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Abstract

Reliable estimates of the nutrient fluxes carried by rivers from land-

based sources to the sea are needed for efficient abatement of marine

eutrophication. While nutrient concentrations in rivers generally dis-

play large temporal variation, sampling and analysis for nutrients, un-

like flow measurements, are rarely performed on a daily basis. The

infrequent data calls for ways to reliably estimate the nutrient concen-

trations of the missing days. Here we use the Gaussian state space
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models with daily water flow as a predictor variable to predict miss-

ing nutrient concentrations for four agriculturally impacted Finnish

rivers. Via simulation of Gaussian state space models, we are able to

estimate aggregated yearly phosphorus and nitrogen fluxes, and their

confidence intervals.

The effect of model uncertainty is evaluated through a Monte Carlo

experiment, where randomly selected sets of nutrient measurements

are removed and then predicted by the remaining values together with

re-estimated parameters. Results show that our model performs well

for rivers with long-term records of flow. Finally, despite the drastic

decreases in nutrient loads on the agricultural catchments of the rivers

over the last 25 years, we observe no corresponding trends in riverine

nutrient fluxes.

Keywords: simulation, sparse data, interpolation, Kalman filter, Kalman

smoother

1 Introduction

Abatement of marine eutrophication calls for reliable estimates of the nutri-

ent fluxes carried by rivers from land-based sources to the sea. Monitoring

programs of many important rivers in Finland, and elsewhere, typically in-

volve daily measurements of water flow, but due to the costs, much more

infrequent sampling and analysis of phosphorus and nitrogen concentrations.

Yet, the concentrations of nutrients often show large temporal variation, espe-

cially in rivers receiving loading from diffuse sources (Kauppila and Koskiaho,

2003). The more infrequent the water quality data are, the more sensitive

the flux estimates are to the method used to estimate the concentrations for
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the unsampled days. Several inter- and extrapolation methods have been

suggested to estimate missing monitoring data (Young et al., 1988; Reko-

lainen et al., 1991; Kronvang and Bruhn, 1996; Quilbé et al., 2006). While

many of the methods simply assume that the observation made on a specific

day represents the concentration level for a longer period (e.g. between the

midpoints of the preceding, current and next observation), other approaches

make use of the relationship between the concentration and some other vari-

able, usually the flow.

Our aim is to develop a method for estimating fluxes of total phosphorus

and total nitrogen for rivers mainly impacted by diffuse loading from agricul-

ture for a given time period, commonly a year. For prediction of the missing

nutrient concentration measurements we use a time varying regression model

with an additional autoregressive component using the water flow measure-

ments as a predictor variables. Various simulation techniques are employed

for evaluating our results. As a general framework we use Gaussian state

space models together with Kalman filter and smoother.

2 Methods

2.1 Interpolation via state space models and simulation

Our approach to modelling nutrient concentrations and fluxes is based on

state space modelling with Kalman filtering, smoothing and interpolation.

The form of the Gaussian state space model, sufficient for our purposes, is

yt = Xtβt + εt, εt ∼ NID(0, H) (1)

βt+1 = Tβt + ηt, ηt ∼ NID(0, Q), t = 1, 2, . . . , T, (2)
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where NID stands for “normally and independently distributed”. The first row

(1) is called an observation equation and the second row (2) a state equation.

The observed process {yt} may be a scalar or vector valued. The unobserved

state process {βt} is often a vector process. The process starts with β1 ∼

N(b1, P1) independently of error processes {εt}, {ηt}. In our application the

system matrix T is a time invariant diagonal matrix, whereas the system

matrices Xt contain time varying predictor values. The state process {βt} is

a latent process of time varying levels and regression coefficients. The model

is defined in more detail in sections 4.1 and 4.2. Further, the covariance

matrices H and Q are time invariant.

In our application the interpolation problem arises because there are miss-

ing observations. Let Y comprise all the non-missing observations. If the

value yt at time t is missing, then the Kalman smoother provides its esti-

mate as the conditional mean ŷt = Xtβ̂t together with β̂t = E(βt |Y ) and the

conditional covariance matrix Var(yt |Y ) = St. The Gaussian assumption

then yields

yt |Y ∼ N(ŷt, St), (3)

which can be used for obtaining prediction error limits. Plainly, the interpo-

lated value is unbiased in the sense that E(yt − ŷt) = 0.

Formula (3) is useful for single missing values. However, our primary

interest is a nonlinear compound measure over a time span t+ 1, . . . , t+ s of

length s (e.g. a calendar year), denoted by

mt,s =
s∑
i=1

qt+ie
yt+i ,

where qt is the water flow on the day t and eyt is the daily nutrient con-

centration. If we had the values qt and yt measured on each day, then we
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would have correct nutrient fluxes. Admittedly this is not exactly true due

to the measurement errors, but it would satisfy the practical needs of eval-

uating the yearly fluxes. In the subsequent analysis we focus on the effects

of missing nutrient measurements compared to the ideal case of having all

measurements.

