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Abstract. Theories combining nuclear density functional approach (DFT) and effects beyond the independent

particle/quasi-particle limit have attracted much attention recently. In particular, such theories, generically re-

ferred as "beyond mean-field" (BMF) seem unavoidable to account for both single-particle effects and complex

quantum internal phenomena in nuclear finite many-body nuclear systems. It has been realized recently that

BMF theories might lead to specific difficulties when applied within the nuclear DFT context. An example is

the appearance of divergences in configuration mixing approaches. A short summary of the difficulties is given

here. One source of problem is the use of energy functional of non-integer powers of the density. We show

that such dependence can be mimicked by a suitable choice of a three-body interaction. Application on infinite

nuclear matter in various spin-isospin channels will be given.

1 Introduction

BMF theories within nuclear DFT can be motivated by

many-body techniques starting from a bare Hamiltonian.

Most often, the starting point of the nuclear DFT, also

called Energy Density Functional (EDF) theory is an ef-

fective interaction that is used to obtain the form of the

functional. This guidance is very useful and has led to a

framework allowing to treat nuclear structure, dynamics

and thermodynamics. In recent years, efforts have been

made to describe complex phenomena beyond the inde-

pendent particle/quasi-particle picture. The inclusion of

such phenomena have pointed out that theories such that

perturbation theory [1, 2] or configuration mixing [3–6],

in contrast to the pure Hamitonian case, should be used

with specific care within the EDF framework.

In the present article, some difficulties associated to

configuration mixing are illustrated. Among these diffi-

culties, it turns out that terms written as ρα where α is not

an integer can not be used without difficulty in combina-

tion with standard configuration mixing based on projec-

tions techniques. However, as will be discussed below,

such density dependence of the functional often appears

as a useful choice in many situations to have local terms in

the density functionals. We show here that this density de-

pendence can be appropriately mimicked using a recently

proposed simplified three-body interaction [7].
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Figure 1. (Color online) Illustration of the difficulties encoun-

tered in the EDF approach when combined with configuration

mixing. Here, an energy landscape of a nucleus is shown as a

function of the quadrupole deformation parameter β2. The en-

ergy is obtained by discretizing the energy landscape of the nu-

cleus at various deformation and by performing configuration

mixing. When the number of points M used in the discretiza-

tion increases, jumps or even divergences appears in the energy

(adapted from [4–6]).

2 The EDF and configuration mixing

The nuclear EDF has strong similarities with the DFT ap-

proach used in condensed matter. In general, a trial stateΨ

(Slater determinant and/or Quasi-particle vacuum) is used

to construct the normal density ρ and pairing tensor κ that
are ultimately used in the energy density E(ρ, κ). This fi-
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nally gives the DFT scheme:

Ψ −→ (ρ, κ) −→ E(ρ, κ).
This scheme, that is often referred as the mean-field level

of EDF, is very powerful to describe many facets of the

atomic nucleus. However, it is mainly suited to access

ground state properties and additional efforts is required

to provide theoretical prediction for excited states.

Guided by the Hamiltonian case, the natural method to

obtain spectroscopic information with many-body states

having proper symmetries is to use configuration mixing

techniques. Then, the single trial state is replaced by a

new state Φ written as a coherent superposition of a set of

trial states Ψ(q)

Φ =

∫
f (q)Ψ(q)dq. (1)

Here, q is a generic notation for a set of collective coordi-

nates that eventually allows for symmetry restoration like

in the case of the particle number or the angular momen-

tum projection. This strategy however leads to specific

problems, one of them being illustrated in Fig. 1. A com-

plete discussion of the problems showing up when com-

bining EDF with BMF technique is out of the scope of

the present article and a detailed discussion can be found

in Refs. [4–6]. Let us just remind two important issues

(i) density dependence with non-integer powers in the en-

ergy density cannot be used with configuration mixing in

the general case (ii) most of the difficulties encountered

in BMF theories do not exist if an Hamiltonian (i.e. with-

out density dependent effective vertex) is used as a starting

point for the EDF and no approximation is made to con-

struct the functional especially regarding the Pauli princi-

ple and the Coulomb field. In particular, this has renewed

the construction of EDF in the Local Density Approxima-

tion (LDA) from zero-range interaction including 3-body

and/or 4-body terms [8, 9]. However, as it is discussed

below, it seems unclear if a LDA approximation of the

EDF can properly describe Fermi liquids in various den-

sity regimes.

