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Abstract

The aim of this paper is to introduce an enhanced incremental procedure that can be used for the nu-
merical evaluation and reliable estimation of the limit load. A conventional incremental method of limit
analysis is based on parametrization of the respective variational formulation by the loading parameter
ζ ∈ (0, ζlim), where ζlim is generally unknown. The enhanced incremental procedure is operated in terms
of an inverse mapping ψ : α 7→ ζ where the parameter α belongs to (0,+∞) and its physical meaning
is work of applied forces at the equilibrium state. The function ψ is continuous, nondecreasing and its
values tend to ζlim as α→ +∞. Reduction of the problem to a finite element subspace associated with a
mesh Th generates the discrete limit parameter ζlim,h and the discrete counterpart ψh to the function ψ.
We prove pointwise convergence ψh → ψ and specify a class of yield functions for which ζlim,h → ζlim.
These convergence results enable to find reliable lower and upper bounds of ζlim. Numerical tests confirm
computational efficiency of the suggested method.

Keywords: Variational problems with linear growth energy, incremental limit analysis,
elastic-perfectly plastic problems, finite element approximation

1. Introduction

Elastic-perfectly plastic models belong among fundamental nonlinear models which are useful for
estimation of yield strengths or failure zones in bodies caused by applied forces. Such models are mostly
quasistatic (see, e.g., [4, 7, 13]) to catch the unloading phenomenon. Since we are only interested
in monotone loading processes, this phenomenon can be neglected and the class of models based on
the deformation theory of plasticity is adequate (see, e.g., [11, 12, 13, 16, 18]). The Hencky model
associated with the von Mises yield criterion belongs to this class as well as other models with different
yield conditions. Each model from this class leads to a static problem for a given load functional L
representing the work of surface or volume forces. The problem can be formulated both in terms of
stresses or displacements. These two approaches generate a couple of mutually dual problems.

The variational problem formulated in terms of stresses leads to minimization of a strictly convex,
quadratic functional on the set of statically and plastically admissible stress fields. On the other hand,
the stored energy functional appearing in the variational problem for displacements has only a linear
growth at infinity with respect to the strain tensor or some components of this tensor. Existence of a
finite limit load reflects specifics of this class of problems. Unlike other problems in continuum mechanics
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with superlinear growth of energy, exceeding of the limit load leads to absence of a solution satisfying
the equilibrium equations and constitutive relations. Physically this means that under this load the
body cannot exist as a consolidated object. Therefore, finding limit loads is an important problem in
the theory of elasto–plastic materials and other close problems.

To introduce the limit load for the functional L the problem is usually parametrized at first. Instead
of the fixed load, the set {ζL | ζ ∈ R+} of loads is considered. The limit value ζlim of the parameter
is defined as a supremum of all ζ ≥ 0 for which the intersection of the sets of statically and plastically
admissible stress fields is nonempty. In particular, no solution exists for the load ζL with ζ > ζlim.

There exist several approaches how to evaluate ζlim. The first type of methods is based on the use
of a specific variational problem which characterizes directly the the limit state. It can be formulated
either in terms of displacements (kinematical approach) or in terms of stresses (static approach). Both
are mutually dual [3, 18]. As a computational method the static limit analysis has been used in [19],
while the kinematic one in [1]. For example, the respective problem of kinematic limit analysis for the
classical Hencky model with the von Mises condition reads as follows:

ζlim = inf
v∈V, L(v)=1

div=0

∫

Ω

|ε(v)| dx,

where V is a subspace of H1(Ω; R3) of functions vanishing on the Dirichlet part of the boundary (see
notation of Section 2). However, this problem is not simple for numerical analysis because it is related
to a nondifferentiable functional and contains the divergence free constraint. The respective numerical
approaches developed to overcome these difficulties often use saddle point formulations with augmented
Lagrangians (see, e.g., [1, 3]). Other methods use techniques developed for minimization of nondiffer-
entiable functionals.

The classical approach uses incremental techniques to enlarge ζ up to its limit value [14, 20]. The
load increments have to be chosen adaptively since the value of ζlim is not known. The incremental limit
analysis is usually combined with the standard finite element method and the resulting parametrized
problem (Ph)ζ is then solved in terms of displacements. The main drawback of this approach is that the
discrete limit value ζlim,h can overestimate ζlim and convergence of {ζlim,h}h to ζlim is not guaranteed in
general.

Besides ζlim, the incremental approach enables to detect other interesting thresholds on the loading
path that represent global material response, namely, ζe,h - the end of elasticity and ζprop,h - the limit
of proportionality. For ζ ≤ ζe,h, the response is purely elastic (linear) and for ζ ∈ [ζprop,h, ζlim,h], the
response is strongly nonlinear. To investigate global material response, it is necessary to introduce a
quantity α depending on ζ < ζlim,h. For example, α can represent a computed displacement at a point
in which the body response is the most sensitive on the applied load. Examples of such α-ζ curves are
introduced, e.g., in [4, Section 7,8].

In [17], the response parameter α has been introduced for the Hencky problem and the linear sim-
plicial (P1) elements as follows: α = L(uh,ζ) where uh,ζ denotes a solution of (Ph)ζ for ζ < ζlim,h. This
parameter is universal for any load and geometry. Moreover, there exists a function ψh : α 7→ ζ that is
continuous, nondecreasing and satisfying ψh(α)→ ζlim,h as α→ +∞. Further, for a given value of α, a
minimization problem (Ph)α for the stored strain energy functional subject to the constraint L(v) = α
has been derived. Its solution coincides with a solution to problem (Ph)ζ for ζ = ψh(α) and thus the
loading process can be controlled indirectly through the parameter α. Consequently, in [2], suitable
numerical methods for both problems, (Ph)ζ and (Ph)α, have been proposed and theoretically justified.
Further, the load incremental methods controlled through ζ and α have been compared there.

