et al., 2011). 

Quantitative RCA is guided by statistical fault data analysis in problem 
identification stage. Statistical fault data analysis most often relies on data collected 
via fault reports. Fault reporting is formalized via fault classification schemes. In 
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quantitative RCA, statistical methods are utilized to visualize patterns that might 
reflect issues in development process. The root causes of such issues are then 
identified. There are a myriad of methods for identifying the root causes. Most 
famous among them is creating a fishbone diagram (Kalinowski et al., 2008) to 
record cause-effect relationships. Lehtinen et al. (2001) reported cases where fault 
tree diagrams, causal maps, matrix diagrams, scatter charts, logic trees, and a 
causal factor charts were used. Unfortunately, not much has been said on 
corrective action innovation (Lehtinen et al., 2011). Corrective actions are reported 
to be derived using qualitative approaches such as brainstorming, brainwriting, 
interviews, and focus group meetings (Card, 1998; Kalinowski et al., 2008; Lehtinen 
et al., 2011). 

Conducting quantitative RCA is tightly coupled with the fault classification 
scheme of choice. The main function of a fault classification scheme is to determine 
a minimum set of attributes that allow slicing the fault data in various ways to 
provide visibility into problematic areas in the software development process 
(Bridge, & Miller, 1998). There are numerous classification schemes in the 
literature. The most well-known are Orthogonal Defect Classification (ODC) 
proposed by Chillarege et al. (1992) and developed at IBM, the Defect Origins, 
Types, and Modes scheme developed in HP, also known as the HP scheme (Grady, 
1996), and the scheme proposed in IEEE Std. 1044. Other known schemes include 
those presented by Binder (2000) and Beizer (1990).  

In order to ease the selection of a classification scheme, researchers have 
made efforts to evaluate them against each other. Huber (2000) compared ODC 
and HP schemes across five dimensions- Data, Process, 
Specification/Requirements, Defect Type, and Resource. Vallespir, Grazioli, and 
Herbert (2009) proposed a framework for evaluating fault classification schemes 
and compared the aforementioned schemes. Their comparison revealed that fault 
type is included in all fault classification schemes. Furthermore, Kalinowski et al. 
(2008) found two types of information being addressed by the fault classification 
schemes they reviewed, namely, fault information to be collected and fault types.  

The HP scheme defines three high-level attributes and provides a set of 
possible values for each attribute. These attributes are Origin, Type and Mode 
(Grady, 1996). Depending on what Origin value is selected for a fault, values 
available for the Type attribute differ. On the other hand, the underlying idea in 
ODC (Chillarege et al., 1992) is that defect data should be collected in a way that 
allows classes of defects to be associated with stages of development process 
(Chillarege et al., 1992). Orthogonality refers to the independence of value of each 
attribute from the values of the other attributes (Vallespir et al., 2009). ODC calls 
for collection of at least two attributes with utmost importance - Defect Type and 
Defect Trigger. Six other attributes, namely, impact, target, activity, qualifier, 
source, and age are also recommended to be collected but they are supporting 
attributes and their collection is not of existential importance to ODC. Fault 
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classification in IEEE std. 1044 is similar to ODC in structure (Mellegård, & Torner, 
2012). Among ODC, IEEE std. 1044 and HP scheme, collection of severity is only 
addressed in IEEE std. 1044 classification, while mutually exclusive attribute 
values are addressed in all (Vallespir et al., 2009). Mutually exclusive attribute 
value means that if one value is selected for an attribute no other values can be 
selected (Vallespir et al., 2009). 

In practice, it is hard to believe that the well-known schemes are adopted 
fully and completely. Card (2005), for example, stated that classification of fault 
types should support analysis of fault data based on specific objectives of 
organizations. Fault classification schemes need some tailoring to fit the different 
needs and objectives of organizations (Mellegård, & Torner, 2012). Examples of 
customized classification schemes exist in the literature. Both El Emam and 
Wieczorek (1998) and Lutz and Mikulski (2004) customized ODC to fit their goals. 
Freimut, Denger and Ketterer (2005) developed a customized classification scheme 
based on ODC and HP schemes. Raninen, Toroi, Vainio and Ahonen (2012) 
introduced their own customized classification scheme based already existing 
schemes. Mellegård, and Torner (2012) tailored the IEEE std. 1044 classification to 
be used in a company in automotive industry. Leszak et al. (2002) developed a 
classification scheme and compromised the mutual-exclusivity of cause attribute 
value. According to Leszak et al. (2002) a fault might have several causes or no 
causes at all. Freimut et al. (2005) presented an approach for developing and 
evaluating customized classification schemes.  

With all the alternative RCA methods available, Software development 
companies should adopt one that fits their goals and resources best. If there are 
limited resources available for RCA, the decision to adopt or customize one of the 
well-known fault classification schemes and perform quantitative RCA should be 
studied beforehand with due attention to its downsides. Such a decision can add 
overhead to developers’ work and if not fully complied with, might not be as 
effective as expected. 
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5 Research approach 

Software reliability and its related topics have historically been researched in the 
software engineering community. Even though exceptions exist of research being 
published in other fields such as information system (Zahedi, 1987), the 
predominant approach has been following guidelines of software engineering 
research. 

A research effort intended for development of a solution to an engineering 
problem could benefit from a framework that formalizes conducting, validating 
and reporting the research (Kitchenham et al., 2002). For such a framework to 
prove valuable a number of requirements should be satisfied. Such a framework 
should: 

1) promote theory building  
2) have clear principles and rules  
3) entail a clear process for carrying out research  

Theory is the basic means for communicating knowledge (Sjøberg, Dybå, 
Anda, & Hannay, 2008). It sets the foundations on which a sound solution can be 
developed and communicated, hence, the first requirement. Declaring clear 
principles and setting proper rules is an existential feature of a research 
framework. Principles and rules often presented as guidelines that assist the 
researcher to make the right decisions, avoid pitfalls and communicate correctly 
(Kitchenham et al., 2002). However, to achieve this goal the principles and rules 
should be complemented with a clear research process. A clear research process 
provides an optimal roadmap that guides the researcher, from design, and 
delivery to communication and evaluation of a solution. Accompanied by 
guidelines and theory, such a roadmap promises a way to arrive at a robust and 
rigorous solution. 

Software engineering research is reluctant to build and adopt theories 
(Hannay, Sjøberg, & Dybå, 2007). Even though guidelines do exist in software 
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engineering literature, they are either too abstract or too detailed (Kitchenham et 
al., 2002) or they lack a defined process. Plus, according to Kitchenham et al. (2002), 
the level of the standards in conducting empirical software engineering and 
subsequent meta-analysis of software engineering studies is low. Design Science 
research (DSR), on the other hand, as an alternative, while rooted in engineering 
(Hevner, March, Park, & Ram, 2004; Peffers et al., 2007), showed signs of satisfying 
the three requirements set above. 

DSR is one side of the coin in information system research (Hevner et al., 
2004). While the behavioral science research in information system research 
examines behaviors and attitudes related to a business need, DSR focuses on utility 
and provides pragmatic solutions in the form of artifacts to satisfy that business 
need. The focus in DSR is essentially on developing an artifact. An artifact could be 
a set of constructs, models, methods or an instantiation of a system (Hevner et al., 
2004). Design science research emphasizes adoption and building of theories and 
stresses the importance of prior knowledge base (Hever et al., 2004; Peffers et al., 
2007). Plus, as argued by Walls, Widmeyer and El Sawy (1992), DSR entails both a 
product aspect and a process aspect. The features of DSR provided evidence that it 
can provide a suitable framework that satisfies the three requirements set for 
carrying out this research.  

DSRM proposed by Peffers et al. (2007) satisfies all of the requirements 
described above. As a result DSRM is selected as a framework of reference and 
mental model to guide the researcher in this research endeavor. DSRM (Peffers et 
al., 2007) is comprised of six stages, namely, (1) problem identification and 
motivation, (2) definition of objectives and solution, (3) design and development of 
an artifact, (4) demonstration, (5) evaluation, and (6) communication.  

This research is carried out in three phases. As depicted in FIGURE 3, in each 
phase, one or two of the stages of DSRM are completed. In phase one, the 
researcher sets out to identify problems in fault prevention that would lead to 
lower software reliability. From the identified problems a solution is inferred and 
objectives are set. At the end of phase one, a model of elements and actors 
contributing to faults slipping through to operation is developed. Faults slipping 
through to operation are the main phenomenon that needs to be addressed in fault 
prevention. During the second phase, which is a one-to-one mapping of stage three 
in DSRM, taxonomy of contextual factors affecting faults slipping through to 
operation is developed based on the model presented at the end of phase 1. In the 
same phase, a proactive RCA (PRORCA) method is developed as a solution. The 
taxonomy of contextual factors is used as the underlying tool in conducting 
PRORCA. The third phase is a demonstration of using PRORCA in two small 
projects in a case company. A small project refers to a project that “a single 
individual can encompass and resolve any and all of the significant macro and 
micro issues involved in developing the system” (Boehm, 1975). An evaluation of 
applying PRORCA in these projects is done in phase three as well. 
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 Even though each phase of this study relies on a specific set of data, there are 
commonalities between all the phases which help form the cohesive whole of the 
research. The sources used for collecting data are interviews and published 
articles. The interviewees are representatives of a case company which is an 
international, privately-owned SME operating in avionics and embedded systems 
industry. They provide engineering services for their customers, mainly the 
European Space Agency (ESA), at different centers. Further detail on the research 
methods used in each phase is provided in the following sections in which each 
phase is discussed. 

5.1 Phase one 

The first phase of the research entails stages one and two in DSRM in which firstly 
the problems are identified and then further objectives and solutions are inferred 
from the identified problems. It is important to note that according to Peffers et al. 
(2007) entry point into the DSRM could be different in every research effort. In this 
research, the entry point to DSRM was stage one. In order to complete phase one, 
firstly, a review of the literature on software reliability and fault prevention were 

Phase Three Phase Two Phase One 

Identify 

problem 

and 

motivate 

Define 

objectives 

and 

solution 

Design and 

development 
Demonstration Evaluation Communication 
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Evaluation 
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FIGURE 3 Research phases mapped to DSRM (Peffers et al., 2007) stages 
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carried out. Further, an interview with a representative of the case company was 
conducted.  

The decision of conducting both literature review and interview in the first 
phase is well-justified. Since in stage one of DSRM the goal is identifying the 
problem, a review provided a wide variety of topics each addressing different 
problems in software reliability. This allowed capturing a big picture of reliability 
research and acquiring knowledge about underlying common problems in fault 
prevention. Kitchenham and Charters (2007), recommended that in cases where 
the scope of the topic is very wide, a systematic mapping study be conducted. By 
providing an overview of a topic, a systematic mapping study, establishes the 
research evidence in a topic (Kitchenham, & Charters, 2007). A systematic 
literature review is a stand-alone study that synthesizes the material in the 
literature (Okoli, & Schabram, 2010). Since the subject area of software reliability 
and fault prevention is wide and varied in scope, a decision was made to conduct a 
systematic mapping study rather than a comprehensive literature review.  

Even though mapping studies and literature review studies are essentially 
different in their goals and comprehensiveness, their differences do not expand to 
guidelines. The systematic approaches recommended by Kitchenham and Charters 
(2007), and Okoli and Schabram (2010) both require a defined protocol for material 
extraction, material inclusion, and material exclusion.  

For the purpose of material extraction, Webster and Watson (2002), 
recommended a three staged approach which starts with a keyword search and is 
later complemented by backward and forward reviewing of the citations. 
Kitchenham and Charters (2007), and Levy and Ellis (2006) made similar 
recommendations. Levy and Ellis (2006) emphasized the prominence of the studies 
in the initial set, though. Having a stopping rule for extracting new material is also 
of utter importance (Okoli, & Schabram, 2010). Following these guidelines, in this 
study, the following approach was taken: 

1) Initial set generation: The initial set of papers was extracted from google 
scholar database using keyword search. The keywords were ‘software 
reliability, ‘fault prevention’, ‘software reliability engineering’. TABLE 1 
shows the initial set. 

2) Backward search: the references that were found relevant or that revealed 
important information were reviewed. 

3) Forward search: using the ‘cited by’ feature of google scholar database 
relevant papers were identified and reviewed.  

4) As the research unfolded new keywords, forward and backward search 
were complemented with further keyword search. 

5) The stopping rule for extracting material was increasing frequency of 
repeating and irrelevant entries in backward and forward search. However, 
later on a calendar date constraint was also set to stop the backward and 
forward search. 
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In the beginning, the review was driven by the question: ‘what are fault 
prevention techniques and capabilities recommended in the literature?’ As the 
review was extended, it became clear that the problem was not that the techniques 
and capabilities were not known, but that they were not practiced or complied 
with. As the reasons for such behavior began to surface phase one began to take 
form.  

Inclusion and exclusion in all the steps presented above was done based on 
the researcher’s knowledge of the area. For inclusion of a study, first the title was 
investigated, if the title revealed new or relevant information regarding software 
reliability, fault prevention, fault detection, and RCA, that study was selected for 
abstract review. If the same conditions proved right for the abstract then the 
reference was included. Furthermore, if a study was considered to be seminal work 
in the field, it was included. Naturally, the exclusion occurred when a paper was 
not included for abstract review, or complete review.  