3 Usefulness of non-integer density
dependence in functional theories for
Fermi liquids

In Fig. 2, illustration of an equation of state (EOS) ob-

tained using the Sly5 Skyrme functional for the neutron

matter and symmetric nuclear matter are displayed as a

function of density. The different black circles indicate

cases where a functional containing terms ρα with non-

integer values of α seems adequate. The most evident case

is the low density limit in Fermi liquids, (1) in Fig. 2. In

that case, for sufficiently dilute systems, the effect of the

interaction becomes perturbative and the energy is given

by the Lee-Yang formula [10] in terms of the Fermi mo-

mentum kF as:

E
A
=

E0

A

(
1 +

10

9π
(akF) +

4

21π2
(11 − 2 ln 2)(akF)

2

)
(2)
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Figure 2. (Color online) Bottom: Equation of state in infinite

matter obtained as a function of density using the Sly5 Skyrme

functional in symmetric matter (red filled circles) and neutron

matter (blue filled squares). Top: Associated effective mass. The

different shaded area correspond to different density regimes.

The different numbers (from 1 to 4) correspond to different places

where a terms ρα with α non-integer is useful.

where a is the scattering length of the interaction and

E0/A = 3/5
(
�
2k2

F/[2m]
)
is the Free Fermi gas kinetic en-

ergy per particle. In this limit, the effective mass can also

be expanded in kF through the Galitskii formula [10]:

(
m∗

m

)
= 1 +

8

15π2
(7ln2 − 1)(kFa)2. (3)

Noting that kF ∝ ρ1/3, we directly see that both the energy

and the effective mass can be parametrized with terms ρα

where α is not an integer. This directly stems from the fact

that the natural expansion parameter at low density is the

Fermi momentum and not directly the density itself.

Another case that has attracted much attention in the

last decade is a Fermi liquid at low density and very large

scattering (infinite) length, i.e. the unitary regime. This sit-

uation is close to the case of neutron matter (shown by (2)

in Fig. 2). In the strict unitary regime, the energy directly

becomes proportional to the free gas energy with E
A = ξ

E0

A .

Here ξ is a constant sometimes called Bertsch parameter.

This very simple form has been used in Refs. [11, 12] (see

also [13]) to suggest a rather minimalist DFT-LDA func-

tional for unitary gas where the energy density writes

E[ρ, κ] = ατ(r)
2
+ βcρ5/3(r) + γ

|κ(r)|2
ρ(r)1/3

. (4)

Here, τ(r) is the kinetic density. This functional is simple

thanks to the inclusion of non-integer density dependences

both in the mean-field and pairing channels.
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The usefulness of such ρα terms is not restricted to the

low density regime. Indeed, in the nuclear physics context,

it was realized rapidly that a proper description of the in-

compressibility around saturation ((4) in Fig. 2) can only

be achieved in the EDF-LDA approach, without increasing

too much the complexity in the functional, by introducing

a ρα term [14].

4 Nuclear DFT starting from a Hamiltonian

From the above discussion, we see that the use density de-

pendent terms ρα allows for the construction of an EDF

with a sufficiently simple expression when a LDA approx-

imation is seek. However, having in mind BMF approx-

imation, we have the dilemma that such term should be

avoided and that it would be desirable to design the func-

tional directly from an Hamiltonian.

