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Abstract

A large amount of data collected today is in the form of a time series. In order to make realistic
inferences based on time series forecasts, in addition to point predictions, prediction intervals
or other measures of uncertainty should be presented. Multiple sources of uncertainty are often
ignored due to the complexities involved in accounting them correctly. In this dissertation,
some of these problems are reviewed and some new solutions are presented. A state space
approach is also advocated for an efficient and flexible framework for time series forecasting,
which can be used for combining multiple types of traditional time series and other models.
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Chapter 1

Introduction

Assuming that we are not dealing with completely deterministic systems, no matter what sta-
tistical method or model we use, our predictions contain some uncertainty. The uncertainties
arise from several sources and their effects on the final results should be carefully considered.
In addition to point predictions, accompanying measures of uncertainty should be presented.
In the traditional time series prediction, the underlying uncertainties relating to intermediate
steps needed for the final forecasts are commonly ignored, which leads to results which seem
more accurate than they really are. Ignoring the uncertainty regarding the chosen model and
its parameters is a typical example. Dismissing these kind of issues can lead to prediction
intervals which have coverage probabilities considerably smaller than the nominal level. This
is a known problem, and, for example, Chatfield (1995, 1996) strongly criticizes this approach,
stating that it is not enough to just perform diagnostic checks on the best fitting model, but
also the process of model selection needs to be assessed. Unfortunately no general solutions
exist.

Several categories of uncertainty in predictions have been made. Clements and Hendry
(1999) present a detailed taxonomy of forecast errors, but here I use coarser classification
similar to the ones in Chatfield (2000) and Alho and Spencer (2005). In addition to uncertainty
caused by random variation of the process, common sources of uncertainty are:

1. True data-generating mechanisms are not known, and the chosen statistical model is
only an approximation of the truth.

2. During our observation period or in the future which we are trying to forecast, the
underlying data-generating processes can change in a way that is unaccounted by our
model.

3. Parameters of the chosen model need to be estimated, often from the same data which
was used in the model selection.

4. Data contains outliers or it is otherwise of poor quality, affecting the model identification,
parameter estimation and forecasting.

5. Wrong distributional assumptions and data transformations.

This dissertation considers mainly the issues (3)–(5). After introducing the basic concepts
of time series prediction in Chapter 2, autoregressive integrated moving average (ARIMA)
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models and a general state space modeling framework is introduced in Chapter 3. In Chapter
4, effects of uncertainties relating to parameter estimation are discussed in detail. Finally,
some additional problems are discussed in Chapter 5.
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Chapter 2

Time series prediction

Define a time series y1, y2, . . . and a model p(y1, . . . , yn) for all n = 1, 2, . . . with p being a
generic notation for a density or a probability mass function. Assume that we have observed
the time series y1, . . . , yn for some n, and we wish to make predictions of future values given
the past, i.e., we are interested in conditional densities

p(yn+h|y1, . . . , yn), h = 1, 2, . . . . (2.1)

These conditional densities are often called predictive densities.
A typical choice for a point forecast of yn+h is the conditional mean

ŷn+h = E(yn+h|y1, . . . , yn), which solves the minimization problem

min
f

∫
[yn+h − f(y1, . . . , yn)]2p(yn+h|y1, . . . , yn)dyn+h, (2.2)

for all (measurable) functions f . Equivalently, the conditional mean ŷn+h minimizes the mean
square prediction error E[(yn+h − f(y1, . . . , yn))2]. For the proof, see, for example, (Pollock,
1999). Alternative choices include the conditional median ȳn+h, which minimizes the mean
absolute deviation, and the conditional mode which gives the highest predictive density value.
If the predictive density p(yn+h|y1, . . . , yn) is symmetric around its mean with finite variance,
then all three are equal. An important special case is the Gaussian density.