The aim of this paper is to get reliable estimates of ζlim using the incremental procedure. To this
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end, we introduce a continuous, nondecreasing function ψ : R+ → (0, ζlim) satisfying ψ(α) → ζlim as
α→ +∞. In comparison to [2, 17], the function ψ is defined within a continuous setting of the problem
and also for a general yield criterion. The derivation of ψ however is not straightforward owing to the fact
that the primal formulation is not well-posed on classical Sobolev spaces. Therefore the dual formulation
of the problem in terms of stresses will be used. Further, it is considered the discrete counterpart ψh of
ψ within the P1 elements. In case of the von Mises yield criterion, the definition of ψh coincides with
[2, 17]. From the computational point of view, it is crucial to show that limh→0+ ψh(α) = ψ(α) for any
α ≥ 0 and use the estimate ψ(α) ≤ ζlim ≤ ζlim,h. We also specify a class of yield functions for which
ζlim,h → ζlim holds.

The paper is organized as follows: In Section 2, we introduce basic notation, define elasto-plastic
problems, and recall some results concerning properties of solutions. In Section 3, the loading parameters
ζ and α are introduced. Then the function ψ : α 7→ ζ is constructed and its properties are established.
In Section 4, we formulate problems in terms of stresses and displacements related to a prescribed value
of α. Section 5 is devoted to standard finite element discretizations of the problems and to convergence
analysis. Finally, in Section 6, we present two examples with different yield functions and compute lower
and upper bounds of the limit load using the suggested incremental procedure.

2. Elastic-perfectly plastic problem based on the deformation theory of plasticity

We consider an elasto-plastic body occupying a bounded domain Ω ⊆ R3 with Lipschitz boundary
∂Ω. It is assumed that ∂Ω = ΓD ∪ ΓN , where ΓD and ΓN are open and disjoint sets, ΓD has a positive
surface measure. Surface tractions of density f are applied on ΓN and the body is subject to a volume
force F .

For the sake of simplicity, we assume that the material is homogeneous. Then, the generalized
Hooke’s law is represented by the tensor C, which does not depend on x ∈ Ω and satisfies the following
conditions of symmetry and positivity:

Cη ∈ R3×3
sym ∀η ∈ R3×3

sym,

Cη : ξ = η : Cξ ∀η, ξ ∈ R3×3
sym,

∃δ > 0 : Cη : η ≥ δ(η : η) ∀η ∈ R3×3
sym,

where R3×3
sym is the space of all symmetric, (3× 3) matrices and η : ξ = ηijξij denotes the scalar product

on R3×3
sym.

By S := L2(Ω; R3×3
sym), we denote the set of symmetric tensor valued functions with square summable

coefficients representing stress and strain fields. On S, we define the scalar product

〈τ, e〉 =

∫

Ω

τ : e dx, τ, e ∈ S,

and the respective norm ‖τ‖ = 〈τ, τ〉1/2. Also, we use equivalent norms suitable for stress (τ) and strain
(e) fields, respectively:

‖τ‖C−1 := 〈C−1τ, τ〉1/2, ‖e‖C = 〈Ce, e〉1/2.
Further, let

V :=
{
v ∈ H1(Ω; R3) | v = 0 on ΓD

}
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denote the space of kinematically admissible displacements and

L(v) :=

∫

Ω

F ·vdx+

∫

ΓN

f ·vds, v ∈ V

be the load functional. We assume that

(L1) F ∈ L2(Ω; R3), f ∈ L2(ΓN ; R3),

(L2) ‖F‖L2(Ω;R3) + ‖f‖L2(ΓN ;R3) > 0.

The following closed, convex sets represent statically and plastically admissible stress fields, respec-
tively:

ΛL := {τ ∈ S | 〈τ, ε(v)〉 = L(v) ∀v ∈ V} ,
P := {τ ∈ S | Φ(τ(x)) ≤ γ for a. a. x ∈ Ω} .

Here, Φ : R3×3
sym → R is a continuous, convex yield function such that Φ(0) = 0, γ > 0 represents the ini-

tial yield stress (which is constant in Ω due to the homogeneity assumption) and ε(v) = 1
2

(
∇v + (∇v)T

)

is the linearized strain tensor corresponding to the displacement v.
In accordance with the Haar-Karman variational principle, the actual stress is a minimizer of the

variational problem:

(P∗) find σ ∈ ΛL ∩ P : I(σ) ≤ I(τ) ∀τ ∈ ΛL ∩ P,

where

I(τ) :=
1

2
‖τ‖2

C−1 , τ ∈ S.

Problem (P∗) has a unique solution if and only if ΛL ∩ P 6= ∅.
The corresponding dual problem is formulated in terms of displacements. It has the form:

(P) find u ∈ V : J(u) ≤ J(v) ∀v ∈ V,

where
J(v) := Ψ(ε(v))− L(v), v ∈ V,

Ψ(e) := sup
τ∈P

{
〈τ, e〉 − 1

2
‖τ‖2

C−1

}
= −1

2
‖Σ(e)‖2

C−1 + 〈Σ(e), e〉 ∀e ∈ S (2.1)

and Σ : S → S is defined by Σ(e) = Π(Ce) for any e ∈ S. Here Π denotes the projection of S on P with
respect to the scalar product 〈C−1σ, τ〉. In addition, Σ is the Fréchet derivative of Ψ, i.e. Σ(e) = DΨ(e)
for any e ∈ S. The functional Ψ is convex and differentiable but has only a linear growth at infinity.
Therefore, existence of a solution to (P) is not guaranteed in V or other Sobolev spaces.

If ΛL ∩ P 6= ∅ then (P) and (P∗) have finite infima and the duality relation

inf
v∈V

J(v) = sup
τ∈ΛL∩P

{−I(τ)}. (2.2)

holds. If (P) has a solution u then it satisfies the variational equation

〈σ, ε(v)〉 = L(v) ∀v ∈ V, (2.3)
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where σ := Σ(ε(u)) is the unique solution to (P∗).