TABLE 1 Initial set of academic articles 

# source 

1 Carpenter, & Dagnino, 2014 

2 Babu, Kumar, & Murali, 2012 

3 Alho, & mattila, 2011 

4 Hammil, & Goseva-Popstojanova, 2009 
5 Lyu, 2007 

6 Zelkowitz, & Rus, 2004 

7 Dunn, 2004 

8 Hermann, & Peercy, 1999 

9 Musa, 1996 
10 Leveson, & Turner, 1993 

11 Zahedi, 1987 
12 Goel, 1985 
13 Børretzen, 2007 

At the end of the review process a total of 168 academic articles and one PhD 
dissertation were reviewed. After analysis of the subject matter, these reviewed 
publications were categorized into 13 topic areas. TABLE 2 shows the topic areas 
that were covered and the number of articles reviewed in each one. The table 
indicates that most articles reviewed were in the ‘fault detection’, ‘fault reporting 
and RCA’, ‘fault prediction’ and ‘fault reduction’ topic areas. A complete list of 
reviewed articles is presented in appendix 6. Appendix 6 is organized in 
accordance with the topic areas represented in TABLE 2. 
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TABLE 2 Topic areas reviewed 

Topic area number of articles reviewed 

fault detection 45 

human factors  5 

reliability modeling 7 

Fault reporting and RCA 31 

agile 9 

fault prediction (change analysis, ) 24 

safety 7 

maintenance 2 

defect analysis 7 

fault reduction 18 

process improvement 3 

tools 5 

software reliability engineering 6 

It is acknowledged that the approach taken for material extraction is vulnerable to 
lack of reliability, because its coverage of literature relies heavily on the initial set. 
In such a case, if the initial set is not well-chosen, the chance of missing important 
areas of research and seminal articles grows. Plus, this strategy for material 
extraction tends toward backward research rather than forward research (Jalali, & 
Wohlin, 2012). These problems were handled by conducting an expert interview. 
The interviewee was the leader of a team of four developers in the case company 
with years of experience as software engineer and system engineer in the avionics 
and aerospace industry. The prime function of the team under his leadership was 
research and development which in certain instances included safety-critical 
software development. 

The benefits of the interview were threefold. Firstly, based on the 
interviewee’s responses new research paths were investigated. Secondly, the 
interview increased the confidence of the researcher about the nature of the 
problem that was found and confirmed some of the problems recorded in 
literature. For example, it was after the analyzing the interview data that the 
mismatch between contextual factors and development practices came to light as 
an improvement opportunity. Plus, the interviewee pointed out the problems in 
fault reporting and reluctance to perform RCA. Lastly, the input provided by the 
interviewee prevented the researcher from going deep into research directions that 
had little value. For instance, the decision to abandon the topic of reliability 
modeling was founded on the responses of the interviewee.  

All in all, the combination of the reactive nature of RCA techniques and the 
difficulties in its execution came to light as problems that can impede effective 
fault prevention. These problems coupled with the discovery that focusing on 
mismatches between the development context and the development practices is an 
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effective way to prevent individuals’ erratic behavior, uncovered a solution for 
improving fault prevention. The solution is a proactive RCA technique that relies 
on identifying the mismatches between the development context and development 
practices to prevent faults from slipping through to operation. The difficulties in 
executing RCA, individual’s erratic behavior and objectives and solutions are 
discussed in the following three sub-sections. 

5.1.1 RCA difficulties 

Despite highlighting the significance of proactive rather than reactive prevention 
of faults (Grady, 1996) the RCA literature has fallen short of instrumenting a shift 
from reactive approaches to proactive ones. RCA methods are still essentially 
reactive in analyzing root causes of faults and introducing countermeasures. RCA, 
as discussed in the literature, can be performed both during the development (in-
process) and after product release (retrospective). Among the 31 academic articles 
reviewed in the topic area ‘fault reporting and RCA’, 17 of them, either presented 
an RCA method or carried out RCA in practice. TABLE 3 demonstrates that while 
9 studies delivered retrospective RCA in practice, only 4 conducted in-process 
RCA. Two studies conducted RCA both retrospectively and in-process. There is an 
inconsistency between 8 studies that openly advocated in-process RCA and the 
number of in-process studies carried out. Lack of in-process studies is not very 
surprising though. It can be explained by reluctance of software companies to 
share sensitive fault data about their ongoing projects. Such fault information is the 
necessary requirement for carrying out RCA in all but one of the studies reviewed.  

Retrospective RCA is openly reactive, thus the time of conducting RCA is not 
a matter of concern. It is championed to create an organizational portfolio by 
which lessons learned from one project can be put into practice in later projects 
(Leszak et al., 2002). In today’s turbulent business environment where each project 
is different in nature and execution, however, the advantage gained by performing 
retrospective RCA is a matter of debate. It is arguable that the benefit of 
retrospective RCA is maximized in release-based projects in which RCA on past 
releases can provide improvement suggestions for future releases (Yu, 1998).  

Meanwhile, the advocates of the in-process method claim that their approach 
would result in improvements and eventually fault prevention while the project is 
still under way (Chillarege et al., 1992). The question that begs to be answered then 
is when the RCA should be performed for in-process improvements to be 
delivered. TABLE 3 shows that among the papers advocating in-process RCA, only 
three explicitly recommended a time to perform RCA. Closer inspection of the 
recommended time reveals the reactive nature of in-process RCA. If RCA is 
supposed to be delivered at the end of each development stage then not much can 
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be done regarding the completed stages in an ongoing project. In case it is done 
after each iteration, in an iterative development project, yet again, the outcome of 
RCA will be useful in future iterations. The benefit of such an approach is 
maximized in complex projects in which several teams are working concurrently 
on a product but at different stages of development.  

Furthermore, Lehtinen et al. (2011) identified three common steps in RCA 
methods, namely, (1) target problem detection, (2) root cause detection and (3) 
corrective action innovation. These steps imply the underlying assumption that a 
problem already exists, root causes of which should be identified. This assumption 
reveals the reactive nature of RCA methods as well. 

TABLE 3 RCA approaches and timing 

Source 
Approach 
recommended 

Approach 
taken 

Timing  

Basili, & Rombach, 1987 Retrospective Retrospective  - 

Bridge, & Miller, 1998 NA Retrospective -  

Chillarege, et al., 1992 In-process Retrospective NA 

Freimut et al., 2005 In-process In-process NA 

Hayes Raphael, Holbrook, 
& Pruett, 2006 

NA Retrospective - 

Li, Li, & Sun, 2010 NA 
Retrospective 
and In-process  

NA  

Bhandari et al., 1993 In-process In-process After each phase  

Grady, 1996 
Retrospective 
and In-process   

NA NA  

Hong, Xie, & Shanmugan, 
1999 

NA  In-process NA 

Kalinowski et al., 2008 In-process NA 
right after each 
of phases or within a 
phase in exceptional cases  

Lehtinen et al., 2011 In-process 
Retrospective 
and In-process  

NA 

Leszak et al., 2002 In-process Retrospective NA  

Lutz, & Mikulski, 2004 NA Retrospective   - 

Shenvi, 2009 In-process Retrospective    NA 

Yu, 1998 NA Retrospective    - 

Jalote, & Agrawal, 2005 In-process In-process  After each iteration 

Raninen et al., 2012 NA Retrospective - 

In addition to the reactive nature, there are many reports of the difficulty of 
conducting RCA. First and foremost, reliance of RCA techniques on fault data, 
except that of Lehtinen et al. (2011), makes them vulnerable to fault reporting 
mechanisms of organizations. According to Børretzen et al. (2007), in practice, fault 
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reports are usually collected just for removal and unfortunately are not further 
analyzed to gain process improvement insights. Plus, fault reports that are 
collected in organizations usually have comprehensibility and inaccuracy issues 
(Børretzen, & Dyre-Hansen, 2007). Mohagheghi et al. (2006) have identified a 
number of problems in fault reporting processes. They reported ambiguous 
problem report fields as a source of confusion for developers. Definitions and 
terms might mean different things to different groups of stakeholders. Lack of 
attention to product releases, changes in report fields between releases, coarse-
grained information in reports, and different report formats and reporting tools are 
other issues that these researchers witnessed in fault reporting practices of 
organizations (Mohagheghi et al., 2006). Lehtinen et al. (2011) argued that reliance 
of RCA on fault reports imposes a considerable amount of upfront investment, i.e. 
defect classification scheme definitions, procedure setup, establishment of data 
collection mechanisms, and personnel training. As a consequence, even though it 
might be effective for larger companies that have defined and strict processes, RCA 
methods relying on fault data might not be favorable in SMEs. Raninen et al. (2012) 
shared a similar view and claimed that fault reports are not efficiently analyzed in 
smaller software companies. Furthermore, non-immediate visible gains, required 
customization, change in people’s routines (Carrozza et al., 2015), and impractical 
assumption of full knowledge of defects (Mellegård, & Torner, 2012) are other 
factors that make performing RCA difficult.  

In this research, the interviewee’s responses confirmed that fault data 
collection in small-scale development is not an institutionalized activity. In this 
case, the interviewee clarified his experience from the case company and other 
companies. Furthermore, the interviewee mentioned that no formal analysis of 
faults data is performed in the case company. He stressed the importance of being 
proactive when a fault trend is observed, though. 

What I have seen it the past is quite informal so you start collecting the fault data when 
your customer says ‘hey what’s going on’ or when you have to report to your customer. 
But I have usually worked in very small teams, maybe at most three developers; in such 
a small scale development it tends not to be done in my experience. (interview 1) 

It’s just common sense. If you see there are many faults in one part of the software 
maybe it’s time to really put some more effort and to be more proactive in solving 
problems but I have not seen anything formal. (interview 1) 

In order to liberate organizations from collecting fault data, Lehtinen et al. (2011) 
proposed the ARCA method. Instead of relying on fault reports, in the ARCA 
method (Lehtinen et al., 2011), identification of the problem is done by relying on 
knowledge of participants in focus group meetings. This approach has the benefit 
of being lightweight and is not prone to vulnerabilities of fault reporting. 
Identifying problems based on the knowledge of participants in focus group 
meetings has the benefit of identifying potential future problems, thus, liberating 
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the RCA from being reactive. Because of this characteristic, even though, proactive 
RCA was not addressed by Lehtinen et al. (2011) explicitly, it is arguable that the 
ARCA method comes closest to proactive fault prevention. Therefore, relying on 
the knowledge of participants rather than fault data was considered as the solution 
to proactive prevention of faults from slipping through to operation in this 
research. 

5.1.2 Individual’s erratic behavior 

Investigation into the common root causes of faults in the literature revealed 
evidence that matching the development context and the development practices is 
a promising way to prevent individuals’ erratic behavior, thus, preventing faults 
slipping through to operation. TABLE 4 shows several studies that have provided 
the academic community with categorizations of the common root causes of faults.  
These categories, in fact, exhibit their creators’ implicit and explicit beliefs 
regarding the common root causes of faults.  

TABLE 4 Root cause categories 

Source Developed artifact Root cause category 

Boehm, 1975 Taxonomy of software 
error Causes 

Consistency, completeness, 
communication, clerical 

Basili, & Rombach, 1987 Root cause scheme Application errors, Problem-Solution 
errors, Semantics error, syntax error, 
Environment errors, Information 
Management errors and Clerical 
errors 

Leszak et al., 2002 Classes of root cause Phase-related, Human-related, 
Project-related, review-Related 

Kalinowski et al., 2008 Most cited cause-
categories in the literature 

tools, input, people, and methods 

Hayes, et al., 2006 Requirements common 
causes 

noncompliant process,  
lack of understanding, human error 

Walia, & Carver, 2013 
 

requirement error 
taxonomy 

people errors, process errors, 
documentation errors 

Huang, Liu, & Huang, 
2012 

Root cause taxonomy for 
software defects 

Human error, process error, tool 
problems, task problems 

In order to investigate how faults are delivered, the distinct root cause categories 
identified in the literature are extracted from TABLE 4 and presented in column 
one of TABLE 5. Based on the definitions provided for each category of root 
causes, the actors who can deliver faults were identified. Column three of TABLE 5 
shows the actor who can deliver faults caused by each distinct category of root 
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causes. As it is clear from TABLE 5, tools, individuals and processes are those who 
deliver the faults. 

TABLE 5 Actors delivering faults in each distinct root cause category 

Distinct root cause category Description Actor 

Consistency “The requirements were well 
understood, but conceptual errors 
were made in implementing them at 
the next stage” Boehm (1975) 

Individual 

Completeness “There was an incomplete grasp of 
the requirements expressed or 
implicit in the previous stage.” 
Boehm (1975) 

Individual 

Communication “There was a misunderstanding of 
the requirements expressed in the 
previous stage.” Boehm (1975) 

Individual 

Application errors “due to a misunderstanding of the 
application or problem domain” 
Basili & Rombach (1987) 

Individual 

Problem-Solution errors “due to not knowing, 
misunderstanding, or misuse of 
problem solution processes” Basili & 
Rombach (1987) 

Individual 

Semantics error “due to a misunderstanding or 
misuse of the semantic rules of a 
language” Basili & Rombach (1987) 

Individual 

Syntax error “due to a misunderstanding or 
misuse of the syntactic rules of a 
language” Basili & Rombach (1987) 

Individual 

Environment errors “due to a misunderstanding or 
misuse of the hardware or software 
environment of a given project.” 
Basili & Rombach (1987) 

Individual 

Information Management errors “due to a mishandling of certain 
procedures” Basili & Rombach (1987) 

Tool|Individual 

Phase-related Causes relevant to each phase. This is 
not essentially a root cause category. 
It does not provide information 
about the actual causes but only the 
phase in which the fault was 
introduced. 