Sometimes the interest is not in the future values yn+h, but in the missing intermediate
values ym+1, . . . , ym+h, 1 < m ≤ m+ h < n. Thus our conditional densities of interest are

p(ym+j |y1, . . . , ym, ym+h+1, . . . , yn), j = 1, . . . , h. (2.3)

Denote the prediction error as en+h = yn+h − ŷn+h. Under a Gaussian predictive density,
it is straightforward to construct a 100(1− 2α)% prediction interval for yn+h as

yn+h = ŷn+h ± zα
√

E[e2n+h], (2.4)

where zα is the percentage point of the standard normal distribution with a proportion α
above it. The future value yn+h is expected to lie between the upper and lower limits of the
interval with probability 1− 2α. Note that given the unbiased forecast,

E[e2n+h] = Var[en+h] = Var[yn+h|y1, . . . , yn]. (2.5)
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In practice, p(y1, . . . , yn) depends on unknown parameters and is actually p(y1, . . . , yn|ψ),
where ψ is the parameter vector. Effects of unknown parameters will be discussed in Chapter
4.
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Chapter 3

Time series models for continuous
and count data

3.1 Autoregressive integrated moving average models

The unified modeling approach of ARIMA processes via a so called Box–Jenkins approach
(Box and Jenkins, 1970) made them enormously popular in the 1970s. In the Box–Jenkins
approach, after choosing the appropriate member of the class of ARIMA models based on the
autocorrelation and partial autocorrelation functions (perhaps together with some information
criteria such as AIC), the model parameters are estimated, and then diagnostics checks based
on the model residuals are performed. If the model seems inadequate, alternative members of
ARIMA models are tested until the forecaster is satisfied with the final model. The forecasts
based on the final model are then computed using conditional expectations and variances
given by the weights relating to the infinite-order moving average process presentation of the
model, with the implicit assumption that the chosen model and its parameters are correct
(Box and Jenkins, 1970). ARIMA models can be extended to handle seasonal patterns and
exogenous variables, as well as multivariate series, making the ARIMA models applicable to
the broad range of forecasting problems.

The univariate ARIMA(p,d,q) model without seasonal or exogenous variables can be writ-
ten as

y∗t = φ1y
∗
t−1 + . . .+ φpy

∗
t−p + ξt + θ1ξt−1 + . . .+ θqξt−q, (3.1)

where y∗t = ∆dyt with ∆ being a difference operator, and ξt ∼ N(0, σ2). Here p is the order of
autoregressive part, d is the number of differencing and q is the order of the moving average
part.

Although commonly used, even as a black-box approach, the Box–Jenkins modeling ap-
proach is not without problems. Real life time series are often non-stationary, and differencing
possibly with transformations is needed, which affects the subsequent analysis. Choosing the
correct order for autoregressive and moving average processes can also be a difficult task,
and often there are multiple equally good candidate models. Harvey (1989, Section 2.6.4),
Durbin (2000) and Chatfield (2004, Sections 5.2.5 and 5.4) discuss the practical problems re-
garding the ARIMA modeling, the main message perhaps being that considerable statistical
experience is needed when using ARIMA models.

The point predictions and variances of the prediction errors can be obtained using the
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model definition (3.1) and the so called ψ-weights (Box and Jenkins, 1970, Chapter 5) of the
infinite moving average process representation of (3.1). However, the forecasts, as well as the
log-likelihood of the model, can also be efficiently obtained using the state space approach
with the Kalman filter recursions (Box and Jenkins, 1970, Chapter 5). This approach also
allows missing values in time series. The state space models and the Kalman filter will be
discussed in the next Section.

3.2 Linear Gaussian state space models

The linear Gaussian state space model can be written as

yt = Ztαt + εt, (observation equation)

αt+1 = Ttαt +Rtηt, (state equation)
(3.2)

where εt ∼ N(0, Ht), ηt ∼ N(0, Qt) and α1 ∼ N(a1, P1) independently of each other. Here
the vector yt contains the observations at time t, whereas αt is the vector of the latent state
process at time t. The system matrices Zt, Tt, and Rt, together with the covariance matrices
Ht and Qt depend on the particular model definition, and often some of these matrices contain
unknown (hyper)parameters ψ which need to be estimated. If a particular matrix such as Zt
does not depend on t, it is said to be time-invariant, i.e., Zt = Z for all t. The prior state
distribution N(a1, P1) can be informative or (partially) non-informative, in which case P1 can
be decomposed to P∗ + κP∞ with κ → ∞. Here P∗ corresponds to the (possibly weakly)
informative part of the initial state distribution, and P∞ is a diagonal matrix with ones
corresponding to the diffuse elements of the state vector and zeros elsewhere. See Koopman
(1997) and Koopman and Durbin (2003) for details of this exact diffuse initialization.

Hyndman et al. (2008) advocates the use of the so called innovations representation of (3.2)
where the disturbances of observation and state equations are perfectly correlated and not
perfectly independent like in (3.2). This has some computational and other benefits especially
in the case of exponential smoothing (Hyndman et al., 2008; Chatfield et al., 2001). But the
general form of (3.2) also contains the special case of perfectly correlated ε and η, as the
disturbances ε can be straightforwardly augmented to states α. Obviously other correlation
structures than the perfect correlation are now also possible.