Remark 2.1. In the special case, P = S, the problems (P) and (P∗) lead to well-known primal and
dual formulations of elasticity problems:

(Pe) find ue ∈ V : Je(ue) ≤ Je(v) ∀v ∈ V,

where

Je(v) :=
1

2
‖ε(v)‖2

C − L(v), v ∈ V,

and
(P∗e ) find σe ∈ ΛL : I(σe) ≤ I(τ) ∀τ ∈ ΛL (Castigliano’s principle),

respectively. Both problems have unique solutions and Cε(ue) = σe. Notice that if Cε(ue) ∈ P then
Σ(ε(ue)) = Cε(ue) and ue also solves (P).

3. Parametrization of the problem

Problems (P) and (P∗) are defined for a prescribed load functional L. Henceforth, we consider a
one parametric family of loads ζL, where ζ ∈ R+. Therefore, we use notation (P)ζ , (P∗)ζ , (Pe)ζ , (P∗e )ζ ,
ΛζL, and Jζ instead of (P), (P∗), (Pe), (P∗e ), ΛL, and J , respectively.

The limit load parameter ζlim is defined by

ζlim := supD, D := {ζ ∈ R+ | ΛζL ∩ P 6= ∅}.

Notice that, in some cases, ζlim may be infinite. However, in the majority of cases, the value of ζlim is
finite. From now on, we assume that

(L3) ζlim > 0.

Problem (P∗)ζ has a unique solution for any ζ ∈ D. Depending on the definition of the yield function
Φ, we may have one of the following two situations:

(a) D = [0, ζlim) or (b) D = [0, ζlim]. (3.1)

In general, it is not known, whether ζlim ∈ D, i.e. ΛζlimL ∩ P 6= ∅. This is true, for example, for the von
Mises or Tresca criterion (see [18]).

From the practical point of view it is very important to know the value of ζlim. The related problem
of limit analysis has been considered in [3, 16, 18] and publications cited therein. This minimization
problem can be solved independently of the original plasticity problem by various numerical methods
(see, e.g., [1, 3]). However, solving this problem leads to rather complicated numerical procedures.

The aim of this paper is to propose and justify a robust way of finding ζlim, which is based on a
different loading parameter. The first principal idea is to introduce a nonnegative function φ : R → R
as follows:

φ(ζ) =

{ I(σ(ζ)), ζ ∈ D,
+∞, otherwise.

(3.2)

Here, σ := σ(ζ) denotes the unique solution to (P∗)ζ . Properties of φ are summarized in the following
lemma.

Lemma 3.1. Let the assumptions (L1)− (L3) be satisfied and let φ : R→ R be defined by (3.2). Then,
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φ is a nonnegative, strictly convex and increasing function in D. Moreover,

φ(ζ0) ≤
(
ζ0

ζ1

)2

φ(ζ1) ∀ζ0, ζ1 ∈ D, ζ0 < ζ1. (3.3)

Proof. Let ζ0, ζ1 be as in (3.3) and

ζλ := (1− λ)ζ0 + λζ1, λ ∈ [0, 1].

Then (1−λ)σ(ζ0)+λσ(ζ1) ∈ ΛζλL∩P, where σ(ζθ) denotes the solution to (P∗)ζθ , θ ∈ [0, 1]. Consequently,

I(σ(ζλ)) ≤ I((1− λ)σ(ζ0) + λσ(ζ1)) ≤ (1− λ)I(σ(ζ0)) + λI(σ(ζ1)). (3.4)

Notice that the strict inequality holds in (3.4) for λ ∈ (0, 1) as σ(ζ0) 6= σ(ζ1) in view of the assumption
(L2). Thus, φ is convex on R and strictly convex on D.

From the definition of the yield function Φ, it follows that ζ0
ζ1
σ(ζ1) ∈ Λζ0L ∩ P . Therefore, we have:

φ(ζ0) = I(σ(ζ0)) ≤ I
(
ζ0

ζ1

σ(ζ1)

)
=

(
ζ0

ζ1

)2

φ(ζ1).

Hence, (3.3) is proved and, since, σ(ζ1) 6= 0 we conclude that φ is an increasing function on D.

Lemma 3.2. Let ζlim 6∈ D. Then
lim

ζ→ζ−lim
φ(ζ) = +∞. (3.5)

Proof. If ζlim = +∞ then (3.5) follows from (3.3). Let

ζlim < +∞

and suppose that limζ→ζ−lim φ(ζ) ∈ R1
+. Then there exist sequences {ζj}, {σ(ζj)} and an element σ̄ ∈ S

such that
ζj → ζ−lim, σ(ζj) ⇀ σ̄ in S, j → +∞.

In addition, σ̄ ∈ ΛζlimL ∩ P which contradicts the assumption.

Lemma 3.3. The function φ defined by (3.2) is continuous in D.

Proof. Continuity of φ in intD follows from its convexity. From (3.3), we see that

lim
ζ0→0+

φ(ζ0) = 0 = I(σ(0)) = φ(0).

Let ζlim ∈ D and
lim

ζ→ζ−lim
φ(ζ) = c ∈ R+.

To show that c = φ(ζlim) we proceed as in Lemma 3.2. Let ζj → ζ−lim and σ(ζj) ⇀ σ̄ ∈ ΛζlimL ∩ P . Let

τ ∈ ΛζlimL ∩ P be arbitrary and set τj =
ζj
ζlim

τ ∈ ΛζjL ∩ P . Then τj → τ in S and from the definition of

(P)∗ζj we have

φ(ζj) = I(σ(ζj)) ≤ I(τj).
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Hence,
I(σ̄) ≤ lim inf

j→+∞
I(σ(ζj)) ≤ lim

j→+∞
I(τj) = I(τ),

i.e. σ̄ = σ(ζlim) proving that φ(ζlim) = I(σ(ζlim)) ≤ c. The opposite inequality φ(ζlim) ≥ c follows from
monotonicity of φ.