Non-relevant 

Project-related “time pressure, management 
mistake, caused by other product. “ 

Tool|Individual 

Review-Related “no or incomplete review, not 
enough preparation, inadequate 
participation” Leszak, et al. (2002) 

Individual 
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Distinct root cause category Description Actor 

Human errors Human mistakes due to cognitive 
limitations, insufficient knowledge 
and communication and etc.  

Individual 

Process errors Bad process design, employees’ non-
compliance with defined processes, 
process non-compliance with the 
standards 

Individual|process 

Documentation errors Mistakes in documenting and 
organizing the documents  

Tool|Individual 

Tool problems Mistakes induced by tools directly 
such as Compiler induced defects 

Tools 

Task problems Mistakes due to characteristics of the 
task such as ambiguity, difficulty, 
etc. 

Individual 

Input  Faults caused by wrong inputs Tool|Individual 

Tools can induce faults directly (Huang et al., 2012). These faults are not 
introduced due to an individual’s misuse of the tool and its features; rather, they 
are caused by a malfunction or a problem in the tool itself. It is important to note 
that tools are, normally, developed outside of the company and their internal 
working mechanisms are not visible. This characteristic of tools places them out of 
the control of the company and means that tool-induced faults for the most part 
cannot be prevented.  

Processes can induce faults directly as well. Existence of faulty processes or 
lack of a certain process can lead to faults slipping through to operation (Huang et 
al., 2012; Walia, & Carver, 2013). It is important to notice that process-induced 
faults are not due to wrong execution or non-compliance. It is the lack of a process 
and/or a defective process that can induce faults. An example of such a situation is 
when proper review and testing processes are not included at the ‘transitions’ 
between related life cycles (Van Moll, Jacobs, Freimut, & Trienekens, 2002). In this 
case, one can contend, if a fault is not detected and slips through to operation, it is 
induced directly by the process.  

Processes hold certain similarities and differences with tools in terms of 
inducing faults. Processes are often adopted from a standard or are imposed by a 
regulatory body. In these cases, processes like tools are developed outside the 
company. However, unlike tools, internal mechanisms of processes are not 
invisible to the company. This distinction between the two means that individuals 
inside the company have control over the processes and are able to prevent 
process-induced faults. Defective processes can be identified and improved, and 
new ones can be introduced to fill their absence. These actions should take place by 
individuals inside the company and if they are not, then individuals are to be held 
accountable for them. Plus, it happens very rarely for processes to be fully adopted 
from standards. In fact, most standards and process models do not provide 
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detailed information of techniques to carry out an activity. It is the responsibility of 
the individuals within the company to adopt and tailor the processes to maximize 
performance and quality. Consequently, prevention of individuals’ erratic 
behavior could prevent process-induced faults as well. 

Individuals are the main actors who deliver faults. As is clear from TABLE 5, 
individuals appear in all root cause categories. This central role of individuals 
suggests that by preventing the individuals’ erratic behaviors, faults can be 
prevented from slipping through to operation. 

Focusing on individuals’ erratic behaviors in order to prevent faults slipping 
through to operation is not a radically new idea and has been the subject of study 
in the literature before. Lanubile, Shull, and Basili (1998) presented a method called 
‘error abstraction’ in which common patterns of individuals’ erratic behaviors are 
abstracted from existing fault data. These common patterns, then, provide valuable 
input for better fault detection (Lanubile et al., 1998). The error abstraction method 
was later complemented by Walia and Carver (2013) who proposed taxonomy of 
individuals’ erratic behaviors with respect to requirement faults. Even though, 
both Lanubile et al. (1998) and Walia and Carver (2013) have focused solely on 
requirement faults, and did not cover all development faults, there is promising 
evidence that common patterns exist in individuals’ erratic behavior in other 
stages, such as coding, as well. Pan, Kim and Whitehead (2008), for example, 
demonstrated that developers consistently make mistakes when specific code 
situations occur. Moreover, Huang et al. (2015) showed that in the company they 
studied most of the severe and minor faults were caused due to human errors and 
noncompliance with processes.  

Based on the findings that individuals, tools and processes contribute to 
faults slipping through to operation, the fault prevention model presented in 
FIGURE 2 was updated. FIGURE 4 depicts the updated model that includes the 
actors as well as contributing elements to faults slipping through to operation. 
FIGURE 4 presents a causal model similar to that of FIGURE 2. For example, an 
individual’s action causes an ineffective fault fix which in turn causes a new fault 
to be introduced. This new fault can then slip through to operation.  

In order to prevent individuals’ erratic behavior, it is best to start with human 
errors in the existing root cause categories presented in TABLE 5. An investigation 
of human errors as presented by Huang et al. (2012) and Walia and Carver (2013) 
shows that individuals’ erratic behavior occur partly due to cognitive constraints 
of the human mind and partly due to factors in the context. While cognitive 
constraints of the human mind are not malleable, introduction of appropriate 
practices can resolve the problems occurring due to factors in the context. 

Consider constituents of human error category presented by Huang et al. 
(2012); among these, ‘schema mismatching’, ‘working memory overload’, 
‘evaluation error’, and ‘problem representation error’ are caused due to the 
mechanics of the human mind. Such errors occur if the circumstances to which 
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they are vulnerable emerge; therefore, the focus should be on preventing those 
circumstances from emerging rather than changing the characteristics of the 
human mind! The same principle applies to the erratic behavior caused by 
“constraints on the cognitive abilities of requirement authors” (Walia and Carver 
2012). 

 

 
FIGURE 4 Actors in fault prevention model 

The rest of the people errors, on the other hand, occur with respect to factors in the 
context. Shortage of knowledge, for example, as an error that was considered by all 
of the authors in TABLE 4, is relative to many factors in the context such as the 
complexity of the task, ambiguity of the task, domain of the project, application of 
the software system under development and programming language of choice, to 
name a few. Leszak et al. (2002) reported that mismatch between the skill-level 
needed in the project and the available skill of individuals can lead to systematic 
introduction of faults. A developer who is skillful in the domain of avionics might 
introduce faults when working in the domain of banking services. This developer’s 
lack of domain knowledge can be catered for by introducing suitable practices 
such as adding extra reviews or training the developer. For example, Yu (1998) 
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reports a case in which “coding fault prevention guidelines” were introduced in a 
company to reduce faults slipping through to operation.  

Communication problem was another category of people errors mentioned 
by the authors in TABLE 4. Communication problems occur with respect to 
communication mechanisms and the social context of the project. Managers can 
tailor their development processes to include practices that promote clear 
communication. Scrum’s (Schwaber, & Beedle, 2002) daily stand up meetings, for 
example, can be introduced into a project for this purpose (Carpenter, & Dagnino, 
2014). However, introduction of new practices should also be done in accordance 
with other contextual factors. Scrum’s daily standup meetings might not be a 
suitable communication mechanism for an environment consisting virtual teams 
(Jacobs et al., 2005) or a project in which individuals have responsibilities in several 
projects (Sidky, & Arthur, 2007). In such cases, other measures should be 
considered such as acquisition of a secure online teleconference tool.  

Inattention and tool misusing (Huang et al., 2012) occur with respect to the 
context of development, as well. For instance, one of the reasons the underlying 
reasons for inattention, according to Huang et al. (2012), is individuals’ 
involvement in more than one task. Project pressure can also lead to inattention 
(Leszak et al. 2002). Clearly, project pressure and involvement in several projects 
are specific to a certain development context. 

Procedure violation (Huang et al., 2012), on the other hand, except for the 
cases where it is done intentionally, is due to lack of procedure knowledge and 
inattention. Lack of procedure knowledge can occur in an environment where 
there is not enough training, or when documentation about procedures is not 
publicly available to everyone.  

Drawing upon what was explained above, it can be postulated that human 
errors occur when contextual factors are not addressed with suitable practices.  
Individuals’ erratic behaviors are for the most part raised due to mismatches 
between development context and existing development practices. Fenton and 
Neil (1999) claimed that while the mismatch between design effort and problem 
complexity leads to introduction of defects, the mismatch between design size and 
testing effort leads to ineffective detection of defects. Design effort and testing 
effort are development practices that are asked by Fenton and Neil (1999) to be 
matched to design size, and problem complexity that are factors of the context. 
Similarly, the mismatch between design effort and functionality was argued by 
Avižienis et al. (2004) as one of the prime causes of development failures.  

If individuals’ erratic behaviors indeed occur to mismatches between 
development practices and the context then it is reasonable to believe that 
mismatches can signal potential erratic behaviors. As a consequence, by 
identifying mismatches, one can essentially identify potential erratic behavior. It 
follows that such erratic behaviors can be prevented, simply, by tailoring the 
development method so that the development practices fit the context.  
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The interviewee’s responses, indeed, showed that in the case company 
mismatches could potentially lead to erratic behaviors and eventually faults. For 
example, the interviewee explained a mismatch between time and resources and 
the practice of code reviewing. Such a mismatch results in abandoning code 
reviews in favor of catching deadlines and could lead to ineffective fault detection. 
Ineffective fault detection, in return, could lead to faults slipping through to 
operation. 

We have envisaged to use code review in projects and we finally don’t have time to do it; 
or resources. (interview 1) 

In another instance when asked about adopting agile practices the interviewee 
hinted that a mismatch between an organizational structure which allows a person 
to work in three projects and a communication channel of choice (Scrum’s daily 
standup meetings in this case) could be problematic. Such a mismatch could lead 
to miscommunication and eventually a fault slipping through to operation. 

You cannot do daily [stand up] meetings […] when one person is working for three 
projects. (interview 1) 

Moreover, possible erratic behavior regarding defect detection effectiveness was 

addressed when the interviewee pointed out a mismatch between ideal testing 

practices and the project size. (interview 1) 

If you are developing a software, it is difficult to define tests that will discover problems 
because the problems you can think about, you have already put in there. But, also in 
that case, we didn’t have the size scale to have two separate parts of organization [testers 
and developers]. (interview 1) 

Another example brought about was that of mismatch between tool support and 
coding standards. The interviewee expressed his concern that a lack of tool support 
would essentially lead to noncompliance with coding standards which is an erratic 
behavior.  

In general, we see that if you don’t have an automatic way to perform this verification of 
your work, you end up not doing it; so even if we have tried to define some things in the 
past in practice they are not applied. (interview 1) 

When asked about developers’ compliance with defined procedures and 
guidelines, the interview noted that assignment of tasks should match the 
background and ways of working of developers. Otherwise, a mismatch between 
the two might result in noncompliance. (interview 1) 

It’s a matter of also assigning, to each person working in the project, the activities that 
are more suited to the way of working, to the background. (interview 1) 
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Moreover, in another instance the interviewee implied that a mismatch between 
time pressure, and the audit practices could lead to minimal unit testing. Lack of 
sufficient unit testing could lead to faults slipping through to operation. 

I think it’s more time pressure, because, well, let’s say, for unit test which is probably the 
most useful, it requires a lot of maintenance and usually if you don’t have someone 
behind that really sees that you invest some effort in doing unit testing, the result is that 
you end up testing for the, well, for having the system working more or less; you don’t 
care about finding all the defects, but, you say when problem appears in the future, I will  
solve this specific problem; I won’t invest effort  in developing a test suite that will 
double my maintenance work. (interview 1) 

The data from the interview confirms that in the case company mismatches 
between the context and development practices can signal potential erratic 
behavior of individuals which could lead to faults slipping through. Therefore, a 
proactive prevention solution is recommended based on identifying and resolving 
such mismatches by appropriate tailoring of the development method. 

The idea of matching the software development to the needs of the context is 
well-established in the research community (Austin, & Devin, 2009; Hardgrave, 
Wilson, & Eastman, 1999; Iivari, 1989). According to Fitzgerald, Hartnett and 
Conboy (2006), method engineering and contingency theories dominate this 
research stream. While the contingency theory approach suggests selection of 
development to take place according to factors in the context from a portfolio of 
methods, the method engineering approach advocates method tailoring by adding 
and removing already verified and tested method ‘fragments’ (Fitzgerald et al., 
2006).  

In practice, there is indeed very little chance that a method is fully adopted 
and development methods are almost always subject to tailoring (Fitzgerald, 
Russo, & O'Kane, 2000). Tailoring allows adoption of practices according to 
contingencies in the context in order to maximize performance and quality (Austin, 
& Devin, 2009; Hardgrave, Wilson, & Eastman, 1999). Even standards are subject to 
tailoring. Fitzgerald et al. (2000) provided an example of a company that tailored 
the IEEE-std-1074 (1991) to the contingencies of the development context of each of 
their projects. Adoption of fault detection practices based on the contingencies in 
the context is not strange to tailoring either. Runeson, Andersson, Thelin, Andrews 
and Berling (2006), for example, recommended fault detection practices to be 
chosen based on Artifact, Types of defects, Actor, Technique, Purpose, Defect 
detection activity and Evaluation criteria factors. Sidky and Arthur (2007), on the 
other hand, proposed a three stage model to guide the selection of appropriate 
agile practices that fit the context of safety-critical projects.  

