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Temporal dynamics of Puumala 
hantavirus infection in cyclic 
populations of bank voles
Liina Voutilainen1,2, Eva R. Kallio3, Jukka Niemimaa1, Olli Vapalahti2,4 & Heikki Henttonen1

Understanding the dynamics of zoonotic pathogens in their reservoir host populations is a prerequisite 
for predicting and preventing human disease epidemics. The human infection risk of Puumala 
hantavirus (PUUV) is highest in northern Europe, where populations of the rodent host (bank vole, 
Myodes glareolus) undergo cyclic fluctuations. We conducted a 7-year capture-mark-recapture study 
to monitor seasonal and multiannual patterns of the PUUV infection rate in bank vole populations 
exhibiting a 3-year density cycle. Infected bank voles were most abundant in mid-winter months during 
years of increasing or peak host density. Prevalence of PUUV infection in bank voles exhibited a regular, 
seasonal pattern reflecting the annual population turnover and accumulation of infections within each 
year cohort. In autumn, the PUUV transmission rate tracked increasing host abundance, suggesting 
a density-dependent transmission. However, prevalence of PUUV infection was similar during the 
increase and peak years of the density cycle despite a twofold difference in host density. This may result 
from the high proportion of individuals carrying maternal antibodies constraining transmission during 
the cycle peak years. Our exceptionally intensive and long-term dataset provides a solid basis on which 
to develop models to predict the dynamic public health threat posed by PUUV in northern Europe.

Understanding the dynamics of zoonotic pathogens in their reservoir host populations is an important step 
towards predicting the risk of zoonotic diseases to humans, such as infections caused by hantaviruses that account 
for ca. 50 000 cases worldwide each year1,2. Hantaviruses (family Bunyaviridae) are carried by rodents, sorico-
morphs, and bats3. Some of them cause haemorrhagic fever with renal syndrome (HFRS; viruses harboured 
by Old World rats and mice, as well as arvicolines) or hantavirus cardio pulmonary syndrome (HCPS; viruses 
harboured by New World rats and mice) in humans. In terms of human health, the most important European 
avirus is Puumala hantavirus (PUUV) which causes nephropathia epidemica (NE), a mild form of HFRS4,5. The 
principal host of PUUV is the bank vole (Myodes glareolus), which is distributed over most of Europe6 and is the 
dominant rodent species in boreal forests.

In general, the incidence of human hantavirus infections tracks the abundance of the local rodent host pop-
ulation7–12. In temperate Europe, bank vole populations show seasonal fluctuations and occasional, irregular 
eruptions caused by masting, i.e., a heavy seed crop of oak and beech12–14. Masting has been linked to human 
NE epidemics, likely brought about by growth of the local vole population12,15,16. In boreal forests of northern 
Europe, deciduous trees do not undergo masting events and vole population abundance cycles of 3 to 5 years are 
thought to be driven by specialist predators17–19. Across Europe, the incidence of NE is highest in Finland, north-
ern Sweden and northern Russia5,20. Although bank vole population dynamics have proven useful for predicting 
NE epidemics in both temperate and boreal biomes9–12,21, detailed analyses of long-term PUUV transmission in 
reservoir populations are lacking. Furthermore, the relationship between rodent abundance and human infection 
rate is somewhat obscure; for example, a higher incidence of human NE was observed during increasing rather 
than peak phases in two vole cycles in central Finland where PUUV is endemic9.

Our objective was to fully describe the pattern of PUUV transmission in cyclic populations of boreal bank 
voles. More specifically, we aimed to characterize the seasonal and multiannual fluctuations in 1) the abundance 
of PUUV-infected bank voles, which is presumably the main driver of NE epidemics in humans, 2) the prevalence 
of PUUV infection, and 3) the rate of PUUV transmission (as indicated by the acquisition rate of PUUV-specific 
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antibodies), which we expected to shed more light on within-host transmission of PUUV. In addition, we studied 
whether the accumulation or rate of PUUV infections differed between annual cohorts born in different cycle 
phases. For these purposes, we monitored PUUV infections in bank voles through nearly three vole cycles using a 
capture-mark-recapture method. For the first time, PUUV infection dynamics were also studied in detail during 
the winter when the incidence of human NE is highest in the boreal zone.

Methods
Ethical statement.  All handling procedures of wild bank voles followed the Finnish Act on the Use 
of Animals for Experimental Purposes (62/2006) and took place with permission from the Finnish Animal 
Experiment Board (license numbers HY 45-02, HY 122-03, and HY 54-05). All efforts were made to minimize 
animal suffering. The species studied is not protected in Finland or included in the Red List of Finnish Species. 
The animal trapping took place with permission from the landowners.

Rodent trapping and sampling.  The study took place at Konnevesi in central Finland (62°34′  N, 26°24′  E),  
where PUUV is highly endemic in bank voles9,22–24. In this region, the ground is covered by snow for an average 
of 160 days from late November to late April25. PUUV transmission dynamics were studied in detail using a 
capture-mark-recapture (CMR) method on a large “core grid”. Additionally, trappings were performed on 14 
smaller “satellite grids” to extend the geographic scale of the dataset. The core grid included a young stand of birch 
and willow on drained soil surrounded by mature spruce-dominated coniferous forest with the understorey veg-
etation dominated by mosses and dwarf shrubs (e.g., Vaccinium). Satellite grids were situated in pine, spruce, and 
mixed forests of different ages within 5 km of the core grid and at least 750 m from it and each other. Trappings 
took place from April 2002 to May 2009.

The core grid consisted of 246 trapping stations at 15 m intervals, covering a total area of 5.8 ha. One Ugglan 
Special live-trap (Grahnab, Sweden) was placed at each trapping station under a sheet metal chimney that pro-
vided shelter for captured animals but enabled access to traps during the snowy period. In all, 60 trapping sessions 
were conducted on the core grid. During the snow-free period, the trapping interval was approximately one 
month and longer during winters, so that the intervals lasted from 17 to 166 days (median 37, interquartile range 
30–43 days). Traps were baited with oat seeds and potato and set in the evening. After setting, traps were checked 
ten times at ca. 8-hour intervals. During low temperatures (<  – 5 °C) in winter, traps were checked 3 times per 
day at 4-hour intervals and left open (non-trapping) overnight. Newly-trapped bank voles were subcutaneously 
tagged with a transponder (ID-100A Microtransponder, Trovan Ltd, U.K.). On each trapping session, voles were 
bled through the retro-orbital sinus and their body mass, age (based on pelage26), sex, and sexual maturity (perfo-
rate and/or lactating females and males with scrotal testes regarded as mature) were recorded. Animals recaptured 
during a single trapping session were immediately released.

A total of 21 trapping sessions on the 14 satellite grids were conducted in the beginning (May), middle (July), 
and after the end (October) of the bank vole breeding season. Nine Ugglan Special live traps baited with oat seeds 
and potato were set in a grid of 3*3 traps with 15 m intervals for 3 nights and checked once per day. Occupied traps 
were replaced with freshly-baited ones and animals were brought into the laboratory, bled through retro-orbital 
sinus, and sacrificed. In October 2004 and July and October 2006, live traps were replaced with standard snap 
traps baited with rye bread. The sex and breeding status of all animals snap-trapped in the satellite grids were 
determined before the heart was dissected and placed into 200 μ L phosphate-buffered saline and stored at –20 °C 
prior to the analysis of PUUV antibodies.

Determination of PUUV infection status for each animal in each trapping session (t).  All blood 
(diluted 1:10 in phosphate-buffered saline) and heart samples were tested for the presence of PUUV-specific anti-
bodies using an immunofluorescent antibody test (IFAT) described elsewhere27. Based on IFAT results, an infec-
tion status was determined for each animal for each trapping session (t). The classifications of infection status 
are shown in Table 1 (hereafter, uppercase letters indicate infection status deduced from the animal’s serological 
history, and lowercase letters indicate that the status was assigned according to other criteria).