In section 4 we define our model. Under the specified model we replace

the missing values with the estimates which are simply their conditional

expectations. Furthermore, in order to assess their accuracy we need the

conditional variances as well. Formally, we need to determine

mt,s = E

[
s∑
i=1

qt+ie
yt+i

∣∣∣∣∣ Y
]
, (4)

Vt,s = Var

[
s∑
i=1

qt+ie
yt+i

∣∣∣∣∣ Y
]
. (5)

Although the conditional means are easily estimated by using known results

of log-normal variables, the variances are more complicated due to correla-

tions between the smoothed state variables (see Durbin and Koopman (2002,

section 4.5)). Therefore, we rely on simulations (see Durbin and Koopman

(2002)). Additionally, these simulations allow easy constructions for the pre-

diction intervals which are analytically intractable because the distribution

of the sum of the log-normal variables cannot be given in a closed form.

For simulating the missing observations conditionally on Y , we simulate

realizations (β̃, ε̃) from their joint conditional distribution p(β, ε|Y ). Then,

simulated observations are obtained from ỹt = Xtβ̃t + ε̃t, t = 1, . . . , n. As we

are simulating conditionally on Y , ỹt = yt if yt is observed, as yt belongs to

Y . The simulation from p(β, ε|Y ) can be done by augmenting state vector βt

with disturbance εt, similarly as in Durbin and Koopman (2001, p. 131), and
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using the simulation smoothing algorithm of Durbin and Koopman (2002)

for the augmented state vector. With a large number of replications the

conditional mean (??) and variance (??) are computed naturally as averages.

More specifically let ỹ1j, . . . , ỹnj be the jth simulated series, and

m̃s,t,j =
s∑
i=1

qt+ie
ỹt+i,j .

Then, with N replicates, the conditional expectations and variances are ob-

tained respectively as

mt,s =
1

N

N∑
j=1

m̃s,t,j,

Vt,s =
1

N

N∑
j=1

(m̃s,t,j −mt,s)
2.

Assuming that the estimated model is true, the accuracy of the yearly

total nutrient fluxes can be computed in terms of prediction intervals. The

prediction interval with coverage probability 1−2α is found by taking the rth

smallest and the rth largest value among {m̃s,t,j}, j = 1, . . . , N with r = Nα;

denoted as m̃s,t,low and m̃s,t,up. Assuming the estimated parameters true, the

required prediction interval is

[m̃s,t,low, m̃s,t,up].

The other measure of accuracy is the coefficient of variation√
Vt,s

mt,s

.

All the computations in this paper have been done in R (R Development

Core Team, 2012), using the state space modelling package KFAS (Helske,

2012), where the simulation of the state vector is done using the simulation

smoothing with two antithetic variables in order to reduce the error due to

the simulation (Durbin and Koopman, 2002).
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2.2 Model fitting and evaluation

The unknown parameters of the nutrient concentration model can be esti-

mated by maximum likelihood method, using the Kalman filter for computing

the log-likelihood of the model. The Kalman filter updating formulas yield

us the predicted state bt+1 = E(βt+1 | y1, . . . , yt), the prediction Xt+1bt+1 for

yt+1, the prediction error vt+1 = yt+1 − Xt+1bt+1, and the prediction error

variance (or the covariance matrix in multivariate case) Var(vt) = Ft.

The log-likelihood of a linear Gaussian state space model can be written in

terms of prediction errors and their covariance matrices which in applications

depend on unknown parameters. Let us denote the parameter vector by ψ,

and let vt,ψ and Ft,ψ be the prediction errors and their covariance matrices

under ψ. Then the likelihood is given by

logL(ψ) = −np
2

log 2π − 1

2

n∑
t=1

(log |Ft,ψ|+ v′t,ψF
−1
t,ψ vt,ψ),

where p is the the dimension of yt.

The non-stationary part of the state vector is initialized by the diffuse

method suggested by (Durbin and Koopman, 2001), whereas the stationary

components are assumed to have a stationary distribution at start. When

the series {yt} is multivariate, we transform it into a univariate form as in

Durbin and Koopman (2001). This enables us to treat totally and partially

missing values automatically as well as automatically adjust the likelihood

correctly.

The effect of model uncertainty, comprising parameter uncertainty and

the uncertainty due to model choice, is evaluated by removing k nutrient

measurement vectors from the dataset. The model is then fitted to the

thinned data. Let fk be the total nutrient flux of the the removed days,
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and f̂k is the corresponding figure estimated using the thinned dataset. The

relative error due to thinning is then (f̂k−fk)/fk. Assuming the model is true

and ignoring the parameter estimation error, the difference ek = f̂k − fk has

mean zero. Furthermore, with larger k the average error per day ek/k tends to

be smaller. The same is true also for the relative error ek/fk = (ek/k)/(fk/k).

Therefore, if we plot the absolute relative errors |ek|/fk on the thinning size

k, we expect to see a decreasing curve, given our model is true. However, if

these values remain more or less constant or are increasing, then our model

is severely biased.