The ARIMA(p,d,q) model with stationary initial distribution for differenced series with
r = max(p, q + 1) can be written as a state space model by defining

Z ′ =


1d+1

0
...
0

 , H = 0, T =


Ud 1′d 0 · · · 0
0 φ1 1 0
...

. . .
... φr−1 0 1
0 φr 0 · · · 0

 , R =


0d
1
θ1
...

θr−1

 ,
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αt =



yt−1
...

∆d−1yt−1
y∗t

φ2y
∗
t−1 + . . .+ φry

∗
t−r+1 + θ1ηt + . . .+ θr−1ηt−r+2

...
φry
∗
t−1 + θr−1ηt


, Q = σ2,

a1 =

 0
...
0

 , P∗,1 =

(
0 0
0 Sr

)
, P∞,1 =

(
Id 0
0 0

)
, ηt = ξt+1,

where φp+1 = . . . = φr = θq+1 = . . . = θr−1 = 0, 1d+1 is a 1 × (d + 1) vector of ones, Ud is
d× d upper triangular matrix of ones and Sr is the covariance matrix of stationary elements
of α1. The elements of the initial state vector α1, which correspond to the differenced values
y0, . . . ,∆

d−1y0, are treated as diffuse. The covariance matrix Sr can be computed by solving
the linear equation (I − T ⊗ T )vec(Sr) = vec(RR′).

The state space representation of stationary ARMA process (d = 0) was first given in
Harvey (1981), which has been subsequently used by many others, including Chib and Green-
berg (1994) in a Bayesian framework. Durbin and Koopman (2012, p.137–139) generalized
the formulation for non-stationary case.

Many other models, such as structural time series (Harvey, 1989), linear mixed models
(Sallas and Harville, 1981; Tsimikas and Ledolter, 1997), and exponential smoothing methods
(Hyndman et al., 2008), can be formulated as a state space model by carefully defining the
system matrices of (3.2), and different kinds of models can also be combined straightforwardly.
For example the ARIMA model and the linear regression model can be combined by adding
regression coefficients into the state vector and explanatory variables into Zt. Using diffuse
initialization for the regression coefficients, the uncertainty corresponding their estimation is
automatically accounted for.

3.2.1 Kalman filter and smoother

The main algorithms for the inference of Gaussian state space models are the Kalman filtering
and smoothing recursions. From the Kalman filtering algorithm we obtain the one-step-ahead
predictions and the prediction errors

at+1 = E(αt+1|yt, . . . , y1),
vt = yt − E(yt|yt−1, . . . , y1),

(3.3)

and their covariance matrices

Pt+1 = Var(αt+1|yt, . . . , y1),
Ft = Var(vt).

(3.4)
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Complete recursive formulas for the Kalman filtering can be written as follows.

vt = yt − Ztat
Ft = ZtPtZ

′
t +Ht

Kt = PtZ
′
t

at+1 = Tt(at +KtF
−1
t vt)

Pt+1 = Tt(Pt −KtF
−1
t K ′t)T

′
t +RtQtRt,

(3.5)

where Kt = Cov(at, yt| . . .). The derivation of these formulas can be found, for example, in
Durbin and Koopman (2012, Section 4.3.1), who show that these results are also valid without
the normality assumption, as the at+1 is the minimum variance linear unbiased estimate of
αt+1 given yt, . . . , y1. The same at+1 is also the minimum variance linear posterior mean
estimate. Therefore, given the hyperparameters ψ, the resulting predictive distributions are
Bayesian posterior distributions given the prior distribution N(a1, P1).

Using the results of the Kalman filtering, we establish the state smoothing equations
(Durbin and Koopman, 2012, Section 4.4)

rt−1 = Z ′tF
−1
t vt + L′trt

Nt−1 = Z ′tF
−1
t Zt + L′tNtLt

Lt = Tt − TtKtF
−1
t Z ′t

α̂t = at + Ptrt

Vt = Pt − PtNtPt.

