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verkostoja mallintavissa sosiaalisissa graafeissa. Tämän työn kohteena ovat so-
siaalisen median sivustot, joissa kullakin käyttäjällä on profiili ja käyttäjät voi-
vat olla esimerkiksi toistensa ystäviä.  Sivustoa mallintavan sosiaalisen graafin 
solmut mallintavat näitä profiileja  ja suuntaamattomat kaaret  profiilien välisiä 
ystävyyssuhteita.  Laajemmin tällaisia  graafeja käytetään esim. vaalien tulosten 
ennustamiseen, tai suosittelujärjestelmissä suositusten koostamiseen.  Monet 
sosiaaliseen graafin ominaisuudet vaativat etsimään polkujoukkoja eri solmujen 
ja solmuryhmien välillä. Sosiaalisen graafin analyysi vaatii usein laskemaan 
paljon lyhimpiäpolkuja kahden solmun välillä. Tätä tarvitaan esimerkiksi mää-
ritettäessä  solmun polkukeskeisyyttä. Työn keskeisenä  tavoitteena  on kehittää 
lyhimmän polun etsintään tehokas yhdistelmäalgoritmi. Työssä esitellään ensin 
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lyhintä polkua etsivät algoritmit, jotka vastaavat luotua vaatimusmäärittelyä. 
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te kertoo myös miten algoritmi toteutetaan  Java-kielellä tehokkaasti. Kehittetty 

algoritmi on käyttöönottovaihessa  Odnoklassniki - nimisellä sosiaalisen medi-
an sivustolla, jolla toimii venäjänkielinen verkkoyhteisö. Ko. sivustolla on kaik-
kiaan 205 miljoonaa käyttäjää ja 44 miljoonaa kävijää päivässä (se on kahdek-
sanneksi suosituin sivusto Venäjällä ja entisen Neuvostoliiton tasavalloissa). 
Ehdotettu algoritmi ratkaisee lyhimmän polun ongelman eo. sivustosta muo-
dostetussa sosiaalisessa graafissa suorituskykyisesti vasteajan (50 ms per kyse-
ly), muistin käytön (alle 15 GBs ensisijaisen muistin) ja saavutetun tarkkuu-
den  (yli 90%) suhteen. Algoritmi tukee myös dynaamisia sosiaalisia graafeja. 
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ABSTRACT 

Eremeev, Andrei 
The spanning tree based approach for solving the shortest path problem in so-
cial graphs 
Jyväskylä: University of Jyväskylä, 2016, 70 p. 
Software Engineering, Master’s thesis 
Supervisors: Semenov, Alexander; Korneev, Georgiy. 
 
This thesis is devoted to the shortest path problem in social graphs. Social 
graphs represent individuals and social relationships between them. As for so-
cial networking sites, their users are represented as vertices of the social graph, 
and the relationship which indicates whether two users are friends in the social 
networking site are represented as edges of the social graph. Therefore, social 
graphs are widely investigated by sociologists in order to determine rules and 
properties of various social processes.  Analysis of such social graphs may be 
used in prediction of results of election, or recommendation systems. Calcula-
tion of many social graph metrics requires computation of shortest paths be-
tween vertices of the social graph. Often, analysis of social graphs requires cal-
culation of plenty of shortest paths, for instance, paths between each pair of ver-
tices. Searching of plenty of shortest paths is needed in calculation of between-
ness centrality of a vertex. The goal of the Master’s thesis is to synthesis an effi-
cient shortest path searching algorithm. First, characteristics of social graphs are 
reviewed; thereafter, existing shortest path searching algorithms are reviewed 
based on defined requirements. Then, an efficient algorithm which is based on 
the Atlas algorithm, one of the existing algorithms, is synthesized. The Master’s 
thesis also tells how to implement the algorithm in Java more efficiently. The 
developed algorithm is under deployment into the Odnoklassniki social net-
working site, a Russian social networking site, which contains 205 million of 
users and 44 million of visitors per day (the eight most visited site in Russia and 
former Soviet Republics). The proposed algorithm solves the shortest path 
problem in social graphs with acceptable performance (50 ms per query), 
memory usage (less than 15 GB of the primary memory) and applicable accura-
cy (more than 90%). Also, the algorithm supports dynamic social graphs. 

 
Keywords: social graph, social network analysis, shortest path problem, Od-
noklassniki, the Atlas algorithm. 
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LIST OF TERMS WITH DEFINITIONS 

Graph is an ordered pair ��, �� comprising a finite nonempty set �of vertices 
(points) and together with a set	� of edges (lines), which is a subset of Cartesian 
product of the set of vertices. Vertices may represent some objects; edges may 
represent relations between objects. 
 
Social network is a social structure made of a set of individuals and a set of ties 
between the individuals. Ties can represent friendship, acquaintance, kinship or 
disease transmission. Social networks can be modeled as graphs in which verti-
ces represent individuals and edges represent ties between the individuals. 
Graphs which represent social networks are named social graphs. 
 
Social networking site is a platform to build social networks or social relations 
among people who share interests, activities or real-life connections. 
 
Social network analysis is a strategy for investigating social structures through the 
use of social and graph theories. 
 
Path (walk) in a graph can be defined as a finite sequence of vertices and edges 
��	
…�� in which each edge connects the preceding and following vertices, so 
	
 = ��
�
, �
� . 
 
Weighted graph is a graph with weight function which assigns a real-value to 
each edge. 
 
A graph, which has a weighted function which returns one for all edges, is 
called an unweighted graph. 
 
The length of a path in an unweighted graph is the number of edges which com-
prise the path. 
 
In a weighted graph the length of a path is the sum of the weights of edges which 
belong to the path. 
  
The shortest path between a pair of vertices is the path where the length of the 
path between these vertices is minimized. 
 
A heuristic algorithm is an algorithm which produces a solution in a reasonable 
time frame that is good enough for solving the problem. The solution may 
simply approximate the exact solution, but it is valuable because finding it does 
not require significant time. 
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1 INTRODUCTION 

The emergence of online social networking sites is changing the investigation of 
the structure of human relationships. Social network analysis has gained a sig-
nificant popularity in computer science, political science, communication stud-
ies and biology. Individuals bring their social relationships to online social net-
working sites and make previously invisible social structures be explored to 
determine social processes. Social networks can be modeled as graphs; hence, 
the methods of graph theory can be applied for analysis of social networks. The 
methods of the graph theory can be used to investigate kinship patterns, com-
munity structures, information diffusion and many other problems (Marcus, 
Moy, & Coffman, 2007). 

Additionally, information left by users on social networking sites can be 
used, for instance, in predicting the results of elections (Wang, Can, 
Kazemzadeh, Bar, & Narayanan, 2012; Tumasjan, Sprenger, Sandner, & Welpe, 
2010). Also, social networks analysis is used to identify money laundering and 
terrorists (Zhang, Salerno, & Yu, 2003). Moreover, social networks were broadly 
used in organizing mass riots and violence during the Arab Spring (Semenov, 
2013). The National Security Agency (NSA) has been performing analysis of call 
records, since the September 11 attacks, and analysis of collected Internet com-
munications since 2007, known as surveillance program PRISM (Greenwald & 
MacAskill, 2013). 

Some of the problems which need to be solved during data aggregation and 
analysis require large numbers of shortest path computations between two ver-
tices in a graph. These problems involve calculations of such metrics as be-
tweenness centrality, closeness centrality and others (Freeman, Roeder, & 
Mulholland, 1980). Thus, the shortest path problem is one of the basic problems 
which are used in the analysis of graph structure. The problem is comprised of 
finding the sequence of vertices, a path, which joins a pair of vertices in a graph 
in such a way that the number of edges on the path is minimized. Many short-
est path algorithms have been developed, however they do not perform well on 
large graphs. 
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The goal of this work is to synthesize an algorithm that is able to solve the 
shortest path problem in large social graphs with acceptable accuracy, perfor-
mance and memory usage. Also, social graphs are very dynamic. Indeed, 
changes in the friend lists of users are very frequent (Wilson, Boe, Sala, 
Puttaswamy, & Zhao, 2009). Thus, the algorithm should be able to handle dy-
namics of social graphs. 

1.1 Motivation for the research 

Social networking sites provide various services to entertain users. Users are 
creating their profiles, fill them with various personal data (name, age, pictures 
and others) and make connections between each other. Other services may in-
clude capability to watch online videos (Youtube, VK, Odnoklassniki), listen to 
music (VK, Spotify), develop and play games (VK, Odnoklassniki) and many 
others. Odnoklassniki (“Classmates” in English), a Russian social network site, 
has 205 million users and 44 million visitors per day in spring 2015. Currently 
Odnoklassniki intends to add a service which can find the shortest path be-
tween a pair of users while spending a reasonable time for calculation. Od-
noklassniki has requested the development of the algorithm on which the men-
tioned service will be based. User A may select another user B and get the 
shortest path to user B via friends, friend-of-friends, and etc. Additionally, the 
approach can be used in data aggregation and data analysis of the Odnoklass-
niki social network. The solution should be fast, because users expect that a ser-
vice responds quickly, and allows for serving hundreds of requests simultane-
ously. The algorithm should solve the shortest path problem in less than 50 ms 
per query. The proposed algorithm should be accurate as well. The error rate, 
the rate of that the found path is not the shortest one, should be less than 10%. 
Also, if the algorithm makes a mistake, then the length of the returned result 
should not be longer than the length of a correct (shortest) path plus one. The 
algorithm can be used in graph analysis. However, these kinds of mistakes lead 
to incorrect statistics. Furthermore, the algorithm should not make mistakes in 
the case of short paths (less than three edges), because if the algorithm is de-
ployed as a standalone service, results of the algorithm can be easily checked by 
the users for short paths. Hence, if a user realizes that the algorithm returns 
wrong results, then it could lead to lowering the prestige of the social network-
ing site. As for longer paths (more than three edges), vertices locating on the 
distance less than three edges from any vertex comprise a half of the vertices of 
the whole graph (Ugander, Karrer, Backstrom, & Marlow, 2011). Thus, longer 
than three edges paths cannot be checked by the users easily. Another metric 
which is taken into account is the usage of both the heap and the disk memory. 
The API of Odnoklassniki has been written in Java; thus, the algorithm should 
be implemented in Java. The usage of the heap memory should be restricted by 
1 GB, since wasteful usage of the Java heap memory could lead to large garbage 
collector pauses after several executions of the algorithm. Additionally, heuris-
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tic algorithms usually have a pre-computation step which pre-calculates some 
data. It is supposed that the implementation of the algorithm uses memory 
mapping I/O (Pai, Druschel, & Zwaenepoel, 1999); in other words, all of the 
pre-computed data should be in the primary memory in order to increase the 
speed of the algorithm. Thus, the amount of pre-computed data should not ex-
ceed the volume of the primary memory of a machine. The algorithm is as-
sumed to be run on a machine with 64 GB of the primary memory. Thus, the 
algorithm cannot use more than 64 GB of the primary memory to avoid swap-
ping of memory pages (Bach, 1986). 

The shortest path problem is broadly explored nowadays for small graphs. 
There are algorithms which solve this task, like the breadth-first search (Lee, 
1961). However, application of these algorithms to large graphs requires a lot of 
resources. For instance, the breadth-first search requires at least 1.5 GB 
(200 000 000 * 8 bytes) of the primary memory to store all vertices, each vertex is 
represented by an 8 bytes long integer, in its inner queue of a graph which con-
tains 200 million vertices. According to the performance estimation (Potamias, 
Bonchi, Castillo, & Gionis, 2009), it takes roughly a minute in a standard desk-
top computer to calculate the shortest path using the breadth-first search be-
tween two vertices in a graph that contains four million vertices and 50 million 
edges. While one of the most popular social networking sites, Facebook, has 
circa one and a half billion active users (Statista, 2015). 

Researchers have suggested several approaches that are able to handle large 
graphs. Algorithms, like A* (Hart, Nilsson, & Raphael, 1968) or contraction hi-
erarchies (Geisberger, Sanders, Schultes, & Delling, 2008), can solve the shortest 
path problem for large road graphs in an acceptable time. However, the prob-
lem is not broadly explored for social graphs. Algorithms, like landmark-based 
algorithms (Kleinberg, Slivkins, & Wexler, 2004; Potamias, Bonchi, Castillo, & 
Gionis, 2009; Zhao, Sala, Wilson, Zheng, & Zhao, 2010), which extract a set of 
vertices, called landmarks, can only estimate the shortest distance between two 
vertices, but not find the actual path. In addition, the algorithms contain a pre-
computation step; thus, once the graph changes, the pre-computation should be 
performed again. According to (Wilson, Boe, Sala, Puttaswamy, & Zhao, 2009), 
50% of user actions per day are actions related to adding and removing friends. 
Thus, repeatedly performed pre-computation step may take significant re-
sources in a social graph context. 

Thus, one can argue that there is no acceptable algorithm which can solve 
the shortest path problem for large social networks with acceptable accuracy, 
memory usage and performance. 

1.2 Objectives 

The shortest path problem is a basis problem which is used in graph analysis. 
The shortest path problem can be defined as searching the path, which contains 
the set of edges with the minimized sum of edges' weights, between the men-
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tioned vertices. Fig. 1 depicts a graph and the shortest path between vertices � 
and �. The path is marked with blue color. 

 
FIGURE 1 The shortest path between two vertices in the graph 

Several variations of the shortest path problem can be formulated (Cormen, 
Leiserson, Rivest, & Stein, 2001): 

• single-pair shortest path problem, in which the shortest path(s) between two 
vertices are found; 

• single-source shortest path problem, in which shortest paths from all vertices 
to all other vertices in the graph are found;  

• single-destination shortest path problem, in which shortest paths from all 
vertices to a single destination vertex are found; 

• all-pairs shortest path problem, in which shortest paths between every pairs 
of vertices in the graph are found. 

The single-destination shortest path problem can be reduced to the single-
source shortest path problem by reversing arcs in a directed graph and solving 
the single-source shortest path problem in the built graph. The single-pair 
shortest path problem is a particular case of the single-shortest path problem. 

The main objective of this thesis is to synthesize and to implement an algo-
rithm which efficiently solves the single-pair shortest path problem with ac-
ceptable accuracy, performance and memory usage. Heuristic algorithms which 
are based on some properties of models, in this case social graphs, try to reduce 
the space of possible solutions. Therefore, characteristics of social graphs should 
be provided and analyzed in order to remove irrelevant vertices and edges 
from the set of possible solutions while searching for the shortest path. The cur-
rent Master's thesis formulated the requirements of the algorithm for review 
and analysis of existing algorithms. According to the requirements, existing 
shortest path searching algorithms were reviewed and analyzed. According to 
the analysis of the algorithms, the most acceptable algorithm, Atlas, was chosen. 
The new algorithm, Atlas+, was synthesized based on the Atlas algorithm which 
uses a set of spanning trees to approximate paths in social graphs. As it is 
shown in the paper written by (Cao, Zhao, Zheng, & Zhao, 2013) the Atlas algo-
rithm shows acceptable accuracy and performance in some applications, like 
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ranked social search (searching for top-k closest vertices of a set of vertices to a 
vertex), but the accuracy of the algorithm is circa 25-30%, which is not accepta-
ble. 