As PUUV causes a chronic infection in the bank vole28, a PUUV-seropositive (P) result was interpreted as an 
infected (I) animal. However, young animals captured between May and October may be seropositive as a result 
of maternal antibodies (MatAb) received from an infected female which provide temporary immunity for up to 
80 days from birth29. Therefore, initially seropositive young animals that were later captured and determined to 
be seronegative were considered as being MatAb +  (M) when first captured. Determining the infection status of 
young animals that were caught in more than one trapping session and which always tested seropositive was more 
complex. For those seropositive animals captured in the core and satellite grids, the number genuinely infected 
(i) was estimated for each trapping session by summing the assigned individual probabilities (estimate based on 
body mass) of being genuinely infected. These probabilities were calculated from a statistical model (i.e., MatAb 
model, Supplementary Fig. S1; see below) based on 588 captures with a known serological history in the core area; 
i.e., 1) animals that had acquired or/and lost antibodies between the two trapping sessions, and 2) seropositive 
animals that were old enough (> 8 months) to exclude the possibility of a positive result due to MatAb. In the 
MatAb model, infection status was examined in relation to body mass using generalized additive models (GAM) 
with a binomial distribution (0 =  MatAb +, 1 =  genuinely infected) and logit link function (gam function of 
gamm4 library30 in the R software package31). Because the growth rate of young animals varies over the breeding 
season depending on if they mature immediately or delay reproduction, separate models were run for each month 
of capture (Supplementary Fig. S1). If an animal was assigned a probability >0.9 of being genuinely infected, it 
was considered as genuinely infected (probability of being infected =  1) in later trapping sessions. For example, 
if a summer-born bank vole was first captured as seropositive in August weighing 19.4 grams, seropositive in 
September weighing 18.4 grams, and seropositive in October weighing 16.7 grams, it was allocated respective 
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probabilities 0.924, 0.908, and 0.963 of being genuinely infected by the GAM models. However, as the initial 
probability (0.924) exceeded 0.9, the animal was assigned a probability of 1 of being infected, and infection status 
II (infected in t – 1 and t), for September and October.

Seronegative animals were considered as non-infected and therefore susceptible (S). In some rare cases, an 
adult individual was seronegative despite being previously considered genuinely infected. These antibody results 
were interpreted as false negatives. When an animal was not captured during a particular trapping session (t), 
but captured with an unchanged PUUV antibody status between the preceding (t – 1) and the following (t +  1) 
trapping sessions, that same antibody status was also determined for trapping session t.

Determination of PUUV infection status in the previous trapping session (t–1) for each ani-
mal captured in trapping session t.  To calculate the seroconversion rate (the number of individuals that 
acquired PUUV antibodies between trapping sessions t – 1 and t out of those susceptible at t – 1) in the core grid, 
the infection status in the previous trapping session (t – 1) for each animal captured in trapping session t needed 
to be determined. The possible preceding (t – 1) status were: I (Infected), S (Susceptible), M (MatAb+ ), and 0 
(suckling pups and thus not a part of the population). For animals that were captured and tested for antibodies 
at both t – 1 and t, determination was straightforward. However, for individuals that were first time captured at t, 
probabilities of belonging to the susceptible group at the previous trapping session were assigned (see details in 
Table 1).

Firstly, young animals likely to have been suckling pups and therefore not part of the susceptible population 
at t–1 were excluded from the analysis. The exclusion criterion was a body mass at t that was lower than the body 
mass of the lightest animal captured for the second time in the same month of any year.

Secondly, young individuals that were seronegative (?S) at their first capture (t) were divided into seronegative 
and therefore susceptible (sS) at t – 1, and seropositive due to maternal antibodies and therefore non-susceptible 
(mS) at t – 1: their assigned numbers were calculated using the proportion susceptible at t–1 (SS) among the 
seronegative individuals at t (SS +  MS), so that (sS) =  (?S)*[SS/(MS +  SS)], and (mS) =  (?S) – (sS). In nine early 
summer trapping sessions, none of the young summer-born animals (N =  38) had a known serological history 
and therefore this calculation method could not be applied. In these cases, the proportion of individuals carrying 
MatAb at t – 1 [mS/(sS +  mS)] was determined to be the same as the infection prevalence among over-wintered 

PUUV antibody/infection status Number

Seronegative; susceptible at t 1871

  SS: negative, captured as negative at t–1 1027

  MS: negative, captured as positive at t–1 78

  0S: assigned by weight as not in population at t–1 97

  ?S: negative, not captured but assigned by weight as in population at t–1 669

    sS: assigned as susceptible at t–1 555.0

    mS: assigned as immune due to maternal antibodies at t–1 114.0

Seropositive (P): infected (I/i) or protected by maternal antibodies (M/m) at t 1415

  II: positive, captured as positive at t–1 828

  SI: positive, captured as negative at t–1 223

  ?P: positive, not captured at t–1 364

    0M: positive year-born, later captured as negative; assigned not in population at t–1 47

    mM: positive year-born, later captured as negative; assigned as immune at t–1 31

    0m: positive year-born, not re-captured as negative; assigned not in population at t–1 52

    mm: positive year-born, not re-captured as negative; assigned as immune by weight 49.6

    ?i: positive adult, or a year-born assigned as infected by weight 184.4

                          ii: assigned as infected and seroconverted before t–1 118.2

                          si: assigned as infected and seroconverted between t–1 and t 59.1

                          xi: no data to assign PUUV status for t–1 7

Total PUUV infection status

  Susceptible (SS +  MS +  0 S +  ?S) 1871.0

  Infected (II +  SI +  ?i) 1235.4

  Maternal antibody positive (0M +  mM +  0m +  mm) 179.6

Total N of captures 3286

Table 1.   The known (uppercase) and assigned (lowercase) PUUV status of all bank vole captures on the 
core grid. P =  seropositive, S/s =  susceptible, M/m =  maternal antibody positive, I/i =  infected, 0 =  not in 
population, ? =  unknown, x =  undetermined. Capital letters indicate status deduced from serological history, 
small letters the assigned status. In PUUV infection/antibody status, the first character indicates PUUV status 
at t−1 (previous trapping session), and second character the PUUV status at t (current trapping session). 
Seroconversion rates for total population and yearly cohorts per trapping session were calculated from (SI +  si)/
(SS +  SI +  ss +  si), marked in bold.
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females in the preceding trapping session (t – 1); according to earlier results, PUUV infection has no effect on 
breeding success in early summer among over-wintered individuals29,32.

Thirdly, for individuals that were first captured as seropositive, and from which the MatAb and 0 individuals 
at t – 1 had been extracted, i.e., (?i) =  (?P– 0M– mM– 0m– mm), the number that seroconverted between t – 1 and 
t (si) was estimated using the proportion that seroconverted between t – 1 and t (SI) among the known posi-
tive individuals (SI +  II) so that (si) =  (?i)*[SI/(SI +  II)]. Especially during the breeding season, animals born 
in different years (i.e., old over-wintered and young summer-born voles) coexisted on the study grid. Given 
that different-age animals likely fall into the four infection classes (0, M, S, I) on divergent proportions, all the 
above-mentioned assignments were made per year cohort, i.e., animals born in the same summer.

Statistical analyses.  Data sets.  The population-level dynamics of (a) the abundance of infected ani-
mals, (b) the prevalence of infection, and (c) the per capita seroconversion rate were examined using two 
population-level datasets (datasets “Prevalence of PUUV per trapping session” and “Seroconversion rate per trap-
ping session”, available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.g8140 33). In addition 
to population-level dynamics, we examined the effects of age and cycle phase on the accumulation of infections 
and the seroconversion rate in yearly cohorts of bank voles using two cohort-level datasets (datasets “PUUV prev-
alence per year cohort” and “Seroconversion rate per year cohort”, available from the Dryad Digital Repository: 
http://dx.doi.org/10.5061/dryad.g8140 33).

The seasonal and multiannual variation in the abundance of infected individuals was studied using a dataset 
(“Prevalence of PUUV per trapping session”33) of trapping indices (individuals/100 trap nights) of PUUV-infected 
bank voles from all trapping sessions conducted on the core grid (60 trapping sessions, 246 traps) and the 14 sat-
ellite grids (21 trapping sessions, 126 traps). The same dataset was used to study the temporal variation in PUUV 
infection prevalence. For the satellite grids, infection prevalence was calculated as the number of individuals 
known to be (or assigned as) infected per the total number tested, and for the core grid as the minimum number 
of infected per the minimum population size (i.e., including animals that were not captured at t but at least once 
before and once after t).

The dataset used to study temporal variation in seroconversion rate (“Seroconversion rate per trap-
ping session”33) consisted of the per capita seroconversion rate calculated for each trapping session on 
the core grid by dividing the total number of seroconverted by the total days of exposure, i.e., (SI +  si)/
[(SS +  SI +  ss +  si)* interval], where (SI +  si) was the number of animals known to be or scored as sero-
converted between t – 1 and t, (SS +  SI +  ss +  si) was the number of animals known to be or scored as 
susceptible on t – 1, and “interval” was the number of days between t – 1 and t. Individuals with MatAb 
were excluded from the susceptible population. According to population abundances observed here 
and in an earlier study9, the trapping sessions were divided into two categorical variables: three phases 
of the density cycle (variable “cycle phase”: “increase”, “peak”, and “low” phases; onset of phase on  
1st June) and three vole density cycles (variable “cycle ID”: 2001− 2003, 2004− 2006, and 2007− 2009; onset of 
cycle on June 1st of the increase phase). June was selected as the onset of a biological year, as the first summer-born 
individuals usually entered the population in that month. Also a dichotomous variable “breeding season” was 
included in the data set, indicating whether the time interval between t – 1 and t predominantly belonged to the 
yearly breeding season or not.