(3.6)

The results from the Kalman filtering are used for extrapolation, whereas the smoothing
results can be used for interpolation. In both cases the unknown future and past values can be
set as missing values. The missing values are automatically handled by properly implementing
the Kalman filtering and smoothing algorithms. Assume that we wish to predict the future
values yn+1, . . . yn+h given the observations up to time n. This is achieved by setting Zt = 0 in
the Kalman filter recursions for t = n+ 1, . . . , n+h, which together with the model definition
(3.2) give

an+j = Tn+j−1an+j−1

Pn+j = Tn+j−1Pn+j−1T
′
n+j−1 +Rn+j−1Qn+j−1Rn+j−1

E[yn+j ] = Zn+jan+j

Var[yn+j ] = Zn+jPn+jZ
′
n+j +Hn+j ,

(3.7)

for j = 1, . . . , h (Durbin and Koopman, 2012, Sections 4.10 and 4.11). For the interpolation
problem, the same adjustment is made also for the smoothing algorithm at times t = m +
1, . . . ,m+ h, giving

rm+j = T ′m+j+1rm+j+1

Nm+j = T ′m+j+1Nm+j+1Tm+j+1

α̂m+j = am+j+1 + Pm+j+1rm+j+1

Vm+j = Pm+j+1 − Pm+j+1Nm+j+1Pm+j+1

E[ym+j ] = Zm+j+1α̂m+j+1

Var[ym+j ] = Zm+j+1Vm+j+1Z
′
m+j+1 +Hm+j+1,

(3.8)
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for j = 1, . . . , h (Durbin and Koopman, 2012, Section 4.10).
The log-likelihood of an arbitrary model of form (3.2) can be obtained directly from the

one-step-ahead prediction errors and their variances by

logL = constant− 1

2

n∑
t=1

(log |Ft|+ v′tF
−1
t vt).

In the case of a (partly) diffuse initial state distribution, adjustments for the filtering and
smoothing recursions, as well as and log-likelihood computation are needed, see, e.g., Durbin
and Koopman (2012, Chapter 5).

3.3 Exponential family state space models

State space models can also be extended to non-Gaussian cases. An important special case
are exponential family state space models, where the state equation retains its linear Gaussian
form, but the observation equation has the general form

p(yt|θt) = p(yt|Ztαt),

where θt = Ztαt is the signal and p(yt|θt) is the observational density. The signal θt is the linear
predictor which is connected to the expected value E[yt] = µt via a link function l(µt) = θt. In
the R package KFAS presented in Article IV, possible choices for observational distributions
are Gaussian, Poisson, binomial, negative binomial and gamma distributions. Note that it is
possible to define a multivariate model where each series has different distribution.

Denote α = (α>1 , . . . , α
>
n )>, y = (y>1 , . . . , y

>
n )> and θ = (θ>1 , . . . , θ

>
n )>. In order to make

inferences of the exponential family models, we first find a Gaussian model which has the
same conditional posterior mode as p(θ|y) (Durbin and Koopman, 2000). This is done using
an iterative process with Laplace approximation of p(θ|y), where the updated estimates for
θt are computed via the Kalman filtering and smoothing from the approximating Gaussian
model. In the approximating Gaussian model the observation equation is replaced by

ỹt = Ztαt + εt, εt ∼ N(0, Ht),

where the pseudo-observations ỹt variances Ht are based on the first and second derivatives
of log p(yt|θt) with respect to θt (Durbin and Koopman, 2000).

Final estimates θ̂t correspond to the posterior mode of p(θ|y). In the Gaussian case the
mode is also the mean. In the other cases supported by KFAS the difference between the mode
and the mean is often negligible, and even the conditional variance estimate obtained from the
Kalman smoother using the approximating model provides a relatively good approximation
of the true conditional variance. This method is closely related to the iterative reweighted
least squares (IRLS) method used in a generalized linear model framework (McCullagh and
Nelder, 1989). Consequently, we can write a generalized linear model in a state space form,
and the Kalman filter algorithm for the corresponding approximating Gaussian model gives
results which are identical to the IRLS based analysis.

Instead of the linear predictor θ, we are usually more interested in µt. As the link function
is non-linear, the direct transformation µ̂t = l−1(θ̂t) introduces some bias. To solve this
problem, a simulation approach based on importance sampling can be used, which allows
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us to correct these approximation errors (Durbin and Koopman, 2012, Chapter 11). With
the importance sampling technique we can also compute the log-likelihood and the smoothed
estimates for f(α), where f is an arbitrary function of states.