The overall effect of thinning is assessed through a Monte Carlo exper-

iment. We remove randomly k nutrient measurement vectors and compute

the mean relative error

MREk =
1

B

B∑
i=1

|f̂i,k − fi,k|
fi,k

, (6)

where B denotes the number of random replicates and i refers to i-th repli-

cate.

3 Data

Our data consist of the concentrations of total phosphorus and total nitro-

gen, and daily water flow measurements from four rivers located in southern

Finland, Paimionjoki, Aurajoki, Porvoonjoki and Vantaanjoki, during 1985–

2010. The nutrient data are taken from the databases of the Finnish Envi-

ronment Institute. Total phosphorus and total nitrogen concentrations have

been determined spectrometrically from water samples after digestion with

peroxodisulphate.
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The catchments of these rivers all have a high proportion of the agricul-

tural land (24–43%, Table 1) and the soil is dominated by clay, which renders

the water turbid. Much of the phosphorus in these rivers is transported in as-

sociation with eroded soil particles. In addition, the catchments contain only

few lakes (lake percentage 0.3-2.6), which results in high day to day variation

in flow. In all the rivers, agriculture is the major source of nutrients.

At the beginning of our observation period, the Porvoonjoki has received

substantialwastewater loading from the city of Lahti, but due to improved

treatment the share of wastewater to total loading has decreased with time,

to an average 12% of the anthropogenic loading. In the Vantaanjoki, the

respective proportion of wastewater loading is 6.3%, while in the other two

rivers it is below 1%.

[Table 1 about here]

Daily measurements on nutrient concentrations are available for only 5–

10% of the time period while flow measurements are usually available for each

day. A few flow measurements are missing in the Paimionjoki and Aurajoki

series. For the Paimionjoki, flow measurements are missing from mid-October

to mid-November for 2004, whereas for the Aurajoki, flow values are missing

on a single day in 1985, and on a total of 99 days between 2004–2010. The

missing flow measurements in Paimionjoki and Aurajoki are estimated from

an auxiliary four-variate state space model defined as in (1) and (2) with all

matrices Xt and T being identity matrices. The model is called a local level

model, e.g. see Harvey (1989). Amisigo and van de Giesen (2005) have used

a similar model to patch gaps in daily riverflow series.
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4 Results

4.1 Relating nutrient concentration and river flow

It can be argued, as has been done by Wartiovaara (1975) and Rankinen et al.

(2010), that the high water flow due to the precipitation has two opposite

effects on the nutrient loadings. Precipitation increases the diffuse loading

from the agriculture while simultaneously diluting wastewater loading. We

have tried to take both these aspects into account. In Figure 1 we have

plotted the concentrations on the flow, both in logarithms, but due to zero

values we have first added one to the flow values. To address both of the

mutually opposing effects caused by precipitation induced high flows, we have

decided to regress the log-concentration yt on both log(1 + qt) and 1/ log(2 +

qt). In the latter we have added 2 to ensure a finite value. Figure 1 includes

also some regression curves: the loess curves of first degree (Cleveland and

Devlin, 1988), and the ordinary least squares regression of yt on β0+β1 log(1+

qt) and on β0 + β1 log(1 + qt) + β2/ log(2 + qt).

[Figure 1 about here]

By visual inspection the relation between the the concentration and the

flow seems to be linear or slightly curved in a log-scale. Moreover, the loess

curve and the regression curve from model with two predictor variables are

quite close to each other, whereas the regression line from model with one

predictor lies apart, especially for nitrogen measurements. Therefore, in some

cases it seems clearly beneficial to include both x1,t = log(1 + qt) and x2,t =

1/ log(2+qt) = 1/ log(1+ex1t) as the predictor variables in the model. In order

to treat all series equally both predictors are present in each model. Note
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that this visual inspection with regression and loess curves is about finding

the proper relationship between concentration and flow, and it ignores the

time aspect of the problem which, as we will later see, is an important part

of the modelling.

4.2 State space specification

As the phosphorus and nitrogen concentration measurements are correlated,

we model them together but separately for each river. The model applied to

each river is of the form

yPt = µP + αPt + βP1,tx1,t + βP2,tx2,t + εPt ,

yNt = µN + αPt + βN1,tx1,t + βN2,tx2,t + εNt ,

αt+1 = Tαt + ξt,

βt+1 = βt + ηt,

(7)

where (yPt , y
N
t ) is a bivariate processes of the logarithms of phosphorus and

nitrogen concentrations, respectively, βt consists of all coefficients βij,t, i =

P,N, j = 1, 2, and αt consists of zero-mean first order autoregressive process

αPt and αNt with T = diag[φP , φN ] containing the corresponding autoregres-

sive parameters. The disturbance processes εt ∼ N(0,Σε), ηt ∼ N(0,Ση) and

ξt ∼ N(0,Σξ) independently of each other. For simplicity, Ση is assumed to

be a diagonal matrix. When the diagonal elements are positive the regres-

sion coefficients vary according to a random walk allowing the dependence

between the flow and the nutrient concentration to change in time.