The interviewee confirmed that tailoring of the standards does take place in 
the case company in the early stages of development based on criticality level of 
system under development. 
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So usually there is request for performance and criticality analysis of the system. This 
means, in this space standards, four levels of criticality that depends on the 
consequences of the failure of the systems or parts of the system. So once you perform 
this analysis and decide what is your criticality level then it drives what practices you 
have to follow per standard.  You tailor the standard. (interview 1) 

In terms of quality, Fitzgerald et al. (2006) reported a case in which fault density 
was reduced by a factor of 7 by tailoring agile practices. Even though such 
achievement could be attributed to the use of agile methods, Fitzgerald et al. (2006) 
argued that the synergistic effect of tailoring could not be overlooked. 
Nevertheless, not much is known about practical ways of performing the tailoring 
(Fitzgerald et al., 2000).  To respond to this challenge a number of studies have 
tried to identify the contextual factors that drive the tailoring of the development 
process (Bern, Pasi, Nikula, & Smolander, 2007; Clarke, & O’Connor, 2012). Even 
though the authors of such studies have done comprehensive work for identifying 
contextual factors, their findings are often too broad in scope and scale to be 
applicable in practice. Therefore, it would be beneficial if the scope is narrowed 
down to factors that affect faults slipping through to operation. To this end, in this 
research, taxonomy of contextual factors affecting faults slipping through to 
operation is developed. This taxonomy is instrumental to identifying and resolving 
mismatches between development context and practices which can in return drive 
the tailoring of the development process. 

5.1.3 Objectives and solution 

With RCA being the main instrument toward identification of root causes of faults, 
proactive RCA appears to be a legitimate goal to prevent faults from slipping 
through to operation. Based on the findings in the first phase of this research 
endeavor, the solution to such a proactive approach can capitalize on identifying 
mismatches between the context of development and practices. To this end, three 
objectives are defined as follows: 

(1) developing a taxonomy of contextual factors that can affect faults slipping 
through to operation in the literature 

(2) defining a method for proactive RCA (PRORCA)  
(3) demonstrating the use of the PRORCA method  

Completing the first objective assists the researcher and practitioners to get a 
strong foothold for identifying mismatches between development context and 
practice with respect to faults slipping through to operation. Without any doubt, 
the list of identified contextual factors is not a definitive list; nonetheless, it 
provides the research and practice community with a platform, upon which future 
activities can be launched. Developing taxonomy is well-justified since it is a 
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language for communication. Taxonomy of contextual factors that affect 
prevention of faults slipping through to operation helps differentiate between 
different factors and between factors and practices. The second objective is self-
explanatory and upon its completion PRORCA as a proactive RCA method is 
developed. The first two objectives will be addressed in second phase of this 
research endeavor.   

In design science research development of an artifact requires demonstration 
of its use (Peffers et al., 2007). Therefore, in phase three of this study the use of the 
PRORCA method will be demonstrated for two project of the case company. In the 
same phase the PRORCA method is evaluated. 

5.2 Phase two 

This phase of the research maps to the design and development stage in DSRM. 
The outcome of Phase two is taxonomy of contextual factors that can affect faults 
slipping through to operation and the PRORCA method. The taxonomy is an 
analyst’s guiding light to find mismatches between context and practice which, 
itself, is the main tool at the analyst’s disposal for proactive RCA. Development of 
the taxonomy was done using directed qualitative content analysis (Hsieh and 
Shannon 2005).  

Content analysis is one of the semiotic modes of analysis used in qualitative 
research (Myers, 1997). Semiotics is a mode of analysis in which signs and symbols 
in language are scanned with the purpose of drawing conceptual categories from 
them (Myers, 1997). Such categories can be used for testing different aspects of a 
theory. Content analysis is used to understand or explain a phenomenon through a 
systematic process of coding and identifying patterned regularities in text (Hsieh, 
& Shannon, 2005; Myers, 1997). There exists three different approaches to content 
analysis, namely, conventional, directed, and summative (Hsieh, & Shannon, 
2005). The main distinction between a directed content analysis and a conventional 
one is that in the directed approach, previous research findings or theory is used to 
initialize a set of predetermined categories (Hsieh, & Shannon, 2005).  It is based on 
this set of predetermined categories that the researcher starts the coding process in 
order to understand or explain a phenomenon. 

Since a set of predetermined categories initialize the analysis, a directed 
approach to content analysis can provide evidence for supporting or 
nonsupporting previous research findings or theory (Hsieh, & Shannon, 2005). 
Additionally, if new text is identified that cannot be coded according to the 
predetermined categories, new categories can be defined. “Newly identified 
categories either offer a contradictory view of the phenomenon or might further 
refine, extend, and enrich the theory“(Hsieh, & Shannon, 2005). Due to such 
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convincing practicalities of directed content analysis, it was adopted for 
developing taxonomy of contextual factors. Adoption of this technique resulted in 
a taxonomy that was developed by confirming and/or extending the 
predetermined code categories derived from the findings of previous research.  

In order to define the initial set of code categories for developing the 
taxonomy of contextual factors, it was found necessary to determine the best way a 
development context can be understood. It was decided that such an 
understanding can be achieved by examining the context in terms of its constituent 
elements from different perspectives. 

According to Sjøberg et al. (2008), in a typical software engineering situation 
“an actor applies technologies to perform certain activities on an (existing or 
planned) software system”. From this statement, four key elements of a typical 
software engineering situation are understood to be actor, technology, activity and 
software system. On the other hand, people, processes and products (3Ps) as the 
key elements in software development have repeatedly been linked to quality of 
software (Allen, 2009; Norris, Rigby, & Stockman, 1994; Shah, 2014).  The 3Ps are 
also the main categories of metrics used in fault prediction literature for predicting 
the number and occurrence of faults (Herrmann, 1998). The similarities between 
the four components of software engineering as identified by Sjøberg et al. (2008) 
and 3Ps are uncanny; the actors of Sjøberg et al. (2008) are in fact the people aspect 
of the 3Ps; the software system is the product; and the activities are the processes. 
Since it seemed to the researcher that the 3Ps were broader in scope compared to 
the four elements of Sjøberg et al. (2008), 3Ps were chosen as the constituent 
elements of software development. 

Additionally, the development context can be described from different 
perspectives. One shall examine the context from all perspectives if they intend to 
get a complete view of it. It could be argued that (1) region, (2) organization, (3) 
project and (4) team perspectives can provide the best viewpoints to software 
development context. These perspectives, in fact, represent social groups of which 
an individual is a member of during software development. An individual could 
be a member of many social groups; however, these four groups are of significance 
because they relate to development. For instance, a developer can belong to a 
certain political party but there is little to no direct way that factors in the political 
party context can affect that developer’s erratic behavior. Each of these social 
groups is a subgroup of the higher level group and can affect an individual’s 
behaviors and preferences in a manner different from the other. Therefore, these 
four perspectives, region, organization, project and team, were considered 
sufficient to provide a window to the context of development. 

To summarize, the four perspectives of context and the 3Ps of software 
development were considered to be two dimensions by which the context can be 
understood. While the 3Ps could guide us to understand the context in terms of its 
constituent’s elements, the four perspectives of context could provide a 
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comprehensive view of it. These two dimensions were, therefore, selected as the 
predetermined code categories based on which directed content analysis (Hsieh, & 
Shannon, 2005) was conducted.  

5.2.1 Taxonomy of contextual factors 

The development of the taxonomy was carried out in four steps using directed 
content analysis (Hsieh, & Shannon, 2005). The initial coding categories necessary 
to perform directed content analysis were selected to be 4 perspectives of 
development context and 3Ps as key constituent elements of development. For the 
purpose of coding, a factor was defined as any phenomena, stimulant or 
circumstance that can be characterized as part of the context.  

In order to identify the contextual factors eight distinct areas of research 
related to fault prevention were scanned. The academic articles reviewed in this 
phase were the same ones reviewed in phase one. However, a number of topic 
areas from phase one were excluded on the grounds of being irrelevant to fault 
prevention. Furthermore, a number of studies were removed. These studies were 
Zhang, & pham (2000) and Jacob et al (2006) and were left out because they 
introduced a set of factors which could influence the development of the 
taxonomy. TABLE 6 shows the topic areas and the number of papers in each topic 
area that was subject to directed content analysis (Hsieh and Shannon 2005). 

TABLE 6 Topic areas investigated for developing taxonomy of contextual factors 

Topic area number of articles reviewed 

fault detection 45 

human factors  5 

reliability modeling 6 

Fault reporting and RCA 31 

fault prediction (change analysis, ) 24 

defect analysis 7 

fault reduction 17 

software reliability engineering 6 

The first step in conducting directed content analysis was highlighting all the phrases 
from each study that gave the impression of introducing or explaining a potential 
contextual factor. Hsieh and Shannon (2005), proposed that in cases where 
identifying all instances of a phenomenon is favorable, the coding begin after 
highlighting all the text that appears to represent that phenomenon. Highlighting 
the phrases in the text before starting to code increases trustworthiness of a 
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directed content analysis (Hsieh, & Shannon, 2005). A phrase was considered for 
highlighting if it belonged to any of the following groups of phrases. 

 Phrases that specifically drew a causal relationship between fault 
introduction, detection and fix. 

 Phrases that explained characteristics of the environment in which the study 
took place, the system that was the subject of study, and the people 
involved 

 Phrases that explained a reason for error-proneness or fault proneness or 
drew a correlation between them 

 Phrases that addressed improvement in failure rate, fault rate, severity, 
priority and reliability in general 

 Phrases that directly or indirectly mentioned influential factors using terms 
like influence, affect, cause, result in and etc.  

 Phrases that addressed lack of a practice, tool or phenomena and its 
consequences 

 Phrases that addressed problems and difficulties in development 

 Phrases that addressed efficiency and effectiveness of detection, analysis, 
and fix 

The second step included scanning the highlighted phrases in the first step and 
coding potential contextual factors according to predetermined code categories. 
The predetermined code categories considered in this step were 3Ps. Coding 
according to four perspectives of context was performed later on. Upon 
identification of a factor, it was recorded in a master file along with the source in 
which it was found. Any factor that could not be categorized in accordance with 
the predetermined code categories was also recorded in the master file to be 
revised later. In total, a whopping 455 factors were found from 86 sources were 
recorded in the master file. 

Phase three of content analysis was carried out to refine the 455 factors. 
Refining was initiated by removing duplicate factors and was later complemented 
by reexamining the uncategorized factors and redefining the predetermined codes. 
At this stage, it was revealed that 3Ps of context characteristics (people, process, 
and product) were inadequate to describe all the factors identified. After 
comparison and analysis of all factors, including the uncategorized ones, context 
characteristics were extended to human, artifact, environment, and activity.  

Environment factors, as the name implies, refer to phenomena or stimulants 
in the surroundings of the people involved, the practices and deliverables. Factors 
related to high level strategies and supporting technologies are included as 
environment factors. Human factors are those relating to individual’s 
characteristics, behaviors, duties and their interactions with other individuals. The 
activity factors characterize the context in terms of the practices carried out and the 
processes followed to develop a product. It is important to emphasize that these 
factors do not refer to technicality of activities and how they are done, rather the 
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existence and quality of activities that are known to affect the development 
practices and other contextual factors. Finally, artifact factors address 
characteristics of any deliverable produced during development. The artifact could 
be a simple document which is the outcome of requirement analysis, or design. It 
could be the source code or the whole software system in general. It is note-worthy 
that the context is dynamic. It changes synchronically as the development 
progresses. One cannot map the context according to the contextual factors 
statically and expect them to remain unchanged during the whole development. 
Therefore, it is necessary to treat the context as a living organism that needs care 
and nurturing. Mismatches between the context and development practices cannot 
all be figured out during the planning phase; rather they should be revisited as 
deemed necessary as the development progresses. All in all, after refining the 
taxonomy and duplicate removal, 144 factors remained.  

The third step was coding the factors again; this time according to the four 
perspectives of context. The four perspectives of context adequately covered all the 
factors and as a result were left unchanged. Finally, in the fourth step, the 
identified factors were reexamined to find factors that were conceptually similar. 
This step was different than duplicate removal. The factors that are conceptually 
similar are not duplicate factors; rather they refer to different aspects of the same 
phenomena or stimulant that affects fault prevention. Consequently, conceptually-
similar factors were merged by choosing an umbrella term to describe them.  

At the end of the four steps of directed content analysis, 85 factors were 
identified and taxonomy of contextual factors was developed. Due to space 
limitations the complete taxonomy of contextual factors that can affect fault 
prevention is presented in appendix 1. An empty template of the taxonomy is 
presented as TABLE 7. On one dimension the perspectives of the context and on 
the other the constituent elements are visible. The taxonomy will aid an analyst in 
identifying mismatches between context and practices. 

TABLE 7 template of the taxonomy of contextual factors 

 Environment 
factors 

Artifact factors Activity factors Human factors 

Region     
Organization     
Project     
Team     

5.2.2 PRORCA method 
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RCA is one of the main instruments proposed in the literature to prevent faults 
from slipping through to operation. The PRORCA method is a solution to the 
difficulties of conducting RCA. It is developed to shift the predominantly reactive 
nature of RCA to proactive and to liberate it from reliance of fault data. The 
difficulties of conducting RCA are discussed in section 5.1.1 in more detail. The 
mechanism of the PRORCA method is adapted, to a large extent, from the ARCA 
method (Lehtinen et al., 2011) as it offers flexibility and freedom from fault data. 