In the importance sampling scheme, we first find the approximating Gaussian model,
simulate the states αi from this Gaussian model and then compute the corresponding weights

wi =
p(y|αi)
g(y|αi)

,

where p(y|αi) represents the conditional non-Gaussian density of the original observations
and g(y|αi) is the conditional Gaussian density of the pseudo-observations ỹ. These weights
are then used for computing

E(f(α)|y) =

∑N
i=1 f(αi)wi∑N

i=1wi
.

The log-likelihood function for the non-Gaussian model can be written as (Durbin and
Koopman, 2012, p. 272)

logL(y) = log

∫
p(α, y)dα

= logLg(y) + logEg

[
p(y|θ)
g(y|θ)

]
,

where Lg(y) is the log-likelihood of the Gaussian approximating model and the expectation
is taken with respect to the Gaussian density g(α|y). The expectation can be approximated
by importance sampling as

logEg

[
p(y|θ)
g(y|θ)

]
≈ log

1

N

N∑
i=1

wi, (3.9)

or without any simulations as

logEg

[
p(y|θ)
g(y|θ)

]
≈ log

[
p(y|θ̂)
g(y|θ̂)

]
, (3.10)

which is often sufficient at least for preliminary analysis.
For non-Gaussian exponential family models in the context of generalized linear models, a

typical way of obtaining confidence intervals of the forecast is to compute confidence intervals
in the scale of a linear predictor and then transform to the scale of observations, and the issue
of prediction intervals is often dismissed. For obtaining proper prediction intervals in the case
of non-Gaussian state space models, the following algorithm is used in KFAS.

(1) Draw N replicates of linear predictor θ from the approximating Gaussian density g(θ|y)
with importance weights p(y|θ)/g(y|θ). Denote this sample θ̃1, . . . , θ̃N as θ̃

(2) Using the importance weights as sampling probabilities, draw a sample of size N with
replacement from θ̃. We know have N independent draws from p(θ|y).

14



(3) For each θ̃i sampled in step (2), take a random sample of yi from the observational
distribution p(y|θi).

(4) Compute the prediction intervals as empirical quantiles from y1, . . . , yN .

Assuming all the model parameters are known, these intervals coincide with the one ob-
tained from Bayesian analysis using the same priors for states.

15



Chapter 4

Unknown parameters of the model

The unknown model parameters ψ are commonly estimated by the maximum likelihood
method. In a traditional plug-in solution it is then assumed that the maximum likelihood
estimate ψ̂ = ψ, i.e., it is assumed that the model parameters are known exactly. Using the
plug-in approach, we disregard the uncertainties relating to our estimate ψ̂. Nevertheless, this
is often viewed as an acceptable approach on the basis that given the unbiased and consistent
estimation method, the parameter uncertainty diminishes as the sample size increases. Still,
in many applications the length of the time series can be short, say 50, and in those cases the
parameter uncertainty can have significant effects, for example, when computing prediction
intervals. This is especially true when combined with other sources of uncertainty, such as
structural breaks (Clements and Hendry, 1999). It is also not uncommon to have biased ψ̂,
especially for short series or if the model selection is based on the same data as the parameter
estimation (Phillips, 1979; Chatfield, 1995, 2000). Using the same series for the parameter
estimation and forecasting can also produce non-Gaussian predictive distributions, even for
Gaussian models (Phillips, 1979; Chatfield, 2000).

Although often disregarded, it seems that parameter uncertainty might be the most often
tackled problem relating to too narrow prediction intervals. A large number of solutions are
presented in the literature, see, for example, references in Article I. Many solutions focus
on finding more accurate estimates for the prediction mean square error, which can then
be plugged into Equation 2.4 in place of E[e2n+h], still assuming normality of errors and a
symmetrical prediction interval around the point forecast. Another option is to obtain the
prediction intervals as quantiles of simulated future observations.

In some cases the forecasting method automatically takes into account the uncertainties
of parameter estimation. For example, analytical formulas for prediction intervals in linear
regression take account of the uncertainty of estimating the model parameters, given the model
is correct. In the time series context the inference is often done assuming both the model and
its parameters are correct, as deriving similar analytical expressions for the prediction intervals
is not as straightforward. These derivations are usually based on large sample properties of
parameters, and some order of approximation is used. For example, Vidoni (2009) derives
expressions for he prediction intervals for autoregressive models which take account of the
parameter estimation uncertainty, but even for a simple first order autoregressive model the
resulting formulas are rather complicated.
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4.1 Bootstrap approaches