Shortly, there are the following objectives: 

1. Review of characteristics of social graphs; 
2. Review of existing precise and heuristic algorithms; 
3. Synthesizing, implementation and evaluation of an algorithm which is 

able to solve the shortest path problem in large social graphs more effi-
ciently than existing ones.  

1.3 Summary of the results 

Overall, the following results have been achieved: 

1. Characteristics of social graphs modelled by social network sites have 
been reviewed; 

2. Existing shortest path searching algorithms have been reviewed and 
have been analyzed; 

3. A new shortest path searching algorithm has been synthesized, imple-
mented and evaluated on real social graphs extracted from social net-
works. 
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2 RESEARCH PROBLEM AND METHODOLOGY 

The following section defines the research questions of the Master’s thesis, de-
scribes the research method which is used and how it is applied in the Master’s 
thesis. 

2.1 Research questions 

Heuristic approaches are usually based on some assumptions or characteristics 
of the model of a real world phenomenon, in the current Master’s thesis social 
graph. For instance, roads can be modeled as graphs with road crossings as ver-
tices and roads between them as edges. Roads graphs are planar, and the pla-
narity of road graphs is utilized in the A* algorithm. Hence, the first research 
question arises: 
 
Which characteristics of the model, social graph, can be used in the development of the 
new algorithm? 

 
Now the area of algorithms which solve the shortest path problem for small 
graphs, that contain less than one million vertices, is broadly explored, but 
these algorithms cannot be applied to large graphs, because it may take too 
much resource to process data and too much time to get the answer. 

As it is said in the introduction, Odnoklassniki intends to start a new ser-
vice which allows users to find a path to some desired other users. In addition, 
the solution may be used in further analysis of the Odnoklassniki social net-
working site. To determine whether the algorithm is designed in an efficient 
way, the requirements of the algorithm should be defined. The requirements of 
the synthesized algorithm are based on the requests of the Odnoklassniki social 
networking site and limits of hardware and software. In addition, existing algo-
rithms should be reviewed in order to determine whether there is an acceptable 
algorithm or there is an algorithm which solves the problem inefficiently, but it 
can be enhanced. The efficiency of the algorithms is measured according to the 
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defined requirements. Thus, the second research question of the Master’s the-
sis is: 
 
Which existing algorithms can be used to solve the shortest path problem in social 
graphs? The algorithms should fit the defined requirements. 

 
Since, as it is shown in Section 4, existing algorithms do not fit the requirements, 
the third research question would be: 
 
How to design the shortest path searching algorithm which fits the formulated require-
ments? 

 
As stated above, users in social networks are allowed to create relationships 
between each other as well as destroy them. According to (Wilson, Boe, Sala, 
Puttaswamy, & Zhao, 2009) 50% of user actions per day relates to changing in 
users’ friends lists. Some of the algorithms (Cao, Zhao, Zheng, & Zhao, 2013; 
Zhao, Sala, Wilson, Zheng, & Zhao, 2010) use some pre-computed data which 
requires a lot of resources and time for rebuilding in case of changes in graphs. 
Therefore, a sub-task of the third research question appears: 
 
What is the impact of changes in a social graph to accuracy of the synthesized algorithm? 
How can the algorithm be modified to support dynamic social graphs? 

2.2 Research design 

The following section describes the methodology of the research. To answer the 
research questions mentioned above, two research methodologies are utilized. 
The first one is the literature review (Creswell, 2007). It involves review of the 
graph theory, characteristics of social graphs and analysis of existing shortest 
path searching algorithms. The literature review is done in Sections 3 and 4. 
Additionally, the reviewed algorithms are analyzed according to the require-
ments defined in Section 4.2. Thus, the first and the second research questions 
are answered. 

The following is the description of the design science research methodology 
(DSRM) (Hevner, March, Park, & Ram, 2004; Hevner & Chatterjee, 2010). Ac-
cording to the DSRM framework, the research is guided by business needs and 
applicable knowledge. Applicable knowledge involves such foundations and 
methodologies as theories, models, methods and data analysis. Regarding busi-
ness needs, the algorithm can be employed as part of a shortest path searching 
service deployed into a social networking site. The research process comprises 
of two phases: the development phase, during which a new artifact is created, 
and the evaluation phase, during which the new artifact is evaluated. Usually, 
the evaluation follows development, but then the further development might be 
needed in order to fix defects of the artifact. Thereafter, the research process 
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may continue with further development and further evaluation. The two phases 
of the design science approach are as follows: 

• During the development phase, a new shortest path searching algorithm 
is created. Firstly, after reviewing of existing solutions, the most accepta-
ble (Atlas) is chosen, is implemented and analyzed. Thereafter, the cho-
sen algorithm is enhanced based on the characteristics of social graphs. 

• During the evaluation phase, the proposed algorithm is evaluated on 
paths pre-calculated by the breadth-first search. Several thousand of 
paths are computed. Thereafter, the new algorithm is run on the correct 
paths and the output of the algorithm is compared with the expected 
paths. Performance, accuracy and memory usage of the algorithm are 
measured.  

The rest of the Master’s thesis (Sections 5-7) is devoted to synthesizing and 
evaluation of the algorithm. Sections 5-7 answer the third research question. 

The DSRM is used because the research conforms the following guidelines 
suggested by (Hevner, March, Park, & Ram, 2004): 

• Design-science research must produce a viable artifact. Indeed, a new artifact 
is expected to be produced by the research. The new artifact is a new 
shortest path searching algorithm which can handle large social graphs. 

• Development of technology-based solutions to important and relevant business 

problems. The solution can be used as the base of a service which calcu-
lates the shortest path between a pair of users of a social networking site. 

• Evaluation of the artifact utility, quality and efficacy must be rigorously demon-

strated via well-executed evaluation methods. It is proposed to use paths pre-
computed by BFS in order to run the new algorithm on them and calcu-
late accuracy of the new algorithm. Additionally, memory usage and 
performance are measured to check that the algorithm fit the require-
ments. 

• Clear and verifiable contributions in the area of design artifact and its founda-

tions. It is assumed that the first contribution, the review of algorithms 
and characteristics of social graphs, will be used in another research, and 
the second contribution, a new algorithm, will be used in services of so-
cial networking sites as well as the base of tools which analyze social 
graphs. Moreover, the algorithm may be published as a scientific paper, 
thus, scientific community would be able to use or improve it. 

• Application of rigorous methods for research for both construction and evalua-
tion of artifact. The artifact construction is based on published research 
from academic journals. While for the artifact evaluation, the rigor is 
kept because algorithm evaluation is based on pre-defined measures, like 
performance, accuracy and memory usage, which are compared between 
different modifications of the new approach. 
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• The search for an effective artifact requires utilizing available means to reach de-
sired ends while satisfying laws in the problem environment. The research 
process is defined in this thesis. As it is mentioned in the introduction 
and in the current section, the elicitation of requirement is performed 
firstly; thereafter, existing solutions are reviewed and the most accepta-
ble algorithm is chosen. The new algorithm is created on the basis of this 
algorithm. Finally, the new algorithm is evaluated as it is mentioned in 
the previous bullet-point. 

• Design-science research must be presented effectively both to technology-
oriented as well as management-oriented audiences. The outcome of the re-
search will be published as the Master’s thesis; therefore it can be ac-
cessed by scientists in the research area. Additionally, the artifact can be 
published in a paper. Regarding management-oriented audiences, the 
algorithm can be embedded into a service which calculates the shortest 
path between a pair of users of a social networking site. 

Software development is conducted according to one of the following basic 
software development models or their modifications: 

• The waterfall model which is comprised of a sequence of processes from 

specification to implementation and deployment (Benington, 1983). 

• The iterative model in which development is done as a sequence of itera-

tions in which each iteration contains a stage of planning, implementa-
tion, testing and analyzing (Larman & Basili, 2003). 

• The spiral model which is based on looped improvement of the project 

goal; in the spiral approach new elements of product are added when 
they become known (Boehm, 1986). 

In this Master’s thesis software development is conducted according to the spi-
ral model, since the development contains several cycles which contains analy-
sis, development and evaluation. The spiral of the traversed research phases is 
shown in Fig. 2. First, the domain of research was grasped and algorithm re-
quirements were elicited (Sections 3-4); thereafter, the first version of the algo-
rithm was implemented (Section 5). After the analysis of bottlenecks of the first 
solution, a new open-addressing hash map was implemented and added to the 
algorithm (Section 5.4). As it is shown further, the first version of the synthe-
sized algorithm does not conform to the performance constraints (Section 5.5). 
Therefore, the properties of the algorithm were analyzed, and according to 
them, the second version of the algorithm was created (Section 6). After that, 
the algorithm was parallelized, and the hash map was implemented as lock-free 
(Section 6.2). Thereafter, new bottlenecks related to data communications ap-
peared; the algorithm spent a half of the query time for data transmission 
through a computer network. Therefore, a new heuristic, which decreases the 
volume of data transmitted through the network, was suggested. Finally, the 
Atlas+ algorithm was evaluated on dynamic graphs. It was shown that Atlas+ is 
not impacted by changes in the social graph significantly. Also, two strategies 



17 

to handle the dynamics of social graphs were suggested and evaluated (Sec-
tion 7). It was shown that these strategies are able to keep the accuracy of Atlas+ 
on the acceptable level. 
 

 
FIGURE 2 Spiral of the traversed research phases 
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3 GRAPH THEORY 

This section provides the basic concepts and terminology of graph theory. The 
section is comprised of four sub-sections. The first one tells about common set 
theory and big o-notation. The second section defines such concepts as graphs, 
paths, connected components and others. The next one provides information 
about how graphs can be represented in computer memory. And the forth sec-
tion focuses on social graphs and their characteristics. 

3.1 Mathematical preliminaries 

This section contains some concepts of mathematics that are needed in this 
Master’s thesis. The section defines big O-notation and provides the basis of set 
theory. 

The common set theory provided in the section is based on the fundamental 
work of (Cantor, 1877). A set is a collection of objects which are called the ele-
ments of the set. Let � be a set, then notation 	 ∈ � means that object 	 is an ele-
ment of set �. While 	 ∉ � means that e is not an element of set �. 

A subset � of a set �, denoted � ⊂ �, is a set for which the following state-
ment is true. Each element of the subset is an element of set �. 

Cartesian product of sets � and �, denoted � × �, is a set which contains or-
dered pairs ��, �� where � is an element of set � and � is an element of set �. 
�-notation (big o-notation) describes the limiting behavior of a function 

when the argument tends to a particular value or infinity (Knuth, 1976). In 

computer science it is used to classify processing time of algorithms. ������� 
denotes the set of all ���� such that there exist positive constants   and !	such 
that for all values �	 ≥ 	!, the absolute value of ���� is less or equals to   mul-

tiplied by the absolute value of ���� . In other words, ���� 	∈ �������  <=> 

∃	 ,! ∶ ∀	� ≥ !, |����| ≤  	|����|. Thus, the O-notation is used to estimate the 
behavior function f when it is not necessary to think about what the exact func-

tion is. It behaves asymptotically essentially in the same way as a known func-
tion g. 
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3.2 Basic concepts and definitions 

This section is based on the fundamental work “Graph theory” published in 
1969 by an American mathematician Frank Harary (Harary, 1969). 

A graph ) is an ordered pair ��, �� comprising a finite nonempty set �of ver-

tices (points) together with a set	� of edges (lines), which is a subset of Cartesian 
product of the set of vertices, i.e. � ⊂ � × �.  Each pair of vertices 	 = ��, �� ∈
�	is an edge and it is said that e connects � and �. Hence, the vertices � and � are 
adjacent vertices. Vertex � and edge 	 are incident with each other; as well as v 

and e. Moreover, if two distinct edges 	 and 	′ are incident with a common ver-
tex, then they are said to be adjacent edges. In Fig. 3 an example of a graph is 
shown. 
 

 
FIGURE 3 An example of a graph 

A directed graph or digraph is a graph which consists of a finite nonempty set V 

of vertices and a set of ordered pairs which are named directed edges or arcs. 
An undirected graph is a one where for each edge ��, �� it holds that there is an 
edge ��, ��. 

A complete (directed) graph is a directed graph in which every pair of vertices 
is connected by a pair of unique edges (one in each direction). 

A planar graph is a graph that can be embedded in the plane. This means 
that it can be drawn in such a way that its edges do not intersect each other, the 
edges can only intersect in their endpoints. Fig. 3 provides a planar graph. In 
Fig. 4 a graph which cannot be planed is shown. 

Another graph that should be mentioned is a weighted graph. A weighted 
graph is a graph with weight function which assigns a real-value to each edge. 
A graph, which has a weighted function which returns one for all edges, is 
called an unweighted graph. 



20 

 
FIGURE 4 An example of a non-planar graph 

A subgraph of ) is a graph )′ which has all vertices and edges in ). This means 
that subgraph's set of vertices is a subset of the set of vertices of graph ), and 
subgraph's set of edges is a subset of the set of edges of graph ). 

A path (walk) in a graph can be defined as a finite sequence of vertices and 

edges ��	
…�� in which each edge is incident with the preceding and following 
vertices, so 	
 = ��
�
, �
�. The edges can be omitted in the notation, so the path 
between two vertices can be denoted as ���_1…��. The edges are evident by 
context. If the first and last vertices are the same, i.e. �� = ��, then the path is 
called a closed path in a directed graph. A cycle in a graph is an equivalence class 
of closed paths induced by the following equivalence relation: two paths are 
equivalent if and only if ∃-∀. ∶ 	
	/01	� = 	�
23�/01�4  where 	
  are edges of the 

first path and 	′
 are edges of the second one. In other words, this definition 
means that there is such a shift of indices that all edges have the same indices in 
the two paths. 

The length of a path in an unweighted graph is the number of edges which 
comprise the path. In the similar way, the length of the path can be defined for 
weighted graphs. In a weighted graph the length of a path is the sum of weights 

of edges which belongs to the path. In other words,	5�6� = ∑ 8�	
��
9
 . A shortest 
path between two vertices is a path where the length of path between these ver-
tices is minimized. The diameter of a graph is the longest shortest path between 
any pair of vertices of the graph if the graph is connected. If it is not connected 
the diameter is infinite. 

If each pair of vertices of an undirected graph is connected by a path, then 
this graph is called connected. A connected component or simply a component is a 
subgraph of an undirected graph that is connected and maximal in terms of in-
clusion. Thus, the connected components of an undirected graph are equiva-
lence classes in which pair connectivity is an equivalence relation. 