At present, two strategies have been tested along this

line:

• Keeping the LDA approach, and following the pioneer-

ing work of Skyrme, Hamiltonian based on zero-range

interaction of increasing complexity have been consid-

ered [8, 9]. The resulting EDF can then only depend on

integer powers of the different spin/isospin densities. It

is clear that an energy that writes as a polynomial of the

density with a sufficient number of terms to adjust can

eventually reproduce the effect of ρα at least around the

saturation point. However, LDA based on zero range

interaction cannot describe the low density regime.

• Alternatively, one can relax the LDA constraint and

starts from finite-range many-body interaction. As we

discussed in [7], if the Hamiltonian contains only two-

body interaction, it can neither describe nuclear systems

at low density nor at saturation density. At least a three-

body interaction should be included. A first attempt in

that direction was made in Ref. [15, 16] to get a func-

tional starting from a finite range 3-body interaction. It

was shown that a specific choice of the interaction can

provide a proper description of the low density behavior.

In the following, we show that the introduction of a

simplified 3-body interaction to obtain an EDF from a

Hamiltonian can also be useful around saturation. Some

technical details associated to this work can be found in

Ref. [7].

4.1 Semi-contact 3-body interaction

While finite-range 2-body interaction, like the Gogny in-

teraction, is rather standardly used nowadays, 3-body in-

teraction remains challenging to implement in mean-field

codes. For this reason, we recently introduced the concept

of semi-contact 3-body interaction. We start from the Ja-

cobi coordinates ri j = (ri−r j), Rk
i j = rk− (ri+r j)/2 where

(ri, r j, rk) are the coordinates of three particles, (i, j, k). We

called semi-contact 3-body interaction, an interaction that

is non-zero only if Rk
i j = 0. The starting semi-contact 3-

body interaction is written as: v̄i jk = (vi jk + vik j + vki j)/3
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Figure 3. (Color online) F3(kFa) as a function of (akF) obtained

by adjusting the interaction parameters to get a dependence sim-

ilar to 1/(akF) [α = 2/3] (red solid line) or 1/(akF)
2 [α = 1/3]

(blue dashed line). The reference curves 1/(akF) (red filled cir-

cles) and 1/(akF)
2 (blue filled diamonds) are also shown. Note

that in nuclear physics (akF) � 1.5 at saturation.

with (see [7] for more details)

vi jk = vi jδ
(
rk −

[ri + r j

2

])
, (5)

and

vi j =
{
V0(r) + Vσ(r)Pσ + Vτ(r)Pτ + Vστ(r)PσPτ

}
. (6)

Here, σ and τ denotes the different spin and isospin chan-

nels of the interaction. The later expression is the standard

form of a finite-range 2-body interaction decomposed in

different spin/isospin channels. For simplicity, the interac-

tion was assumed to have the same form factor in all chan-

nel Vα(r) = vαg(r) where g(r) is a Gaussian function while

v0, vσ, vτ and vστ are independent interaction strength pa-

rameters. The presence of a δ function in Eq. (5) sim-

plifies some technical aspects compared to general 3-body

forces. Starting from Eq. (5), the energy per particle can

be written as a functional of (akF) as

E3b

A
=
ρ2

6
F3(akF) , (7)
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Figure 4. (Color online) Scalar-Isoscalar effective mass (a) and equations of state (b) of symmetric matter (red), neutron matter (blue),

polarized matter (green) and polarized neutron matter (black) as a function of density. Left: the SLy5 functional (markers) is used as

the reference functional. The SLy53b including the [2-body] + 3-body functional are shown with lines. Right: Same for the D1M as

reference functional and D1M3b as the new functional. In both cases, in the insets, the contribution of the 3-body functional to the

energy per particle in symmetric matter is represented. A simple function proportional to ρ1+α has been adjusted on it with α � 1/3 for

an optimal fitting the vicinity of saturation density.