Note that the model collapses to an ordinary regression model when Ση =

0 and T = 0 (i.e. φP = φN = 0). The first restriction means that the

regression coefficients βt are constants. The second one implies that level
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processes αPt , αNt are white noise processes merged into the errors εPt and εNt ,

respectively.

Zero variances for the components of coefficient process βt are sometimes

obtained. The state space modeling automatically handles the zero variances

in the covariance matrices, so that the time invariant regression coefficients

coincide with the appropriate generalized least squares estimates. Also the

simulation algorithm is capable of handling the constant states without mod-

ifications.

The long-term seasonal weather conditions such as the starting times of

snow-melt and autumn rains as well as the short-term weather conditions

such as daily temperature or precipitation also affect concentrations. We

assume here, that their effects come mainly through flow. In addition we

assume that other environmental effects are mostly captured by the latent

autoregressive level processes and coefficient processes of the flow series. We

deliberately aim at a parsimonious model with practical formulas for the

interpolation of the nutrient fluxes, although the true phenomena behind the

variation of nutrient concentrations are obviously more complicated than our

model suggests.

4.3 Estimated nutrient fluxes and model parameters

The yearly estimates of the nutrient fluxes obtained by simulating the model

are given in Table 2 in an Appendix. Yearly estimates of nutrientï¿1
2
fluxes

with their simulated 95% prediction intervals are also shown in the Figure

2. Each river exhibits a similar fluctuating patterns without a clear trend.

Especially yearly phosphorus fluxes, but also nitrogen fluxes clearly peak
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in 2008, followed by an even larger drop in 2009. Overall, fewer nutrient

measurements result in somewhat wider prediction intervals for Porvoonjoki

and Vantaanjoki than for Paimionjoki and Aurajoki.

[Figure 2 about here]

The estimated values of the unknown variance and autoregressive param-

eters are shown in Table 3.

[Table 3 about here]

Occasionally the estimation process yields the variance estimates close to

zero (i.e. values less than 10−8). In such cases these are replaced with fixed

zeros and estimation process for other parameters is repeated. In all cases

the likelihood remained practically unchanged.

Standard errors of the estimates are computed by inverting the Hessian

matrix given by the optimization function optim in R. The variance parame-

ters are estimated in logarithmic scale. Using their standard errors confidence

intervals for the log-variances are obtained. Then the confidence intervals for

the variances themselves are easily derived.

In all models, the values of autoregressive parameters are close to one

(0.95− 0.98), and therefore the standard errors might not be very useful, as

the sampling distributions are far from normal distribution. The correlations

ρξP ,ξN between the disturbances of the autoregressive processes are around

0.5 for all rivers. This indicates moderate long-term correlation between the

underlying phosphorus and nitrogen concentration processes at a given flow

level. The instantaneous correlations ρεP ,εN , again given the flow, are smaller

and more variable: 0.2 or slightly higher in the Paimionjoki and Porvoonjoki,

and negligible in the Aurajoki and Vantaanjoki.
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The coefficient processes are shown in Figure 3. Somewhat larger regres-

sion coefficients of the reciprocal log-flow of the Porvoonjoki and Vantaanjoki

compared to those of Paimionjoki and Aurajoki are in concordance with the

fact that the former rivers are subject to higher wastewater loads. Otherwise,

the interpretation of the regression coefficient processes is difficult. Neverthe-

less, as predictive tools, individual river-specific models appear to be highly

useful.

[Figure 3 about here]

4.4 Model criticism

We have also tested models where the autoregressive processes have been

replaced with random walks (ie. φP = φN = 1), and a multivariate local

level model without regressors but where the concentration processes are

augmented with water flow. In addition, we also tested the ordinary mul-

tivariate regression model. All these models yield large autocorrelations of

the standardized residuals and in case of time varying models there is a clear

inverse relationship between the size of residuals and observed concentration.

These apparent violations are avoided by using the model (5). However, even

despite obvious violations of model assumptions yearly estimates of the nu-

trient fluxes from different time varying models have very similar coefficients

of variation with deviations being usually less than one percentage point.

In the case of the ordinary regression model the coefficients of variation

are often substantially smaller. In Figure 4 the coefficients of variation are

plotted against the yearly sample sizes of the concentration measurements.

The coefficients of variation from the model (5) depend on the yearly sample
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sizes, while results from the ordinary regression model are overoptimistic and

counterintuitive: uncertainty in the yearly flux estimate is independent from

the amount of measurements in a given year. Both models use the daily water

flow for the prediction of the missing concentration measurements, but the

ordinary regression is immune to the time order of the measurements and only

the total number of measurements is important. However, we acknowledge

that since yearly flux estimates are always conditioned on the model, all

models underestimate the true errors of yearly flux estimates and none of

the models considered is "true”.

[Figure 4 about here]

The quantile-to-quantile plots of the standardized residuals of the models

reveal heavier tails compared to the normal distribution. This would be prob-

lematic if the interest is on the daily values, but because we are interested in

yearly values we believe that the possible non-normality is not critical here.