Founded on the finding that mismatches between context and practice can 
signal individual’s erratic behavior, the PRORCA method comprises three steps: 
(1) context mapping (2) Erratic behavior mapping and, (3) Corrective action 
innovation. In the first step, the context of the development is mapped. This task 
can be completed using the taxonomy of contextual factors developed in section 
5.2.1. In the second step, mismatches between the context and practices and in 
elements of the context itself, is identified and using causal maps (Bjørnson, Wang, 
& Arisholm, 2009) the relationship between mismatches and individuals’ erratic 
behaviors will be mapped. In the last step, corrective actions will be introduced. 
These corrective actions will be derived from the mismatches mapped in the 
previous step.  

Two roles are defined for carrying out PRORCA: the participant and the RCA 
facilitator. The distinction between the participant and the facilitator roles is in the 
logical design of the method and in reality the facilitator can take the role of the 
participant, as well, and vice versa. Such a design allows logical distribution of 
responsibilities between the participant(s) and the facilitator while allowing the 
responsibilities to be assigned to individuals flexibly with respect to available 
project resources and structure. The role of Facilitator is similar to that of 
Moderator in inspection (Aurum, Petersson, & Wohlin, 2002). The facilitator guides 
and controls the RCA. The participant, on the other hand, has the knowledge and 
know-how of context and practices of development. The facilitator enters the realm 
of the participant in order to make it possible for the participant to identify the 
mismatches, map the relationship between mismatches and erratic behaviors, and 
innovate corrective actions. It is essentially the participant(s) that fulfill(s) the goals 
of the RCA. The participant(s) can be any of the stakeholders in the development. 
Project managers, quality managers, analysts, designers, developers, testers, 
reviewers, team leaders could all take the role of participant. The decision of who 
actually becomes a participant depends on the resources available and is up to the 
facilitator to decide. 

As discussed in section 5.1.2 individuals are actors whose erratic behaviors 
lead to fault introduction, ineffective, and inefficient detection and ineffective and 
inefficient fix. Identifying mismatches between the development context and 
practices can signal potential erratic behavior of individuals. Acquiring a good 
understanding of the context is necessary for identification of such mismatches. In 
step one of PRORCA, the goal is to map the context based on which mismatches 
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can be identified later. To this end, the RCA facilitator selects the participants and 
outlines meetings. The meetings can be in the form of qualitative interviews, focus 
group meetings, or any other form according to available resources. Plus, as 
proposed by Lehtinen et al. (2011), the data can be collected and handled either 
anonymously or publicly. The number of meetings is also a decision for the 
facilitator to take. If deemed sufficient for mapping the whole context, one meeting 
will wrap this step. Otherwise, further meetings are held. During the meeting(s), 
the facilitator provides the participant(s) with the taxonomy of contextual factors, 
presented in appendix 1, and records the participants’ perceptions of the context. 
The recording could be done in an Excel file in which the value of each contextual 
factor is inputted in a key-value pair fashion. Any other method of recording is 
acceptable as long as the facilitator consider it sufficient.  As soon as the facilitator 
perceives the context to be well understood, step one is complete. Mapping the 
context would help identifying the mismatches between the context and practices 
in the next step. 

The prerequisite of step two is a good understanding of context and practices. 
So far, as a result of completing step one, the context has already been understood 
and the wise selection of participants has ensured a good knowledge of 
development practices. The second step is carried out with the purpose, firstly, to 
identify mismatches between the context and practices and, secondly, to map the 
relationship between mismatches and individuals’ erratic behaviors. To this end, 
the RCA facilitator plans and holds meetings with the participants. Similar to step 
one, the form and the number of the meetings are flexible and are up to the 
facilitator to decide. 

During the meetings, the participant(s), with the help of the facilitator, 
identify the mismatches. The mismatches can be written of post-it notes which 
later will be used for mapping. Next, the relationship between mismatches and 
erratic behaviors will be mapped using a causal map (Bjørnson et al., 2009) to 
potential erratic behaviors. The potential erratic behaviors, coupled with other 
mismatches, can lead to other erratic behaviors.  

FIGURE 5 shows the template of a causal map. Causal maps are used in 
Lehtinen et al. (2011) and Bjørnson et al. (2009) to structure the cause-effect 
relationships. In PRORCA, a simple freehand variety of causal maps similar to the 
one used in Bjørnson et al. (2009) is used. The nodes, in this map, are either 
mismatches or individuals’ erratic behaviors and each node appears just once in a 
causal map. The directed arrows, on the other hand, indicate cause-effect 
relationships. The arrows in PRORCA can indicate boolean operations if necessary. 
For example, in FIGURE 5, mismatch 1 and mismatch 2 together can cause erratic 
behavior 1. Or, alternatively, mismatch 3 can cause erratic behavior 1. Unlike, 
mapping the cause-effect relationships in Bjørnson et al. (2009), in which mapping 
is done knowing the problem, in PRORCA, the individuals’ erratic behaviors are 
unknown beforehand. The information that is available for mapping in PRORCA is 
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the mismatches and the contributing elements to faults slipping through to 
operation. Therefore, in PRORCA the causal map is constructed bottom-up and 
proactively in the light of fault introduction, ineffective and inefficient detection 
and ineffective and inefficient fix.  
 

 
FIGURE 5 Causal map template 

Both the facilitator and the participant(s) can draw upon their experience and 
knowledge to map the mismatches to erratic behaviors. The facilitator should 
promote discourse at this stage. The participant should convince the facilitator and 
other participants that an erratic behavior would occur due to a certain mismatch 
or combination of mismatches using reasonable arguments. If the participant 
manages to convince others of the possibility of an erratic behavior, the facilitator 
draws an arrow between the mismatch and that erratic behavior. Both the 
mismatches and erratic behaviors can be written on post-it notes and put on a 
board. This process will be iterated until the participants come into a conclusion 
that all mismatches are mapped to possible erratic behaviors.  

The final step of PRORCA is innovation of corrective actions. Not much has 
been said in the RCA literature about developing corrective actions (Lehtinen et al., 
2011). However, In PRORCA, innovating corrective actions is done in a 
straightforward manner by deriving corrective actions from the mismatches 
leading to individuals’ erratic behaviors. In this step, the facilitator guides the 
participant(s) to innovate feasible corrective actions. Corrective actions should 
either prevent the emergence of circumstances that give rise to human cognitive 
constraints or resolve a mismatch. To this end, meetings are held by the facilitator, 
in accordance with the resources available. Yet again, the form and the number of 
the meetings are for the facilitator to decide. During the meetings the participant(s) 
prioritize the erratic behaviors. The prioritization of erratic behaviors drives the 
agenda of the meeting and the innovation of corrective actions.  

It is note-worthy, that the three steps need not be conducted in separate 
meetings. In one single qualitative interview or focus group meeting all the steps 
can be completed. The facilitator should plan the PRORCA according to the 
available resources, and participants’ schedules. This makes PRORCA a flexible 
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and lightweight method to be used in SMEs as well as large enterprises. As regards 
the appropriate time for carrying out PRORCA, the dynamic and constantly 
changing nature of the development context should be considered. In TABLE 3, it 
was shown that reactive RCA methods in the literature are recommended to be 
performed either after each stage or after each iteration (Bhandari et al., 1993, 
Jalote, & Agrawal, 2005). Kalinowski et al. (2008) added that RCA can be done in 
the wake of an unprecedented event as well. Following the reverse of these 
suggestions, PRORCA is recommended to be conducted before each major stage of 
development or iteration. Additionally, PRORCA can be conducted when signs of 
problems begin to surface in a project. 

5.3 Phase three 

In this phase firstly, the use of the PRORCA method was demonstrated in line with 
the purpose of the demonstration stage in DSRM (Peffers et al., 2007). To this end, 
the PRORCA method was applied in two ongoing projects of the case company in 
order to demonstrate its applicability in the field. The case company was the same 
company represented before. Later on, an evaluation of the PRORCA method was 
done at the end of this phase. 

5.3.1 Demonstration 

The PRORCA method is used in two small-scale projects of the case company. 
Small in this context refers to a project that one person can handle all the macro 
and micro development tasks (Boehm 1975). 

Project 1 was a prototype project in the domain of avionics in which onboard 
software system prototypes were being developed to be used in future spacecrafts. 
Project two was also in the domain of avionics, however, in this project a system 
including both hardware and software was under development. This system is a 
replacement for a currently onboard system on the International Space Station 
(ISS), hence, a low level of tolerable risk and necessity for backward compatibility. 
In both cases, the software developer had close contact with the team leader and 
participated in meetings with their respective clients. At the time of conducting the 
PRORCA, project one was in late stages of development and mainly validation 
activities was taking place, while project two was still in the early stages. 
Therefore, corrective actions would still benefit both projects. 

The PRORCA method comprise of three steps: (1) context mapping (2) Erratic 
behavior mapping and, (3) Corrective action innovation. For the purpose of 
mapping the development context, the RCA facilitator held two online interviews 
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with the main software developer in each project. In this step, the researcher took 
the role of the RCA facilitator and the main developer in charge of each project was 
the participant. The choice of online interview over focus group meetings or face-
to-face meetings was made based on the availability of participants and the 
geographical distance between the researcher and the participants. 

The interviewee for the first project was a software engineer with over 20 
years of experience in defense and space industry. The interviewee had been 
working for the case company for four years at the time of the interview and was 
the fourth engineer assigned to this project in three years. The interviewee for the 
second project was a system engineer with more than six years of experience in 
telecommunication and space industries. He was responsible for design and 
development of the software and selection of the hardware in the second project 
which was running for over two years.  

The interviews were semi-structured and in order to avoid interviewer bias, 
the questions were not directly addressing the context; rather they were general 
questions about how development was being carried out. In this step, as opposed 
to the guidelines of step one, the researcher did not share the taxonomy of 
contextual factors with the interviewees in any of the projects to avoid 
confirmation bias. However, in retrospect, the experience of the analysis of the data 
in later stages showed that sharing the taxonomy with the participants would have 
been constructive. The interviews were recorded and later transcribed.  

In order to map the context, the text of the interviews was subject to directed 
content analysis (Hsieh, & Shannon, 2005). In directed content analysis, coding 
begins based on a set of predetermined code categories. Taxonomy of contextual 
factors, presented in appendix 1, was used for this purpose. At the end of this step, 
for each project an Excel file was created, holding the key-value pairs of contextual 
factors. Appendices 2 and 3 show the key value pairs for identified contextual 
factors for each project. It is important to note that due to time limitations, the 
interview was limited to the project and team perspectives of the taxonomy and 
did not cover region and organization perspectives. 

In step two of PRORCA, erratic behaviors are mapped using directed graphs. 
Before the mapping starts, mismatches between practices and the context must be 
identified. Due to unavailability of further interviews with the company 
representatives in each project, the researcher took both RCA facilitator and 
participant roles to find the mismatches and map potential erratic behaviors. 
Needless to say that this was not an ideal situation but the time limitations of 
participants did not allow further meetings. In order to find the mismatches, the 
researcher used personal knowledge and experience to find the mismatches 
between key-value pairs available in the Excel files created at the end of step one. 
As soon as no further mismatches could be identified, mapping the erratic 
behaviors started. FIGURE 6 and FIGURE 7 demonstrate the map of erratic behaviors 
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and their relationship with mismatches and other erratic behaviors in the first and 
second project, respectively. 

 

FIGURE 6 Project one causal map  

The causal map of project 1 (FIGURE 6) shows three separate paths, each of which 
leading to different erratic behaviors. The first path is visible on the top of the 
figure and shows that mismatch 1 leads to erratic behavior 1. Furthermore, this 
path indicates that erratic behavior 1, mismatch 2 and mismatch 3 could result in 
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erratic behavior 2. The second main path in FIGURE 6, which is visible in the 
middle of the figure, depicts a complicated network of mismatches and erratic 
behaviors. Erratic behavior 4 stands out in this path, having a central role and 
leading to erratic behavior 5, 11 and 8. Lastly, the third path shows mismatch 8 
leading to erratic behavior 7. This path can be viewed at the very bottom of the 
figure. Description of mismatches for the first project is provided in TABLE 8. 

TABLE 8 Description of mismatches for the first project 

Mismatch # Between Description 

Mismatch 1 Project schedule 
and developer 
tasks 

If the schedule is tight and the developer has a lot of tasks 
to complete, the level of commitment to defect data 
collection falls 

Mismatch 2 level of 
commitment to 
defect data 
collection and the 
practice of 
prioritizing the 
defect fixes 

It was stated by the interviewee that as the schedule 
becomes tighter, the level of commitment to defect data 
collection falls. Lack of commitment to defect data 
collection might primarily cause a problem when you 
consider that in the project defect fixes are prioritized. A 
defect that has not been reported might go unnoticed in 
planning and scheduling of fault fixes and subsequently 
slip through to the final product.  

Mismatch 3 Level of 
commitment to 
defect data 
collection and 
staff changes 

If faults are not collected properly, considering that the 
project has seen several staff changes before, there is a 
chance defects would go unnoticed 

Mismatch 4 evolvability and 
frequency of 
changes in staff 
members 

When members sacrifice commenting in expense of 
catching deadlines there is a threat that if a staff change 
occurs, the next person will have difficulty understanding 
what was supposed to go on, what was supposed to be 
developed and etc. Such misunderstanding of the works of 
previous developers can lead to introduction of faults.  