In addition to studying infection prevalence and seroconversion rate in the whole population, we examined 
the effects of age and cycle phase on the accumulation of infections and the seroconversion rate in yearly cohorts 
of bank voles. Thus, infection prevalences (“PUUV prevalence per year cohort”33) and seroconversion rates 
(“Seroconversion rate per year cohort”33) were calculated for each birth year cohort and for each trapping session 
they were present on the core grid. Age was determined as the number of months after 1st May of the year of 
birth, i.e., the earliest month when individuals of the year-born cohort could be expected to enter the population 
(although they were not observed in our trapping data). Birth years were divided into “increase”, “peak”, and “low” 
phases as above.

Candidate models.  The population-level dynamics of (a) the abundance of infected animals, (b) the prevalence 
of infection, and (c) the per capita seroconversion rate (datasets “Prevalence of PUUV per trapping session” and 
“Seroconversion rate per trapping session”33) were examined within two time-frames: a biological year and a 
three-year population density cycle. In yearly cohorts of bank voles (datasets “PUUV prevalence per year cohort” 
and “Seroconversion rate per year cohort”33), the accumulation of PUUV infections and the temporal variation 
in seroconversion rate were studied in a time-frame of 16 months, the assumed maximum life span of most bank 
voles34. Generalized additive models (GAM, gamm4 package30 for R software31) were applied in all analyses that 
included continuous temporal variables (i.e. “cycle month”, “month”, and “cohort age”). GAMs are nonparametric 
regression models often used for characterizing associations where the shape of the relationship between the 
predictors and the response is not known a priori – for instance, in temporal variation35. Generalized additive 
mixed models (GAMMs, function “gamm4”), i.e. GAMs including random effects, were used for population-level 
analyses on the abundance of infected individuals and infection prevalence (dataset “Prevalence of PUUV per 
trapping session”33), since the dataset included observations from several sites (core and 14 satellites). Models 
without random effects (function “gam”) were used for other analyses. The abundance of infected individuals was 
analysed using a log link function with Poisson error distributions. The trapping effort (number of trap nights) 
was used as an offset variable. The prevalence of infection and seroconversion rate (proportional outcomes) were 
analysed using a logit link function with binomial error distributions, weighted by the total number of individu-
als and exposure time (N susceptible individuals*interval between t – 1 and t), respectively. Overdispersion was 
accounted for by including an observation-level random effect in mixed models, and a dispersion parameter in 
models without random effects.

http://dx.doi.org/10.5061/dryad.g8140
http://dx.doi.org/10.5061/dryad.g8140
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For the population-level dynamics (i.e., abundance of infected animals, infection prevalence and the per capita 
seroconversion rate in the total population), a set of candidate models was examined for each time-frame (see 
Table 2). The “within-cycle” candidate model set included a full model consisting of factorial variable “cycle 
ID” and separate smooth terms of months elapsed (i.e. “cycle month”) from the cycle onset (1st of June) for each 
“cycle ID”. The full model of the “within-year” model set included the factorial variable “cycle phase” and separate 
smooth terms of time elapsed from 1st June (“month”) for each “cycle phase” level (Table 2). All submodels nested 
within the full models were included in the candidate model sets.

Seasonal variation in seroconversion rate was further studied using the dichotomous variable “breeding sea-
son” in dataset “Seroconversion rate per trapping session”33 as a temporal predictor instead of a continuous time 
variable. The full model of the candidate model set (“Variation in relation to breeding season”, Table 2) was a gen-
eralized linear model with binomial error distributions and a logit link function, where the interaction between 
cycle phase and breeding season was set as an explanatory variable.

In yearly cohorts of bank voles, the accumulation of PUUV infections and the temporal variation in serocon-
version rate were studied with a candidate model set that included a full model consisting of the factorial variable 
“Birth year cycle phase” and separate smooth terms of cohort age (from 1st May) for each cycle phase, and all 
submodels nested within the full model (model set “Variation in relation to cohort age and birth year cycle phase”, 
Table 2).

All candidate model sets were ranked according to Akaike information criteria adjusted for sample size 
(AICc36, in MuMIn package37 for R software31). In model sets where dispersion parameters were used to account 
for overdispersion, quasi-AICc (QAICc) was used for model ranking38. In each candidate model set, the most 
parsimonious model within 2 AICc/QAICc units from the lowest AICc/QAICc score was considered the best 
supported by the data and subsequently used for statistical inference. For mixed model sets, an optimal random 
effects structure was chosen for each full model in a similar fashion prior to the selection of fixed effects, so that 
models with random variance attributable to a) trapping site b) trapping site for each factor level (“cycle ID” or 
“cycle phase”), and c) observation (to account for overdispersion), and combinations a +  b and a +  c were ranked 
according to AICc scores. In all analyses, P values below 0.05 were considered statistically significant.

Results
During the 7-year study, bank vole abundance exhibited a distinct three-year cycle in which the population 
increased, peaked and then crashed (Fig. 1a). During the increase and peak phases, the highest abundances were 

  Candidate models

Dependent variable

Abundance of 
infected

Infection 
prevalence

Seroconversion 
rate

Within-cycle dynamics

  cycle ID +  s(cycle month by cycle ID) 626.4 543.3 169.1

  cycle ID +  s(cycle month) 646.9 533.2 186.0

  s(cycle month) 762.9 530.1 184.3

  cycle ID 643.9 953.7 193.9

  intercept only 761.0 951.2 196.5

Within-year dynamics

  cycle phase +  s(month by cycle phase) 578.1 507.4 134.6

  cycle phase +  s(month) 600.1 490.5 134.1

  s(month) 610.3 497.2 136.5

  cycle phase 1374.8 549.0 132.1

  intercept only 1381.2 550.9 135.5

Variation in relation to breeding season (dichotomous)

  cycle phase * breeding season 130.4

  cycle phase +  breeding season 127.9

  breeding season 130.4

  cycle phase 130.8

  intercept only 134.1

Variation in relation to cohort age and birth year cycle phase

  cycle phase +  s(cohort age by cycle phase) 183.3 156.1

  cycle phase +  s(cohort age) 182.2 158.3

  s(cohort age) 205.3 160.9

  cycle phase 519.4 158.7

  intercept only 642.2 161.9

Table 2.   AICc (Akaike information criterion adjusted for sample size) scores of all candidate generalized 
additive models (GAMs). s(…) denote GAM smooth terms. The AICc scores of the best-supported models are 
written in bold.
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reached at the end of the breeding season (August-October) while abundance remained low during the same 
period in low phases.

A total of 1 108 bank voles were captured on the core grid, of which 615 (56%) were captured in at least two 
trapping sessions. At first capture, 337 individuals were PUUV seropositive, 766 were seronegative, and the anti-
body status could not be determined for five animals. The median number of captures per animal during separate 
trapping sessions was 2 (interquartile range 1− 4), and the maximum number of trapping sessions the same indi-
vidual was captured was 14. In total, 3 286 captures (i.e., individuals known to be alive at a given trapping session t 
but for which an infection status could not be determined) were obtained: 1 415 (43%) testing PUUV seropositive 
and 1 871 (57%) seronegative (Table 1). A total of 1 152 bank voles were caught on the satellite grids, of which 324 
(28%) were PUUV seropositive, 790 (69%) seronegative and 38 (3%) could not be tested.

Of the 766 initially-seronegative voles caught on the core grid, 499 were recaptured at least once during follow-
ing trapping sessions, yielding a total of 1 240 recaptures where an animal’s infection status was SS or SI (Table 1). 
Among these recaptures of susceptible animals, 223 seroconversions (18%) were recorded, of which 35% took 
place between the first and second capture, 31% between the second and third capture, and the remaining 34% 
between the third and fourteenth capture. Of the 337 initially-seropositive animals, 236 were first captured in 
their birth year between May and October and potentially, due to their young age, carried MatAb. Of these 236, 
126 were recaptured at least once and 78 (62%) became seronegative and were thus considered to have been 
carrying MatAb. For the 200 captures of the remaining 158 initially-seropositive first-year animals, the assigned 
probabilities (calculated for each capture from the MatAb model based on body mass, see Supplementary Fig. S1) 
of being infected summed to 98.4, meaning that a total of 200 −  98.4 =  101.6 captures (51%, 0m +  mm in Table 1) 
were considered MatAb positive. MatAb+ animals were more common in peak phase cohorts than those born 
in other cycle phases and accounted for approximately 25–35% of seropositive animals in July of peak phases 
(Fig. 1b). The number of susceptible, infected, and MatAb+  animals on the core grid were similar to pooled num-
bers of animals caught on the satellite grids (Fig. 1b).