This is because the yearly measure of nutrient fluxes is a sum, which tends

to be more normal than its components by the central limit theorem. For

evaluating the effects of non-normality, we have made a simulation experi-

ment, where the errors εt are a random sample from a heavy tailed bivariate

t-distribution with 3 degrees of freedom scaled to have V ar(εt) = Σε. New

values representing the concentration measurements, on the same days as

the true ones, are then simulated from the model with the estimated pa-

rameters. Using these simulated measurements our proposed model is fitted

(under Gaussian assumptions) as well as the coefficients of variation com-

puted for the yearly fluxes. The coefficients of variation from the simulation

are, on the average, within one percentage point of those obtained from the
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actual dataset thus displaying the negligible effect of non-normality.

The main purpose of our model is to estimate the yearly nutrient flux. To

this end we developed the thinning experiment explained at the end of section

2.2. We have made five experiments by randomly removing 10%, 20%, 30%,

40% and 50% from the concentration values. The resulting relative errors

(4) are reported in Table 4 in the Appendix. The number of simulations

is B = 2000, and each time parameters are re-estimated. If the model is

correct we expect a decreasing trend, and this is mostly what we observe.

The loss of relative accuracy with 30% thinning is about 5% or less. However,

the mean absolute errors MAEk =
∑B

i=1 |f̂i,k − fi,k|/B increase rapidly, as

expected, when thinning is increased (Table 5 in the Appendix). When

measuring bias using average errors AEk =
∑B

i=1(f̂i,k − fi,k)/B (Table 6

in the Appendix), the total phosphorus flux is underestimated in all rivers,

whereas the total nitrogen flux is usually overestimated, except for Aurajoki,

where the nitrogen flux is underestimated. Overall, the results suggest that

our model performs well enough for practical purposes. For the ordinary

regression model the mean relative and absolute errors are always larger,

and prominently so for nitrogen fluxes. The average errors show that the

ordinary regression model overestimates the nitrogen fluxes more than our

model, whereas the bias of phosphorus fluxes is slightly smaller. Finally, we

note that removing predictor 1/ log(2 + qt) from the final model (5), always

worsens model performance compared to including it.

16



5 Discussion

We have used Gaussian state space models with partially sparse data for

modelling the yearly nutrient fluxes of four rivers running through catch-

ments dominated by agricultural land use. The large proportion of “missing”

daily nutrient concentration measurements for corresponding daily flow mea-

surements increased the uncertainty regarding the model selection, parameter

estimation and prediction, thus encouraging the use of models with simple

structure and large flexibility.

During the observational period covered by this study Finnish agricultural

farmlands experienced a substantial decrease in phosphorus and nitrogen bal-

ance (Aakkula et al., 2011). Despite this drastic decrease in nutrient balance

we did not observe any corresponding trends in nutrient fluxes over the last

25 years for any of the four rivers examined here. Greatly reduced nutri-

ent balances do not always lead to concurrent reduction in riverine nutrient

fluxes, for example, due to high nutrient reserves in soil and groundwater

(e.g. Stålnacke et al. (2004)). Moreover, although nutrient balances form a

crucial indicator of the risk of nutrient losses from agriculture, changes in

other agricultural practices, or in climate, may have had an opposite effect

on the load (Ekholm et al., 2007).

While we have reported results when the daily water flow is only predictor

variable, we have also augmented the model with locally important variables

such as daily air temperature, precipitation and several functions of these. To

examine the possible effect of large scale climate patterns we have also used

the North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) indices

in combination with flow. Additions of variables operating at either small
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(temperature, precipitation) or large scales (NAO or AO) did not improve

results for any of the models we used.

Many studies examining nutrient dynamics of rivers have stated the need

for extensive datasets to be able to make precise statements on the nutrient

flux (e.g. Rekolainen et al. (1991). While we are conscious that the thinning

of an originally sparse data by half can include possible computational caveats

and thus may lead to artifacts, our results seem to indicate that when daily

flow data are available, relatively sparse data on nutrient concentrations can

be used to estimate yearly fluxes. If the aim of monitoring is to assess

yearly fluxes of principal nutrients from agriculturally dominated watersheds

to receiving downstream locations (e.g. the sea), our findings imply the

potential to lower the frequency of water quality (i.e. nutrient) sampling

intensities for rivers with permanent gauging stations and long-term records

of flow. It should be noted that these concentration measurements could be

used for other types of analysis as well, where the number of samples cannot

not be reduced.
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7 Appendix

[Table 2 about here]

[Tables 4, 5 and 6 about here]
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Figure 1: Scatter plots of log-concentrations of nutrients and log(1 + qt), with loess

curves of first degree (solid line), the regression curves with one explanatory variable

(dotted line) and with two explanatory variables (dashed line). The circles correspond to

the phosphorus measurements and triangles to the nitrogen measurements.
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Figure 2: The estimated values and the simulated 95% prediction intervals of the yearly

phosphorus and nitrogen fluxex.
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Figure 3: The smoothed coefficient processes corresponding to the predictor variables

log(1 + qt) (left) and 1/ log(2 + qt) (right) for all four rivers. The black lines represent

the processes corresponding to phosphorus observations and the grey lines correspond to

the nitrogen observations. Constant horizontal line corresponds to the null variance of the

coefficient process.
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Figure 4: The relationship between coefficients of variation for yearly nutrient flux and

the number of yearly nutrient concentration observations. Figure on left corresponds to

final model (5), and the figure on right to the ordinary regression model.
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Table 1: Catchment characteristics of the rivers studied.
Paimionjoki Aurajoki Porvoonjoki Vantaanjoki