Remark 3.1. It is worth noting that:

a) φ(ζ) = ζ2I(σe) if ζ ∈ [0, ζe], where

ζe := sup{ζ ∈ R+ | ζCε(ue) ∈ P}, ue solves (Pe).

b) (3.3) ensures a quadratic growth of φ at infinity if ζlim = +∞.

Now, we introduce a new parameter α, which plays a crucial role in forthcoming analysis. We set

α = 0 if ζ = 0,
α ∈ ∂φ(ζ) if ζ ∈ D \ {0}

}
(3.6)

From monotonicity of φ, it follows that ∂φ(ζ) ⊂ (0,+∞) for any ζ ∈ D \ {0}. Moreover,

⋃

ζ∈D\{0}
∂φ(ζ) = (0,+∞). (3.7)

Indeed, from the definition of the subgradient of φ at ζ we know that α ∈ ∂φ(ζ) if and only if

φ(ζ)− αζ ≤ φ(ζ̃)− αζ̃ ∀ζ̃ ∈ D. (3.8)

From Lemma 3.1 - 3.3 and Remark 3.1 b) we know that the function ζ̃ 7→ φ(ζ̃) − αζ̃ has a unique
minimizer ζ in D for any α ∈ [0,+∞) so that (3.7) holds. This fact enables us to define the function
ψ : R+ → D, ψ : α 7→ ζ, where ζ = ψ(α) ∈ D is the unique solution of (3.8) for given α. In the next
theorem, we establish some useful properties of ψ.

Theorem 3.1. Let the assumptions (L1)− (L3) be satisfied. Then

(i) ψ is continuous and nondecreasing in R+;

(ii) ψ(α)→ ζlim as α→ +∞.

Proof. Let α > 0 be given and φ∗ be the Legendre-Fenchel transformation of φ. It is well known that
φ∗ is a convex function in R+ and (3.6)2 holds if and only if ζ ∈ ∂φ∗(α). Since ζ = ψ(α), it holds that
∂φ∗(α) is singleton and (φ∗)′(α) = ψ(α) ≥ 0. Therefore, convexity and differentiability of φ∗ in R+

entail that ψ is continuous and nondecreasing in R+ and (i) holds.
By (i), there exists ζmax ≤ ζlim such that ζmax = limα→+∞ ψ(α). Suppose that

lim
α→+∞

ψ(α) = ζmax < ζlim. (3.9)

Then φ(ψ(.)) is bounded on R+ and

lim
α→+∞

ψ(α) = lim
α→+∞

{
ψ(α)− φ(ψ(α))

α

}
(3.8)
= lim

α→+∞
sup
ζ̃∈D

{
ζ̃ − φ(ζ̃)

α

}
≥ lim

α→+∞

{
ζ̂ − φ(ζ̂)

α

}
= ζ̂
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holds for any ζ̂ ∈ D. The choice ζ̂ ∈ (ζmax, ζlim) contradicts (3.9) and thus (ii) holds.

Remark 3.2. It is easy to show that

ψ(α) =
1

2I(σe)
α ∀α ∈ [0, αe],

where αe = 2ζeI(σe), σe solves (P∗e ) and ζe is the same as in Remark 3.1.

Figure 1 depicts three possible cases of the behaviour of φ, ψ for ζ → ζlim, and α→ +∞, respectively.

6

-

φ(ζ)

ζlim ζ

(a)
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ψ(α)

ζlim

α
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sφ(ζ)

ζlim ζ

(b)

6

-�
�
�
�

ψ(α)

ζlim

α

6

-

φ(ζ)

ζ

(c)

6

-�
�
�
�

ψ(α)

α

Figure 1: Graphs of φ and ψ: (a) ∂φ(ζlim) = ∅, (b) ∂φ(ζlim) 6= ∅, (c) ζlim = +∞.

4. Stress and displacement problems for given α ∈ R+

In this section, we formulate new variational problems in terms of stresses and displacements enabling
us to compute function values ψ(α) for α ∈ R+. The parameter α will be used to control the loading
process and to get the respective loading path graph[ψ] for a larger class of yield functions than in [17].

To derive the formulation in terms of stresses, we introduce the following set:

Λ̃L =
⋃

ζ̃∈R+

Λζ̃L = {ζ̃τ | ζ̃ ∈ R+, τ ∈ ΛL}.
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Clearly, Λ̃L is a closed, convex and non-empty subset of S and for any τ ∈ Λ̃L there exists a unique
loading parameter ζ̃ such that τ ∈ Λζ̃L owing to (L2). To stress that τ ∈ Λζ̃L with ζ̃ ∈ R+ and using the

fact that such ζ̃ is unique, we shall write ζ̃ = ω(τ) in what follows. It is readily seen that the function

ω : Λ̃L → R+

is concave in Λ̃L and satisfies the relation

ω(λτ1 + (1− λ)τ2) = λω(τ1) + (1− λ)ω(τ2) ∀τ1, τ2 ∈ Λ̃L, ∀λ ∈ [0, 1].

Moreover, ⋃

ζ̃∈D

Λζ̃L ∩ P = Λ̃L ∩ P. (4.1)

Let α > 0 be given and ζ = ψ(α). Then,

φ(ζ)− αζ (3.8)
= inf

ζ̃≥0
{φ(ζ̃)− αζ̃} = inf

ζ̃∈D

{
inf

τ∈Λζ̃L∩P
I(τ)− αζ̃

}
=

= inf
ζ̃∈D

inf
τ∈Λζ̃L∩P

{I(τ)− αω(τ)} = inf
τ∈Λ̃L∩P

{I(τ)− αω(τ)}

using the definition of ω and (4.1).
On basis of this result we formulate the following problem in terms of stresses: given α ≥ 0,

(P∗)α find σ := σ(α) ∈ Λ̃L ∩ P : I(σ)− αω(σ) ≤ I(τ)− αω(τ) ∀τ ∈ Λ̃L ∩ P.

Properties of the functions I and ω ensure that for any α ≥ 0 problem (P∗)α has a unique solution σ.
Moreover, ζ = ψ(α) = ω(σ) and σ also solves (P∗)ζ . Conversely, if σ is the unique solution to (P∗)ζ ,
ζ ∈ D \ {0}, then σ also solves (P∗)α for α ∈ ∂φ(ζ).