Mismatch 5 Project schedule 
and 
documentation 
practices 

Quality of documentation drops at the expense of catching 
deadlines 

Mismatch 6 Reliance on 
documentation, 
quality of 
documentation 
and frequency of 
staff changes 

If quality of documentation drops at the expense of 
catching deadlines then reliance on documentation can 
introduce problems. The interviewee however claimed 
that he relies less on documentation in the latest phases. 
This does not solve the problem however.  If the 
documentation is not relied upon for development, then 
development becomes a matter of developer’s experience 
and skills, considering the frequency of staff changes even 
if the current developer is highly skilled and experienced, 
the staff who are supposed to continue development in 
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Mismatch # Between Description 

future or maintain and update the product in future might 
inadvertently introduce faults. 

Mismatch 7 Degree of trust in 
other members 
and 
documentation 
quality 

High trust in what previous members have done coupled 
with documentation quality that drops at the expense of 
deadlines, might inhibit critical analysis of documentation 
and result in faults. 

Mismatch 8 Availability of 
feedback with 
number of project 
members  

Since there is only one person doing everything in this 
project, if that person does not receive constructive 
feedback, he is prone to not noticing his own mistakes. The 
interviewee admitted that this is not ideal. Even though 
the meetings with the customer can act as a feedback 
process, it might simply be too little too late.  

Mismatch 9 Developer 
experience with 
DSDM and 
development 
method chosen 

The interviewee stated that an agile development method 
called DSDM with a number of iterations were planned for 
the project in the beginning, he also admitted his lack of 
experience with this method. Had they actually stuck by 
their plans to develop using DSDM, such lack of 
experience with the chosen development method of the 
sole and main developer of the project could have led to 
ad-hoc development practices. However the interviewee 
mentioned that they went through one V-cycle at the end. 

Mismatch 
10 

Intention to reuse 
in future and 
availability of 
definitions and 
guidelines 

Even though the interviewee expressed his lack of 
information whether this prototype project would 
continue, he did express that they intend to reuse several 
components in future. If this is the case, then lack of high 
quality documentation and non-evolvability of source 
code could lead to introduction of faults. Plus definitions 
and guidelines would be necessary. As the interviewee 
mentioned they are not doing any extra effort. 

Mismatch 
11 

Quality of 
documentation, 
reliance on 
documentation 
and timespan 
between updates: 

As the interviewee mentioned some inconsistencies in the 
documents goes unnoticed until they are reported by the 
customer, in such a case the inconsistencies are fixed in 
next stages, however, this lag coupled with non-reliance 
on documentation toward the final stages by the developer 
might come at a high price of developing using ad-hoc 
processes. Some things might be forgotten or go unnoticed. 

Mismatch 
12 

Commenting 
practices and 
project schedule 

When members sacrifice commenting in expense of 
catching deadlines 

Descriptions of erratic behaviors for the first project, presented in FIGURE 6, are 
provided in TABLE 9. The last column of the table includes the cause of each erratic 
behavior. As mentioned before each erratic behavior can be caused by different 
causes. For example, erratic behavior 3 can be caused either by mismatch 4 or 
erratic behavior 5. Alternatively, existence of mismatches and erratic behaviors 
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might have a synergistic effect leading to other erratic behaviors. Erratic behavior 
5, for instance, is cause by the existence of both erratic behavior 4 and mismatch 6. 

TABLE 9 Description of erratic behaviors for the first project 

Erratic behavior # Description Cause 

Erratic behavior 1 Noncompliance with defect 
reporting procedures 

Mismatch 1 

Erratic behavior 2 Defects go unnoticed in planning 
and scheduling of defect fixes 

Erratic behavior 1 and mismatch 2 
and mismatch 3 

Erratic behavior 3 Lack of sufficient knowledge about 
the current state of development 

Mismatch 4 or Erratic behavior 5 

Erratic behavior 4 Noncompliance with 
documentation procedures 

Mismatch 5 

Erratic behavior 5 Non-reliance on documentation for 
development 

Erratic behavior 4 and mismatch 6 

Erratic behavior 6 Lack of critical analysis of 
documents 

Mismatch 7 and Erratic behavior 4 

Erratic behavior 7 Not noticing self-mistakes Mismatch 8 

Erratic behavior 8 Non-compliance with the 
development method and defined 
procedures 

Mismatch 9 or Erratic behavior 4 
and mismatch 11 

Erratic behavior 9 Delayed delivery Erratic behavior 8 

Erratic behavior 10 Non-evolvability of the source 
code 

Mismatch 12 

Erratic behavior 11 Possible reuse of components 
without sufficient knowledge  

Erratic behavior 10 and Erratic 
behavior 4 and mismatch 10 

 

FIGURE 7 Project two causal map  
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The causal map of project 2 (FIGURE 7) shows two separate paths. The first patch 
depicted on the top shows the interconnections between mismatches 1, 2, 3, 4 and 
erratic behaviors 1, 2, 3, 4, 5. The second path, visible on the bottom of the figure, 
shows the potential cause-effect relationship between mismatch 5 and erratic 
behavior 6. Description of mismatches for the second project is provided in TABLE 

10. 

TABLE 10 Description of mismatches for the second project 

Mismatch # Between Description 

Mismatch 1 Necessity of 
backward 
compatibility and 
concurrency of 
development  

While part of the system needs to hold backward 
compatibility with scripts developed by experiment 
container developers, since these developers are working 
in parallel to the team, no such script is provided to the 
development team. This inconsistency could result in 
faults in the form of unsupported previous behavior.  

Mismatch 2 Selection of defect 
detection 
practices and 
reliance on 
customer 
feedback 

Late reviews held with the customer and reliance on such 
meetings for feedback results in long time-span between 
updates to documents and late delivery 
 

Mismatch 3 Reliance on 
documentation 
and time-span 
between updates 
to documents 

Considering that the developer relies heavily on 
documentation, long time-span between updates to 
documents might lead to faults being introduced 
 

Mismatch 4 Availability and 
quality of 
documentation 
and tool support 

The interviewee wished for better tool support for 
documentation. In case the tool is difficult to use and 
handle, considering that high quality and availability of 
documentation is necessary for this project and 
considering that the developer relies heavily on 
documentation, this inconsistency might lead to improper 
handling or update of the document and eventually a 
fault. 

Mismatch 5 Availability of 
feedback with 
number of project 
members 

No one inside the company is reviewing the works of the 
developer, this means that the point of departure is 
meetings and reviews with the customer, however such 
meetings are too little, too late. 

Descriptions of erratic behaviors for the second project, presented in FIGURE 7, are 
provided in TABLE 11. The last column of the table includes the cause of each 
erratic behavior. 
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TABLE 11 Description of erratic behaviors for the second project 

Erratic behavior # Description Cause 

Erratic behavior 1 Development without regards to 
requirements 

Mismatch 1 

Erratic behavior 2 Late update of documents Mismatch 2 or mismatch 4 

Erratic behavior 3 Delayed delivery Erratic behavior 2 or Mismatch 1 

Erratic behavior 4 Development based on incorrect 
information 

Erratic behavior 2 and mismatch 3 

Erratic behavior 5 Non-compliance with 
documentation procedure 

Mismatch 4 

Erratic behavior 6 Not noticing self-mistakes Mismatch 5 

 
The goal in the last step of PRORCA is innovation of corrective actions. The 

corrective actions can be derived from the mismatches in order to prevent erratic 
behaviors. Yet again for completing this step, the researcher was both the 
participant and the RCA facilitator. In this step corrective actions could be 
prioritized so that a sudden change of routines does not distress the development. 
Since, deriving corrective actions without further knowledge of possibilities in the 
project is hardly possible, and because no further interviews were available, only 
few examples of possible corrective actions were innovated in this step.  

Looking at the causal map of the first project developed in the previous step 
indicates that ‘erratic behavior 4’ is of central importance. Since only ‘mismatch 5’ 
is considered as the root of this erratic behavior, the top priority in project one 
should be addressing that mismatch. To this end, the recommended corrective 
actions could be (1) changing the documentation practices or (2) increasing the 
number of developers in order to decrease the workload of the current developer.  

In the second project, ‘erratic behavior 2’ has a central role. Since ‘mismatch 2’ 
or ‘mismatch 4’ could lead to this erratic behavior, solutions should address both 
of these mismatches. Corrective action for ‘mismatch 2’ could be adding extra 
review sessions with internal reviewers. On the other hand, ‘Mismatch 4’ could be 
resolved by introducing new documentation tools or recruiting new members into 
the project to care for and handle the documentation.  

In this step the researcher, demonstrated the straight-forward manner in 
which corrective actions can be innovated for ‘erratic behavior 4’ in the first project 
and ‘erratic behavior 2’ in the second project as examples. Corrective actions for 
other erratic behaviors can be generated in the same fashion.  

5.3.2 Evaluation 

Evaluation of the PRORCA method is done in terms of the difficulties of carrying 
out RCA outlined in section 5.1.1. First and foremost, it should help the analyst 
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prevent faults proactively. Secondly, it should be resource-friendly. Furthermore, it 
should benefit SMEs as well as larger companies. And, lastly, the degree of its 
vulnerability to fault reporting mechanisms should be low. 

PRORCA with its reliance on mismatches between the development context 
and practices is not only theoretically proactive, but, proved to be proactive in 
practice too. In section 5.3.1 potential erratic behaviors that could lead to fault 
introduction, ineffective and inefficient detection and ineffective and inefficient fix 
were identified in two ongoing projects using PRORCA and corrective measures 
were recommended. This feature of PRORCA is in stark distinction to the existing 
RCA methods in the literature that are all reactive in nature. This is, by no means, 
diminishing the value of other RCA methods; rather it shows that PRORCA can 
complement reactive RCA methods by adding a forward feed to fault prevention 
activities. 

Resource-wise, PRORCA benefits from the same advantages attributed to 
ARCA method (lehtinen et al., 2011) and more. It can be as lightweight or as 
heavyweight as necessary. It was demonstrated, in section 5.3.1, that even one 
interview with a knowledgeable participant can surface erratic behaviors. The total 
amount of time spent on each of the interviews was 90 minutes only. Mismatch 
identification and erratic behavior mapping for both of the projects took less than 4 
man hours. Plus, non-reliance of PRORCA on fault data means there is no need for 
heavy startup costs. It is, also, liberating for the staff because there would be no 
need for the time-consuming task of reporting faults in accordance with a specific 
classification schema (Chillarege, et al., 1992). It is evident that PRORCA is not 
vulnerable to the problems inherent in fault reporting mechanisms because it does 
not mandate collection of fault data.  

Resource-friendliness, flexibility and non-reliance on fault data are 
characteristics that make PRORCA not only applicable in large companies but also 
SMEs. In fact the case company in this research is an SME and the size of each 
project was small in terms of the number of project staff. But still, it was 
demonstrated that projects and companies of this size can benefit from applying 
PRORCA. All in all, PRORCA is not subject to difficulties of applying reactive, 
fault-data-oriented RCA methods. 

Even with due consideration of all of its merits, PRORCA is vulnerable to 
being left out of fault prevention mechanisms in companies due to its invisible 
gains. Since PRORCA is a proactive method and does not address an existing 
problem, it can easily be considered as a luxurious practice by management. The 
situation is exacerbated by the lack of empirical results approving its effectiveness 
in preventing faults from slipping through to operation. For these reasons, 
longitudinal studies investigating the benefits of applying RCA and its effect on 
fault rate and fault severity is necessary. This task, however, is left to future 
research for now. 
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The taxonomy of contextual factors developed in this research endeavor is 
instrumental to conducting PRORCA. However, it is by no means exhaustive or 
finalized. As an example, one might think that language as a contextual factor 
should be included in the region perspective. Even though, it is arguable that 
language is covered in the taxonomy as the communication factor represented in 
the project perspective, the staff of a company might think otherwise. In such a 
case the taxonomy provides enough flexibility for the language factor to be added 
to the region perspective. In fact, based on the knowledge and experience of the 
staff of the context, the taxonomy can be customized in a way to represent the 
context in the best possible way. 
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6 Discussion 

This research is an extension to the works of Lanubile et al. (1998), Jacobs et al. 
(2007), Lehtinen et al. (2011), and Clarke and O’Connor (2012). Furthermore, the 
model of fault prevention presented in this study holds familiarity to fault 
prediction literature. 

Similar to the ‘Error abstraction’ method proposed by Lanubile et al. (1998), 
in this study the main underlying theme is identification of common individual 
errors. However, while the error abstraction method relies on abstracting common 
errors from a set of already existing faults, in this research the goal is identification 
of individuals’ erratic behaviors with due consideration to the mismatches 
between the context of development and practices. It is arguable that this 
difference between the two studies marks a difference in a reactive approach in 
Lanubile et al. (1998) and a proactive approach in this study. Another point of 
departure between the two is the scope of application. Lanubile et al. (1998) 
focused solely on requirement faults; however, fault prevention should be 
extended to all stages of development. Identification of individuals’ erratic 
behaviors in this study is done proactively for all development stages. 