Relying on the definition of cycles and connected components the terms tree 
and forest can be defined. A graph is called acyclic if it does not have cycles. A 
tree is a connected acyclic graph. Any graph without cycles is a forest. Thus, the 
connected components of a forest are trees. A subgraph )′ of a graph ) is called 
a spanning tree if and only if ) is a tree and contains all vertices of the graph ). 
In Fig. 5 an example of a forest with two trees is depicted. 
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FIGURE 5 An example of a forest with two trees 

The degree of vertex �, denoted as deg � or =, is the number of edges which are 
incident with vertex �. The in-degree of vertex � is the number of edges which 
are incident and end in vertex �. The out-degree of vertex � is the number of 
edges which are incident and begin in vertex �. The latter definitions are rele-
vant for directed graphs. 

3.3 Graph representation in computer memory 

This section provides  information on how graphs can be represented in com-
puter memory. There are two standard ways to represent a graph. The first one 
is to represent a graph as a collection of adjacency lists and the second one is an 
adjacency matrix (Cormen, Leiserson, Rivest, & Stein, 2001). 

The adjacency-list representation of a graph consists of an array of lists. 
Each vertex of the graph is represented by an entry in the array. The entry of the 
vertex is the head of the adjacency list. All vertices which are incident with the 
vertex are stored in the adjacency list of the vertex. 

The adjacency-matrix representation of a graph is assumed to have some 
numbering function for vertices. Then the adjacency-matrix representation of a 
graph consists of a matrix |�| × |�| such that: 

�
3 = >1, �., -� ∈ �0, �., -� ∉ �. 

Both of the mentioned representations can be used for directed and undi-
rected graphs. The adjacency-list representation of a graph stores only such 
edges that are really in the graph. While the adjacency-matrix representation of 
a graph stores all information about all possible pairs of vertices of the graph. 
Thus, the adjacency-list representation is more suitable for sparse graphs, in 
which |�|~��|�|�, while the adjacency-matrix representation is more suitable 
for graphs which are close to complete ones. The adjacency matrix needs only 
one bit for an edge in case of an unweighted graph, thus, the total volume of 
adjacency lists which is necessary for their storing is larger than for the appro-
priate adjacency matrix. 
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The mentioned ways of graph representation can be adapted to weighted 
graphs. The node in an adjacency list representing an unweighted graph should 
also store the weight of the edge. The adjacency matrix can be adapted in the 
same way. Each entry of the matrix should store the weight of an edge if there 
is an edge between a pair of vertices. If a graph does not contain an edge, then 
the appropriate entry should store the special value NIL. This value is chosen 
according to an application. For instance, a road graph does not contain nega-
tively weighted edges, so the NIL value can be -1. 

Another advantage of the adjacency matrix is constant time ��1� of check-
ing whether there is an edge between a pair of vertices. While the same opera-
tion cannot be done faster than ���� for the adjacency lists where � is the length 
of the appropriate adjacency list. 

3.4 Social graph and its characteristics 

A social graph is a graph with people as a set of vertices and social relationships 
between them as edges. These relationships can include such types as friend-
ship, kinship, working at the same work and further relationships (D’Andrea, 
Ferri, & Grifoni, 2010). Thus, social graph is a mathematical representation of a 
social network. The social network platform Facebook contains circa one and a 
half billion active users (Statista, 2015). This means this social networking site 
has a profile for 20% of the population of the Earth. Thus, Facebook is a good 
data set in data aggregation and data mining for life modeling, determining 
community structure. This section is mostly based on the paper written by 
Ugander et al. (2011). In this paper researchers analyze different characteristics 
of Facebook. 

The degree of vertices in an undirected social graph usually has the power-law 
distribution. This means that the probability that the degree of a vertex is A is 

proportional to A�B, where � > 1. Different real-world networks are shown to 
be power-law distributed. This property is proven for the Internet topology 
(Faloutsos, Faloutsos, & Faloutsos, 1999), the Web (Barabasi & Albert, 1999), 
social networks (Adamic, Buyukkokten, & Adar, 2003; Ugander, Karrer, 
Backstrom, & Marlow, 2011), and neural networks (Braitenberg & Schüz, 1991). 

Another class of networks is a scale-free network which is a class of net-
works which have property that a high-degree vertex has the tendency to be 
connected with other high-degree vertices. This property is discussed in Li et al. 
(2005). This kind of a network contains a plenty of hubs (high-degree vertices) 
which are highly connected with each other. Thus, a path between two random 
vertices often passes through the hubs. Moreover, it is supposed that the net-
work will be splintered into plenty of isolated pieces in case of removal of sev-
eral hubs (Barabasi & Bonabeau, 2003). The authors announce that social net-
works are assumed to have the scale-free property. According to Ugander et al. 
(2011), the major part of individuals in the social network Facebook has less 
than 200 friends (degree) and median friend count is 99. 
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Another metric which describes the structure of a social network is neigh-
borhood function !�ℎ� (Ugander, Karrer, Backstrom, & Marlow, 2011). This func-
tion shows how many pairs of vertices ��, �� such that � is reachable from � 
along a path in the network with ℎ edges or less. The neighborhood function is 
more informative than the diameter of a graph, because its value can be large 
because of a single long path in some region of the graph, while the neighbor-
hood function shows typical distances between vertices. For Facebook this func-
tion looks as follows. There are few vertices, circa 0%, which are connected by a 
two-hop path, 35% of vertices are connected by a four-hop path, and almost all 
vertices are connected by a six-hop path (Ugander, Karrer, Backstrom, & 
Marlow, 2011). Also, the average distance between a random pair of vertices 
was 4.7 in 2011 in Facebook (Ugander, Karrer, Backstrom, & Marlow, 2011). 

The characteristics mentioned above do not make sense without analysis of 
connected component size, because the neighborhood function computation 
shows distances between vertices only within one connected component. Ac-
cording to Ugander et al. (2011), a social network has one large component 
which contains most part of vertices (99.91% of the network in Facebook) and 
plenty of small components. The largest component of small components is 
comprised of less than 100 vertices. 

Thus, the above-mentioned characteristics describe macroscopic view of a 
social graph. According to the characteristics, a social graph contains one large 
component where almost all pairs of vertices are connected by a path not longer 
than six hops. In addition, according to the scale-free property, a path between 
two vertices usually goes through hubs of the social network. 

The neighborhood graph of a vertex is a subgraph which is comprised of the 
adjacent vertices of the vertex and edges between them. So the local clustering 

coefficient of a vertex is a metric which equals to a number of edges in the neigh-
borhood graph, which is divided by A�A − 1�/2, where k is the degree of the 
user. Ugander et al. (2011) analyze how the local clustering coefficient depends 
on the degree. In their work the local clustering coefficient of vertices that have 
circa 100 adjacent vertices is 14%. This means that 14% of the neighbors of the 
vertex are connected by edges. Moreover, Ugander et al. (2011) show that the 
local clustering coefficient decreases with degree. For instance, the clustering 
coefficient is low for vertices with degree close to 5000. 

To describe the sparsity of the neighborhood graph, term degeneracy is used. 
This metric is defined as follows. A-degeneracy of an undirected graph ) is the 
largest A for which ) has a non-empty A-core, where A-core of a graph ) is the 

maximal subgraph of ) in which all vertices have degree of at least A. Ugander 
et al. (2011) determine that average degeneracy is an increasing function of user 
degree within the neighborhood graphs. This can be supposed as the more 
friends a user has, the larger dense community a user are embedded within. For 
instance, in Facebook users, which have 500 friends, have average degeneracy 
53. This means that they have at least 54 friends who know at least 53 of other 
friends (Ugander, Karrer, Backstrom, & Marlow, 2011). 
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Another important property of graphs which should be taken into account 
in algorithm design is the number of vertices which can be reached in two hops 
from an initial vertex. Ugander et al. (2011) count two metrics: non-unique 
friend-of-friends and unique friend-of-friends. Based on the obtained estima-
tions, the number of non-unique friend-of-friends is proportional to AH, while 
the number of unique friend-of-friends is proportional to a linear function of 
degree k. 

The main characteristic that should be taken into account during algorithm 
design is that social graphs are very dynamic. Wilson et al. (2009) have meas-
ured how many actions users do per day. These actions include adding and re-
moving friend, commenting and writing posts, and status changes. According 
to their work user do circa 50% of actions related to changing of the structure of 
a social graph. 
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4 SHORTEST PATH SEARCHING ALGORITHMS 

This section describes algorithms which are able to solve the shortest path prob-
lem. Also, the functional requirements of the desired algorithm are formulated. 
The described algorithms are analyzed and summarized in the last sub-section 
of this section according to the functional requirements. 

4.1 Algorithms for the shortest path problem 

The breadth-first search (BFS) (Lee, 1961) is one of the simplest algorithms for 
exploring a graph. The algorithm calculates the distance, the number of edges 
on the path, to each vertex reachable from I and solves the single-source short-
est path problem. It works as follows. Given an unweighted graph ) = ��, �� 
and a source vertex I, BFS explores a graph layer by layer to find every vertex 
that is reachable from the source vertex. BFS is named in such way, because it 
discovers all vertices at distance A from the source vertex I, and, thereafter, be-
gins discovering the next layer of vertices at distance A + 1. It also builds a BFS 
tree with s as a root of the tree. The tree contains all vertices reachable from s. 
For any vertices which are in a BFS tree, the shortest path from the source ver-
tex s to any vertex is the path in a BFS tree. The algorithm works on both di-
rected and undirected graphs. It is supposed that the set of black vertices con-
tains already processed vertices, the set of gray vertices contains vertices cur-
rently processed, and the set of white vertices contains vertices which have not 
been discovered at the current step of algorithm. The gray vertices are stored in 
a first-in-first-out (FIFO) queue. At each step of the algorithm, vertices are di-
vided into three sets: white, gray and black vertices. The algorithm starts from 
the source vertex s, which is marked by gray color and is added to the queue. 

Thereafter, BFS dequeues the first vertex of the queue � and looks through the 
adjacent vertices of the vertex. Each adjacent vertex �, which is still white, is 
marked by gray color and is added to the queue. The vertex � is added to the 
BFS tree as a child of the vertex �. When the adjacency list of the current vertex 
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is processed, the current vertex is marked by black color. The algorithm stops 
when there are no vertices in the queue. Since the algorithm needs to look 
through all edges and vertices, the total running time is ��|�| + |�|�. The space 
complexity of BFS is ��|�|� (Lee, 1961). 

The Dijkstra's algorithm (Dijkstra, 1959) is supposed to be a generalization 
of BFS for non-negative graphs, solving the single-source shortest path problem. 
The vertices are stored in a priority queue, along with the distance to them from 
the source vertex. As in BFS, the algorithm starts from the source vertex, adds it 
to the priority queue. Each iteration begins with dequeuing of the vertices with 
the minimal distance from the source vertex. Thereafter, the adjacent list of the 
vertex is looked through and distance is updated. The algorithm stops when all 
edges of the graph are processed. If the algorithm uses Fibonacci's heaps 
(Fredman & Tarjan, 1987) as the priority queue, the time complexity of the algo-
rithm is ��|�| + |�| log|�|�. The space complexity of the algorithm is ��|�|�. The 
Dijkstra's algorithm can be only applied for a graph with non-negative edges, 
edges with non-negative weight. 

The Ford-Bellman (Bellman, 1956; Ford, 1956) algorithm can solve the sin-
gle-source shortest path problem for any graph that does not have a negative 
cycle, a cycle in which each closed path has negative weight. At the first itera-
tion of the algorithm all distances are overestimated, equal to infinity. At each 
iteration the Ford-Bellman algorithm checks whether there is an edge which can 
shorten the calculated shortest path to vertices. If the edge exist, then distances 
are recalculated. After	� − 1 iterations are done, the algorithm returns an array 
of distances to the reachable vertices. The Ford-Bellman algorithm has time 
complexity ��|�||�|�. The space complexity of the algorithm is ��|�|�. 

The idea of the Floyd-Warshall algorithm (Floyd, 1962; Warshall, 1962), 
which solves the all-pairs shortest path problem, is the same as the Ford-
Bellman algorithm. It compares all possible paths through the graph between 
each pair of vertices. It can be done with ��|�|M� comparisons in a graph. Thus, 
the algorithm can find the shortest path matrix between all pairs of vertices of a 
graph in time ��|�|M� and needs ��|�|H� of memory. The matrix can be calcu-
lated for any graph without a cycle also with negative weight. 

The Johnson's algorithm (Johnson, 1977) uses both the Ford-Bellman algo-
rithm and the Dijkstra's algorithm and it works for any graph without a nega-
tive cycle. So, first of all, the Johnson's algorithm adds a dummy vertex to the 
graph and edges with zero weight from the dummy vertex to all other vertices. 
After that, the Ford-Bellman algorithm is run from the dummy vertex. The cal-
culated distances are used in reweighing of the edges to make them non-
negative. Thereafter, the graph without non-negative edges is built and the 
Dijkstra's algorithm is run from each vertex of the graph. Thus, the total run-
ning time of the Johnson's algorithm is ��|�|Hlog	|�| + |�||�|� if the Dijkstra’s 
algorithm uses Fibonacci heap as a priority queue (Fredman & Tarjan, 1987). 
The space complexity of the Johnson’s algorithm is ��|�|H�. 

The A* algorithm which uses a special cost function to estimate whether 

vertices are near the destination vertex is similar to the Dijkstra's algorithm 
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(Hart, Nilsson, & Raphael, 1968). When the algorithm is applied to geographical 
graphs, the cost function of vertex u can be the distance between vertex u and 
the destination vertex. Thus, the closer vertex u to the destination vertex, the 
higher its priority. Therefore, the A* algorithm might never probe vertices that 
are located too far from the target vertex. The search space of the A* algorithm 
is bounded by ���1�, where b is an average number of successors per vertex 
and d is the length of the shortest path. Thus, the time complexity and the space 

complexity of the algorithm are ��=�1� if the Dijkstra's algorithm is utilized. 
The A* algorithm is able to solve the single-pair shortest path problem. 

Structure driven techniques utilize the structural properties of graphs to 
skip non-relevant vertices and edges. For instance, using structural highways in 
graphs might shrink the search space. The contraction hierarchies (CH) algo-
rithm adds highway edges to a graph (Geisberger, Sanders, Schultes, & Delling, 
2008). Let ��, �� and ��, 8� be two edges that connect vertices �, � and �,8, cor-
respondingly. In these terms, a highway edge is an edge which is added to the 

graph and connects vertices � and 8 with the weight which equals to the sum 
of weights of edges ��, �� and ��, 8�. The first step of the algorithm is to pre-
process the data and to build a set of contracted graphs. After this procedure, 
the diameter of the unweighted copy of the contracted graph has become much 
smaller. Thus, this procedure increases the speed of the Dijkstra's algorithm, 
which is executed on the modified graph, by decreasing the number of edges in 
the path. The hierarchy of the built contracted graphs is utilized to restore the 
actual path from the path obtained by the Dijkstra’s algorithm in the modified 
graph. This algorithm is widely used in solving the shortest path problem for 
road networks. Milosavljević (2012) proved that contracted graphs produced by 
CH contain ��ℎ|�|5N�O� edges, where D is the diameter of the graph, V is a set 
of vertices and h is highway dimension, the maximum number of nodes required 
to hit all shortest paths contained in some region whose length is not too small 
compared to the size of the region. Thus, the time complexity of CH is 
��ℎ|�|5N�O + |�| log|�|� (Milosavljević, 2012). 