Now, we derive the dual problem to (P∗)α in terms of displacements for given α > 0. Let ζ = ψ(α) >
0. Then,

φ(ζ)− αζ (3.8)
= inf

ζ̃≥0
{φ(ζ̃)− αζ̃} = inf

ζ̃≥0

{
inf

τ∈Λζ̃L∩P
I(τ)− αζ̃

}
=

(2.2)
= inf

ζ̃≥0

{
sup
v∈V

[−Jζ̃(v)]− αζ̃
}

=

= inf
ζ̃≥0

sup
v∈V
L(ζ̃ , v),

where
L(ζ̃ , v) = −Ψ(ε(v)) + ζ̃(L(v)− α), (ζ̃ , v) ∈ R+ × V

and Ψ is defined by (2.1). From [5, Proposition VI.2.3], it follows that

φ(ζ)− αζ = inf
ζ̃≥0

sup
v∈V
L(ζ̃ , v) = sup

v∈V
inf
ζ̃≥0
L(ζ̃ , v) = − inf

v∈V, L(v)≥α
Ψ(ε(v)). (4.2)

Since Ψ is convex on S and Ψ(0) = 0 it holds:

inf
v∈V, L(v)≥α

Ψ(ε(v)) = inf
v∈Vα

Ψ(ε(v)), (4.3)
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where
Vα = {v ∈ V | L(v) = α}.

Indeed, for any v ∈ V, L(v) > α, one can set w = α
L(v)

v belonging to Vα and satisfying

Ψ(ε(w)) ≤ α

L(v)
Ψ(ε(v)) ≤ Ψ(ε(v)).

Therefore, the problem in terms of displacements for given α > 0 reads as follows:

(P)α find u := u(α) ∈ Vα : Ψ(ε(u)) ≤ Ψ(ε(v)) ∀v ∈ Vα.

This and (4.2) yield
inf
v∈Vα

Ψ(ε(v)) = − inf
τ∈Λ̃L∩P

[I(τ)− αω(τ)],

i.e., (P)α and (P∗)α are mutually dual. Notice that this result can also be derived using some parts of
the proof of Lemma 5.2 in [18]. Solvability of (P)α is problematic on V from the same reasons as in
the case of (P)ζ . However, this formulation is useful for numerical realization of its discretization. If we
admit that (P)α has a solution for some α > 0 then the following result holds.

Theorem 4.1. Suppose that there exists a solution u to (P)α, α > 0. Then

ζ = ψ(α) =
1

α
〈Σ(ε(u)), ε(u)〉. (4.4)

In addition, u is the solution to (P)ζ and σ = Σ(ε(u)) is the solution to problems (P∗)α and (P∗)ζ.
Conversely, if u is a solution to (P)ζ then u also solves (P)α for α = L(u).

Proof. Let u be a solution to (P)α, α > 0 and ζ = ψ(α) > 0. Then using (4.2), (4.3), the pair (ζ, u) is
a saddle point of the Lagrangian L:

L(ζ, v) ≤ L(ζ, u) ≤ L(ζ̃ , u) ∀(ζ̃ , v) ∈ R+ × V,

or equivalently {
L(u) = α, ζ > 0,
〈Σ(ε(u)), ε(v)〉 = ζL(v) ∀v ∈ V, (4.5)

i.e. u solves (P)ζ . Consequently, σ = Σ(ε(u)) solves (P∗)ζ and also (P∗)α. Moreover, inserting v = u
into (4.5)2, we obtain (4.4).

Conversely, let u be a solution to (P)ζ for ζ ∈ D and denote α := L(u). Then u ∈ Vα and

Ψ(ε(u)) = Jζ(u) + ζα ≤ inf
v∈V α

Jζ(v) + ζα = inf
v∈V α

Ψ(ε(v)).

Hence, u is the solution to (P)α.

Remark 4.1. Theorem 4.1 expresses the relation between ζ and α through displacements. If u is a
solution to (P)ζ then α = L(u). Therefore, one can say that α represents work of external forces. The
equality α = L(u) is in accordance with [2, 17].
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5. Discretization and convergence analysis

5.1. Setting of discretized problems

For the sake of simplicity, we now suppose that Ω is a polyhedral domain. Let {Th} , h > 0 be a
collection of regular partitions of Ω into tetrahedrons 4 which are consistent with the decomposition of
∂Ω into ΓD and ΓN . Here, h is a positive mesh size parameter. With any Th we associate the following
finite-dimensional spaces:

Vh = {vh ∈ C(Ω; R3) | vh|4 ∈ P1(4; R3) ∀4 ∈ Th, vh = 0 on ΓD},

Sh = {τh ∈ S | τh|4 ∈ P0(4; R3×3
sym) ∀4 ∈ Th},

where Pk(4), k ≥ 0 integer, stands for the space of all polynomials of degree less or equal k defined in
4 ∈ Th. The spaces Vh and Sh are the simplest finite element approximations of V and S, respectively.

Next we shall suppose that V ∩ C∞(Ω; R3) = V. Further, define the following convex sets:

Ph = P ∩ Sh,

Λh
ζL = {τh ∈ Sh | 〈τh, ε(vh)〉 = ζL(vh) ∀vh ∈ Vh} , ζ ≥ 0,

Λ̃h
L =

⋃

ζ∈R+

Λh
ζL,

Vα
h = {vh ∈ Vh | L(vh) = α}, α ≥ 0,

Dh := {ζ ∈ R+ | Λh
ζL ∩ Ph 6= ∅},

which are natural discretizations of P , ΛζL, Λ̃L, Vα, and D, respectively. We also consider the functions
φh, ψh, ωh and the limit load parameter ζlim,h with the analogous definitions and properties as their
continuous counterparts.