Catchment area, km2 1088 874 1273 1686

Lakes, % 1.6 0.3 1.3 2.3

Agricultural land, % 42.8 36.8 31.2 23.8

Constructed area, % 2.5 4.8 4.1 9.2

Mean flow, m3s−1 9.5 8.5 12.7 15.9

Wastewater load, % of total flux 0.5 0.7 12.3 6.3
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Table 2: Annual fluxes (kg/km2/year) and the coefficient of variation in

percentages for each river and nutrient.
Paimionjoki Aurajoki Porvoonjoki Vantaanjoki

P N P N P N P N

1985 57 (2.8) 469 (3.5) 53 (17.8) 547 (18.5) 71 (5.7) 1140 (5.6) 52 (7.0) 776 (6.0)

1986 99 (9.2) 939 (9.7) 100 (8.8) 1020 (9.6) 68 (10.7) 1132 (8.8) 76 (10.9) 1009 (9.7)

1987 63 (9.4) 596 (9.7) 72 (11.1) 609 (9.7) 63 (9.0) 1052 (7.5) 41 (9.0) 613 (7.2)

1988 81 (4.0) 772 (4.3) 85 (3.8) 867 (4.1) 66 (6.0) 1211 (6.3) 40 (6.7) 732 (6.0)

1989 69 (6.1) 929 (6.1) 62 (3.8) 1094 (4.1) 45 (9.0) 1314 (7.6) 40 (10.6) 842 (8.8)

1990 107 (3.6) 1312 (4.0) 96 (3.1) 1137 (3.1) 48 (10.9) 1494 (8.5) 45 (13.0) 1020 (11.0)

1991 92 (4.8) 1090 (4.5) 101 (3.6) 1076 (3.6) 52 (5.6) 1372 (5.3) 42 (6.2) 1064 (5.6)

1992 83 (5.2) 1041 (5.8) 72 (3.9) 945 (4.1) 54 (5.0) 1651 (4.9) 52 (6.2) 1134 (5.1)

1993 44 (6.0) 528 (6.2) 54 (3.1) 627 (3.3) 28 (7.4) 733 (6.4) 22 (7.3) 481 (6.8)

1994 67 (5.4) 690 (6.6) 73 (4.2) 729 (4.2) 46 (4.8) 896 (5.6) 41 (5.7) 611 (5.4)

1995 77 (6.9) 924 (7.6) 78 (4.6) 832 (4.7) 39 (5.1) 943 (4.9) 36 (6.3) 666 (5.2)

1996 92 (8.1) 907 (7.8) 94 (3.5) 980 (3.6) 45 (5.9) 1193 (5.3) 58 (7.6) 1042 (6.1)

1997 62 (6.9) 777 (7.5) 68 (4.4) 867 (4.8) 27 (3.7) 711 (3.1) 24 (4.1) 473 (3.0)

1998 96 (7.3) 1092 (8.2) 92 (4.0) 1017 (3.9) 61 (4.1) 1274 (3.6) 53 (4.8) 980 (3.8)

1999 68 (6.1) 872 (7.7) 79 (4.1) 950 (6.1) 43 (2.9) 1060 (3.1) 39 (4.0) 823 (3.2)

2000 117 (6.9) 1392 (7.1) 115 (3.7) 1317 (3.8) 53 (3.7) 1476 (3.2) 56 (4.8) 1176 (3.1)

2001 69 (5.1) 766 (5.6) 88 (4.0) 905 (3.6) 30 (4.3) 873 (4.0) 38 (4.3) 828 (3.4)

2002 42 (7.3) 501 (7.9) 39 (4.9) 391 (5.0) 27 (3.7) 856 (3.5) 23 (5.1) 563 (3.9)

2003 17 (8.8) 383 (12.1) 30 (10.0) 662 (10.8) 24 (4.5) 883 (3.9) 15 (7.1) 479 (5.9)

2004 78 (5.2) 1243 (5.2) 76 (6.1) 1251 (5.3) 66 (3.6) 1200 (3.0) 58 (4.1) 953 (3.1)

2005 65 (6.3) 717 (6.5) 65 (3.8) 722 (3.9) 42 (3.6) 919 (3.2) 42 (4.7) 772 (3.7)

2006 79 (6.4) 1091 (6.3) 106 (3.5) 1075 (3.6) 46 (3.2) 998 (3.3) 40 (4.2) 928 (3.5)

2007 83 (7.8) 1006 (8.0) 81 (6.6) 894 (6.8) 49 (3.8) 985 (3.5) 43 (4.8) 869 (4.3)

2008 159 (6.2) 1380 (6.2) 153 (3.7) 1245 (3.7) 83 (3.7) 1108 (3.3) 74 (4.1) 998 (3.2)