Temporal patterns in PUUV infection.  Abundance of infected voles.  On the timescale of a three-year 
density cycle, the dynamics in the abundance of PUUV-infected bank voles on the core and satellite grids were 
best explained by a GAMM that included the factorial variable “cycle ID” and separate smooth terms of time 
elapsed from the cycle onset for each cycle (“cycle month”, Tables 2 and 3). According to the model, infection pat-
terns during density cycles 2004–2006 and 2007–2009 were similar, when the abundance of infected voles reached 
high peaks during both increase- and peak-phase winters (Fig. 2a, Table 3). On the core grid during increase 
phases, the peak abundance of infected individuals was 8.3 (95% confidence interval [CI]: 6.1–10.6) and 9.2 (95% 
CI: 5.0– 13.5) infected individuals/100 trap nights during the 2004–2006 and 2007–2009 cycles, respectively, and 
occurred in February. In peak phases, 7.8 (95% CI: 6.2–9.5) and 10.0 (95% CI: 5.5–14.5) infected individuals/100 
trap nights were attained in late October and early December in 2004–2006 and 2007–2009 cycles, respectively. 
During the increase phases of these cycles, the peak abundance of infected voles followed the peak in total abun-
dance with a lag of approximately 3.5 to 4.5 months, whereas during peak phases, the lag was only 2 months 

Figure 1.  The number of bank voles on the core (lines) and satellite grids (crosses), (a) in total and (b) 
according to PUUV infection status. Values for the 14 satellite grids are pooled. Shaded areas indicate phases 
(Jun 1st to May 31st) of increasing (light grey), peak (dark grey) and low (white) vole density. In a, vertical 
lines indicate trapping sessions on the core grid. In b, colours indicate infection status: susceptible for PUUV 
infection (blue), infected with PUUV (red), and MatAb+  (green).
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(Figs 1a and 2a). The 2001–2003 cycle (data from April 2002 to June 2003) differed from the other two cycles in 
that the abundance of infected voles remained much lower and peaked during the summer of the peak phase with 
3.1 (95% CI: 1.6–4.7) individuals/100 trap nights, then declined towards winter (Fig. 2a).

Within a time frame of one year, the abundance of infected animals was best explained by a model that 
included the factorial variable “cycle phase” and separate smooth terms for temporal variation (“month”) in each 
cycle phase (Tables 2 and 3). During increase phases, a seasonal pattern could be seen with the abundance of 
infected animals increasing from 0.3 (95% CI: 0.1–0.8) in June to 4.3 (95% CI: 2.1–6.5) in early February, and 
thereafter declining to 3.1 (95% CI: 1.7–4.5) individuals/100 trap nights by the end of May (Fig. 2b). During peak 
phases, the model suggested a rather stable level of infection from June to late November (4.6–5.0 infected indi-
viduals/100 trap nights, 95% CI: 2.1–7.2) thereafter declining to 1.1 individuals (95% CI: 0.4–1.7) by the end of 

Dependent variable/source of variation Within-cycle dynamics Within-year dynamics

Abundance of Infected

  Parametric coefficients Estimate (SE) z P value Estimate (SE) z P value

    intercept − 4.15 (0.24) − 17.1 < 0.001 − 3.85 (0.15) − 24.9 < 0.001

    cycle ID 2004–2006 − 0.02 (0.25) − 0.1 0.95

2007–2009 − 0.06 (0.71) − 0.1 0.938

    cycle phase peak 0.40 (0.17) 2.4 0.016

low − 2.67 (0.36) − 7.5 < 0.001

  Smooth terms Edf (rdf) χ2 P value Edf (rdf) χ2 P value

    cycle month by cycle ID 2001–2003 1 (1) 55 < 0.001

2004–2006 7.08 (7.08) 190 < 0.001

2007–2009 5.70 (5.70) 124 < 0.001

    month by cycle phase increase 2.08 (2.08) 13.6 0.001

peak 2.08 (2.08) 22.7 < 0.001

low 1.95 (1.95) 4.4 0.105

  Random effects σ2 sd σ2 sd

    site within cycle 2001–2003 0.64 0.80

within cycle 2004–2006 0.31 0.56

within cycle 2007–2009 1.34 1.16

    observation 0.70 0.84

    site 0.09 0.31

Infection prevalence

  Parametric coefficients Estimate (SE) z P value Estimate (SE) z P value

    intercept − 1.11 (0.15) − 7.3 < 0.001 − 0.85 (0.22) − 3.8 < 0.001

    cycle phase peak 0.19 (0.30) 0.6 0.517

low − 0.77 (0.36) − 2.1 0.032

  Smooth terms Edf (rdf) χ2 P value

    cycle month/month 6.82 (6.82) 41.7 < 0.001 3.07 (3.07) 31.1 < 0.001

  Random effects σ2 sd σ2 sd

    site within cycle 2001–2003 0.75 0.87

within cycle 2004–2006 0.98 0.99

within cycle 2007–2009 1.42 1.19

    observation 0.43 0.65

Seroconversion rate

  Parametric coefficients Estimate (SE) z P value Estimate (SE) z P value

    intercept − 6.06 (1.28) − 4.7 < 0.001 − 5.31 (0.14) − 37.4 < 0.001

    cycle ID 2004–2006 0.20 (1.30) 0.2 0.88

2007–2009 1.27 (1.85) 0.7 0.497

    cycle phase peak − 0.27 (0.19) − 1.4 0.161

low − 2.19 (1.41) − 1.5 0.128

  Smooth terms Edf (rdf) χ2 P value

    cycle month by cycle ID 2001–2003 1.43 (1.76) 3.8 0.036

2004–2006 2.12 (2.71) 2 0.129

2007–2009 4.85 (5.53) 3.5 0.007

Table 3.   Parameter estimates of the best-supported models analysing the within-cycle and within-year 
dynamics in the abundance of PUUV infected bank voles, infection prevalence and seroconversion rate. 
Edf =  Estimated degrees of freedom; rdf =  residual degrees of freedom; σ2 = the variance attributable to random 
effect. sd = standard deviation of σ2.
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May. During low phases, the predicted abundance of infected animals was nearly constant and remained below 
one individual/100 trap nights (Fig. 2b).

Infection prevalence.  The prevalence of PUUV infection on the core and satellite grids showed a clear seasonal 
fluctuation both within cycles (Fig. 2c) and within years (Fig. 2d). Models with distinct temporal patterns for 
separate cycles or separate cycle phases were not supported (Table 2). The best supported within-cycle model 
only included the temporal component, i.e., a smooth term for the time elapsed from cycle onset, and the best 
within-year model included the seasonal component, i.e., a smooth term of time elapsed since the onset of the 
biological year and separate intercepts for cycle phases (Table 3). According to the within-cycle model, the PUUV 
prevalence peaked in mid-March of the increase phase (prevalence 69.3%, 95% CI: 49.9–88.7%), and a second, 
but lower peak followed in mid-March of the peak phase (prevalence 52.7%, 95% CI: 30.7–74.7%). Within a cycle, 
the lowest infection prevalences occurred in early September during both increasing and peak phases (PUUV 

Figure 2.  Variation in the (a,b) abundance of PUUV-infected bank voles/100 trap nights, (c,d) PUUV infection 
prevalence, and (e,f) seroconversion rate within the time frame of (a,c,e) a vole density cycle and (b,d,f) a year. 
Lines represent predicted values for the core grid from the best-supported models ((a) cycle ID +  s[cycle month 
by cycle ID]; (b) cycle phase +  s[month by cycle phase]; (c) s[cycle month]; (d) cycle phase +  s[month]; (e) cycle 
ID +  s[cycle month by cycle ID]; (f) cycle phase; s[…] denote GAM smooth terms). Shaded areas indicate the 
95% confidence intervals of parameter estimates. “C” and “S” in a− e denote observed data in core and pooled 
satellite grids, respectively. Numbers 1− 8 in f denote biological years 2001− 2008. The character sizes indicate 
the number of animals (c,d) and total days of exposure (e,f). Green, red, and blue colours indicate different 
cycles in (a,c,e) and different cycle phases in (b,d,f).



www.nature.com/scientificreports/

9Scientific Reports | 6:21323 | DOI: 10.1038/srep21323

prevalences 12.4% [95% CI: 4.1–20.7%] and 17.8% [95% CI: 9.1–26.5%], respectively), and in early December 
during low phase (prevalence 4.2%, 95% CI: 0–10.2%; Fig. 2c). The within-year model predicted a yearly prev-
alence peak in mid-March, when 59% (95% CI: 39–83%), 64% (95% CI: 44–86%), and 40% (95% CI: 20–65%) 
of bank voles were infected during increase, peak and low phases of the cycle, respectively (Fig. 2d). The yearly 
bottom prevalence was predicted to occur in mid-September, when 15% (95% CI: 6–23%), 17% (95% CI: 8–26%), 
and 7% (95% CI: 2–13%) of animals were infected during increase, peak and low phases, respectively. In the 
within-year model, there was no significant difference between increase and peak phase prevalences, but during 
low phases the prevalence was significantly lower than during increase phases (Table 3).