The discrete versions of (P∗)ζ , (P∗)α, (P)ζ , (P)α for given ζ ≥ 0 or α ≥ 0 read as follows:

(P∗h)ζ find σh := σh(ζ) ∈ Λh
ζL ∩ Ph : I(σh) ≤ I(τh), ∀τh ∈ Λh

ζL ∩ Ph,

(P∗h)α find σh := σh(α) ∈ Λ̃h
L ∩ Ph : I(σh)− αωh(σh) ≤ I(τh)− αωh(τh), ∀τh ∈ Λ̃h

L ∩ Ph,
(Ph)ζ find uh := uh(ζ) ∈ Vh : Jζ(uh) ≤ Jζ(vh), ∀vh ∈ Vh,

(Ph)α find uh := uh(α) ∈ Vα
h : Ψ(ε(uh)) ≤ Ψ(ε(vh)) ∀vh ∈ Vα

h .

Clearly problems (P∗h)ζ and (P∗h)α have unique solutions for any ζ ∈ Dh, α ≥ 0 and h > 0. Further,
the existence of solutions to (Ph)ζ and (Ph)α is guaranteed for any ζ ∈ [0, ζlim,h), α ≥ 0 and h > 0,
see e.g. [6, 17]. The mutual relations among the solutions to these problems remain the same as in the
continuous setting. The relation between ζ and α is defined using the functions φh and ψh, analogously
to the continuous case: α ∈ ∂φh(ζ) if ζ ∈ Dh \ {0}, α = 0 if ζ = 0 and ζ = ψh(α). In particular,

ζ = ψh(α) =
1

α
〈Σ(ε(uh)), ε(uh)〉, (5.1)

where uh is any solution to (Ph)α. It is worth noticing that (5.1) enables us to express ζ elementwise:

ζ =
∑

4∈Th
ζ4, ζ4 =

|4|
α

Σ(ε(uh)|4) : ε(uh)|4.
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5.2. Convergence analysis

In what follows, we study convergence of (P∗h)ζ , (P∗h)α and ψh to their continuous counterparts when
the discretization parameter h→ 0+. To this end we need the following well-known results [12, 8].

Lemma 5.1. For any v ∈ V there exists a sequence {vh}, vh ∈ Vh such that vh → v in V as h→ +∞.

Lemma 5.2. Let rh : S → Sh be the orthogonal projection of S on Sh with respect to the scalar product
〈·, ·〉, i.e.,

rhτ |4 =
1

|4|

∫

4
τ dx ∀4 ∈ Th ∀τ ∈ S.

Then rhτ ∈ Ph for any τ ∈ P , rhτ ∈ Λh
ζL for any τ ∈ ΛζL, ζ ≥ 0 and

rhτ → τ in S as h→ 0+.

Corollary 5.1. ζlim,h ≥ ζlim for any h > 0.

Proof. It is sufficient to show that D ⊂ Dh for any h > 0. If ζ ∈ D then there exists τ ∈ ΛζL ∩ P . From
Lemma 5.2, rhτ ∈ Λh

ζL ∩ Ph for any h > 0. Therefore, ζ ∈ Dh for any h > 0.

Lemma 5.3. Let τ ∈ S and {τh}, τh ∈ Sh be a sequence such that τh ∈ Λh
ζL ∩ Ph, ζ ≥ 0 and τh ⇀ τ

(weakly) in S as h→ 0+. Then τ ∈ ΛζL ∩ P .

The following convergence result is a direct consequence of Lemmas 5.1–5.3.

Theorem 5.1. Let ζ ∈ D and σh be a solution to (P∗h)ζ, h→ 0+. Then

σh → σ in S, h→ 0+,

φh(ζ)→ φ(ζ), h→ 0+,

where σ ∈ ΛζL ∩ P is the unique solution to (P∗)ζ.

To prove convergence of solutions of (P∗h)α to a solution of (P∗)α, we need some other auxilliary
results.

Lemma 5.4. For any v ∈ Vα=1, there exists a sequence {wh}, wh ∈ Vα=1
h such that wh → v in V as

h→ +∞.

Proof. Let v ∈ Vα=1 and {vh}, vh ∈ Vh be a sequence such that vh → v in V as h → +∞. Then,
L(vh)→ L(v) = 1 as h→ 0+ and wh = 1

L(vh)
vh ∈ Vα=1

h has the required property.

Lemma 5.5. There exists a constant c > 0 such that for any sufficiently small h > 0

ωh(τh) ≤ c‖τh‖C−1 ∀τh ∈ Λ̃h
L.
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Proof. Let v ∈ Vα=1 and ε > 0 be given. Then, there exists a sequence {wh}, wh ∈ Vα=1
h such that

wh → v in V as h→ +∞. Hence,

∃h0 > 0 : ‖ε(wh)‖C ≤ ‖ε(v)‖C + ε ∀0 < h ≤ h0

and using the definition of Λ̃h
L, we obtain

ωh(τh) = ωh(τh)L(wh) = 〈τh, ε(wh)〉 ≤ ‖τh‖C−1‖ε(wh)‖C ≤ c‖τh‖C−1 ∀0 < h ≤ h0, ∀τh ∈ Λ̃h
L,

where c = ‖ε(v)‖C + ε.

Lemma 5.6. Let {τh}, τh ∈ Λ̃h
L ∩ Ph be such that τh ⇀ τ (weakly) in S and ωh(τh) → ζ as h → 0+.

Then τ ∈ Λ̃L ∩ P and ω(τ) = ζ.

Proof. Since τh ⇀ τ and P is a closed convex set, τ ∈ P . Let v ∈ V and {vh}, vh ∈ Vh be such that
vh → v in V as h→ +∞. From the definition of Λ̃h

L, it follows that

〈τh, ε(vh)〉 = ωh(τh)L(vh).

Passing to the limit with h→ 0+, we conclude that τ ∈ Λ̃L ∩ P and ω(τ) = ζ.