As regards mapping the context, Clarke and O’Connor (2012) developed a 
reference framework of situational factors that can be used as a tool for defining 
software development processes or to deliver improvements. Jacobs et al. (2007), 
on the other hand, developed lists of factors that can positively or negatively affect 
fault introduction and fault detection. The taxonomy of contextual factors 
developed in this research effort is similar to the situational factors reference 
framework of Clarke and O’Connor (2012) in providing a tool for mapping the 
context of development. However, in doing so, the taxonomy of contextual factors, 
presented in this research, limits factors to those that can affect fault prevention in 
terms of fault introduction, inefficient and ineffective detection and inefficient and 
ineffective fix, hence, is similar to the work of Jacobs et al. (2007). Narrowing down 
the scope of the taxonomy improves its utilization for the purpose of finding the 
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mismatches between the development context and practices. The reference 
framework of Clarke and O’Connor (2012) has 8 factor classifications, 44 factors, 
and 172 sub-factors. The large scale of this framework compared to 85 factors and 
two dimensions presented in the taxonomy of contextual factors render it 
inapplicable for the purposes of this study. Even though 85 contextual factors 
might still be too many to handle in practice, since the taxonomy is presented in 
two dimensions, practitioners can focus on the dimensions which they find most 
important.  

Even though, lists of influential factors identified by Jacobs et al. (2007) is 
suitable in scope and scale, the authors’ focus on influential factors limits the 
applicability of their findings for identification of mismatches in the context. 
Admittedly, though, the contextual factors identified in this research turned out to 
hold many similarities to the influential factors of Jacobs et al. (2007). 
Consequently, practitioners unwilling to adopt the taxonomy of contextual factors 
for mismatch identification might benefit from investigating the influential factors 
of Jacobs et al. (2007) as a replacement. 

The PRORCA method is an extension of the ARCA method (Lehtinen et al. 
2011). While the ARCA method (Lehtinen et al., 2011) was designed to be 
lightweight, resource-friendly and applicable in SMEs, it still assumed the 
existence of problems and emphasized on reactive identification of problems. The 
PRORCA method, while benefiting from the merits of the ARCA method (Lehtinen 
et al., 2011) is designed to be proactive. It does not assume the existence of 
problems. Instead, PRORCA can be used on a quest to identify and resolve erratic 
behaviors that could potentially contribute to faults slipping through to operation. 
Another, point of departure between the two methods is that in the ARCA method 
(Lehtinen et al., 2011), problems are under investigation, but in PRORCA, the goal 
is fault prevention. The problems that the ARCA method (Lehtinen et al., 2011) 
seeks to resolve include but are not limited to faults. However, there is no reason 
why the PRORCA method cannot focus on broader problems than faults. This 
would be a matter of future studies though. 

The PRORCA method focuses on individuals’ erratic behavior, however, as 
was shown in section 5.1.2, tools and processes can also lead to faults slipping 
through to operation. The contribution of tools and processes to faults slipping 
through to operation shall not be overlooked. Companies should maintain active 
communication lines with tool vendors and report possible misbehaviors of tools. 
Such communication is done with the goal of tool improvement. Similarly, process 
contribution to faults slipping through to operation shall be recorded and reported 
to standardization and regulatory bodies. Models and standards are not free from 
faults by design, they are someone’s ideal of a development process (Grady, 1996). 
The company’s active participation in a consortium and reporting their experience 
can, therefore, contribute to fixing the defective processes and filling the absence of 
others, in their source. 
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The emphasis of the PRORCA method on future faults brings similarities 
with fault forecasting (Avižienis et al., 2004; Lyu, 1996) to mind. However, the 
focus in fault forecasting (or fault prediction) literature is on making 
measurements of the current state of the software or development process in order 
to estimate the future number or presence of faults using statistical analysis (Catal, 
& Diri, 2009; Fenton, & Neil, 1999; Hall et al., 2012). Such analysis can be used to 
predict the number of faults in a module, file or a piece of software in terms of 
fault density and fault rate (Fenton, & Neil, 1999; Fenton, & Ohlsson, 2000). 
Alternatively, the analysis can be done to distinguish fault-prone and non-fault-
prone modules (Munson, & Khoshgoftaar, 1992) and files (Hammil, & Goseva-
Popstojanova, 2009) or to rank pieces of software according to their fault-proneness 
(Zhou, & Leung, 2006). The measurements required for such analysis can be done 
according to different sets of metrics. The most common metrics found are 
extracted from fault reports (Fenton, & Neil, 1999). The idea is to extract 
information like defect rate from fault reports and perform mathematical 
extrapolation. In recent years, efforts have been taken to make fault predictions 
based on the number and type of changes made in the source code (Graves, Karr, 
Marron, & Siy, 2000; Kidwell, Hayes, & Nikora, 2014; Kim et al., 2006; Ostrand, 
Weyuker, & Bell, 2005). In cases where fault data is not available researchers have 
suggested product, process and people metrics (Herrmann, 1998). Product metrics 
are those that are extractable from an artifact of the software product. Product 
metrics include size (Shen, Yu, Thebaut, & Paulsen, 1985) and complexity metrics 
(Mccabe 1976) and object-oriented design metrics (Nugroho, & Chaudron, 2014) to 
name a few. People metrics deal with the development team and other 
stakeholders involved (Herrmann, 1998). Process metrics try to make predictions 
based on the effectiveness and efficiency of development processes (Leszak, et al. 
2002). Clearly, the PRORCA method does not fit this profile. In PRORCA the 
potential future faults are predicted by identification of individuals’ erratic 
behaviors. The PRORCA is not performed in order to estimate the number of faults 
with respect to size (fault density), or to distinguish between fault-prone and non-
fault-prone modules. The ultimate goal in PRORCA is to resolve the mismatches 
between development context and practices to prevent future faults. There is no 
denying, though, that fault prediction studies can contribute to PRORCA, 
however, studying the possibilities raised from such contribution is left to future 
research for now. 

It could not be overstated that rather than being a replacement for the 
existing RCA methods in the literature, the PRORCA method is a complement to 
them. While the benefits of reactive RCA has already been well-recognized, 
proactive RCA can provide a feed forward for companies to look into the future 
and see what potential problems might lay ahead. 
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7 Limitations 

This study has a number of limitations. Firstly, material extraction for the mapping 
study was subject to reliability concerns. The forward and backward search 
technique deployed in this study is vulnerable to the comprehensiveness of the 
initial set of articles chosen and tends to favor backward search. To address these 
concerns, an expert interview was conducted in phase one. Even though the input 
of the interviewee did effectively direct material extraction for the better, still, the 
task was completed subjectively by the researcher. 

Furthermore, the reliability of the taxonomy of contextual factors developed 
in this study was subject to vulnerabilities. The directed content analysis 
conducted for the purpose of developing the taxonomy was done by one 
researcher, solely. This is not ideal and may introduce biases in coding. In such a 
situation a contextual factor might be missed or wrongly included. It is arguable, 
however, that the large number of factors coded alleviates the problem of missing 
a factor by increasing the chance of covering it in analysis of other studies. On the 
other hand, there is a high chance for the wrongly included factors to have been 
dropped during the later steps of the development of the taxonomy. 

Other major limitations were faced in the demonstration phase. The two 
projects for which PRORCA was conducted were not sufficient in scale and scope 
to surface all the potential difficulties of the method. Both projects were small in 
size. Project one was a prototype project for which the level of tolerable risk was 
fairly high. Even project two, in which, the level of tolerable risk was low, the focus 
was on hardware rather than software.  

Other limitations in demonstration stage included few numbers of and short 
time available for interviews. Due to time limitations, the interviews were limited 
to the project and team perspectives of the taxonomy and did not cover region and 
organization perspectives. Additionally, in steps two and three of the PRORCA, 
the researcher took both RCA facilitator and participant roles because no further 
interviews were possible. Even though this situation showed the flexibility of 
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PRORCA, it evidently limited the possibility of finding erratic behaviors and 
innovating corrective actions. 

Lastly, the interviewees might have been biased to present a better picture of 
the project than reality. The interviewees were the responsible individuals for their 
respective projects and it is understandable if they viewed the interviews as 
evaluation of their work. Plus, the projects were both held with representatives of 
one company and software reliability is a sensitive topic in software development, 
specifically in the domain of avionics and embedded software. Therefore, it could 
be possible that some information was withheld from the researcher. 
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8 Conclusion 

In this research, the task of developing a proactive RCA method was undertook in 
response to a call for further research into fault prevention by Alho and Mattila 
(2011). The PRORCA method as the main outcome of this endeavor is lightweight, 
flexible and proactive and relies on finding the mismatches between the 
development context and the practices to prevent faults from slipping through to 
operation. Proactive prevention of faults slipping through to operation is done 
with the ultimate purpose of developing fault-free software systems. Even though, 
development of a system that is completely free from faults is far from reality, 
prevention of faults slipping through to operation can still make considerable 
contributions to development of highly reliable systems. 

The PRORCA method was developed in accordance with the teachings of 
DSRM (Peffers et al., 2007) and comprises three steps (1) context mapping (2) 
Erratic behavior mapping and, (3) Corrective action innovation. In step one, the 
context of development is mapped using taxonomy of contextual factors. The 
taxonomy of contextual factors affecting faults slipping through to operation was 
developed in this research as well as the PRORCA method. The taxonomy consists 
of two dimensions – four perspectives of context and four constituent elements of 
development. Four perspectives of context are region, organization, project and 
team and the four constituent elements of context are environment, activities, 
artifacts and humans. In PRORCA’s second step, potential erratic behaviors of 
individuals that can lead to faults slipping through to operation are mapped, in a 
bottom up approach, using directed graphs. The erratic behaviors are mapped 
based on mismatches between the development taxonomy and practices identified 
at the beginning of this step. Step three includes deriving corrective actions in 
accordance to mismatches that lead to erratic behaviors. 

The use of the PRORCA method was demonstrated in this research in two 
small software development projects in the domain of avionics and embedded 
systems. Admittedly, these two projects were not sufficient in scale and scope to 
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surface all the potential difficulties and problems of the PRORCA method, 
however, they did prove the flexibility and resource-friendliness of the method. 
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APPENDIX 1 TAXONOMY OF CONTEXTUAL FACTORS 

Region 
 

Environment 
factors 

Time zone 

Human 

factors 
culture (collective behavior and behavioral norms, differences in mental models) 

Organization 
 

Environment 
factors 

org size; 

org domain; 

organization strategy: improvement of the quality, lower cost 

org structure (resulting in communication delays) 

involvement of external organizations 

Activity 

factors 

Maturity of processes (change in processes, data tracking and management 
practices) 

quality of intra-project communication 
Quality of analysis on inter-related projects (impact analysis, RCA, etc.) 

Quality of fault reporting process 
Existence of Reactive/Proactive processes 

Human 

factors 

trust in other projects 

Involvement of staff on several projects 
reactive/proactive thinking 

organizational culture (continual improvement, reactive thinking) 

Project 
 

Environment 
factors 

project size 

project structure (complexity of organization's projects: multi-project 
development, single project development, or etc.) 

standards in place; 

budget and schedule 

Involvement of different stakeholders 

Degree of customer involvement 

level of tolerable risk 

office ergonomics, 

tool support 

education and training 

Artifact 

factors 

 

programming language used and its features 
criticality of subsystems 

scope of system's possible behaviors 

Testability 

quality of defect reports 
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operational usage 

design problem history (persistency and stability), 

fault proneness of modules 

expected lifetime of system 

product size 

product complexity (clarity of interactions between subsystems) 

application domain 

backward compatibility 

Availability and Quality of documentation (requirements, design, test cases, etc.) 

volatility of requirements 
source code evolvability 

defect classification scheme used for fault reporting 

defect profile 
modeling paradigm 

Activity 

factors 

 

information flow between requirements and tests; 

interaction of developers with testing staff 

division of responsibilities between teams 

quality of communication within project 
assignment and handling of priorities 

selection process of defect detection practices (test approach and strategy) 

Independent defect detection 
availability of definitions and guidelines 
degree of compliance with guidelines and standards 

availability of feedback 

size of developed increments; 

alignment of testing and requirement analysis 

availability and usage of automated tests 

synchronicity of communication 

quality of defect and test case tracing 

Time span between updates to documents 

Concurrency of activities (code modification, coding and testing, etc.) 
coordination of testing activities 

development strategy (multiple release, open source, reuse, distributed and 

concurrent development, virtual development) 

defect fixing strategy (fixing low severity defects later and attend to high severity 
for now); 

Human 

factors 

 

Frequency of change in staff members 
level of commitment to defect data collection 

staff knowledge, skill and experience 

degree of attention to detail and priority of procedures 
fear of data misuse; 

Commitment toward high-quality development 

Degree of trust in other staff 

defined responsibilities 

conflicting schedules of experts 
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availability of full time testing staff 

the number of people working on the project 

Team 
 

Environment 
factors 

team size 

Virtual/Co-located teams 

Human 

factors 

 

Frequency of change in team members 

team variation of skills and experience 
commitment to teamwork 

tendency of teams toward production blocking and evaluation apprehension; 

reviewers' collusion 

group synergy 
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APPENDIX 2 THE CONTEXT OF PROJECT ONE 

Project     

Environment 
factors 

project size Small 

project structure  no other related projects 

standards in place tailored ECSS E-40 standards 

Involvement of different 
stakeholders 

minor support from other engineers 

Degree of customer involvement Regular meetings 

level of tolerable risk prototype project so high 

office ergonomics cubicles and ergonomics campaign 

tool support Redmine 

education and training Non 

Artifact factors Testability Not considered 

operational usage Prototype 

expected lifetime of system NA 

product size Not large 

product complexity (clarity of 
interactions between subsystems) 