Per capita seroconversion rate.  From the within-cycle model set examining the per capita seroconversion rate, 
the best-supported model included separate smooth terms of time for different cycles (Tables 2 and 3), and the 
patterns of seroconversion rate showed no similarity between cycles (Fig. 2e). According to model predictions 
for cycle 2007− 2009, the seroconversion rate increased from July to January in increase phase 2007 and from 
August to October in peak phase 2008. In the within-year model set, the best-supported model included sepa-
rate intercepts for cycle phases and no within-year temporal variation, although there was no significant differ-
ence between cycle phases (Tables 2 and 3, Fig. 2f). Although within-year models with temporal components 
were not well supported (Table 2), an increasing trend in seroconversion rate was observed from August to 
October in increase phases 2004 and 2007, and peak phases 2005 and 2008 (Fig. 2f). This increase was captured in 
within-cycle model predictions for years 2007 and 2008 (cycle 2007− 2009 in Fig. 2e). In the model set where the 
continuous time variables were replaced with the dichotomous variable “breeding season”, the model “breeding 
season +  cycle phase” was best supported (Table 2), so that the seroconversion rate was significantly higher out-
side than during the breeding season (coefficient for non-breeding season =  0.39, SE =  0.18, z =  2.1, P =  0.036).

PUUV infection prevalence and seroconversion rate in relation to cohort age and cycle phase at 
birth.  Of the model set examining infection prevalence in relation to age and cycle phase of the birth year, the 
best-supported model included a common smooth term of cohort age but separate intercepts for each birth year 
cycle phase (Tables 2 and 4). The gradual increase of infection prevalence with age was similar in increase- and 
peak-phase cohorts (Fig. 3a): in both cohorts, nearly all surviving individuals were PUUV infected by the end of 
their second summer (increase phases: 91.4%, 95% CI: 83.4–99.4%; peak phases: 89.1%, 95% CI: 78.8–99.4%). 
In cohorts born during low phases, infection prevalence was significantly lower (Table 4), reaching only 27.4% 
(95% CI: 0.0–65.5%) by the end of their second summer. Overall, the infection prevalence increased steadily with 
cohort age, although a period of steeper increase was observed between September and January. The total number 
of animals reached its peak between August and October in every year cohort (Fig. 3a, dashed lines). However, 
the peak abundances of increase-phase cohorts (2004 and 2007: Fig. 3a dashed red lines) were 40–50% lower than 
those of peak-phase cohorts (2005 and 2008: Fig. 3a dashed blue lines).

Seroconversion rate between two trapping sessions in a year cohort was best explained by a model that 
included separate smooth terms of age for cohorts born in different cycle phases (Tables 2 and 4). The tempo-
ral patterns of predicted seroconversion rates were dissimilar (Fig. 3b): seroconversion rate showed a steady 
increase from September to December in increase-phase cohorts, resulting in a steep increase in infection prev-
alence (Fig. 3a). From December to March, the rate declined and increased thereafter coinciding with the onset 
of the breeding season and continuing into summer, although with wide confidence intervals. In peak-phase 
cohorts, no temporal trend was seen in seroconversion rate except for a slight, steady decline (Fig. 3b). However, 

Dependent variable/source of variation Parameter estimates

Infection prevalence

  Parametric coefficients Estimate (SE) z P value

    intercept − 0.16 (0.13) − 1.2 0.217

    birth year cycle phase peak − 0.27 (0.15) − 1.8 0.08

low − 3.41 (0.93) − 3.7 <  0.001

  Smooth terms Edf (rdf) χ2 P value

    cohort age 3.89 (4.83) 48.5 < 0.001

Seroconversion rate

  Parametric coefficients Estimate (SE) z P value

    intercept − 5.53 (0.25) − 22.2 <  0.001

    birth year cycle phase peak − 0.11 (0.30) − 0.4 0.716

low − 2.12 (1.70) − 1.2 0.219

  Smooth terms Edf (rdf) χ2 P value

    cohort age by birth year cycle phase increase 3.62 (4.49) 1.8 0.125

peak 1.00 (1.00) 0.1 0.714

low 1.00 (1.00) 0.9 0.358

Table 4.   Parameter estimates of the best-supported models analysing the PUUV infection prevalence and 
seroconversion rate during the lifespan of a yearly bank vole cohort. Edf =  Estimated degrees of freedom; 
rdf =  Residual degrees of freedom.
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seroconversion rates in peak-phase cohorts 2005 and 2008 exhibited similar patterns from July to January 
(Fig. 3b, blue numbers), and in four year cohorts (2004, 2005, 2007, and 2008) the seroconversion rate increased 
from August to October (Fig. 3b). Similar patterns were seen when yearly cohorts were combined for each trap-
ping session (Fig. 2f). Low-phase cohorts showed a rather steady seroconversion rate in relation to cohort age, 
mainly remaining lower than those of other cycle-phase cohorts (Fig. 3b).

Discussion
The abundance of PUUV-infected bank voles followed a similar temporal pattern from one host density cycle to 
another; over two consecutive 3-year cycles, infected animals were most abundant during winters of the increase 
and peak phases. Infection prevalence showed a seasonal pattern reflecting the age structure of the bank vole 
population; prevalence increased with age, peaking in spring when the population consists of old overwintered 
animals. The PUUV seroconversion rate showed irregular temporal patterns between density cycles, although an 
increasing trend was observed during the autumn in several years, and the rate was significantly higher outside 
the breeding season. The dynamics of PUUV and the bank vole population were very similar between the core 
and satellite grids, indicating that events documented in detail on the core grid represent patterns at a larger 
landscape level.

Population-level temporal dynamics of PUUV infection.  Our data from three density cycles demon-
strated that the abundance of infected individuals followed strikingly similar temporal patterns through two 
pronounced cycles taking place 2004–2006 and 2007–2009. However, long-term datasets tracking vole popula-
tion fluctuations in Finland indicate alternating periods of stronger and weaker cyclicity39, and a longer but less 
intensive time series (1995 to 2008) described how the bank vole population at Konnevesi showed a primarily 
seasonal pattern 1995–1998 but became increasingly cyclic 2001− 20099,24. In periods of less-prominent cyclic-
ity, the abundance of infected voles may follow different seasonal patterns, as evidenced by the moderate peak 
phase 2002, when the maximum number of infected animals remained lower than in other peak phases and 
had already been reached in July. In general, the abundance peaks of infected voles followed the yearly peaks of 
total bank vole abundance, which likely results from a continuing spread of PUUV in the overwintering popula-
tion. Interestingly, the abundance of infected voles during peak phases 2005 and 2008 did not exceed that of the 
preceding years (2004, 2007) in which the vole population was smaller.

Infection prevalence of bank voles in the core and pooled satellite grids showed a strongly seasonal pat-
tern, peaking in spring, similar to what has been documented earlier for PUUV in boreal9,24,40,41 and temperate 
biomes42, as well as for other hantaviruses43. Interestingly, our intensive monitoring study showed that prevalence 
peaked in March, three months before the entry of the next cohort in June, implying that PUUV-infected voles 
faced a higher mortality during this period. This could be explained by the physiological stress associated with 
the onset of breeding or scarcity of resources prior to the onset of growth season in late April. The finding is in line 

Figure 3.  The (a) prevalence of PUUV infection and (a) seroconversion rate during the lifespan of a yearly 
bank vole cohort in relation to density cycle phase at birth. Solid lines represent predicted values from the best-
supported models ((a) cycle phase +  s[cohort age]; (b) cycle phase +  s[cohort age by cycle phase]; s[…] denote 
GAM smooth terms). Shaded areas indicate the 95% confidence intervals of parameter estimates. Dashed lines 
in a indicate the total number of individuals in yearly cohorts, and colours denote the cycle phase at the summer 
of birth. Numbers 1− 8 denote yearly cohorts 2001 to 2008, their size indicating the total (a) and the number of 
susceptible (b) animals.
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with our earlier study where PUUV infection decreased the survival of bank voles between October and May22. 
Our current results suggest that survival costs of PUUV are related to breeding costs and/or food shortage in 
early spring. However, as our study design did not allow us to distinguish between death and dispersal, it is also 
possible that PUUV-infected voles performed poorly in territorial contests and were more likely to disperse to 
suboptimal habitats as a consequence.

Although bank voles were scarce during the low phases, the same yearly pattern of infection prevalence was 
supported by the within-year model. The within-cycle model, however, predicted lower prevalences for the low 
phases and no peak in early spring, which may result from scarce data: during low phases, trapping was not 
conducted in winter and only a few animals were captured in spring. Thus, high winter and spring prevalences 
may have been missed and we cannot conclude whether a particular host density — as suggested for PUUV in 
temperate bank vole populations44 and Sin Nombre virus in deer mouse populations of south-western United 
States45 — is required for PUUV to persist in a boreal bank vole population. Although not significant, infection 
prevalence was somewhat lower in the peak phases compared to the increase phases. This suggests that factors 
other than host density (discussed in the next paragraph) play a significant role in regulating the prevalence 
of PUUV infection in bank voles, which predominantly fluctuates seasonally according to the predictions of a 
within-year model.