Theorem 5.2. Let α ≥ 0 be given and {σh} be a sequence of solutions to (P∗h)α, h > 0. Then σh → σ
in S, ωh(σh)→ ω(σ) and ψh(α)→ ψ(α) as h→ 0+, where σ is a solution to (P∗)α.

Proof. The proof consists of three steps.
Step 1 (Boundedness). Let τ ∈ Λ̃L ∩ P be fixed. Then rhτ ∈ Λh

ω(τ)L ∩ Ph ⊂ Λ̃h
L ∩ Ph and rhτ → τ in

S as h→ 0+. From the definition of (P∗h)α it follows:

I(σh)− αωh(σh) ≤ I(rhτ)− αω(τ) ∀h > 0

since ωh(rhτ) = ω(τ). From this and Lemma 5.5, we obtain

∃c1 > 0, c2 ∈ R, h0 > 0 :
1

2
‖σh‖2

C−1 = I(σh) ≤ c1‖σh‖C−1 + c2 ∀h ∈ (0, h0).

This implies boundedness of {σh} and consequently boundedness of {ωh(σh)}.
Step 2 (Weak convergence). One can pass to subsequences {σh′} ⊂ {σh} and {ωh′(σh′)} ⊂ {ωh(σh)}

such that
σh′ ⇀ σ in S as h′ → 0+,
ωh′(σh′)→ ζ as h′ → 0+.

}
(5.2)

From Lemma 5.6, it follows that σ ∈ Λ̃L ∩ P and ζ = ω(σ). Let τ ∈ Λ̃L ∩ P be arbitrary. Then
rh′τ ∈ Λh′

ω(τ)L ∩ Ph′ ⊂ Λ̃h′
L ∩ Ph′ , ωh′(rh′τ) = ω(τ) and rh′τ → τ in S as h′ → 0+. Hence,

I(σ)− αω(σ) ≤ lim inf
h′→0+

[I(σh′)− αωh′(σh′)] ≤ lim inf
h′→0+

[I(rh′τ)− αω(rh′τ)] = I(τ)− αω(τ),

i.e., σ is the solution to (P∗)α. Since (P∗)α has a unique solution, (5.2) holds for the whole sequence.
Consequently,

ψh(α) = ωh(σh)→ ω(σ) = ψ(α) as h→ 0+.
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Step 3 (Strong convergence). Since rhσ ∈ Λ̃h
L ∩Ph, ωh(rhσ) = ω(σ) and rhσ → σ in S as h→ 0+, we

have

I(σ) ≤ lim inf
h→0+

I(σh) ≤ lim sup
h→0+

I(σh) = lim sup
h→0+

[I(σh)− αωh(σh)] + αω(σ)

≤ lim
h→0+

[I(rhσ)− αωh(rhσ)] + αω(σ) = I(σ).

Therefore,
‖σh‖2

C−1 = 2I(σh)→ 2I(σ) = ‖σ‖2
C−1 as h→ 0+,

which implies strong convergence of {σh} to σ in S.

Remark 5.1. We summarize the properties of the functions ψ and ψh, h > 0:

a) ψ and ψh are nondecreasing and continuous in R+ for any h > 0;

b) ψ(α)→ ζlim, ψh(α)→ ζlim,h as α→ +∞, for any h > 0;

c) ζlim,h ≥ ζlim ≥ ψ(α) for any h > 0 and α ≥ 0;

d) ψh(α)→ ψ(α) as h→ 0+ for any α ≥ 0.

Notice that from Remark 5.1 b), d) it follows that for any ε > 0 there exists α large enough and
h0 > 0 small enough such that |ψh(α) − ζlim| < ε ∀h ≤ h0. Direct convergence of ζlim,h to ζlim is
guaranteed only for some yield functions Φ as follows from the next theorem.

Theorem 5.3. Let the yield function Φ be coercive on R3×3
sym and the assumptions (L1), (L2) be satisfied.

Then
ζlim,h → ζlim as h→ 0+. (5.3)

Proof. Coerciveness of Φ ensures that the set P is bounded in L∞(Ω; R3×3
sym), i.e.

∃c > 0 : |τij(x)| ≤ c ∀τ ∈ P, ∀i, j = 1, 2, 3, for a.a. x ∈ Ω. (5.4)

Next, we show that {ζlim,h} is bounded. Consider a bounded sequence {wh}, wh ∈ Vα=1
h :

∃M > 0 : ‖ε(wh)‖L1(Ω;R3×3
sym) ≤M ∀h > 0. (5.5)

The existence of such a sequence is guaranteed by Lemma 5.4. Then for any ζ ∈ Dh and τh ∈ Λh
ζL ∩ Ph

it holds

ζ = ζL(wh) = 〈τh, ε(wh)〉
(5.4)

≤ c‖ε(wh)‖L1(Ω;R3×3
sym)

(5.5)

≤ cM.

Hence, ζlim,h ≤ cM < +∞ for any h > 0. In addition, from boundedness of P , it follows that ζlim,h ∈ Dh
for any h > 0.

Let {τh}, h > 0, be such that τh ∈ Λh
ζlim,hL

∩ Ph. Then {τh} is bounded in S and there exist

subsequences {ζlim,h′} and {τh′}, τh′ ∈ Λh′
ζlim,h′L

∩ Ph′ such that

τh′ ⇀ τ in S, ζlim,h′ → ζ̂ , h′ → 0+.

Clearly, τ ∈ Λζ̂L ∩ P and thus ζ̂ ∈ D. Therefore ζ̂ = ζlim using Corollary 5.1.
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6. Numerical experiments

In order to verify the previous theoretical results, we have performed several numerical experiments
with two yield functions presented below. Problem (Ph)α which is needed for the evaluation of ψh(α) is
solved by a regularized semismooth Newton method. This method has been proposed and theoretically
justified in [2, ALG3]. Each iterative step leads to a quadratic programming problem. After finding a
solution uh := uh(α) of (Ph)α, the value ζ = ψh(α) of the load parameter is computed by (5.1).
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cccccccccccccccccc

6666666666666
f

Ω

1 9

10

Figure 2: Geometry of the plane strain problem.