Instead of analytical formulas, bootstrap methods can be used. Although rather straight-
forward with serially independent data, bootstrapping of time series is somewhat more com-
plicated, especially in a non-stationary case. In a general state space modeling framework,
Rodriguez and Ruiz (2009, 2012) and Pfeffermann and Tiller (2005) present several bootstrap
schemes, named as parametric and nonparametric bootstrap. In the parametric bootstrap,
new observations are obtained by simulating the disturbance terms of the model, and thus rely
heavily on the distributional and structural assumptions of the selected model. The classical
nonparametric bootstrap is based on resampling the observations, but as we are dealing with
dependent observations, the nonparametric versions in a time series context are based on re-
sampling the standardized residuals obtained from the Kalman filter, which are then used to
construct new observations. Therefore even these non-parametric versions are heavily based
on the assumption that our model is correct, even though they do not make assumptions about
the distribution of the residuals. In a linear mixed models framework, Morris (2002) shows
how this type of semiparametric bootstrap is inconsistent, resulting in the underestimation of
the variation in the data, especially in small samples. Due to the similarity of mixed models
and state space models (Sallas and Harville, 1981; Tsimikas and Ledolter, 1997), these results
are likely to hold also in the case of time series models where the resampling of residuals is
used.

Using a simple example, Andrews (2000) shows that bootstrapping is not consistent when
some of the parameters lie on the boundaries of the parameter space. This is a common issue
in time series models. For example, some variances in structural time series can be estimated
as zero, or the estimated autoregressive parameters are very close to the boundaries stationary
region. The complex likelihood functions can also pose other problems in applying bootstrap
methods to time series. The likelihood function often contains multiple maxima, and thus
the estimation routine can be sensitive to the initial values. As the parameter estimation
procedure is repeated for all bootstrap samples, one must be sure that the proper maximum
is found for each replication. So, in theory, one should try several initial values for each
bootstrap series, which increases the computational burden.

One of the early methods for dealing with parameter uncertainty in the context of pre-
diction intervals for autoregressive models is given by Thombs and Schucany (1990). Their
method is based on a nonparametric bootstrap. Thombs and Schucany (1990) claim that
in terms of coverage probabilities, there was no distinction between models which had pa-
rameters near the boundaries of stationary regions and those which were well within the
stationary region. This comparison is not shown, and it is unclear if they are referring only to
their method, or to the standard plug-in method as well. The effect of stationary constraints
for the standard plug-in method is illustrated in Articles I and II, where it is shown that,
for example, in the case of the first order autoregressive process, the coverage probabilities
depend on sample size, forecast horizon, as well as the value of the autoregressive coefficient.

Overall, the general applicability of bootstrap based solutions in the time series context
seem to be somewhat questionable due to possible consistency issues and a heavy computa-
tional burden due to the repeated estimation of model parameters.
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4.2 Bayesian approaches

A Bayesian approach offers yet another way of dealing with parameter uncertainty. After
specifying prior distributions for the unknown parameters, a predictive distribution of the
future observation can be obtained, which incorporates all the prior and posterior informa-
tion into our predictions. Analytical formulas for posterior predictive distribution in time
series context are rarely available, so one must rely on simulation techniques. Two common
approaches are importance sampling (Ripley, 1987) and Markov chain Monte Carlo (MCMC)
(see Gelman et al. (2013) for extensive introduction to MCMC and Bayesian data analysis in
general). Perhaps the first implementations of MCMC sampling approach for Bayesian time
series analysis are presented in Chib and Greenberg (1994) and Frühwirth-Schnatter (1994).
Using the state space formulation of ARMA models as in Harvey (1981), Chib and Greenberg
(1994) present a Bayesian approach for regression models with stationary ARMA errors fo-
cusing on parameter estimation (instead of prediction), whereas Frühwirth-Schnatter (1994)
considers a linear Gaussian state space models with unknown variance parameters (again fo-
cusing more on parameter estimation). Durbin and Koopman (2000) present an importance
sampling scheme for non-Gaussian state space modeling. It should be noted that although
straightforward in principle, both the MCMC and the importance sampling methods are com-
putationally intensive and considerable care is needed in analysing the results. For example in
MCMC methods, checks on converge and mixing of Markov chains need to be performed, and
the non-degeneracy of importance weights needs to be checked in the importance sampling
approach.