Another approach which was suggested by Fu et al. (2013) is based on the 
scale-free property of social graphs. This approach cannot find an actual path 
between a pair of vertices, it can only estimate distance between them. Accord-
ing to the scale-free property, a social graph consists of a small set of popular 
(high-degree) vertices, modeling hubs, and a large set of non-popular vertices, 
modeling ordinary users. Thus, it is assumed that the shortest path between 
two random vertices includes some hubs. From this assumption, Fu et al. (2013) 
suggest to extract the core-net which is a subgraph consisting of popular verti-
ces and of some other vertices which are added to the graph to make it to form 
only one connected component. Thereafter, a distance matrix for the core-net is 
calculated. According to the property that two random vertices in a social net-
work are connected by six hops in average, a distance is searched as follows. 
Firstly, friend and friend-of-friends lists of the two vertices are calculated, 
thereafter, they are checked for intersection. If the lists have common vertices, 
then distance is found. Otherwise, the lists and the core-net are checked for in-
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tersection. If they intersect, the distance is calculated, according to the distance 
matrix. The time complexity of the algorithm is	��|!PH| + |!QH| + |R|�, where !PH 
and !QH are sets of friend-of-friends vertices and C is a core-net of the graph. 

Researchers widely use landmark-based approaches to estimate distances 
in large graphs. These approaches select a subset of nodes, landmarks, and pre-
compute the distances from each landmark to all other nodes in the graph. The 
algorithm finds shortest distance through the landmarks and returns the short-
est one as the answer for a query. Kleinberg et al. (2004) show that landmarks 
can be picked randomly with good theoretical results. Potamias et al. (2009) 
build landmarks according to basic metrics with better result than in the previ-
ous work. All  the above mentioned landmark-based approaches estimates the 
lengths of the shortest path in ��|S|�, where L is a set of landmarks. Finally, the 
Orion system, offered in Zhao et al. (2010), embeds a graph into a Euclidean 
space and distance between two vertices is estimated according to Euclidean 
distance between them. The time complexity time of Orion is ��1�, as calcula-
tion of the Euclidean distance between a pair of vertices is needed. The main 
disadvantage of the mentioned algorithms is that they are only able to estimate 
distance between vertices, not to calculate an actual path.   

A spanner of G is a subgraph G’ that contains all vertices of G and a small set 
of edges. There are several papers in which algorithms that produce spanners 

with ��|�|M/H�	edges are described. In the papers written by Dor et al. (2000) 
and Elkin et al. (2004) the produced spanners contain shortest paths between 
any pair of vertices that are at most two hops longer than the actual shortest 
paths in the original graph. Althöfer et al. (1993) suggest a spanner production 
algorithm where shortest paths are at most three hops longer than original path. 

The time complexity of the algorithms is ��|�|M/H�. The space complexity of the 

algorithms is ��|�|M/H�. The above-mentioned spanner based approaches solve 

the single-source shortest path problem. 
Cao et al. (2011) suggest another approach of building spanners which is 

named Atlas. The algorithm has two stages: building a search index; and fast 
queries to the built search index. The search index is realized as a set of span-
ning trees. The algorithm tries to sparse a graph by removing unrelated edges 
using the small-world property of social graphs and local clustering of the 
neighborhood graph of a user. In other words, the shortest path between a pair 
of vertices has tendency to go through hubs. Thus, the Atlas algorithm prunes 
friend connections between non-popular vertices, but keeps edges to hubs. The 
two mentioned properties of social graphs lead to the situation in which a pair 
of vertices has a lot of shortest paths between them. Thus, it is assumed that 
some of the edges can be removed without significantly decreasing algorithm’s 
accuracy. To find the shortest path between a pair of vertices, the Atlas algo-

rithm searches for the shortest path between the vertices in each spanning tree. 
Thereafter the shortest path of the found paths is selected as the result. To sum 
up, searching the shortest path between two vertices in a graph is reduced to 
searching the shortest path between two vertices in a spanning tree. This prob-
lem is actually the least common ancestor (LCA) problem (Aho, Hopcroft, & 
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Ullman, 1976). Cao et al. concluded that 20 spanning trees are enough to ap-
proximate social graphs. To handle dynamic graphs, Cao et al. (2011) suggested 
the strategy of replacement of old trees with new trees. Replacement of one tree 
per day is enough for not decreasing of the accuracy of the algorithm. Cao et al. 
(2011) evaluated the algorithm on several social graphs, the largest of which 
includes 43 million vertices and 1 billion edges. It was shown that changes in 
social graphs (removing and adding edges, removing and adding vertices) do 
not impact much the spanning trees. Nevertheless, the paper did not suggest 
how to perform local modifications of spanning trees. The time complexity of 
the algorithm is ��A|S|� , the space complexity of the algorithm is ��A|S|� , 
where k is the number of trees utilized in the algorithm and L is the maximal 

depth among the spanning trees. 

4.2 Application requirements and the fitness of algorithms 

In this section the above-mentioned algorithms are analyzed. The analysis is 
done, according to the accuracy of algorithms, memory usage, how they fit so-
cial network characteristics and how they fit algorithm requirements which are 
mentioned in the following paragraphs. The analysis is summarized in tables in 
the end of this section. 

Mostly, requirements emerged as business desires of the Odnoklassniki so-
cial networking site. An acceptable algorithm should solve the single-pair 
shortest path problem. The algorithms are analyzed according to the following 
functional requirements. 

1. Performance. An algorithm should solve the shortest path problem be-
tween a pair of vertices in admissible time; it is assumed that query time 
should not exceed 50 ms per query, as the algorithm can be used as a re-
al-time service and a solution should be found as fast as possible. 

2. Accuracy. Algorithm’s accuracy should be acceptable. The accuracy is 
computed as the number of correct results of the algorithm divided by 
the number of paths used in the evaluation of the algorithm, and it 
should be more than 90%. This accuracy also includes the requirement 
that if the algorithm makes a mistake, then the length of a result should 
not exceed the length of a correct path with more than one. The algo-
rithm can be used in graph analysis; thus, this kind of mistakes leads to 
incorrect statistics. 

3. Handling of short paths. The algorithm solving the problem should not 
make mistakes in the case of short paths (length less than 3), because if 
the algorithm is deployed as a standalone service, answer found by the 
algorithm can be easily checked by users. Hence, if a user realizes that 
the algorithm returns wrong answers, then it could lead to lowering the 
prestige of a social networking site. 
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The constraints of the implementation of the algorithm are: 

1. The algorithm should be implemented in Java, since all APIs of Od-
noklassniki has been implemented in Java.  

2. From the previous constraint, usage of the heap memory should be re-
stricted to 1 GB, since in case of wasteful usage of the heap memory, Java 
will have to collect garbage (not used objects) which leads to significant 
pauses if the algorithm is run several times (Gosling, Joy, Steele, Bracha, 
& Buckley, Chapter 12. Execution, 2015). 

3. Heuristic algorithms usually have a pre-computation step that pre-
calculates some data. It is supposed that the algorithm use memory 
mapping I/O (Pai, Druschel, & Zwaenepoel, 1999) to store all data in the 
primary memory. Memory mapping allows storing data in the off-heap 
memory. Thus, the amount of the pre-computed data, stored in the off-
heap, the size of the heap and the application code should not exceed the 
amount of the primary memory of a machine. The algorithm is assumed 
to be run on a machine with 64 GB of the primary memory. Thus, the al-
gorithm should not use more than 64 GB of the primary memory. If pro-
cesses exceed the volume of the accessible memory, the operating system 
dumps the virtual memory of some processes to the swap (Bach, 1986) 
which significantly slows the processes. 

4. The volume of data transmitted through a computer network should be 
limited. It will decrease load of servers and waiting time for data transfer 
between servers. 

BFS cannot handle large graphs. For instance, if a graph contains 200 million 
vertices and BFS is used, BFS uses 1.5 GB (200 000 000 * 8 bytes) of the heap 
memory to store all vertices (each vertex is represented as an 8 bytes long inte-
ger) in the inner queue in the worst case. Other algorithms, the Dijkstra’s, Ford-
Bellman, Floyd-Warshall and Johnson algorithms, need more memory. In addi-
tion, the performance of the algorithms is not acceptable, BFS needs a minute in 
a standard desktop computer to calculate the shortest path between a pair of 
vertices in a graph that contains four million vertices and 50 million edges 
(Potamias, Bonchi, Castillo, & Gionis, 2009). The other algorithms asymptotical-
ly take more time to find the shortest path. Thus, obviously these algorithms do 
not fit the requirements. 

Contraction hierarchies, which are synthesized to handle large road graphs, 
cannot be applied to social graphs. The goal of the algorithm is to decrease the 
diameter of a graph. Thus, according to the social network characteristics, this 
strategy is not efficient for social graphs because of small average distance be-
tween vertices. Moreover, the algorithm increases the degree of vertices, while 
the degrees of vertices of social graphs are large. This problem can be resolved 
by the A* algorithm, but a social graph is nowhere close to a planar one. Hence, 
it is not clear how to devise a priority function. Researchers try to work out how 
to plane a social graph, but after that, there will be another problem with high 
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dynamics of a social graph. The planar graph has to be updated every time 
when a user changes their friend list. 

Landmark-based algorithms (Kleinberg, Slivkins, & Wexler, 2004; Potamias, 
Bonchi, Castillo, & Gionis, 2009) can approach the actual shortest distance be-
tween a pair of vertices. Orion (Zhao, Sala, Wilson, Zheng, & Zhao, 2010) maps 
a social graph to a Euclidean space and calculates distance between a pair of 
vertices as Euclidean distance between the corresponding points in the Euclide-
an space. The main disadvantages of the mentioned algorithms are that they 
cannot handle dynamic graphs, and they can only estimate the length of a 
shortest path. The same can be said about the core-net based algorithm (Fu & 
Deng, 2013). 

And finally, the spanner based algorithms are analyzed. Dor et al. (2000), 
Elkin et al. (2004) and Althöfer et al. (1993) tell how to build a spanner with 

��|�|M/H�	edges in the graph and suggest finding the shortest path with BFS or 
the Dijkstra's algorithm. The algorithm is not applicable for social graphs be-
cause, for instance, the median degree of vertices in Facebook is 99 (Ugander, 
Karrer, Backstrom, & Marlow, 2011). Hence, the spanner will not be as sparse as 
expected. The Atlas algorithm, which offers to build a set of BFS trees, is based 
on solving the LCA problem in spanning trees. The researchers also suggest an 
algorithm which updates trees according to changes in a graph, but the disad-
vantage of the algorithm is that the accuracy of algorithm is not acceptable (25-
30%). Nevertheless, this algorithm can build a path between vertices in a graph 
and it was chosen as the starting point for the new one. It is assumed that it will 
be mixed with other techniques of shortest path searching to improve its accu-
racy. 

From the literature review, it should be mentioned that currently the re-
searches are mostly focused on distance estimation between vertices, not on 
calculation of actual paths. It can be concluded that searching of the shortest 
path is not a high priority task in analysis of social graphs today, since distance 
estimation is enough to calculate such metrics as diameter of a graph or neigh-
borhood function. Also, from the business needs, applications, like ranked so-
cial search, can be done only by distance estimation algorithms. Nevertheless, 
the algorithm review discloses that no efficient algorithm for solving the short-
est path problem in social graphs exists. 

The above mentioned algorithms are summarized in Table 1. The table con-
tains information about type of a graph for which algorithms are applicable, the 
time and space complexity of the algorithms. 
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TABLE 1 Summary of the mentioned algorithms 

Algorithm Graph Type of 
problem 

Time 
complexity 

Space 
complexity 

Breadth-
first search 
(BFS) 
 

Unweighted graph Single-
source 

��|�| + |�|� ��|�|� 

Dijkstra’s 
algorithm 
 

Weighted graph 
with non-negative 
edges 
 

Single-
source 

��|�|log	|�| + |�|� ��|�|� 

Ford-
Bellman 
algorithm 
 

Weighted graph Single-
source 

��|�||�|� ��|�|� 

Floyd-
Warshall 
algorithm 
 

Weighted graph All-pairs ��|�|M� ��|�|H� 

Johnson’s 
algorithm 
 

Weighted graph All-pairs ��|�|Hlog	|�| + |�||�|� ��|�|H� 

A* algo-
rithm 
 

Road (weighted) 
graph 
 

Single-pair ��=�1� ��=�1� 

Contraction 
hierarchies 
 

Road (weighted) 
graph 
 

Single-pair ��|�|�ℎ5N�O + log|�|�� ��|�|� 

Core-net 
based algo-
rithm 
 

Social (unweighted) 
graph 

Single-pair ��|!PH| + |!QH| + |R|� ��|R|� 

Landmark-
based algo-
rithms 
 

Social (unweighted) 
graph 

Single-pair ��|S|� ��|S|� 

Spanner-
based ap-
proaches 
 

Unweighted graph Single-
source 

��|�|M/H� ��|�|M/H� 

Atlas 
 

Social (unweighted) 
graph 

Single-pair ��A|S|� ��A|S|� 
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5 THE FIRST VERSION OF ATLAS+ 

The current section contains description of the proposed algorithm. First, the 
Atlas algorithm is described in detail. After that, improvement for the Atlas al-
gorithm is suggested. Thereafter, the accuracy and the performance of Atlas+ 
are analyzed. The section also contains analysis of time complexity. 

5.1 The Atlas algorithm 

The current section describes the Atlas algorithm in detail. The Atlas algorithm 
is comprised of two phases: building of a search index and queries to it. The 
search index consists of a set of spanning trees which are stored on the hard 
drive. The tree construction is shown in Listing 1. The algorithm takes the num-
ber of spanning trees to be built as a parameter and returns the specified num-
ber of built trees. The strategies of the selection of starting vertices and adding 
new edges to the building tree are described below. 
 