where a now stands for the range of the Gaussian interac-

tion. For comparison, it is also interesting to note that the

energy of a two-body interaction given by Eq. (6) writes

as:

E2b

A
=
ρ

2
F2(akF) . (8)

The explicit form of the two functionals F2(akF) and

F3(akF) depends on the spin and isospin content of nu-

clear matter. Their expressions for symmetric, neutron

matter, polarized and neutron polarized matter are explic-

itly given in Ref. [7]. In the limit of zero-range interaction,

i.e. a → 0, one recovers the standard LDA functional form

with

E3b

A
∝ ρ2, and

E2b

A
∝ ρ. (9)

When a finite-range interaction is used, a richer density

dependence of the energy can be obtained. As an illus-

tration, we show in Fig. 3 that a proper adjustment of the

interaction parameters can lead to a dependence equiva-

lent to ρα with α = 1/3 or α = 2/3 in a density region

around saturation. These values of α corresponds to values

that are standardly used in Skyrme EDF or Gogny EDF to

properly describe compressibility property of symmetric

nuclear matter at saturation.

4.2 Skyrme or Gogny EDF without density
dependent term

Let us now return to the original goal that is (i) to obtain

the EDF form from a Hamiltonian (ii) to avoid density

dependent terms with non-integer powers of the density.

As we have seen above, the semi-contact 3-body inter-

action can appropriately replace the term ρα in the func-

tional. Therefore, we have considered either the Skyrme

functional or the Gogny functional where the density de-

pendent term is replaced by the 3-body functional (8). To

demonstrate that the new functional can be competitively

compared to other EDFs, we have used the original EOS in

different spin/isospin channels given by standard Skyrme

or Gogny interactions that include the term ρα as refer-

ence EOSs. Then we have used these reference EOSs to

adjust parameters of the new functional to get compara-

ble results. In the present work, we used the SLy5 [14]

and D1M [17] respectively for the reference EOSs using

Skyrme or Gogny interactions. The new functionals are

called SLy53b and D1M3b respectively. The results given

by the parameters fits are shown in Figs. 4. It is worth

mentioning that all parameters of the functional have to

be adjusted simultaneously to get a proper reproduction of

the reference EOSs in all channels.

The new functionals SLy53b and D1M3b, where the

density dependent term is replaced by the semi-contact 3-

body interaction, provide with a very good reproduction of

the saturation properties of the reference functionals, SLy5
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and D1M, for all considered cases. In particular, the com-

pression modulus that was one of the motivations for the

introduction of the ρα term in the Skyrme and Gogny in-

teractions has a reasonable value (see Table 1) close to the

empirical ones.

Table 1. Values of the saturation density ρsat, binding energy

E/A, compression modulus K∞ and isoscalar effective mass

m∗/m for the functionals considered in this work.

SLy5 SLy53b D1M D1M3b

ρsat [fm
−3] 0.160 0.161 0.165 0.165

B/A [MeV] -15.98 -15.42 -16.02 -15.82

K∞ [MeV] 229.92 236.59 224.98 228.58

m∗/m 0.697 0.691 0.746 0.744

It is finally worth to mention that not only the energy

is well reproduced but also the density dependence of the

effective mass, shown in the panels (a) of Fig. 4.

5 Conclusion
In recent years, important efforts have been made to

apply the EDF approach including Beyond Mean-Field

effects. It turned out that some functionals that were very

successful at the mean-field levels need to be improved to

lead to safe calculations in the BMF sector. In particular

a density dependent term ρα induces serious problems

in configuration mixing theories. Here we show that

this term can be accurately replaced by a simplified

3-body interaction that serves to obtain the energy density

functional. First applications to infinite nuclear matter

shows that it can properly describe saturation properties

like binding energy, incompressibility and/or effective

mass. The use of finite range interaction, especially

3-body finite range interactions, is more demanding that

zero-range interaction. Work is in progress to apply the

new functional to finite systems including pairing effects.
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