Low, subsystems and interactions are 
known 

application domain Avionics 

backward compatibility NA 

Availability and Quality of 
documentation 

high at the beginning but low at the 
end, might be problems because 
members have left 

volatility of requirements low 

source code evolvability A matter of schedule, no reviews for 
this matter. But the customer has 
specific requirement for percentage of 
comments 

defect classification scheme used 
for fault reporting 

Provided by Redmine tool 

modeling paradigm UML 

Activity factors interaction of developers with 
testing staff 

NA 

division of responsibilities 
between teams 

1 Person responsible for all tasks 

quality of communication within 
project 

good but still miscommunication is 
reported 
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assignment and handling of 
priorities 

At the beginning of the project for bug 
fixes but a chance they would be 
ignored later 

selection process of defect 
detection practices (test approach 
and strategy) 

No defined process 

Independent defect detection No 

availability of definitions and 
guidelines 

Available in certain cases like coding 
rules but no official procedure to 
review compliance.  

availability of feedback No, customer reviews 

  
  
  

synchronicity of communication synchronic with project leader, not 
synchronic with the customer 

Time span between updates to 
documents 

either immediately or next release 

coordination of testing activities NA 

 Human factors Frequency of change in staff 
members 

Frequent 

level of commitment to defect 
data collection 

time pressure can stop collection 

staff knowledge, skill and 
experience 

High 

Degree of trust in other staff High 

defined responsibilities   

availability of full time testing 
staff 

No 

the number of people working on 
the project 

2 

Project     

 Environment 
factors 
  

Virtual/Co-located teams 
  

Co-located 
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APPENDIX 3 THE CONTEXT OF PROJECT TWO 

Project 
 

 

Environment 
factors 

project size  small 

standards in place tailored ECSS E-40 standard 

budget and schedule schedule is very tight 

Involvement of different 
stakeholders 

Sub-contractors and customers 

Degree of customer involvement High 

level of tolerable risk Low 

office ergonomics, all members in one office 

tool support Redmine, Doors, Doxygen 

education and training Non 

Artifact 

factors 

 

programming language used and 
its features 

C, C++ 

scope of system's possible 
behaviors 

predictable by using a state 
machine 

Testability No, no time for analysis 
operational usage known by operational scenarios 

expected lifetime of system 10 years 

product size Large 

product complexity (clarity of 
interactions between subsystems) 

A lot of interfaces and challenges 
of open source libraries 

application domain onboard flight system 

backward compatibility Yes 

Availability and Quality of 
documentation 

everything in word docs 

volatility of requirements volatile for new parts of the system 

source code evolvability 
coding rules are defined, Doxygen 
documentation style 

defect classification scheme used 
for fault reporting 

That of Redmine tool 

modeling paradigm Not a model-driven development 

Activity 

factors 

 

information flow between 
requirements and tests; 

Doors is used for manageability 

  
division of responsibilities between 
teams 

no division. One person is 
responsible for all 

quality of communication within 
project 

high, daily standup meeting, 
meetings within the project; with 
subcontractor and customer and 
phone calls and emails 
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selection process of defect 
detection practices  

mainly oriented around customer 
requirements (reviews) but tests 
are designed in-house 

Independent defect detection 
Yes, another team will test the 
system in the end but not at this 
stage 

availability of feedback 
Non, reliance on customer 
feedback 

synchronicity of communication 

synchronous  with other members 
of the project, synchronous with 
subcontractors, bi-weekly meeting 
with customer,  

Concurrency of activities  

Yes, concurrent with customer and 
sub-contractors, experiment 
container developers (customer) 
are working in parallel 

development strategy  
heavy use of open source software 
and libraries 

Human 

factors 

 

Frequency of change in staff 
members 

No staff change 

Degree of trust in other staff High 

availability of full time testing staff No 
the number of people working on 
the project 

3 

Team 
 

 

Environment 
factors 

team size Small 

Virtual/Co-located teams Co-located 
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APPENDIX 4 INTERVIEW QUESTIONS FOR INTERVIEW ONE 

I. Background 

1. Could you please introduce yourself and let us know about your background and role at 

[company name]? 

2. Could you please briefly introduce [company name]? 

II. General information 

1. Could you please explain the development method currently being practiced at [company 

name]?  

2. Are there any contractors involved in the development? For example in coding, testing, etc. 

3. How are sub-projects and development of sub-components dealt with (Contractors, 

separate teams in a serial manner, teams working in parallel, distributed development)? 

How does this affect the development method? 

4. How frequently are components reused at [company name] or are they at all? Do reused 

components go through a defect detection process too? 

5. What standards are complied with? 

6. Could you please explain the verification and validation practices at [company name]? 

7. What mechanisms are in place at [company name] to help developer1 teams prevent, detect 

and remove faults?  

8. What are the general practices at [company name] to make sure developers comply with 

practices and policies? 

9. Are there practices in [company name] that promote and encourage developers to enhance 

their personal disciplines? (education, training, feedback on frequent mistakes) 

III. Detailed questions 

Agile methods 

1. Does [company name] have any experience with or considered using agile methods 

and/or practices for development? For example, pair programming, Test-Driven 

Development, scrum sprints, daily stand-up meetings, etc.  

2. If yes, how are such practices chosen and adopted?  

Customer reliability requirements 

                                                           
1 The term developer refers to anyone involved in development of a system including analysts, 
designer, coders, testers and etc. 
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3. How does [COMPANY NAME] determine customer reliability requirements? For 

example, the customer asks for a certain reliability level, certification standards 

determine the necessary reliability, or by contacting the customer and extracting the 

requirements from discussions. 

4. How is reliability measured at [COMPANY NAME]? 

5. Is criticality analysis of functions and components performed at [COMPANY NAME]? 

Is there a difference between critical components and non-critical ones in terms of 

development and reliability practices? 

6. Are the most frequently used functions of a system under development identified? 

Fault data and changes 

7. How do you deal with changes during development at [COMPANY NAME]2 ? Do you 

have mechanisms like a Change Control Board (CCB), use agile processes, or there is a 

customer proxy involved in the project?  

8. Are defects, failures and changes traceable? What are the mechanisms used? What 

tools are used? How do you ensure that the traces are kept up to date (Is there a certain 

role that is responsible for keeping them up to date or each developer must make sure 

he/she submits the changes to a repository)?  

9. How fault data is collected at [COMPANY NAME] or is it at all? What tools are used? 

10. Could you please explain briefly what sort of information is collected for defects? Do 

developers fill in different forms at different stages of development? 

11. How often does the structure of fault reports change or does it at all? 

12. Who is responsible for defect detection (testers, inspectors, all project stakeholders)?  

13. Who can report defects or failures (coders, designers, testers, sales persons, or anyone 

in the company)? Who has access to tools for fault reporting? 

14. How is fault reporting enforced? What happens if a developer does not fill in fault 

reports or does not provide the necessary information?  

15. In general how do you see developers’ perception of fault reporting (as an overhead or 

important part of work)? 

16. Does the quality of defect data filled in by developers allow analysis of data or is it 

ambiguous, too coarse-grained, etc.? 

17. What kind of analysis is performed on fault/change data at [COMPANY NAME]?  

18. Do you look for root causes of problems (frequent, severe, etc.) at [COMPANY 

NAME]? How? Do you perform Root Cause Analysis?  

19. Do you deliver process improvements to prevent faults? How? 

Defect detection 

20. How is testing performed (in-house testing department or testing team, independent 

contractors)? 

                                                           
2 A change can be a requirement change, an enhancement request, refactoring, fault removal, etc. 
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21. Do you use theorem proving and/or model checking techniques for verification? Do 

you use any tools helping with that? 

22. Is inspection performed at [COMPANY NAME] in order to detect defects?  

23. Could you please explain a typical inspection meeting? 

24. Who do the inspection teams consist of? 

25. At what points during development an inspection meeting is held (after each 

milestone, each sprint, iteration, etc.)? 

26. Is analysis of defect data used to guide defect detection? 

27. Are test cases traceable? What tools are used? Who is responsible? 

28. How is the testing strategy determined? 

29. Are static code analysis tools used? 

Developer communication 

30. What are the communication mechanisms between developers, used at [COMPANY 

NAME] (Official meeting, unofficial meetings, Scrum standup meetings)? What are the 

tools that enable such communication? 

31. In particular what mechanisms exist in [COMPANY NAME] to allow testers and other 

developers (coders, designer, analysts, etc.) communicate? For example, how do the 

developers let testers know of changes? Are testers involved in early planning stages? 

32. Is testability considered during requirements specification, design, and coding? 

Other practices 

33. What are the commenting practices at [COMPANY NAME]? What if a developer does 

not comply with commenting policies or best practices? How do make sure comments 

are kept up to date? 

34. Are there any coding standards defined for coders? How are they enforced? What if 

someone does not comply?  
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APPENDIX 5 INTERVIEW QUESTIONS FOR INTERVIEW TWO 
AND THREE 

I. Background 

1. Could you please introduce yourself and let us know about your background and role 

at [company name] and the project you are involved with? 

2. Could you please briefly introduce [company name] and the project?  

3. What is the application domain of the system under development?  

3.1 How many people (approx.) are working on the project?  

3.2 How complex is the system under development? (scope of system’s possible 

behaviors large or small,  interactions between system’s sub-systems, etc.) 

3.3 How large is the system under development? 

3.4 What is the expected lifetime of the system? 

3.5 Are there any external parties involved in the development? For example in 

coding, testing, etc.  

3.6 Is independent defect detection performed in the project?  

3.7 Contractors? 

3.8 Is it a multiple release project or just one release at the end of the project? 

3.9 Who/what is the user of the system being developed?  

3.10 Is the operational usage known to developers including the frequency of 

usage?  

3.11 Do you need to take backward compatibility in mind? 

3.12 How does the customer get involved in the project? During, before and after. 

II. General information 

4. Could you please explain the development method currently being practiced at the 

project?  

4.1 Do you use agile methods and/or practices for development? For example, 

pair programming, Test-Driven Development, scrum sprints, daily stand-up 

meetings, etc. If yes, how are such practices chosen and adopted?  

4.2 How frequently are components reused at [company name] or are they at 

all?  

4.3 Do reused components go through a defect detection process too? 

5. How are the teams managed (assigned responsibilities) in the project in which you are 

involved (division of responsibilities between teams, etc.)?  

5.1 Is there a virtual development environment? Do you have virtual teams? 

6. What precautions are taken to reduce the number of faults introduced? 
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6.1 Do you care for testability during development (all stages)?  

6.2 Do you look for root causes of failures and faults? Do you perform Root 

Cause Analysis? Is there a defined feedback process (for example to let 

developers know what type of mistakes they have made and etc.)? 

7. What are the defect detection practices used in the project? (testing strategies, testing 

techniques, type of reviews, people involved, , automatic scripts, etc.) How are they 

chosen?  

7.1 How are test activities coordinated? 

7.2 Are lower and upper bounds for defects detected during reviews? 

8. What are the mechanisms to ensure high quality of documentation?  

8.1 How much do you rely on documentation in the project?  

8.2 How long does it take for a document (requirement, design, etc.) to be 

updated if there is any change?  

8.3 How committed are project members to document? 

8.4 What are the defect reporting mechanisms?  

8.5 How good are the defect reports in terms of quality?  

8.6 How committed are project members to defect data collection? 

9. What are the defect fixing mechanisms?  

9.1 What information is relied on for fixing?  

9.2 What is the defect fixing strategy (for example fixing low severity defects later and 

attend to high severity defects now)? 

10. What are the general practices at [company name] to make sure developers comply 

with practices and policies?  

10.1 Are there defined guidelines and procedures available to members of the 

project?  

10.2 Are there project specific standards that you have to comply with? 

11. Is this a critical project in terms of reliability?  

11.1 What percentage of the components of the system is critical?  

11.2 Is there a difference between the way you handle critical components and 

non-critical ones in terms of development practices including requirements 

analysis, design, defect detection, fault reporting, etc.? 

12. What are the mechanisms that ensure information flow between requirements analysis 

and testing?  

12.1 Are the defects detected traced back to test cases that detected them?  

III. Detailed questions 

13. How volatile are the requirements? How do you deal with changes during 

development in this project3?  

                                                           
3 A change can be a requirement change, an enhancement request, refactoring, etc. 
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13.1 Do you have mechanisms like a Change Control Board (CCB), league of 

experts or you use agile processes for this purpose?  

13.2 Are the defects traced back to requirements? 

14. What are the communication mechanisms (Face-2-face, email, a proprietary system, 

Official meeting, unofficial meetings, Scrum standup meetings)?  

14.1 Is communication synchronic or is it deferred?  

14.2 How friendly is the interaction between project members; specifically testing 

staff and developers? 

14.3 How hard is it to organize a meeting in the project considering the busy 

schedules of parties involved? 

15. What are the evolvability practices (commenting for code, coding standards, coding 

styles, design paradigm, etc.)?  

15.1 How much do you rely on them, for example on code comments in the 

project?  

15.2 Are there any coding standards defined for coders?  

16. Is there a priority list or a similar mechanism to handle high priority tasks? 

17. How often do the project members change? What about other staff members who have 

an influence on the project?  

18. How much do you rely on and trust other project members? Is there a fear of data 

misuse by other members among project staff? 

19. Please describe the office ergonomics. 
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