No consistent temporal patterns of seroconversion rate were supported by the statistical analyses, which may 
be due to the noise associated with these data. When susceptible animals are scarce, the observed seroconver-
sion rate is vulnerable to sampling error and the estimate may deviate considerably from the actual. In addition, 
variation in trapping intervals may have obscured any subtle patterns from being detected. For example, during 
the increase phase 2004, no trappings were conducted between October 2004 and April 2005 and the observed 
seroconversion rate between these trapping sessions (data point in January 2005) clearly deviates from the pat-
tern observed in the winter of increase phase 2007 when trappings were more frequent (Fig. 2e&f and Fig 3b). 
However, when susceptible animals were abundant and trappings were performed more regularly (e.g., during 
the autumn of increase and peak phases 2004, 2005, 2007 and 2008), a clear increase in seroconversion rate from 
August to October could be seen. Furthermore, the overall seroconversion rate was higher outside than during 
the breeding season. An increase in seroconversion rate in the autumn and its high level during the winter sug-
gests that susceptible animals become less resistant to infection or experience more frequent contact with infec-
tive individuals. The increasing seroconversion rate tracked the increasing population density and coincided with 
the increasing abundance of PUUV-infected bank voles, supporting the earlier view46 of hantavirus transmission 
being density dependent. However, harsh late autumn and winter conditions could impair physiological condi-
tion and immune investment47, thereby increasing the susceptibility of bank voles to infection as well as increase 
the viral shedding of infected animals48. Furthermore, PUUV particles remain infectious for longer in cold and 
humid conditions49 under the snowpack, and bank voles are not territorial outside the breeding season50. All 
these factors may not only increase the average abundance of infectious viral particles in the environment and 
the susceptibility of hosts, but could also increase exposure by bringing susceptible and infectious animals into 
close proximity, thus increasing the rate of PUUV transmission. It remains for future analyses to assess the extent 
to which the observed seasonal and multiannual patterns are attributable to host population dynamics – such 
as the density of susceptible and/or infected individuals – and whether the seasonal variation in environmental 
conditions, such as humidity, snow cover and temperature could influence the observed seasonal and multiannual 
dynamics of seroconversion rate. In contrast to studies in which aggression has been identified as a key driver 
of transmission for other hantaviruses in their host populations51–53, we found a higher PUUV transmission 
rate outside the breeding season when bank voles do not show aggressive behaviour. This finding suggests that 
aggression is not an important factor affecting PUUV transmission in boreal bank voles, and that the key routes 
of transmission may vary between hantavirus host systems.

PUUV infection prevalence and seroconversion rate in year cohorts.  In most hantavirus-rodent 
host systems studied, older or heavier individuals have been associated with a higher likelihood of being  
infected24,41,42,54,55. This pattern has been assumed to result from accumulated time of exposure, and to underlie 
the seasonal fluctuation of infection prevalence observed in seasonally-breeding host species43,56. Our current 
data corroborate this process in detail and demonstrate a steady increase in PUUV infection prevalence in yearly 
cohorts of bank voles, reaching virtually 100% during the cohort lifespan in high density phases. This finding 
emphasises the importance of host population demography as a determinant of infection prevalence, especially 
during the breeding season when individuals born in different years are present.

Compared to cohorts born in increase and peak phases, significantly fewer bank voles acquired PUUV infec-
tion in low-phase cohorts. However, no more than four animals born in low-phase summers were captured 
after the first autumn in any of the trapping sessions, and therefore the absence of infected voles may have been 
coincidental. Although the phase of steepest increase in total abundance occurred in peak-phase cohorts two 
months earlier than in increase-phase cohorts, the infection prevalence did not respond to the earlier increase 
but increased at the same pace in both cohorts. Likewise, during the autumn the per capita seroconversion rate in 
increase-phase cohorts 2004 and 2007 showed a similar pattern to that observed in peak-phase cohorts 2005 and 
2008. These results imply that host abundance alone does not regulate the rate of PUUV infection in bank voles. 
However, a larger portion of peak-phase cohorts was protected by MatAb than in increase-phase cohorts, which 
agrees with an earlier study of voles in the same area24. The presence of MatAb+  individuals may have compen-
sated for the effect of higher host density, so that PUUV infection and seroconversion rate remained unchanged 
between increase- and peak-phase cohorts despite the twofold difference in maximum host abundance. It must 
be noted that apart from delaying PUUV infection in MatAb+  individuals29,32 their high portion may also reduce 
the infection rate in susceptible individuals through herd immunity57. However, further analyses are required to 
discern whether such an effect accounts for the patterns observed here.
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Implications for human infections.  Over the vole density cycles, the high abundances of PUUV-infected 
bank voles in the winters of increase and peak phases coincided with high rates of registered human NE cases in 
the region58. Interestingly, the winter following the abundance increase in autumn 2004 yielded more NE cases 
in the region than the winter following the abundance peak in autumn 20059,58. Our results demonstrate that 
despite the lower overall abundance in autumn 2004, the number of infected bank voles was actually higher than 
in autumn 2005. A contrary situation was observed during the 2007− 2009 cycle, where both the abundance of 
infected bank voles and incidence of human NE infections were higher during the peak- than the increase-phase 
winter.

Like in our study region, also in a study conducted in the temperate zone, NE incidence mirrored the abun-
dance peaks of PUUV seropositive bank voles11. However, an essential difference between the boreal and tem-
perate systems is that, in the temperate zone, the abundance of infected voles and human infections both peak 
during the summer11,59,60. Although these findings demonstrate that the abundance of PUUV-infected — and 
presumably infectious — bank voles is the driving force of human NE epidemics, also other factors, such as sea-
sonal changes in human or bank vole behaviour, may play a role in NE epidemiology. For instance, the summer 
peak in NE incidence in temperate Europe coincides not only with high abundance of PUUV-infected bank voles, 
but also with higher level of human outdoor activities. In most of Finland, however, summers are times of low NE 
incidence9,58, although we demonstrated here that infected bank voles can be highly abundant during the peak 
phase summers. This contrast could be explained by seasonal change in host behavior: bank voles are known to 
be attracted to human dwellings in the autumn and winter (especially during unfavourable snow conditions10,61), 
and therefore fewer bank vole-human encounters are expected during the summer. Taken together, the epidemi-
ology of boreal NE appears to be mostly regulated by temporal changes in infectious host abundance and seasonal 
changes in host behaviour, rather than human activities.

In the study region, the lowest incidence of NE were recorded between February and June9,58, which coin-
cides with the peak infection prevalence but the lowest seasonal abundance of bank voles. Therefore, infection 
prevalence in the rodent host is not a good measure of human PUUV infection risk, in contrast to what has been 
suggested for human HCPS incidence in relation to Sin Nombre hantavirus seroprevalence in deer mice62,63.

Conclusions
For the first time, patterns of PUUV infection dynamics in cyclic bank voles were studied during the winter when 
most human NE cases are reported in the boreal zone. We demonstrated that PUUV-infected bank voles are most 
abundant during the winter of years when the vole population is increasing or peaking. The abundance of infected 
individuals can be even higher during increasing phases, which may affect the incidence of human NE. PUUV 
transmission dynamics follow the population dynamics of the host in strikingly regular patterns. We found the 
seroconversion rate to track the increasing population density in the autumn, supporting a density-dependent 
transmission pathway. However, in peak density phases, infection prevalence did not respond to the faster sum-
mer growth in host abundance but showed a similar temporal pattern to that observed in increasing phases. 
The higher prevalence of MatAb+  individuals during peak phases may have limited the transmission of PUUV 
in the population, thus counteracting effects of the increased encounter rate experienced when vole density is 
high. The overall seroconversion rate was higher outside the breeding season when bank voles are docile and 
non-territorial, which suggests that aggressive encounters play a minor role in PUUV transmission.

Based on our results, we conclude that PUUV infection dynamics in bank voles are greatly affected by season-
ality and cyclicity of vole populations. Therefore, comparisons between cross-sectional studies on hantaviruses 
in their host species are of little use unless these dynamic factors are controlled for. Only populations sampled in 
the same season and population growth phase are comparable. Concerning ecological studies of rodent-borne 
disease agents in general, we urge that trapping effort be extended over several seasons and population densities. 
We also conclude that PUUV prevalence in bank voles is not a good predictor of NE risk for humans, since its 
peak in spring co-occurred with the lowest incidence of human cases. Thus far, our study provides the most 
detailed characterization of PUUV transmission dynamics in bank vole populations. The results provide a solid 
framework for developing models to predict periods of high human NE risk in boreal Europe, where the disease 
poses a significant threat to public health.