The performed experiments are related to a plain strain problem with Ω depicted in Figure 2: Ω is
a quarter of the square containing the circular hole of radius 1 in its center. The constant traction of
density f = (0, 450), (0, 0) is applied on the upper, and the right vertical side, respectively. This load
corresponds to ζ = 1. On the rest of ∂Ω the symmetry boundary conditions are prescribed. We consider
linear Hooke’s law for a homogeneous, isotropic elastic material:

τ = Ce ⇔ τ = λ tr(e) ι+ 2µe, e, τ ∈ R3×3
sym, (6.1)

where ι is the (3 × 3) identity matrix, tr(e) = eii is the trace of e and λ = Eν
(1+ν)(1−2ν)

, µ = E
2(1+ν)

are
positive constants representing Lame’s coefficients. The elastic material parameters are set as follows:
E = 206900 (Young’s modulus) and ν = 0.29 (Poisson ratio).

The loading paths represented by the graph of ψh : α 7→ ζ are compared for seven different meshes
with 1080, 2072, 3925, 10541, 23124, 41580 and 92120 nodes. The problem is implemented in MatLab.

6.1. Yield function 1

Consider the yield function
Φ(τ) =

√
C−1τ : τ , τ ∈ R3×3

sym

(a similar yield function has been considered in, e.g., [15, 1]). Then

(Σ(e)) (x) = DΨ(e)(x) =





Ce(x),
√
Ce(x) : e(x) ≤ γ,

γ√
Ce(x):e(x)

Ce(x),
√
Ce(x) : e(x) ≥ γ,

, ∀e ∈ S, for a.a. x ∈ Ω,

Ψ(e) =
1

2

∫

Ω

{
Ce : e−

[(√
Ce : e− γ

)+
]2
}
dx, ∀e ∈ S,

respectively, where (g)+ denotes the positive part of a function g.
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From Theorem 3.1 (i), (ii) we know that for any α ∈ (0,+∞) the values ψ(α), ψh(α) give a lower
bound of ζlim, and ζlim,h, respectively. Since Φ is coercive on R3×3

sym, it holds that ζlim,h → ζlim as h→ 0+

using Theorem 5.3.
For purposes of the experiment, we choose γ = 10 and the increments 4α defined as follows:

4α = 20 for α ∈ [0, 2000] and 4α = 100 for α = [2000, 10000]. The path-following procedure has been
terminated if α ≥ 10000.

The comparison of the loading paths for seven different meshes is shown in Figure 3. Since the curves
practically coincide the zoom is depicted in Figure 4. We see that the value ζ ≈ 9.48 turns out to be a
suitable lower bound of ζlim. Further, one can see that ψh ≤ ψh′ for h ≤ h′. Therefore one can expect
uniform convergence of {ψh} to ψ on closed and bounded intervals using Dini’s theorem.

Figure 3: Loading paths up to α ∈ [0, 10000].

6.2. Yield function 2 - von Mises criterion

The von Mises criterion [18, 3, 17, 2] is suitable for an isotropic and pressure insensitive material.
The corresponding yield function has the form

Φ(τ) = τD : τD, τ ∈ R3×3
sym, (6.2)

where τD = τ − 1/3 tr(τ)ι is the deviatoric part of τ . If the elasticity tensor C is defined as in (6.1),
then

Ψ(e) :=

∫

Ω

{
1

2
Ce : e− 1

4µ

[(
2µ
√
eD : eD − γ

)+
]2
}
dx.

Unlike Yield function 1, Φ defined by (6.2) is not coercive on R3×3
sym. Therefore convergence ζlim,h →

ζlim as h→ 0+ is not guaranteed.
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Figure 4: Loading paths for α ∈ [0, 10000] (zoom).

We choose γ = 450
√

2/3 and 4α = 5, 100, 1000 for α ∈ [0, 300], [300, 10000], [10000, 100000],
respectively. The comparison of the loading paths for seven different meshes is shown in in Figure 5.
The curves practically coincide up to ζ = 1. Therefore the value ζ = 1 seems to be a reliable lower
estimate of ζlim. As in the previous example, one can see that ψh ≤ ψh′ for h ≤ h′.

In Figure 6, zooms of the loading paths up to α = 100000 for the seven meshes are displayed. We
observe that the curve representing the coarsest mesh is almost constant in a vicinity of α = 100000
and the corresponding value of ψh is approximately equal to 1.14 there. So one can expect that ζlim ∈
[1.00, 1.14]. On the other hand, pointwise convergence of {ψh(α)} becomes slow for large values of α.
Therefore, direct convergence ζlim,h → ζlim as h→ 0+ seems to be at least problematic.

7. Conclusion

The paper deals with an enhanced incremental procedure for reliable estimation of the limit load
in deformation plasticity models. This procedure is based on a continuation parameter α ranging in
(0,+∞) which is dual to the standard loading parameter ζ ∈ (0, ζlim), where ζlim is the critical value of
ζ. We have shown that there exists a continuous, nondecreasing function ψ in (0,+∞) and such that
ψ(α) → ζlim if α → +∞. Therefore ψ(α) gives a guaranteed lower bound of ζlim for any α ∈ (0,+∞).
To evaluate ψ(α) for given α we derived a minimization problem for the stored energy functional subject
to the constraint L(v) = α whose solutions define the respective value ψ(α). The second part of the
paper was devoted to a finite element discretization and convergence analysis. The main result of this
part is the proof of pointwise convergence ψh → ψ which is crucial for finding a reliable lower bound
of ζlim. Further, we specified a class of yield functions for which ζlim,h → ζlim as h → 0+. It is worth
mentioning that elastoplastic models with bounded yield surfaces belong to this class. In the follow-up
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Figure 5: Loading paths up to α = 3000.

Figure 6: Loading paths up to α = 100000 (zoom).
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paper [10], it is shown that limit analysis is much simpler for such models and a truncation method is
suggested there for models with unbounded yield surfaces.
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