LISTING 1 Building of the searching index 
1 Tree[] builtTrees(int numberOfTrees) 
2     long[] startingVertices = selectStartingVertices(numberOfTrees); 
3     Tree[] trees = new Tree[numberOfTrees]; 
4     for (int i = 0; i < numberOfTrees; ++i) 
5         trees[i] = buildTree(startingVertices[i]); 
6     return trees; 
  
Method buildTree returns the built spanning tree which can be represented as an 
array of entries in which each entry points to its parent in the tree. To build a 
spanning tree, the strategy of selection of the starting vertex and the strategy of 
selection of edges should be chosen. Cao et al. (2011) evaluated the following 
strategies of selection of the starting vertices: 

• The top k-centrality strategy in which k most popular vertices are chosen 

as the starting vertices; 
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• The scattered top k-centrality strategy in which k most popular vertices 

are chosen in such a way that the distance between a pair of the chosen 
vertices is at least two edges; 

• The random selection strategy in which the starting vertices are chosen 
randomly. 

In Cao et al. (2011) the top k-centrality strategy had the best characteristics. 
At each step of the Atlas algorithm an edge is probed whether it can be 

added to the building spanning tree. In the paper three strategies of edge selec-
tion were evaluated: 

• Breadth-first search with random tie-break in which a random edge of 
the addable edges is added; 

• Breadth-first search with complementary tie-break in which the least 
used edge of the addable edges is added; 

• The least covered edge first strategy in which the least used edge in the 
previous trees is added to the building tree. 

The best accuracy is demonstrated by the breadth-first search with complemen-
tary tie-break. 

Handling of dynamic graphs is done as follows. Several old trees are re-
placed with new trees. Also, it was shown that changes in social graphs do not 
impact much the built spanning trees. 

To find the shortest path between vertices s and t, the Atlas algorithm finds 
the shortest path in each spanning tree and selects the shortest path from the 
found paths. The algorithm is shown in Listing 2. 

 
LISTING 2 The Atlas algorithm 
1 long[] atlas(long s, long t) 
2     long[] result = null; 
3     for (int i = 0; i < numberOfTrees; ++i) 
4         long[] path = trees[i].path(s, t); 
5         if (result == null || result.length > path.length) 
6             result = path; 
7     return result; 
 

 

5.2 Improvement of the Atlas algorithm 

The following section describes changes in the Atlas algorithm that improve its 
accuracy. The improvement is based on the properties of social graphs, in this 
case, the large value of the coefficient of local clustering. Properties of the new 
algorithm are analyzed, and according to them, two version of the new algo-
rithm are suggested. 
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The local clustering coefficient describes the neighborhood graph of a ver-
tex, the probability that a pair of adjacent vertices of a vertex is connected by an 
edge. The local clustering coefficient is large for social graphs, for example Fa-
cebook showed the value 0.15 (Ugander, Karrer, Backstrom, & Marlow, 2011) , 
and a subgraph of LiveJournal 0.13 (Stanford Network Analysis Project, 2015). 
It means that the probability that adjacent vertices of a vertex are connected by 
an edge is 15% for Facebook in 2011 and 13% for the subgraph of LiveJournal. 
Thus, a path between a pair of vertices can be shortened. In Fig. 6 a path be-
tween vertices u and v is shown. The dashed edge connects the adjacent vertices 
of vertex w. Thus, the path between vertices u and v can be shortened through 
the dashed edge. 

 
FIGURE 6 Shortening of the path 

Hence, the result of the Atlas algorithm can be improved with help of some ad-
jacent vertices of the vertices obtained by the Atlas algorithm. The proposed 

algorithm looks as in Listing 3. 
 
LISTING 3 The proposed algorithm (version 1) 
1 long[] path(long s, long t) 
2     long[][] paths = atlas(s, t); 
3     long[][] adjacencyLists = getAdjacencyLists(paths); 
4     Map<Long, List<Long>> graph = buildGraph(adjacencyLists); 
5     return bfs(graph); 
 

The new algorithm, first, searches for the shortest paths in the spanning trees 
(the atlas method, line 2). Thereafter, the adjacent vertices of the vertices ob-
tained by Atlas are requested (the getAdjacencyLists method, line 3). Based on 
that, a graph is built (the buildGraph method, line 4) in which BFS finds the 
shortest path between the source and the destination vertices (the bfs method, 
line 5). The result of Atlas+ is the path found by BFS. The building graph is 

stored in a hash table in which keys are ids of vertices and values are lists of 
adjacent vertices. 

5.3 Time complexity of the algorithm 

To measure the time complexity of the shortest path searching algorithm, anal-
ysis of the each step is needed. Finding of the shortest path in a tree takes time  
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linear with regards to the depth L of the tree O(L). At the same time the depth of 
the trees are bounded by the diameter of social graphs. These values cannot be 
large, because of the characteristics of social networks they are modelling. E.g., 
the diameter of social graph of LiveJournal is 16, and 9 for social graph of Orkut 
(Stanford Network Analysis Project, 2015). Search of k shortest paths in k trees 
takes time O(kL). 

The number of the queried incident edges are bounded by dkL, where d is 
the maximal degree of any vertice in the original social graph. Also the number 
of edges queried by the proposed algorithm is bounded by dkL. Thus, the 
breadth-first search algorithm works in O(dkL) in the worst case. The second 
version of the searching algorithm works for the same time as the first version, 
but some steps are done more efficiently and constants in the appropriate time 
functions are smaller. 

Thus, the summarized time complexity of the proposed shortest path 
searching algorithm depends on the depth of trees, number of trees and the 
maximal degree of vertices in the social graph and equals to O(dkL). Additional-
ly, some social networking sites limit the maximal number of friends. As for 
Odnoklassniki, the value is 5000 (API OK, 2015). Therefore, d is assumed to be a 
constant. 

5.4 Algorithm implementation 

The following section describes implementation details of the proposed algo-
rithm. First, the API of the Odnoklassniki social networking site with which the 
algorithm will be shipped is described. A flexible mechanism based on the ob-
ject-oriented programming is utilized (Cox, 1986). Thereafter, memory mapping 
I/O (Pai, Druschel, & Zwaenepoel, 1999) which is used for handling large files 
is discussed. Finally, to make the algorithm multi-threaded, a lock-free open-
addressing hash table is suggested. 

5.4.1 Description of social graph API 

The following section describes accessible API of the graph of the Odnoklassni-
ki social networking site. Each vertex of the Odnoklassniki social graph has id 
which is an 8 bytes long integer. The vertices of the graph are placed on four 
servers (shards). To retrieve some information about a vertex, for example, to 
retrieve the adjacency list of a vertex, the shard in which the vertex is located 
should be determined. The shard in which a vertex is located is calculated ac-
cording to the id of the vertex. E.g. currently the algorithm of shard determina-
tion takes remnant by dividing id of vertex by 256. After that, each interval of 
the remainder relates to a shard. In this case, the remainder between 0 and 63 
relates to the first shard, the remainder between 64 and 127 – to the second 
shard and etc. Thus, this operation needs little resources and time. After the 
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determination of the shard, the adjacency list of the desired vertex is requested 
from the shard. The shard returns the adjacency list of the vertices that is an 
array of 8 byte integers. The size of the requests and responses is bounded by 16 
MB. Thus, requests should be split in order not to overflow the limit of the size 
of requests and responds. 

The algorithm was evaluated on the Odnoklassniki social graph, a sampled 
snapshots of LiveJournal and Orkut obtained from SNAP (Stanford Network 
Analysis Project, 2015) and a locally sampled part of the Odnoklassniki social 
graph. The algorithm was implemented in Java, and was run on an Odnoklass-
niki’s server. To avoid code duplication which can occur when there are several 
similar entities with different behavior, the object-oriented programming is em-
ployed in the work. Thus, the classes which implement social graphs have the 
same interface, Graph. The Graph interface provides API of retrieving shards of 
the graph. The Graph interface represents a social graph and has the following 
public API: 

1. Shard[] getShards(), a method to retrieve shards of the social graph; 
2. int  maxQuerySize(), a method to get the limit of the size of requests and 

responses; 
3. Shard getShard(long id), a method to retrieve a shard by the id of vertex. 

The Shard interface represents a server shard with the following API: 

1. long[][] getFriends(long[] ids), a method to retrieve adjacency lists by a 
list of vertices; 

2. int[] getDegrees(long[]), a method to retrieve the list of degrees of vertices. 

To implement the proposed API for social graph of the Odnoklassniki social 
networking site, a software design pattern called delegation is utilized 
(Wolfgang, 1994). The implemented class, OdnoklassnikiGraph, relies on another 
class which represents the social graph of Odnoklassniki and is fed to Od-
noklassnikiGraph as a parameter of the OdnoklassnikiGraph’s constructor and calls 
appropriate API of the social graph. Concerning the implementation of classes 
which represent locally sampled social graphs (LiveJournalGraph, OrkutGraph), 
locally sampled social graphs are read from a file stored locally. File of a locally 
sampled graph is comprised of a header and a table parts. The header part con-
tains N+1 records which are comprised of the id (8 bytes) of a vertex and the 
offset (8 bytes) of the adjacency list in the table part, where N is a number of 
vertices in the graph. The table part of the file contains adjacency lists stored 
one after another. Retrieving of the adjacency list of vertex v consists of the fol-
lowing steps: 

1. read the offset of the adjacency list of vertex v; 
2. read the offset of the adjacency list of the vertex which follows vertex v; 
3. read values between the obtained values. 
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To handle the last vertex in the header part of the file, a dummy vertex, with 
id -1, is written to the header. The dummy vertex has no adjacent vertices. Thus, 
the dummy vertex indicates the end of the header part of file. 

The desirable Graph class is specified through configuration files. Thus, the 
suggested class hierarchy allow flexible algorithm evaluation without changes 
in the source code. 

5.4.2 The least common ancestor problem 

Searching of the shortest path between a pair of vertices in a tree reduces to 
searching of the least common ancestor problem. The LCA problem may be 
solved by Bender-Farach-Colton algorithm, the Tarjan’s algorithm (Bender & 
Farach-Colton, 2000; Tarjan, 1976) and many others. Each of the algorithms con-
tains the pre-calculation stage. Hence, the algorithms cannot be applied to the 
Atlas algorithm, because changes in the original social graph triggers changes in 
the pre-calculated data for the LCA search which cannot be done fast. Addi-
tionally the pre-calculated data for the LCA search requires memory space 
which is not less than the space needed to store the trees. Thus, fast algorithms 
for the LCA search are not acceptable because of the large memory usage. 

Trees built by the Atlas algorithm are not deep, since diameter of social 
graphs is not so large. Thus, the least common ancestor can be found in linear 
time with regards to the depth, since it does not take much time to find a path 
in a tree with small depth. Let u and v be a pair of vertices for which solving of 
the LCA problem in a tree is needed. Firstly, the algorithm searches for paths to 
the root of the tree from vertices u and v. Thereafter, the obtained paths are 
compared beginning from the root. The algorithm stops as soon as the vertex 
from the first path does not equal to the vertex from the second path. Let �
 and 
�
 be the first pair of vertex on which difference occurs and w be the parent of 
�
 and �
, then the result path will be �…�
8�
…�. If the root vertices are not 
the same, then u and v do not have common ancestor. It means that vertices u 
and v belong to different trees. It can happen if the original graph contains sev-
eral connected components. 

Hence, to solve the LCA problem, the parent vertex of each vertex needs to 
be stored. Thus, trees can be stored as an array of integers. Let p be an array of 
integers in which a tree is stored and i be the id of a vertex. Thus, p[i] stores the 
id of parent of vertex i. All vertices of the initial social graphs are enumerated 
from 1 to N, where N is the number of vertices in the graph. This scheme is used 
because the ids obtained from the API can have gaps and can be randomized. 
Generated trees are too large to be stored in the heap, circa 14-16 GBs in total for 
the graph of the Odnoklassniki social networking site. Additionally, mapping 
from social graph ids to tree ids should be stored in the primary memory. To 
overcome the problem memory mapped files, which are mapped to the virtual 
memory, are utilized. The benefits of the suggested solution are (Bach, 1986): 
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1. demand paging, i.e. files are loaded into physical memory by pages, and 
only when that page is referenced; therefore, a part of the file is loaded 
when it is necessary, and a part of the file can be replaced by another one 
if physical memory is full; 

2. page cache, i.e. several processes can share memory mapped files be-
tween each other; thus, the algorithm can be performed in several pro-
cesses simultaneously sharing a large volume of memory. 

5.4.3 Open-addressing hash table 

A hash table is a data structure which allows insertion, removing and examina-
tion of elements in O(1) time (Cormen, Leiserson, Rivest, & Stein, 2001). A hash 
table is implemented as an array of elements; the length of the array is m. Let us 
suppose that each element is drawn from the universe T. A hash function h is a 
function ℎ: T → {0,… ,X − 1}. Thus, each element of the universe has a hash 
value h(e). The index in which an element e is stored in the hash table equals to 
h(e). Hence, to insert an element into a hash table, the hash value of the element 
is calculated, and the element is put to the calculated cell of the array. Remov-
ing and examination of elements are performed in a similar way. 

Two keys may have the same hash value that is called a collision. Therefore, 
to store two keys with the same hash values, collision resolution strategies are 
employed: 

1. collision resolution by chaining, in which the elements which hash to the 
same index are put in a linked list; 

2. collision resolution by open-addressing, in which the elements are stored 
in the hash table itself. 

In case of the open-addressing strategy of collision resolution, to insert a key, 
the hash table is examined (probed) until an empty slot in which the key is put 
is found. For the open-addressing collision resolution, the slots which are 
probed should be determined. Thus, the hash function becomes as ℎ: T ×
{0,…X − 1} → {0, … ,X − 1}. 

It means that the hash function represents the sequence of positions to be 
probed. The algorithm of searching or removing element k probes the same se-

quence of positions as the insertion algorithm. 
To compute the probe sequences, three techniques are used for the open-

addressing strategy: 

• linear probing with the hash function ℎ�A, .� = �ℎ�A� + .�	XN=	X; 

• quadratic probing with the hash function ℎ�A, .� = �ℎ�A� + Z
. +
ZH.H�	XN=	X; 

• double hashing with the hash function ℎ�A, .� = �ℎ
�A� + .ℎH�A��	XN=	X. 
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The first strategy suffers from a problem called primary clustering which means 
that the average searching time is increasing with increasing number of occu-
pied slots. For the quadratic probing if two keys have the same initial probe 
position, then their probe sequences are the same. This property is called sec-
ondary clustering. Double hashing is proven to be the best methods available for 
open addressing because the produced probe sequences have many random 
permutations. Double hashing utilizes ��XH� probe sequences, rather than O(m) 
in linear and quadratic probing. As a result the performance of double hashing 
appears to be the best of the three strategies. 

Standard Java collections may only store objects, which means that primi-
tive types, like long, integer, have to be boxed to class wrappers, e.g the Long 
class is for long integer. Using standard Java collections for primitive types 
leads to the following problems with performance and memory usage: 

1. more heap memory than necessary is used, since the corresponding Java 
object contains headers and other meta information in addition to primi-
tive types; 

2. objects need to be garbage collected, while memory for primitive types 
can be allocated directly from the stack memory; 

3. indirect access to primitive types which leads to slowing down program 
execution; 

4. problems with caching: an array is supposed to be stored contiguously; 
thus, arrays are easy to be cached in order to decrease access time to ele-
ments of the array, but in terms of boxed integers, the array is as an array 
of pointers to objects randomly spread around the heap. 