References
1.	 Mills, J. N. & Childs, J. E. Ecologic studies of rodent reservoirs: their relevance for human health. Emerg. Infect. Dis. 4, 529–537 

(1998).
2.	 Jonsson, C. B., Figueiredo, L. T. & Vapalahti, O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin. 

Microbiol. Rev. 23, 412–441 (2010).
3.	 Guo, W. et al. Phylogeny and origins of hantaviruses harbored by bats, insectivores, and rodents. PLoS Pathog. 9, 3159–3159 (2013).
4.	 Brummer-Korvenkontio, M. et al. Nephropathia epidemica: detection of antigen in bank voles and serologic diagnosis of human 

infection. J. Infect. Dis. 141, 131–134 (1980).
5.	 Vapalahti, O. et al. Hantavirus infections in Europe. Lancet Infect. Dis. 3, 653–661 (2003).
6.	 Amori, G. et al. Myodes glareolus. In: IUCN Red List of Threatened Species. Version 2012.2. Available at: www.iucnredlist.org. 

(Accessed: 14th April 2013)
7.	 Yates, T. L. et al. The ecology and evolutionary history of an emergent disease: hantavirus pulmonary syndrome. Bioscience 52, 

989–998 (2002).
8.	 Hu, W., Mengersen, K., Bi, P. & Tong, S. Time-series analysis of the risk factors for haemorrhagic fever with renal syndrome: 

comparison of statistical models. Epidemiol. Infect. 135, 245–252 (2007).
9.	 Kallio, E. R. et al. Cyclic hantavirus epidemics in humans — predicted by rodent host dynamics. Epidemics 1, 101–107 (2009).

10.	 Olsson, G. E., Hjertqvist, M., Lundkvist, Å. & Hörnfeldt, B. Predicting high risk for human hantavirus infections, Sweden. Emerg. 
Infect. Dis. 15, 104–106 (2009).

11.	 Tersago, K. et al. Hantavirus outbreak in Western Europe: reservoir host infection dynamics related to human disease patterns. 
Epidemiol. Infect. 139, 381–390 (2011).

http://www.iucnredlist.org


www.nature.com/scientificreports/

13Scientific Reports | 6:21323 | DOI: 10.1038/srep21323

12.	 Reil, D., Imholt, C., Eccard, J. A. & Jacob, J. Beech fructification and bank vole population dynamics — combined analyses of 
promoters of human Puumala virus infections in Germany. PLoS ONE 10, e0134124 (2015).

13.	 Jensen, T. S. Seed production and outbreaks of non-cyclic rodent populations in deciduous forests. Oecologia 54, 184–192 (1982).
14.	 Pucek, Z., Jedrzejewski, W., Jedrzejewska, B. & Pucek, M. Rodent population dynamics in a primeval deciduous forest (Białowieża 

National Park) in relation to weather, seed crop, and predation. Acta Theriol. 38, 199–232 (1993).
15.	 Tersago, K. et al. Hantavirus disease (nephropathia epidemica) in Belgium: effects of tree seed production and climate. Epidemiol. 

Infect. 137, 250–256 (2009).
16.	 Clement, J. et al. Beechnuts and outbreaks of nephropathia epidemica (NE): of mast, mice and men. Nephrol. Dial. Transplant. 25, 

1740–1746 (2010).
17.	 Hanski, I., Henttonen, H., Korpimäki, E., Oksanen, L. & Turchin, P. Small-rodent dynamics and predation. Ecology 82, 1505–1520 

(2001).
18.	 Korpimäki, E., Norrdahl, K., Huitu, O. & Klemola, T. Predator-induced synchrony in population oscillations of coexisting small 

mammal species. Proc. R. Soc. B 272, 193–202 (2005).
19.	 Korpela, K. et al. Predator-vole interactions in northern Europe: the role of small mustelids revised. Proc. R. Soc. B 281, 20142119 

(2014).
20.	 Vaheri, A. et al. Hantavirus infections in Europe and their impact on public health. Rev. Med. Virol. 23, 35–49 (2013).
21.	 Haredasht, S. A. et al. Model-based prediction of nephropathia epidemica outbreaks based on climatological and vegetation data 

and bank vole population dynamics. Zoonoses Public. Health. 60, 461–477 (2013).
22.	 Kallio, E. R. et al. Endemic hantavirus infection impairs the winter survival of its rodent host. Ecology 88, 1911–1916 (2007).
23.	 Razzauti, M., Plyusnina, A., Henttonen, H. & Plyusnin, A. Accumulation of point mutations and reassortment of genomic RNA 

segments are involved in the microevolution of Puumala hantavirus in a bank vole (Myodes glareolus) population. J. Gen. Virol. 89, 
1649–1660 (2008).

24.	 Kallio, E. R. et al. Hantavirus infections in fluctuating host populations: the role of maternal antibodies. Proc. R. Soc. B 277, 
3783–3791 (2010).

25.	 Finnish Meteorological Institute: snow statistics 1981–2010. Available at: http://en.ilmatieteenlaitos.fi/snow-statistics. (Accessed: 
18th April, 2013).

26.	 Haukisalmi, V., Henttonen, H. & Tenora, F. Population dynamics of common and rare helminths in cyclic vole populations. J. Anim. 
Ecol. 57, 807–825 (1988).

27.	 Kallio-Kokko, H. et al. Hantavirus and arenavirus antibody prevalence in rodents and humans in Trentino, northern Italy. Epidemiol. 
Infect. 134, 830–836 (2006).

28.	 Voutilainen, L. et al. Life-long shedding of Puumala hantavirus in wild bank voles (Myodes glareolus). J. Gen. Virol. 96, 1238− 1247 
(2015).

29.	 Kallio, E. R. et al. Maternal antibodies postpone hantavirus infection and enhance individual breeding success. Proc. R. Soc. B 273, 
2771–2776 (2006).

30.	 Wood, S. gamm4: Generalized additive mixed models using mgcv and lme4. R package version 0.1–2. (2011). Available at: https://
cran.r-project.org/(Accessed at: 22th December, 2015).

31.	 R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Version 2.15.2 
(2012). Available at: https://cran.r-project.org/(Accessed at: 22th December, 2015).

32.	 Kallio, E. R., Helle, H., Koskela, E., Mappes, T. & Vapalahti, O. Age-related effects of chronic hantavirus infection on female host 
fecundity. J. Anim. Ecol. 84, 1264–1272 (2015).

33.	 Voutilainen, L., Kallio, E. R., Niemimaa, J., Vapalahti, O. & Henttonen, H. Data from: Temporal dynamics of Puumala hantavirus 
infection in cyclic populations of bank voles. Dryad Digital Repository. doi:10.5061/dryad.g8140 (2106).

34.	 Innes, D. & Millar, J. Life-Histories of Clethrionomys and Microtus (Microtinae). Mamm. Rev. 24, 179–207 (1994).
35.	 Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models And Extensions In Ecology With R Ch. 3, 

35–36 (Springer, New York, 2009).
36.	 Hurvich, C. M. & Tsai, C. L. Regression and time-series model selection in small samples. Biometrika 76, 297–307 (1989).
37.	 Barton, K. MuMIn: multi-model inference. R package version 1.7.2 (2012). Available at: https://cran.r-project.org/(Accessed at: 22th 

December, 2015).
38.	 Richards, S. A. Dealing with overdispersed count data in applied ecology. J. Appl. Ecol. 45, 218–227 (2008).
39.	 Korpela, K. et al. Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles. Global 

Change Biol. 19, 697–710 (2013).
40.	 Niklasson, B., Hörnfeldt, B., Lundkvist, Å., Björsten, S. & Leduc, J. Temporal dynamics of Puumala virus antibody prevalence in 

voles and of nephropathia epidemica incidence in humans. Am. J. Trop. Med. Hyg. 53, 134–140 (1995).
41.	 Voutilainen, L. et al. Environmental change and disease dynamics: effects of intensive forest management on Puumala hantavirus 

infection in boreal bank vole populations. PLoS ONE 7, e39452 (2012).
42.	 Escutenaire, S. et al. Spatial and temporal dynamics of Puumala hantavirus infection in red bank vole (Clethrionomys glareolus) 

populations in Belgium. Virus Res. 67, 91–107 (2000).
43.	 Mills, J. N., Ksiazek, T. G., Peters, C. J. & Childs, J. E. Long-term studies of hantavirus reservoir populations in the southwestern 

United States: a synthesis. Emerg. Infect. Dis. 5, 135–142 (1999).
44.	 Tersago, K. et al. Population, environmental, and community effects on local bank vole (Myodes glareolus) Puumala virus infection 

in an area with low human incidence. Vector Borne Zoonotic Dis. 8, 235–244 (2008).
45.	 Boone, J. et al. Infection dynamics of Sin Nombre virus after a widespread decline in host populations. Am. J. Trop. Med. Hyg. 67, 

310–318 (2002).
46.	 Luis, A. D., Douglass, R. J., Hudson, P. J., Mills, J. N. & Björnstad, O. N. Sin Nombre hantavirus decreases survival of male deer mice. 