The choice of prior distributions for parameters in Bayesian approach is difficult in some
situations. For example, in structural time series it is possible that some of the disturbances
have zero variance (so that for example, slope term is estimated as a constant), so prior
distributions should allow this. Gelman (2006) compares prior distributions for variances
of hierarchical models, and shows that commonly used noninformative priors based on the
inverse-Gamma distribution are actually not noninformative if near-zero variances are possible
in the light of the data. In these cases the inverse-Gamma prior is very sensitive to the choice
of hyperparameters of the distribution. Similar problems are also expected in the case of the
inverse-Wishart prior for general covariance matrices (Gelman, 2006).

In the Bayesian paradigm the coverage probabilities obtained from the Bayesian analysis
are exactly correct if one accepts the chosen prior distribution, but the frequentist cover-
age probabilities defined as average coverage probabilities over the future realizations do not
necessary coincide with the chosen nominal level. Article I presents a transparent way of
computing accurate (in the frequentist sense) prediction intervals for Gaussian autoregressive
models. The method is based on a Bayesian framework but focuses on frequentist cover-
age probabilities of the obtained intervals. The one-step-ahead prediction interval based on
uniform priors for autoregressive parameters and log σ can be derived analytically, whereas
h-step-ahead intervals can be obtained by a simple importance sampling scheme. With im-
portance sampling, other prior distributions can also be entertained. The method produces
considerably better prediction intervals than the plug-in method, especially when the esti-
mated autoregressive paramaters are well within the stationary region. Article II generalizes
the method to ARIMA models with exogenous variables. The extension of the method pre-
sented in Articles I and II to general Gaussian state space models is also straightforward and
is presented in the next Section.
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4.2.1 Bayesian prediction intervals via importance sampling

The Bayesian predictive density of yn+h for Gaussian state space models is defined as the
conditional density of yn+h given Yn = (y1, . . . , yn). It is obtained by integration as

p(yn+h|Yn) =

∫
p(yn+h|ψ, Yn) p(ψ, |Yn) dψ, (4.1)

where p(ψ, |Yn) is the posterior density of hyperparameters ψ. As the disturbances ε and η
are assumed to be Gaussian, the density p(yn+h|ψ, Yn) is also Gaussian. Then the conditional
probability that the future value yn+h is smaller than some b is given by

P (yn+h ≤ b|Yn) = E

[
Φ

(
b− E(yn+h|Yn, ψ)√

Var(yn+h|Yn, ψ)

)∣∣∣∣∣ Yn
]
, (4.2)

where E(·|Yn) refers to expectation with respect to the posterior distribution of ψ, and Φ
is the cumulative distribution function of the standard normal distribution. Thus the pre-
diction interval with nominal coverage probability of (1 − 2α) could be found by solving
P (yn+h ≤ blower|Yn) = α and P (yn+h ≤ bupper|Yn) = 1 − α with respect to bα and b1−α.
In general, these cannot be solved analytically but can be efficiently approximated via im-
portance sampling. The Gaussian large sample approximation density g(ψi|Yn) is used as
an approximating posterior for parameters ψ, which works relatively well when parameter
estimates are well within the boundaries of the parameter space. There are no general re-
strictions to the prior density p(ψ), but it is often desirable to constraint the possible values
of simulated ψ (for example to positive values), and this can be done by specifying the prior
accordingly. The algorithm for computing the Bayesian prediction intervals is as follows.

(1) Draw ψi from N(ψ̂, Σ̂), where ψ̂ is the maximum likelihood estimate and Σ̂ is its ap-
proximate large sample covariance matrix.

(2) Run the Kalman filter with ψi to obtain p(Yn|ψi), the likelihood of the model, as well
as E(yn+h|Yn, ψi) and Var(yn+h|Yn, ψi).

(3) Compute the weight

wi =
p(ψi)p(Yn|ψi)
g(ψi|Yn)

.

(4) Repeat (1)–(3) independently N times.

(5) Compute the weighted average

P̄N (b) =

∑N
i=1wiΦ

(
b−E(yn+h|Yn,ψi)√
Var(yn+h|Yn,ψi)

)
∑N

i=1wi

(6) Find such values blower and bupper that P̄N (blower) = α and P̄N (bupper) = 1− α.

Here only the model parameters are simulated, whereas in the traditional MCMC sampling
approach the future observations and hidden states are simulated as well. Thus we need only
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the Kalman filtering, compared to MCMC approaches such as one given in Chib and Greenberg
(1994), where the smoothing algorithm is also needed in order to simulate the states given
the data. Also the prediction interval is obtained by solving numerically two simple equations
instead of empirical quantiles of simulated future observations. Thus the proposed method
should be computationally more efficient. Standard errors of prediction limits can also be
obtained by a straightforward extension of results in Article I.