To eliminate the mentioned problems, implementation of the hash table provid-
ed by Trove is utilized (Trove, 2015) . Trove is a Java library with implementa-
tion of Java collections for primitive types. In the Trove library hash tables are 
implemented as open-addressing hash tables with double hashing. Table 2 
shows that the performance of Trove's hash table does not fit the requirements 
of the proposed algorithm. From the analysis, the most part of time is spent 
while adding elements to the hash table. Thus, to speed up the algorithm, an 
open-addressing hash table was implemented. The implementation of the hash 
table utilizes the property that Atlas+ only adds new elements to the hash table 
and makes queries to it. Because of that, the rehashing algorithm in the hash 
table can be optimized. Let k be a maximal number of probes done during inser-
tions to the open-addressed hash table. If elements are not removed, then the 
searching element e cannot lie further than k iterations from the h(e) cell. Thus, 
the searching algorithm does not need to make more than k rehashings. The 
implementation of the hash table is shown in Listings 4-8. The following sym-
bols are used in the implementation. 

• hash(k) is a method which represents a hash function. 

• getIndex(h) is a method which normalizes the calculated hash code. 
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• getNextIndex(step, index) is a method which counts the next index in case 

of collision. 

• keys is an array of keys. 

• values is an array of values. 

• NO_KEY represents a value which corresponds to empty cell. 

• maxChainLength is a maximal number of iterations is done during inser-

tion. 

• put(k, v) is a method which associates the value v with the key k and re-
turns the previous value associated with the key k or null if it does not 
exist. 

• putIfAbsent(k, v) is a method which associates the value v with the key k 
and returns the value v if k was not in the hash table, or the existing val-
ue v' associated with the key k. 

• get(k) is a method which returns the value associated with the key k or 
null otherwise. 

LISTING 4 Key insertion 
 1 int insertKey(int key) 
 2     int step = 1; 
 3     int index = getIndex(hash(key)); 
 4 
 5     do 
 6         if (keys[index] == NO_KEY) 
 7             keys[index] = key; 
 8             maxChainLength = max(maxChainLength, step); 
 9             return index; 
10         else if (keys[index] == key) 
11             return index; 
12 
13         index = getNextIndex(step++, index); 
14     while (true); 
  
LISTING 5 The put method 
 1 V put(long key, V value) 
 2     int index = insertKey(key); 
 3     V v = values[index]; 
 4     values[index] = value; 
 5     return v;  
 
LISTING 6 The putIfAbsent method 
 1 V putIfAbsent(long key, V value) 
 2     int index = insertKey(key); 
 3     V oldValue = values[index]; 
 4     if (oldValue != null) 
 5         return oldValue; 
 6     values[index] = value; 
 7     return value; 
  
The put and the putIfAbsent methods look up for a free position or check wheth-
er the key has been added before. The get method looks through the hash table. 
Iterations stop as soon as a free position is encountered, the key is encountered 
in the hash table or the number of done steps is more than maxChainLength. 
Thereafter, the method retrieves the value by index. 

The get method looks through the hash table. Iterations stop as soon as a 
free position is encountered, the key has been put to the hash table or the num-
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ber of done steps is more than maxChainLength. Thereafter, the method retrieves 
the value by index. 
 
LISTING 7 Retrieving of the index of a key 
 1 int indexOf(long key) 
 2     int step = 1; 
 3     int index = getIndex(hash(key)); 
 4     do 
 5         long cur = keys[index]; 
 6         if (cur == key) 
 7             return index; 
 8         else if (cur == NO_KEY) { 
 9             return -1; 
10           
11         index = getNextIndex(step++, index); 
12     while (step <= maxChainLength); 
13     return -1; 

 
LISTING 8 The get method 
 1 V get(long key) 
 2     int index = indexOf(key); 
 3     if (index == -1) { 
 4         return null; 
 6     return values[index]; 
  

In Table 2 the performance of the hash tables, the Trove’s implementation 
and the proposed hash table with different sequence computing strategies are 
analyzed. To analyze performance, 50000 paths of the LiveJournal social graph 
were calculated. After that, Atlas+ was run on the calculated paths. The maxi-
mal number and the average number of rehashings done during insertion are 
analyzed. Both values are averaged for all runs of the searching algorithm. 
From the table, the quadratic hashing shows the best performance. 

TABLE 2 Analysis of the proposed hash table 
Hash table Average number of rehashings Maximal number of rehashings 
Trove 
 

2 5.2 

Proposed hash table 
+ linear hashing 
 

2.1 5 

Proposed hash table 
+ quadratic hashing 
 

1.1 5.5 

Proposed hash table 
+ double hashing 
 

1.8 4 

5.5 Evaluation of the first version of the algorithm 

The following section describes how the proposed algorithm is evaluated. For 
evaluation of the proposed algorithm Odnoklassniki, LiveJournal and Orkut, 
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obtained from SNAP (Stanford Network Analysis Project, 2015), were utilized. 
Table 3 shows size of the social graphs used in evaluation. 

TABLE 3 Social graphs used in evaluation 

Graph Vertices Edges 
Odnoklassniki 
 

205 000 000 25 000 000 000 

LiveJournal 
 

3 997 962 
 

34 681 189 

Orkut 
 

3 072 441 117 185 083 

 

5.5.1 Evaluation of tree building strategies 

The following section analyzes combinations of strategies suggested in the pa-
per (Cao, Zhao, Zheng, & Zhao, 2013). These strategies involve strategies of se-
lection starting vertices and strategies of adding new edges to trees. 

For analysis of strategies, a sampled subset of the LiveJournal social graph 
is used. To analyze the strategies shortest paths between 50000 random pairs of 
vertices of the graph were calculated by the breadth-first search. After that, the 
proposed algorithm calculated paths between the pairs of vertices using sets of 
trees built by different strategies. The average length of the paths found by BFS 
was compared with the average length of the paths found by the proposed al-
gorithm. The average length of the paths obtained by BFS is 5. Thus, according 
to Table 4, the best results was shown by the top k-centrality strategy as the 
strategy of selection starting vertices and by BFS with random tie-break as the 
strategy of adding new edges to trees. BFS with random tie-break also allows 
building trees distributed and separately. In comparison with other strategies of 
adding new edges, this strategy needs much less memory than the two other 
strategies, because they need temporary memory for counters, e.g. counters for 
the calculation how many times each edge are used in the trees. Thus, BFS with 
random tie-break was selected. The results are presented in Table 4. The col-
umns of the table relate to the strategies of selection of starting vertices, the 
rows of the table relate to the strategies of adding new edges to the trees. 

TABLE 4 Average length of paths 

 BFS with random 
tie-break 

BFS with comp. tie-
break 

Least Covered Edge 
First 

Top k-centrality 
 

5.12 5.1 5.1 

Scattered top k-
centrality 
 

5.15 5.12 5.1 

Random 5.4 5.36 5.36 
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Overall, the top k-centrality strategy was chosen for the selection of starting 
nodes, BFS with random tie-break was chosen for adding new edges to tree. 
The suggested solution allows concurrent and independent tree construction. 
Concerning the building time of the trees for the Odnoklassniki social graph, 
which contains 205 million nodes and circa 25 billion ties, 80 minutes are need-
ed to build a tree on a machine with Intel Core i7-4702MQ CPU and 64 GB of the 
primary memory. A tree is built in the off-heap memory, and when the con-
struction of a tree finishes, the tree is dumped to the hard drive. Thus, building 
of 50 spanning trees takes 32 hours if tree construction is done concurrently in 
two threads. The tree construction time is acceptable. 

5.5.2 Evaluation of accuracy 

To analyze the accuracy of the proposed algorithm, random pairs of vertices 
from the Odnoklassniki social graph and the samples of LiveJournal and Orkut 
were randomly selected. Table 5 shows the number of paths grouped by the 
length of the path. According to the properties of social graphs, the shortest 
paths with length more than five edges are very rare. Thus, the selected sets of 
paths are representative for algorithm evaluation. 

The suggested algorithm counted a path between each pair of vertices; after 
that, the result of the algorithm was compared with the actual shortest path. In 
addition, the accuracy of the algorithm grouped by the length of the paths was 
calculated. Fig. 7-Fig. 10 show the accuracy of the algorithm depending on the 
number of trees used in search. Hence, 25-30 spanning trees are enough to ob-
tain the desirable accuracy, more than 90%, and desirable time, shown in Ta-
ble 6. 

TABLE 5 Number of paths grouped by length 

Length 
 

3 4 5 6 Total 

Odnoklassniki 
 

7439 (5%) 61004 (41%) 71419 (48%) 8927 (6%) 148789 

Sample of LiveJournal 
 

5151 (10%) 18484 (37%) 25061 (50%) 1304 (3%) 50000 

Sample of Orkut 
 

3121 (6%) 20531 (41%) 23482 (47%) 2866 (6%) 50000 

Additionally, according to Fig. 8-Fig. 10, the accuracy of the algorithm for long 
paths (four-five edges) is better than for shorter paths (two-three edges), but the 
difference is insignificant. It should be mentioned that the algorithm is always 
correct for the paths whose length is less than three edges, because of the query 
of adjacent vertices. If the algorithm makes a mistake, the difference in paths is 
not more than one edge. Overall, the proposed algorithm has the required accu-
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racy. The graphics for LiveJournal and Orkut was built for 30 trees, because the 
results do not change considerably after 30 trees. 

 
FIGURE 7 Accuracy of Atlas+ depending on the number of trees with regards to the num-
ber of used spanning trees 

 
FIGURE 8 Accuracy of Atlas+ grouped by length (Odnoklassniki) 
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FIGURE 9 Accuracy of Atlas+ grouped by length (LiveJournal) 

 
FIGURE 10 Accuracy of Atlas+ grouped by length (Orkut) 
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5.5.3 Evaluation of performance 

This section is devoted to the performance of the algorithm depending on pa-
rameters and modifications of the algorithm. 
Table 6 shows the performance of the algorithm on different social graphs (Od-
noklassniki and subgraphs of LiveJournal and Orkut). Table 7 shows the time 
required to build spanning tree for the selected social media site data, as well as 
average query time for shortest path query between two random vertices. As it 
shows, performance of the algorithm is acceptable on all graphs. Nevertheless, 
since LiveJournal and Orkut were locally sampled, network time is not taken 
into account in Table 6. Also, tree construction can be done concurrently, thus, 
the time can be improved. Concerning Odnoklassniki, trees were built in two 
threads, each tree was built in its thread; hence, the construction time of a tree is 
forty minutes.  

TABLE 6 Performance on different social graphs 
Social graph Size of a tree Vertices Construction time Query time 
Odnoklassniki 
 

572 MBs 150M 80 minutes 51 ms 

LiveJournal 
 

15 MBs 3 997 962 
 

20 seconds 
 

17 ms 

Orkut 
 

11 MBs 3 072 441 83 seconds 21 ms 

The number of vertices in the spanning trees for Odnoklassniki differs from the 
number of vertices in the original graph, because removed or blocked users 
were not used in the tree construction. 

Table 7 contains the performance measurement of the first version of the al-
gorithm, the version with the proposed hash table. Column Atlas algorithm re-
lates to the original Atlas algorithm, column Network query relates to the getAdja-
cencyLists method of the proposed algorithm. In the performance measurements 
25 spanning trees were used, since 25 trees are enough to reach the desirable 
accuracy. Also, the performance of each step of the algorithm was measured. 
The measurement was performed on the machine with Intel Core i7-4702MQ 

CPU, 64 GBs of the primary memory and Linux (Ubuntu 14.04). 

TABLE 7 Performance of the first version Atlas+ 

Algorithm Atlas 
algorithm 

Network 
query 

Building of 
a hash table 

BFS Total 

First version 
 

< 1 ms 32 ms 80 ms 40 ms 152 ms 

First version + hash table 
 

< 1 ms 
 

32 ms 61 ms 33 ms 127 ms 

According to the table, the first version of Atlas+ spends the most part of time 
for the building a graph stored in a hash table. 
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6 THE SECOND VERSION OF ATLAS+ 

 
The first version of Atlas+ does not have acceptable performance. The algorithm 
spends too much time for adding elements to a hash table, and, second, too 
large volume of memory are transmitted through a computer network. The fol-
lowing section is devoted to the improvement of the performance of the Atlas+ 
algorithm. The accuracy of the second version of the algorithm has not been 
analyzed, since the improvement suggested in the following section does not 
impact its accuracy. 

6.1 Improvement of Atlas+ 

Let us call the vertices retrieved at second step of the algorithm new vertices. To 
analyze the algorithm, the paths counted by the Atlas algorithm and the paths 
obtained by the proposed algorithm were compared. From the comparison of 
the paths, it was concluded that the improved path may be comprised of pieces 
of the paths obtained by the Atlas algorithm and not more than one vertex ob-
tained after the query to the social graph. Hence, the algorithm needs to store 
only two edges on which the shortest distances to the source and the destina-
tion vertices are reached for each vertex. For the analysis, the Odnoklassniki 
social graph and the sampled subgraphs of LiveJournal and Orkut were utilized 
(Stanford Network Analysis Project, 2015). 148789 shortest paths were selected 
randomly from Odnoklassniki and 50000 paths from the samples of LiveJournal 
and Orkut. Thus, the second version looks as in Listing 9. 

The new algorithm, first, searches for the shortest paths in the spanning 
trees (the atlas method, line 2). Thereafter, the adjacent vertices of the vertices 
obtained by Atlas are requested (the getAdjancencyLists method, line 3), as in the 
first version. After that, the proposed algorithm builds a graph comprised the 
vertices obtained by the Atlas algorithm and those requested edges which both 
vertices are some of the vertices obtained by the Atlas algorithm (the buildGraph 
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method, line 4). In 5-6 lines two trees of shortest paths from s and t are built by 
BFS. The findMinimum method finds a vertex on which minimal sum of distanc-
es from the vertex to s and t is reached. The findMinimum method stores all new 
vertices in a hash table in which keys are ids of the new vertices and values are 
objects of the Vertex type storing distances to the vertices s and t. After that, the 
shortest path is selected from the path counted by BFS (line 8) and the path 
counted on the 9 line. The bfs method returns a tree of shortest paths. A tree of 
shortest paths is comprised of a map in which keys are ids of vertices and val-
ues are ids of parent vertices; parents of root vertices are assumed to be -1. Thus, 
to find the shortest path between the vertex s and another vertex u, the algo-
rithm iterates and queries parents of the current vertex starting from u until a 
root vertex (the getPath method, line 8). The Vertex type is a type comprised of 
id of the vertex and two other ids of adjacent vertices on which minimal dis-
tances to the vertices s and t are reached. The second getPath method (line 9) is 
presented in Listing 10 and works as follows. First, paths in both trees are found. 
If one of them does not exist, then the algorithm returns null, otherwise, the al-
gorithm returns the shortest path which goes through the vertex v.id. 
 