Oecologia 169, 431–439 (2012).
47.	 Beldomenico, P. M. et al. The dynamics of health in wild field vole populations: a haematological perspective. J. Anim. Ecol. 77, 

984–997 (2008).
48.	 Beldomenico, P. M. & Begon, M. Disease spread, susceptibility and infection intensity: vicious circles? Ecol. Evol. 25, 21–27 (2010).
49.	 Kallio, E. R. et al. Prolonged survival of Puumala hantavirus outside the host: evidence for indirect transmission via the environment. 

J. Gen. Virol. 87, 2127–2134 (2006).
50.	 Ylönen, H. & Viitala, J. Social organization of an enclosed winter population of the bank vole Clethrionomys glareolus. Ann. Zool. 

Fenn. 22, 353–358 (1985).
51.	 Hinson, E. R., Shone, S. M., Zink, M. C., Glass, G. E. & Klein, S. L. Wounding: the primary mode of Seoul virus transmission among 

male Norway rats. Am. J. Trop. Med. Hyg. 70, 310–317 (2004).
52.	 McIntyre, N. E. et al. A longitudinal study of Bayou virus, hosts, and habitat. Am. J. Trop. Med. Hyg. 73, 1043–1049 (2005).
53.	 Calisher, C. H. et al. Demographic factors associated with prevalence of antibody to Sin Nombre Virus in deer mice in the western 

United States. J. Wildl. Dis. 43, 1–11 (2007).
54.	 Mills, J. N. et al. Patterns of association with host and habitat: antibody reactive with Sin Nombre virus in small mammals in the 

major biotic communities of the southwestern United States. Am. J. Trop. Med. Hyg. 56, 273–284 (1997).
55.	 Olsson, G. E. et al. Demographic factors associated with hantavirus infection in bank voles (Clethrionomys glareolus). Emerg. Infect. 

Dis. 8, 924–929 (2002).

http://en.ilmatieteenlaitos.fi/snow-statistics
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/


www.nature.com/scientificreports/

1 4Scientific Reports | 6:21323 | DOI: 10.1038/srep21323

56.	 Davis, S., Calvet, E. & Leirs, H. Fluctuating rodent populations and risk to humans from rodent-borne zoonoses. Vector Borne 
Zoonotic Dis. 5, 305–314 (2005).

57.	 Fine, P., Eames, K. & Heymann, D. L. “Herd immunity”: a rough guide. Clin. Infect. Dis. 52, 911–916 (2011).
58.	 Finnish National Institute for Health and Welfare: Infectious Diseases Register. Available at: http://www3.thl.fi/stat/(Accessed: 18th 

May, 2014).
59.	 Koch, J., Brockmann, S. O., Winter, C., Kimmig, P. & Stark, K. Significant increase of hantavirus infections in Germany since the 

beginning of 2007. Eurosurveillance 12, pii = 3185 (2007).
60.	 Boone, I. et al. Rise in the number of notified human hantavirus infections since October 2011 in Baden-Wurttemberg, Germany. 

Eurosurveillance 17, 2–6 (2012).
61.	 Evander, M. & Ahlm, C. Milder winters in northern Scandinavia may contribute to larger outbreaks of haemorrhagic fever virus. 

Global Health Action 2, 98–102 (2009).
62.	 Madhav, N. K., Wagoner, K. D., Douglass, R. J. & Mills, J. N. Delayed density-dependent prevalence of Sin Nombre virus antibody in 

Montana deer mice (Peromyscus maniculatus) and implications for human disease risk. Vector Borne Zoonotic Dis. 7, 353–364 
(2007).

63.	 Calisher, C. H., Mills, J. N., Root, J. J., Doty, J. B. & Beaty, B. J. The relative abundance of deer mice with antibody to Sin Nombre virus 
corresponds to the occurrence of hantavirus pulmonary syndrome in nearby humans. Vector Borne Zoonotic Dis. 11, 577–582 
(2011).

Acknowledgements
We thank Konnevesi Research Station for providing facilities for the fieldwork and rodent sampling. The authors 
are grateful to the numerous people who participated in the fieldwork, especially Maria Razzauti, Heikki Helle, 
Tuomas Heikkilä, Saila Kilpeläinen, Katharina Achazi, Julie Deter, Emmanuel Guivier, Anu Jääskeläinen, Netta 
Lempiäinen, Nuria Maldonado, Antti Poikonen and Sakeri Savola. Juha Laakkonen provided valuable suggestions 
for improving the manuscript. This study was financially supported by Kone Foundation (www.koneensaatio.
fi/en), Emil Aaltonen Foundation (www.emilaaltonen.fi/eng.htm), Jenny and Antti Wihuri Foundation (www.
wihurinrahasto.fi/foundation.html), Academy of Finland (grant no. 250524 to ERK), the European Commission 
Project QLK2-CT-2002-01358; GOCE-CT-2003-010284 EDEN (www.eden-fp6project.net), and the EU grant 
FP7-261504 EDENext (http://www.edenext.eu) and is catalogued by the EDENext Steering Committee as 
EDENext131. The contents of this publication are the sole responsibility of the authors and do not necessarily 
reflect the views of the European Commission.

Author Contributions
H.H. and E.R.K. designed the study. L.V., J.N. and E.R.K. conducted the rodent trapping. O.V. provided reagents 
and materials for antibody testing. L.V. and E.R.K. performed the PUUV antibody tests and analysed the data. 
L.V. wrote the manuscript text and prepared the figures. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Voutilainen, L. et al. Temporal dynamics of Puumala hantavirus infection in cyclic 
populations of bank voles. Sci. Rep. 6, 21323; doi: 10.1038/srep21323 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://www.koneensaatio.fi/en
http://www.koneensaatio.fi/en
http://www.emilaaltonen.fi/eng.htm
http://www.wihurinrahasto.fi/foundation.html
http://www.wihurinrahasto.fi/foundation.html
http://www.eden-fp6project.net
http://www.edenext.eu
http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Temporal dynamics of Puumala hantavirus infection in cyclic populations of bank voles

	Methods

	Ethical statement. 
	Rodent trapping and sampling. 
	Determination of PUUV infection status for each animal in each trapping session (t). 
	Determination of PUUV infection status in the previous trapping session (t–1) for each animal captured in trapping session  ...
	Statistical analyses. 
	Data sets. 
	Candidate models. 


	Results

	Temporal patterns in PUUV infection. 
	Abundance of infected voles. 
	Infection prevalence. 
	Per capita seroconversion rate. 

	PUUV infection prevalence and seroconversion rate in relation to cohort age and cycle phase at birth. 

	Discussion

	Population-level temporal dynamics of PUUV infection. 
	PUUV infection prevalence and seroconversion rate in year cohorts. 
	Implications for human infections. 

	Conclusions

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ The number of bank voles on the core (lines) and satellite grids (crosses), (a) in total and (b) according to PUUV infection status.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Variation in the (a,b) abundance of PUUV-infected bank voles/100 trap nights, (c,d) PUUV infection prevalence, and (e,f) seroconversion rate within the time frame of (a,c,e) a vole density cycle and (b,d,f) a year.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ The (a) prevalence of PUUV infection and (a) seroconversion rate during the lifespan of a yearly bank vole cohort in relation to density cycle phase at birth.
	﻿Table 1﻿﻿. ﻿  The known (uppercase) and assigned (lowercase) PUUV status of all bank vole captures on the core grid.
	﻿Table 2﻿﻿. ﻿  AICc (Akaike information criterion adjusted for sample size) scores of all candidate generalized additive models (GAMs).
	﻿Table 3﻿﻿. ﻿  Parameter estimates of the best-supported models analysing the within-cycle and within-year dynamics in the abundance of PUUV infected bank voles, infection prevalence and seroconversion rate.
	﻿Table 4﻿﻿. ﻿  Parameter estimates of the best-supported models analysing the PUUV infection prevalence and seroconversion rate during the lifespan of a yearly bank vole cohort.



 
    
       
          application/pdf
          
             
                Temporal dynamics of Puumala hantavirus infection in cyclic populations of bank voles
            
         
          
             
                srep ,  (2016). doi:10.1038/srep21323
            
         
          
             
                Liina Voutilainen
                Eva R. Kallio
                Jukka Niemimaa
                Olli Vapalahti
                Heikki Henttonen
            
         
          doi:10.1038/srep21323
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep21323
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep21323
            
         
      
       
          
          
          
             
                doi:10.1038/srep21323
            
         
          
             
                srep ,  (2016). doi:10.1038/srep21323
            
         
          
          
      
       
       
          True
      
   