2009 42 (6.3) 400 (7.0) 35 (5.5) 335 (5.0) 32 (3.9) 609 (3.3) 22 (4.7) 348 (3.4)

2010 47 (5.4) 619 (5.6) 33 (5.6) 501 (5.1) 27 (3.8) 630 (3.6) 32 (4.8) 600 (3.4)
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Table 3: Estimates of the unknown parameters and their standard errors in

parenthesis.
Paimionjoki Aurajoki Porvoonjoki Vantaanjoki

σ2
ηP1

1.3×10−7 0 6.4×10−7 9.0×10−8

log(σ2
η11

) −15.83 (2.07) — −14.27 (1.05) −16.22 (3.75)

σ2
ηP2

1.4×10−6 0 7.8×10−5 5.5×10−5

log(σ2
η12

) −13.46 (3.39) — −9.46 (0.89) −9.81 (0.88)

σ2
ηN1

0 0 2.1×10−5 7.7×10−6

log(σ2
η21

) — — −10.78 (0.64) −11.78 (0.98)

σ2
ηN2

2.9×10−6 5.8×10−6 3.1×10−4 3.9×10−5

log(σ2
η22

) −12.74 (1.52) −12.06 (1.00) −8.08 (1.03) −10.15 (0.82)

σ2
ξP

5.4×10−3 1.0×10−2 1.1×10−2 7.0×10−3

log(σ2
ξ1
) −5.23 (0.16) −4.58 (0.14) −4.51 (0.19) −4.96 (0.25)

σ2
ξN

8.3×10−3 1.1×10−2 4.0×10−3 4.0×10−3

log(σ2
ξ2
) −4.80 (0.13) −4.47 (0.13) −5.51 (0.24) −5.51 (0.25)

σ2
εP

3.1×10−2 1.8×10−2 6.5×10−3 2.2×10−2

log(σ2
ε1
) −3.47 (0.13) −4.02 (0.19) −5.04 (0.89) −3.81 (0.33)

σ2
εN

3.0×10−2 1.7×10−2 1.5×10−2 1.3×10−2

log(σ2
ε2
) −3.49 (0.14) −4.09 (0.22) −4.21 (0.30) −4.32 (0.35)

ρξP ,ξN 0.58 (0.04) 0.46 (0.04) 0.53 (0.06) 0.48 (0.06)

ρεP ,εN 0.26 (0.08) 0.07 (0.12) 0.20 (0.29) 0.02 (0.24)

µP 4.47 (0.13) 3.83 (0.10) 3.11 (0.25) 2.72 (0.29)

µN 7.63 (0.15) 7.62 (0.11) 7.04 (0.23) 6.83 (0.24)

φP 0.98 (0.004) 0.95 (0.006) 0.95 (0.009) 0.96 (0.007)

φN 0.98 (0.003) 0.96 (0.005) 0.98 (0.006) 0.98 (0.005)
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Table 4: The mean relative error percentages and their standard errors for the

final model (5) and for the least squares regression model with two predictors

(marked by †).
Paimionjoki Aurajoki Porvoonjoki Vantaanjoki

P N P N P N P N

MRE10 5.8 (0.09) 4.8 (0.08) 6.5 (0.11) 5.3 (0.11) 6.4 (0.11) 3.9 (0.07) 7.1 (0.13) 4.7 (0.08)

MRE†10 7.0 (0.12) 7.4 (0.13) 8.9 (0.15) 8.0 (0.14) 7.6 (0.13) 6.7 (0.11) 8.9 (0.15) 7.6 (0.13)

MRE20 4.5 (0.07) 3.6 (0.06) 5.4 (0.09) 4.6 (0.08) 5.0 (0.08) 3.0 (0.05) 5.8 (0.10) 3.7 (0.06)

MRE†20 5.0 (0.08) 5.9 (0.10) 6.8 (0.11) 6.3 (0.10) 6.0 (0.10) 5.1 (0.09) 7.0 (0.11) 6.0 (0.10)

MRE30 4.0 (0.06) 3.3 (0.06) 5.1 (0.08) 4.1 (0.07) 4.5 (0.07) 2.7 (0.05) 5.3 (0.09) 3.3 (0.06)

MRE†30 4.5 (0.07) 5.1 (0.09) 6.2 (0.10) 5.3 (0.09) 4.9 (0.08) 4.5 (0.07) 5.9 (0.10) 5.1 (0.09)

MRE40 3.6 (0.06) 3.2 (0.05) 4.9 (0.08) 3.8 (0.06) 4.3 (0.07) 2.7 (0.05) 5.2 (0.08) 3.1 (0.06)

MRE†40 4.1 (0.07) 5.0 (0.08) 5.7 (0.09) 4.9 (0.08) 4.7 (0.08) 4.2 (0.07) 5.7 (0.09) 4.7 (0.09)

MRE50 3.5 (0.06) 3.1 (0.05) 4.9 (0.08) 3.9 (0.06) 4.3 (0.07) 2.8 (0.05) 4.9 (0.08) 3.3 (0.06)