LISTING 9 The proposed algorithm (version 2) 
 1 long[] path(long s, long t) 
 2     long[][] paths = atlas(s, t); 
 3     long[][] adjacencyLists = getAdjacencyLists(paths); 
 4     Map<Long, List<Long>> graph = buildGraph(paths, adjacencyLists); 
 5     Map<Long, Long> treeS = bfs(s, graph); 
 6     Map<Long, Long> treeT = bfs(t, graph); 
 7     Vertex minVertex = findMinimum(s, t, treeS, treeT); 
 8     long[] bfsPath = getPath(treeS, t); 
 9     long[] path = getPath(minVertex, treeS, treeT); 
10     return shortestOf(bfsPath, path); 
 
LISTING 10 Restoring a path from the BFS tree 
1 long[] getPath(Vertex v, Map<Long, Long> treeS, Map<Long, Long> treeT) 
2     long[] toS = getPath(treeS, v.idToS); 
3     long[] toT = getPath(treeT, v.idToT); 
4     if (toS == null || toT == null) return null; 
5     return toS.concat(v.id).concat(toT.reverse()); 
 

 
Table 8 contains the number of vertices and edges utilized in the proposed algo-
rithm and the number of vertices which degree equals to one among those ver-
tices. According to Table 8, 339859 of the new vertices (67%) cannot be used in 
the improvement of paths, as their degree equals to one. 

TABLE 8 Analysis of the first version of the algorithm 

Vertices Edges Vertices having degree equal one 
501324 
 

10524245 339859 
 

Thus, the suggested improvement decreased the number of stored edges to 2N, 
where N is the number of vertices in the built graph. For example, in this case 
the number of stored edges is decreased to one tenth of the earlier case. In the 
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first version of the algorithm the number of edges is dN, where d is the average 
degree of vertices in the built graph. Since paths have tendency to go through 
hubs, the value of d is large. Moreover, storing of edges without the suggested 
heuristics leads to usage of a large volume of the primary memory. Adjacency 
lists are stored in ArrayList, because of the sparsity of a social graph. This ap-
proach also allows random access queries to adjacency lists in time O(1). Never-
theless, ArrayList pre-allocates an array. Hence, empty lists or not so large Ar-
rayList’s, less than capacity of the array, needs much more memory than is real-
ly needed. For example, the initial capacity of an empty ArrayList implemented 
in Java 8 is 10. Thus, the suggested heuristics decreases the volume of memory 
which is needed for storing relevant edges. 

The suggested algorithm is depicted in Fig. 11-Fig. 14. Let the proposed al-
gorithm search for the shortest path between vertices �
 and �

 in the graph 
shown in Fig. 11.  

 
FIGURE 11 The original graph 

First, the Atlas algorithm finds two paths between the vertices, path 
�
�H�M�[�\�

 is drawn by dashes and path �
�]�^�[�_�

 is drawn by dots. 
Fig. 12 shows the two paths found by the Atlas algorithm. Other vertices and 
edges of the original graph are marked by gray color. 

 
FIGURE 12 The two paths found by the Atlas algorithm 

Fig. 13 depicts the graph that consists of the previously obtained vertices and of 
the additional edges queried from the original graph that connect the vertices. 
 



51 

 
FIGURE 13 The graph with edges queried from the original graph 

In Fig. 14 the algorithm looks for a new adjacent vertex that is not in the built 
graph, on which the shortest path between �
 and �

 is reached. The shortest 
path, marked with gray vertices, between �
 and �

 is �
�^�
��

. 

 
FIGURE 14 The found shortest path 

Additionally, the algorithm may be accelerated if the scale-freeness of social 
graphs is employed. The scale-free property means that social graphs are built 
around highly-degreed vertices. Since the spanning trees used in the Atlas+ al-
gorithm are built around popular vertices too, the responses for the requests of 
adjacent vertices appear to be large (more than 2 MB). Thus, the number of re-
quested vertices should be bounded. This heuristic leads to: 

1. decreasing of size of data queried via network; 
2. decreasing of amount of data which is needed to be processed by the al-

gorithm. 

Let a query “get at least k vertices or vertices with degree more than some 
bound d” be named as a query of the popular adjacent vertices. To find a rea-
sonable value for the degree d, the following plot in Fig. 15 is utilized. The de-
grees of vertices queried in the original graph that shorten the shortest path ob-
tained by the Atlas algorithm were assessed. If the Atlas+ algorithm is able to 
find several shortest paths between a pair of vertices, the path in which the de-
gree of such vertex is largest is selected. The plot in Fig. 15 shows the cumula-
tive normalized number of vertices that shortens the paths with regards to their 
degree. According to the diagram, the shortest path is shortened through very 
popular vertices; only 2-3% of all paths are improved through vertices with de-
grees circa 100 - 200 which are also rather popular vertices. According to the 
analysis of degree distribution in the Odnoklassniki social graph, only 7% of 
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vertices of the social graph have degree more than 200. Thus, if adjacent vertices 
the degree of which is more than some fixed threshold are requested, the vol-
ume of sent and processed data decreases essentially. As a trade off the accura-
cy of the algorithm decreases by 1-2% which is still acceptable if the threshold is 
200. Thus, by setting the threshold d at 200, only 7% of the vertices are returned 
to the query of the popular adjacent vertices above, by among them are all those 
that have up to 5000 adjacent vertices. 

 
FIGURE 15 Cumulative share of new vertices that shorten the paths depending on the de-
gree of the vertices 

Also, the findMinimim method can be done in several threads. All vertices 
probed for shortening of paths are split into several groups, the number of 
groups equals to the number of the threads. All of the threads share the com-
mon hash table to find a vertex on which the shortest distance is reached. The 
hash table should be thread-safe, i.e. guarantee consistency of data stored in it. 
The implementation of the hash table is presented in Section 6.2. 

6.2 Open-addressing lock-free hash table 

The hash table suggested in Section 5.3.3 can be implemented as lock-free. A 
concurrent object implementation is lock-free if it guarantees that some threads 
will complete an operation in a finite number of steps, regardless of the relative 
execution speeds of the threads (Herlihy & Moss, 1993). The current thesis pro-
poses the lock-free implementation of the hash table. The parallelized version of 
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the hash table is shown in Listings 11-15. For the thread-safety AtomicInteger 
and AtomicLongArray are employed in implementation. The following symbols 
are used in implementation. 

• hash(k) is a method which represents a hash function. 

• getIndex(h) is a method which normalizes the calculated hash code. 

• getNextIndex(step, index) is a method which counts the next index in case 
of collision. 

• keys is an array of keys; the type of the array is AtomicLongArray, imple-
ments atomic Compare-And-Set operations on arrays of longs. 

• values is an array of values; the type of the array is AtomicReferenceArray, 
implements atomic Compare-And-Set operations on arrays of references. 

• NO_KEY represents a value which corresponds to empty cell. 

• maxChainLength is a maximal number of iterations is done during inser-
tion; the type of maxChainLength is AtomicInteger, which implements 
atomic Compare-And-Set operations. 

• put(k, v) is a method which associates the value v with the key k and re-
turns the previous value associated with the key k or null if it does not 
exist. 

• putIfAbsent(k, v) is a method which associates the value v with the key k 
and returns the value v if k was not in the hash table, or the existing val-
ue v' associated with the key k. 

• get(k) is a method which returns the value associated with the key k or 
null otherwise. 

LISTING 11 Key insertion 
 1 int insertKey(int key) 
 2     int step = 1; 
 3     int index = getIndex(hash(key)); 
 4 
 5     do 
 6         if (keys.compareAndSet(index, NO_KEY, key)) 
 7             maxChainLength.updateAndGet(v → max(v, step)); 
 8             return index; 
 9         else if (keys.get(index) == key) 
10             maxChainLength.updateAndGet(v → max(v, step)); 
11             return index; 
12 
13         index = getNextIndex(step++, index); 
14     while (true); 
 

The put and the putIfAbsent methods look up for a free position or check wheth-
er the key has been added before. The Herlihy construction is utilized to put 
value atomically (Herlihy & Moss, 1993). The Herlihy construction is comprised 
of the sequence of operations: copy pointer, modify and save it if it has not been 
changed since copy. The sequence of operations repeats until the pointer's con-
tent was not changed after modification by another thread. 
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LISTING 12 The put method 
 1 V put(long key, V value) 
 2     int index = insertKey(key); 
 3     AtomicInteger count = operations.get(index); 
 4 
 5     while (true) 
 6         V v = values.get(index); 
 7         if (values.compareAndSet(index, v, value)) 
 8             if (count.get() > 0) 
 9                 synchronized (count) 
10                     count.notifyAll(); 
11             return v; 
  
LISTING 13 The putIfAbsent method 
 1 V putIfAbsent(long key, V value) 
 2     int index = insertKey(key); 
 3     AtomicInteger count = operations.get(index); 
 4 
 5     if (!values.compareAndSet(index, null, value) 
 6         return values.get(index); 
 7     if (count.get() > 0) 
 8         synchronized (count) 
 9             count.notifyAll(); 
10     return value; 
  
LISTING 14 Retrieving of the index of a key 
 1 int indexOf(long key) 
 2     int step = 1; 
 3     int index = getIndex(hash(key)); 
 4     do 
 5         long cur = keys.get(index); 
 6         if (cur == key) 
 7             return index; 
 8         else if (cur == NO_KEY) { 
 9             return -1; 
10           
11         index = getNextIndex(step++, index); 
12     while (step <= maxChainLength.get()); 
13     return -1; 

 
LISTING 15 The get method 
 1 V get(long key) 
 2     int index = indexOf(key); 
 3     if (index == -1) { 
 4         return null; 
 5     if (values.get(index) != null) 
 6         return values.get(index); 
 7 
 8     AtomicInteger count = operations.get(index); 
 9     count.incrementAndGet(); 
10 
11     if (values.get(index) == null) 
12         syncronized (count) 
13             while (values.get(index) == null) 
14                 count.wait(); 
15     count.decrementAndGet(); 
16     return values.get(index); 
 

 
The get method looks through the hash table. Iterations stop as soon as a free 
position is encountered, the key has been put to the hash table or the number of 
done steps is more than maxChainLength. Thereafter, the method retrieves the 
value by index. The following situation may occur when a new key has been 
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added, but its associated value has not been put to the hash table and the value 
is queried by the key. Thus, the get method has to wait until the value is added 
to the hash table. To handle the situation, locking is used. This kind of synchro-
nization between threads takes significant time in comparison with lock-free 
algorithms. Thus, an array of AtomicInteger’s counts the number of get opera-
tions pending for values which are going to be inserted by put or the putIfAbsent 
operations. If there are no get operations waiting for a value, the put and 
putIfAbsent methods are lock-free algorithms, as the synchronization block is 
utilized only if the counter is more than zero. Such construction as “check a 
statement, get a lock, check a statement” is called double-checked locking. 

Let us prove that the operations on the hash table are atomic. To prove that 
the operations are atomic (linearizable), which means that each operation ap-
pears to take effect instantaneously at some point between the operations' invo-
cation and response, the happens-before concept is employed (Herlihy & Wing, 
1990). The happens-before relation on events is the smallest relation satisfying the 

following conditions. 

• If 	
 and 	3 are events from the same thread and 	
 happens before 	3 in 

the sequence of events, then 	
 < 	3. 
• If 	
 is the sending of a message and 	3 is reception of the message, then 

	
 < 	3. 
• < is transitively closed. 

Let A and B be operations which are being executed on a shared resource simul-
taneously. Then operation A can see only the states of the shared resource that 
existed before operation B or after that. In addition, if event A happens-before 
event B, then it is guaranteed that all changes done by A are observable by B. 

Depending on the memory model of programming languages the happens-
before relation between threads is defined differently. As for JVM-based lan-
guages, the Java Memory Model (Gosling, Joy, Steele, Bracha, & Buckley, 2015) 
mentions that: 

1. An unlock on a monitor happens-before every subsequent lock on that 

monitor. 
2. A write to a volatile field happens-before every subsequent read of that 

field. 
3. A call to start() on a thread happens-before any actions in the started 

thread. 
4. All actions in a thread happen-before any other thread successfully returns 

from a join() on that thread. 
5. The default initialization of any object happens-before any other actions 

(other than default-writes) of a program. 

It is obvious that insertions of different keys are linearizable, since compar-
eAndSet and get of AtomicLongArray are atomic operations. The happens-before 
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relations between the operations are guaranteed because of the second point of 
Java Memory Model, since the read and write operations are done on volatile 
fields.  Thus, if two concurrent operations see the NO_KEY value in the same 
index, only one compareAndSet may succeed. Therefore one of the operations 
succeeds in setting its value and increases maxChainLength if it is necessary. The 
unsuccessful operation will try another cell to save its value. If the value has 
been already saved, the insertKey method returns the index of the value. 

Let us prove that put(k, �
), put(k, �H) are linearizable. put(k, �
) may return 
either null or �H as the previous value and the associated value of the key k is �
. 
put(k, �H) may return either null or �
 as the previous value and the associated 
value of the key k is �H. First, both operations save k to the same cell of the key 

array. Then both operations try to save their own value to the cell of the array of 
values. As it said before, compareAndSet is atomic; therefore, only one concur-
rent operation may succeed in saving its value. Thus, the first successful opera-
tion will put its value to the array of values and will return null, while the sec-
ond operation will put its value and will return the previously saved value. 

Let us prove that put(k, �
), putIfAbsent(k, �H) are linearizable. put(k, �
) may 
return either null or �H as the previous and the associated value of the key k is 
�
. putIfAbsent(k, �H) may return �
, in this case the associated value of the key k 
is �
, or �H, in this case the associated value of the key k is �H. The same as above, 
both operations save k to the same cell of the key array. The putIfAbsent opera-
tion checks whether the value is null. If it is null, then putIfAbsent saves its value 
and returns it. Since compareAndSet is employed, the check and save are done 
atomically. If the key has already had a value, then putIfAbsent returns the asso-
ciated value. The proof for the put operation may be done in the same way. 

Let us prove that put(k, v) and get(k) are linearizable. Put(k, v) returns v and 
associates the key k with the value v. get(k) may return either null or v. If the put 
operation has already saved the key k to the array of keys, but the associated 
value does not exist, get operations waits until put or putIfAbsent saves some-
thing to the appropriate cell. When the value is saved, the get operation is noti-
fied. The operations are linearizable since there is the happens-before relation 
between unlocks and locks on the same monitor. The proof for putIfAbsent and 
get can be done in the similar way. 

Finally, when a key is associated with a value, then maxChainLength has cor-
rect value which means that the get operation has enough steps to iterate until 
encountering with the queried key. There is a situation when the key is saved to 
the array of keys, but maxChainLength is not enough to iterate to the saved key. 
Nevertheless, in this case the key does not have the associated value, as update-
AndGet has not been called. The case when maxChainLength is enough for ac-
cessing by get, but the value is not saved to the array of values is covered by the 
previous proof. 

Thus, the content is always consistent. Moreover, the hash table is lock-free, 
as locks are not used in the implementation, except the corner case when a key 
has already been inserted in the array, but the associated value is not in the map 
yet, and another thread queries the associated value of the key. Nevertheless, 



57 

the implementation of the shortest path searching algorithm does not use put 
and get operations concurrently, thus, the algorithm is lock-free. 

6.3 Evaluation of performance of the second version of Atlas+ 

The accuracy of the second version of Atlas+ is not impacted by the improve-
ments suggested in Section 6.1. Therefore, the following section is devoted only 
the analysis of the performance of Atlas+. Table 9 shows the performance of the 
second version of Atlas+. 

TABLE 9 Performance of the second version of the algorithm 

Algorithm Atlas 
algorithm 

Network 
query 

Building of 
a hash table 

BFS Total 

Second version 
 

< 1 ms 32 ms 35 ms 9 ms 76 ms 

Second version + lock-free 
hash table 
 

< 1 ms 32 ms 20 ms 9 ms 51 ms 

According to the scale-freeness of social graphs, the shortest paths between ver-
tices have tendency to go through popular vertices. Hence, the algorithm can be 
accelerated if only some amount of adjacent vertices are queried, not the whole 
adjacency list. Section 6.1 shows that the network time query can be significant-
ly improved. Also, the less vertices and edges obtained by the network requests, 
the less time is needed for adding elements to the hash table and running BFS. 

Unfortunately, the API of the Odnoklassniki social graph does not support 
the query of popular adjacent vertices. That is why the performance of the que-
ry of popular adjacent vertices was not measured. However, obviously perfor-
mance of the algorithm would be improved. 
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7 HANDLING OF DYNAMIC GRAPHS 

7.1 Description of modifications of spanning trees 

Social networking sites are very dynamic, e.g. 50% of actions of users of social 
networking site per day relates to changes in their friend lists (Wilson, Boe, Sala, 
Puttaswamy, & Zhao, 2009). Algorithm for searching the shortest path between 
two vertices should always return the relevant path. Thus, changes in social 
graph have to be reflected in spanning trees impacted by them. Rebuilding of 
all trees takes too much resources and too much time. Building of a tree takes 
for the Odnoklassniki social networking site 1 hour and 20 minutes on average. 
Hence, only a part of built trees or a part of a tree should be rebuilt. The current 
Master’s thesis utilizes the replacement strategy suggested in Cao et al. (2011) 
and suggests local modifications of trees. 

Replacement of trees is assumed to be done once a day; and it should take a 
couple of hours for the graph of the Odnokl assniki social networking site. Lo-
cal modifications of trees should be done if a spanning tree is not a tree of the 
breadth-first search. The impacted tree is modified in such a way that it will 
become a breadth-first search tree again. The following changes can occur in a 
social graph: 

1. adding an edge; 
2. adding a vertex; 
3. removing an edge; 
4. removing a vertex. 

Let uv be a new edge between vertices u and v. Adding of a new edge does not 
impact spanning trees before the difference between the depth of the vertices is 
not more than one. If the difference is more than one, then the highest vertex 
should become a child of the second vertex. The tree modification is shown in 
Fig. 16. In the picture vertex v is deeper than vertex u; vertex w is descendant of 
vertex u. The modification needs to calculate the depth of the vertices and 
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change the parent pointer of the highest vertex. Thus, time complexity of the 
modification is O(L + 1) = O(L) where L is the depth of the tree. 

 
FIGURE 16 Modification for adding an edge 

Adding a new vertex does not impact built trees until an edge connecting the 
vertex and another component of the social graph is added. E.g. this can occur if 
a new just registered in a social networking site user connects with another user. 

Removing an edge from the social graph may split a tree into two uncon-
nected components. Let vertex v be the parent of vertex u in a spanning tree and 
edge uv was removed. Then such a vertex w should be found that vertex w 
should be an adjacent vertex of u, vertex w should be connected in the modified 
tree, and after setting the parent of u to w, the tree should become a breadth-
first search tree. Since the depth of a tree should be as small as possible, vertex 
w is sought in the following groups of the vertices. The adjacent vertices of ver-
tex u are split into three groups: vertices the depth of which equals to the depth 
of vertex u minus one, the vertices the depth of which equals to the depth of 
vertex u and the vertices the depth of which equals to the depth of the vertex u 
plus one. If such a vertex w cannot be found, then such vertex y is found among 
the adjacent vertices of w for which vertex y is not an ancestor of vertex w. If 
vertex y does not exist among adjacent vertices of w, then the algorithm is re-
peated recursively for all adjacent vertices of vertex w until suitable vertex y is 
found. Let 8� …8
 be such a path that the tree contains edge 8��, edge �� be 
removed from the original graph, 8
 be a vertex which is an adjacent vertex of 
vertex y and vertex y be suitable. Thus, vertex y should become the parent of 8
 
and path 8� …8
 should be inverted. A suitable vertex may not be found if all 
vertices of the subtree rooted at vertex v do not have adjacent vertices in the 
original graph from another subtree of the spanning tree being modified. This 
means that edge uv is a bridge edge (cut-edge), an edge of a graph whose deletion 
from the graph increases its number of connected components (Harary, 1969). 
Thus, in this case, no modifications are needed. Nevertheless, this scenario very 
rarely occurs in practice, since the social networks tend not to have just one 
connection two subgroups of users. 
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To perform the modification, calculating the depth of some vertices is need-
ed. Since the modification algorithm has to process the whole subtree rooted in 
vertex v and query the adjacent vertices of all vertices of the subtree in the 
worst case, the time complexity of modification is O(E), where E is a set of edg-
es in the original graph. The modifications are depicted in Fig. 17-Fig. 18. In the 
pictures edge between vertices u and v is removed and the tree is modified. 

 
FIGURE 17 Modification for removing an edge 

 
FIGURE 18 Modification for removing an edge (worst case) 
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Removing a vertex is similar to removing all edges incident to the vertex. Thus, 
this case is covered by the previous modification. 

7.2 Evaluation of accuracy on dynamic graphs 

The current section analyzes accuracy of the algorithm on dynamic graphs. Al-
so the section analyzes the proposed modifications of trees to handle changes in 
the social graph. To analyze the accuracy of Atlas+ on dynamic graphs, a sub-
graph of graph Odnoklassniki, the graph of Latvia, is utilized. The graph of Lat-
via is comprised of users which mentioned Latvia as their origin country as ver-
tices and ties between them as edges. The subgraph contains 515000 of vertices 
and 25 million of edges. To emulate dynamics of the graph, a log of changes 
occurred in the graph during a week, is utilized. The log of changes includes 
only adding and removing edges. Hence, two graphs appear: the graph of Lat-
via, the graph with users from Latvia as vertices and ties between them as edg-
es, and the graph of Latvia with the applied log of changes. 

As was mentioned above, spanning trees should be changed in case of add-
ing an edge for which the difference in depth of vertices of the edge is more 
than one or in case of removing an edge which is presented in the trees. Ta-
ble 10 shows number of added edges grouped by difference in depth. Thus, 
trees are impacted by adding of new edges only in 0.03%. Concerning removals 
of edges, only 0.07% of removals of edges impact the built trees. Thus, the built 
trees still are able to approximate the initial graph. 

TABLE 10 Difference of depth of the vertices of edges 

Difference 
 

0 1 2 3 

Adding edge 
 

54.17 45.8 0.03 0 

Local modifications of trees are evaluated as follows. First, 20000 of shortest 
paths were calculated in both the graph of Latvia and the modified graph of 
Latvia. Thereafter, 30 spanning trees were built for the graph of Latvia. The ac-
curacy of the proposed algorithm was measured on the initial graph (97%) and 
the modified graph (95%). After that, the modifications suggested in Section 7.1 
were applied to the built spanning trees. Using the modified spanning trees, the 
accuracy of the algorithm is 96%. Thus, the local modifications increase accura-
cy of the algorithm slightly. 

The accuracy of the algorithm grouped by length of shortest paths is de-
picted in Fig. 19. According to the diagram, changes in the graph influence the 
accuracy of the algorithm on short paths (3 edges), while the accuracy on longer 
paths (more than 4 edges) does not change considerably. Local modifications of 
trees increase accuracy of the algorithm on short paths. 



62 

 
FIGURE 19 Accuracy of the algorithm (local modifications of spanning trees) 

The replacement strategy is evaluated as follows. As well as for local modifica-
tions, 20000 of shortest paths were calculated in the graph of Latvia and in the 
modified graph of Latvia. Thereafter, some number of old trees is replaced with 
new trees. Fig. 20 demonstrates the accuracy of the algorithm depending on the 
number of replaced trees. According to the picture, the replacement of 14 trees 
increases accuracy of the algorithm: 

• 95.3% against 98% on paths whose length is three edges; 

• 96.8% against 97% on paths whose length is four edges; 

• 98% against 97.9% on paths whose length is five edges. 

Since Atlas+ has not been deployed into the API of the Odnoklassniki social 
networking site, modifications and replacements of the spanning trees have not 
been done for large dynamic graphs. Fig. 21 shows degradation of the accuracy 
of the algorithm on Odnoklassniki during a month without any changes in the 
spanning trees. The plot shows that the accuracy of the algorithm decreases in 3% 
for two weeks. As 25 spanning trees are supposed to be used, two weeks are 
enough to replace all 25 trees if two trees are replaced per day. Thus, replace-
ment of old trees improves accuracy of the algorithm; the algorithm is able to 
handle large dynamic graphs. 
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FIGURE 20 Accuracy of the algorithm (replacement of spanning trees) 

 
FIGURE 21 Accuracy of the algorithm depending on age of trees (Odnoklassniki) 
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8 DISCUSSION 

The beginning of the Master’s thesis is devoted to the review of several fields 
which are important for creation of the new algorithm that is able to solve the 
shortest path problem for social graphs more efficiently than the existing solu-
tions. First, the knowledge about the graph theory was obtained; Section 3 tells 
about the base of the graph theory and the terminology employed in the Mas-
ter’s thesis is given. Also, Section 3 reviews characteristics of social graphs con-
structed by social networking sites. Further, existing shortest path searching 
algorithms were analyzed according to the characteristics of social graphs and 
requirements for the desirable algorithm (Section 4). From the analysis, none of 
the algorithms fits the defined requirements. The obtained knowledge allowed 
answering the first and the second research questions which are: 

• Which characteristics of model, social graph, can be used in development of the 
new algorithm? 

• Which existing algorithms can be used for efficient solving the shortest path 
problem in social graphs? 

The rest of the thesis (Sections 5-7) is devoted to the remaining research ques-
tions which are: 

• How to design the shortest path searching algorithm which fits the formulated 
requirements? 

• What is the impact of changes in a social graph to the accuracy of the synthe-
sized algorithm? How can the algorithm be modified to support dynamic social 
graphs? 

The proposed algorithm, Atlas+, is based on the Atlas algorithm which ap-
proaches social graphs by a set of spanning trees. The Atlas algorithm is com-
prised of two phases which are pre-computation of a searching index, a set of 
spanning trees, and queries to it. The queries are searching of the least common 
ancestor of a pair of vertices in the spanning trees. The result path is obtained as 
the concatenation of the paths from each vertex to the least common ancestor. 
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The Atlas+ algorithm utilizes the first phase of the Atlas algorithm as it is, while 
the second phase was changed based on the characteristics of social graphs. The 
proposed algorithm was evaluated on several social graphs: locally sampled 
social graphs, obtained from SNAP, and the social graph of the Odnoklassniki 
social networking site. The first version of the proposed algorithm has perfect 
accuracy, more than 90%, the result of the algorithm may not be longer than in 
an edge than the shortest path. 15 GBs of the disk memory is used for the 
searching index which is acceptable. Nevertheless, it turned out that the per-
formance of the new algorithm was unacceptable, response time is more than 
150 ms per query; therefore, bottlenecks of the algorithm were analyzed. The 
thesis analyzed four main steps of the algorithm which are searching for the 
least common ancestor of a pair of vertices, query of the adjacency lists of the 
previously obtained vertices, construction of a subgraph comprised of the ob-
tained adjacency lists and searching for the shortest path by the breadth-first 
search in the built subgraph. Based on the analysis, the second version of the 
algorithm was designed. Also the algorithm was parallelized which improved 
performance of the algorithm essentially. Furthermore, the thesis proposes the 
implementation of a lock-free hash table, which is utilized in one of the steps of 
the algorithm. The mentioned modifications of the algorithm improved the per-
formance of the last two steps of the algorithm essentially. Also, the improve-
ment of queries fetching adjacency lists, that would decrease the volume of data 
transmitted via a network, was discussed. Nevertheless, the analysis of its per-
formance was not performed because the API of the Odnoklassniki social net-
work site does not support queries of partial adjacency lists. It is argued, how-
ever, the accuracy of the algorithm would not decrease, should the mentioned 
improvement be realized. Anyway, if the API of Odnoklassniki allowed to que-
ry of most popular adjacent vertices of a vertex, the speed of the algorithm 
could be increased. 

Social networks of social networking sites are very dynamic. Therefore, 
each change in the social graph should possibly be reflected in the built span-
ning trees. The analysis of this aspect revealed that, first, changes in the social 
graph do not influence the accuracy of the proposed algorithm essentially. Ac-
cording to the analysis, the accuracy of the algorithm decreases in 5% during a 
month without modifications of the search index. Anyway, to handle the dy-
namics of social graphs, two approaches were utilized. The first approach sug-
gests the replacement of several old spanning trees by the same number of new 
spanning trees. The second approach resorts to local modifications of the span-
ning trees. The two approaches were evaluated on the social graph modelling 
Odnoklassniki and it was shown that replacement of circa two spanning trees 
per day is enough to keep the accuracy of the algorithm on the desired level. 
Local modifications of the spanning trees also slightly improve the accuracy of 
the algorithm. 

Overall, the proposed algorithm was implemented in the Java programming 
language, and currently it is under deployment into the API of the Odnoklass-
niki social graph. It might be utilized in the development of a service that finds 
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the shortest path between a pair of users on the social networking site. In the 
future work, the time of the network queries can be investigated more precisely. 
In addition, the algorithm needs to be shipped with the API of a social network 
site in order to investigate the impact of the dynamics of social networks on the 
algorithm. The proposed algorithm might also be extended to answer top k 
shortest paths between a pair of vertices. 
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