MRE†50 3.9 (0.07) 4.6 (0.08) 5.5 (0.09) 4.9 (0.08) 4.6 (0.07) 4.1 (0.07) 5.4 (0.09) 4.8 (0.08)
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Table 5: The mean absolute errors (metric tons) and their standard errors

for the final model (5) and for the ordinary least squares regression model

with two predictors (marked by †).
Paimionjoki Aurajoki Porvoonjoki Vantaanjoki

P N P N P N P N

MAE10 0.9 (0.02) 7.8 (0.14) 1.7 (0.03) 14.0 (0.32) 0.8 (0.02) 9.9 (0.17) 1.3 (0.03) 13.5 (0.24)

MAE†10 1.1 (0.02) 11.8 (0.20) 2.2 (0.04) 20.3 (0.35) 1.0 (0.02) 16.7 (0.28) 1.5 (0.03) 21.7 (0.38)

MAE20 1.4 (0.02) 11.8 (0.21) 2.7 (0.05) 23.7 (0.46) 1.3 (0.02) 15.1 (0.26) 2.0 (0.04) 20.9 (0.37)

MAE†20 1.6 (0.03) 19.0 (0.31) 3.4 (0.06) 31.4 (0.52) 1.6 (0.03) 25.4 (0.43) 2.4 (0.04) 33.8 (0.59)

MAE30 1.9 (0.03) 16.0 (0.28) 3.9 (0.07) 31.7 (0.55) 1.8 (0.03) 20.0 (0.35) 2.8 (0.05) 28.1 (0.50)

MAE†30 2.1 (0.04) 24.8 (0.42) 4.7 (0.08) 40.3 (0.66) 1.9 (0.03) 33.6 (0.55) 3.1 (0.05) 43.6 (0.77)

MAE40 2.3 (0.04) 20.9 (0.36) 5.0 (0.08) 39.1 (0.66) 2.3 (0.04) 26.9 (0.50) 3.6 (0.06) 35.3 (0.64)

MAE†40 2.6 (0.04) 32.2 (0.53) 5.8 (0.10) 48.9 (0.83) 2.5 (0.04) 41.5 (0.71) 3.9 (0.07) 53.4 (0.96)

MAE50 2.7 (0.05) 25.7 (0.44) 6.1 (0.10) 49.9 (0.79) 2.8 (0.05) 35.8 (0.65) 4.3 (0.07) 46.9 (0.82)

MAE†50 3.0 (0.05) 37.8 (0.64) 6.9 (0.11) 61.2 (1.05) 3.0 (0.05) 51.3 (0.88) 4.7 (0.08) 68.7 (1.20)
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Table 6: The mean errors (metric tons) and their standard errors for the

final model (5) and for the ordinary least squares regression model with two

predictors (marked by †).
Paimionjoki Aurajoki Porvoonjoki Vantaanjoki

P N P N P N P N

ME10 -0.3 (0.02) -0.1 (0.22) -0.9 (0.05) -4.6 (0.43) -0.3 (0.02) -0.1 (0.28) -0.4 (0.04) 0.7 (0.39)

ME†10 -0.2 (0.03) 5.0 (0.31) -0.8 (0.06) 4.7 (0.57) -0.2 (0.03) 3.7 (0.46) -0.3 (0.04) 5.0 (0.61)

ME20 -0.6 (0.04) 0.6 (0.33) -1.8 (0.07) -9.0 (0.67) -0.6 (0.04) -0.5 (0.43) -0.9 (0.06) 1.2 (0.59)

ME†20 -0.2 (0.04) 10.7 (0.47) -1.5 (0.09) 9.4 (0.85) -0.4 (0.04) 8.8 (0.68) -0.6 (0.07) 11.5 (0.92)

ME30 -0.8 (0.05) 6.1 (0.43) -2.8 (0.09) -9.9 (0.87) -0.9 (0.05) 1.8 (0.57) -1.3 (0.07) 3.8 (0.80)

ME†30 -0.3 (0.06) 15.2 (0.60) -2.6 (0.12) 12.2 (1.09) -0.4 (0.05) 13.8 (0.88) -1.0 (0.08) 16.8 (1.19)

ME40 -0.9 (0.06) 9.1 (0.55) -3.7 (0.11) -11.4 (1.07) -1.3 (0.06) 2.6 (0.78) -1.9 (0.09) 5.5 (1.01)

ME†40 -0.2 (0.07) 22.2 (0.74) -3.2 (0.14) 18.4 (1.31) -0.7 (0.07) 19.0 (1.09) -1.5 (0.11) 22.4 (1.45)

ME50 -0.9 (0.07) 11.6 (0.68) -4.6 (0.13) -11.2 (1.34) -1.5 (0.07) 3.9 (1.03) -2.3 (0.11) 6.3 (1.33)

ME†50 -0.2 (0.09) 25.4 (0.90) -4.0 (0.17) 23.3 (1.64) -0.9 (0.08) 21.8 (1.36) -1.7 (0.13) 28.5 (1.84)
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