An alternative importance sampling method could be obtained by computing weighted
averages of forecasts and forecast variances, and then these could be used in the traditional
prediction interval formula (2.4), assuming the symmetry of the prediction interval. This
assumption is not used in the proposed algorithm. Simulation experiments seem to suggest
that this root-finding approach gives somewhat more accurate results than the method using
the formula (2.4), at least in the case of structural time series and ARIMA models.
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Chapter 5

Additional problems in prediction

5.1 Data transformations

Modeling is often done using transformed series, for example, in order to make model com-
ponents additive or to make the series more normally distributed. If the transformation is
non-linear like the logarithmic transformation, back-transforming the point forecasts of the
transformed series to the original scale induces some bias. In the case of the logarithms, the
bias depends on the forecast horizon and the variance of the forecasted series (Harvey, 1989).
In general, back-transforming the forecasted mean produces a forecast of the median in the
original scale (Chatfield, 1993). For prediction intervals, the interval on the transformed scale
and the original scale have the same nominal coverage probabilities, but if the interval for the
transformed variable was symmetric, the back-transformed interval is asymmetric (Chatfield,
1993).

The simulation smoothing algorithms (for example, Durbin and Koopman (2002)) can
be used to simulate states (or disturbances) of the state space model from their conditional
distributions p(αt|y1, . . . , yn). These simulated samples can then be efficiently used to com-
pute arbitrary estimates of interest, such as point and interval forecasts of observations in
a non-transformed scale. Simulated series also exhibit the correct (as defined by the model)
dependence structure between different time points, and thus they can be also used for com-
puting, for example, non-linear aggregated estimates, such as expected yearly totals and their
standard errors from log-transformed time series. This approach was used in Article III for
estimating yearly totals for nutrient fluxes in the presence of missing data when the modeling
was done in a logarithmic scale.

As noted in Section 3.2.1, forecasting future observations with state space models is done
by adding missing observations to the end of our series, and the Kalman filter is run using
this extended model. If the forecast horizon is one, we can simulate the observation from its
marginal density p(yn+1|y1, . . . , yn) obtained from the Kalman filter. But for longer horizons,
simulating from marginal distributions does not yield proper paths of future observations as
the time dependency of the future values is lost. Thus even in this case one would typically
run a simulation smoothing algorithm in order to get simulated series of future observations
in the original scale. In addition to the simulation smoother of Durbin and Koopman (2002),
an R package KFAS presented in Article IV contains a method for simulating states (and
observations if one augments ε to the state vector) from consecutive predictive distributions
p(αt|y1, . . . , yt−1), t = 1, . . . , n in a way that the correct time dependency of states is preserved.
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This is achieved by omitting the smoothing phase of the algorithm of Durbin and Koopman
(2002) (i.e., only filtering is performed). Thus, this simulation filtering method can be used to
obtain predictive distributions of the form p(yn+1, . . . , yn+h|y1, . . . , yn) in a computationally
somewhat more efficient way than the simulation smoothers for long forecasting horizons.

5.2 Model uncertainty

As is the case with model parameters, the model itself is rarely known a priori. Whatever
method we use for model selection, we are always incorporating some degree of uncertainty
to our predictions, as even the best fitting model is just an approximation of the truth.

One way of dealing with model uncertainty is to define multiple models, which are all
used in subsequent analysis, instead of just choosing the best fitting model. Although the
final results might not be as interpretable as the forecasts based on a single model, this might
be a non-issue if the goal is to produce accurate forecasts in a black-box manner. In Bayesian
model averaging (BMA) (Draper, 1995; Hoeting et al., 1999) multiple models with chosen prior
probabilities are combined, and thus the final forecasts are weighted averages of forecasts from
all models considered. BMA has been successfully used in many fields of statistics, and there
is easy-to-use software available for certain types of models, such as BMA package (Raftery
et al., 2014) for generalized linear models and survival analysis. Yet there seems to be no
standard way of using BMA for time series modeling. The computation of Bayesian factors
used in computing the predictive distributions is usually not analytically tractable, although
several approximations are available, at least for certain types of models and priors (see, e.g.,
Raftery (1995) and Hoeting et al. (1999)). As a comment to Hoeting et al. (1999), Clyde
(1999) states that specifying the prior distributions on both the parameters and the model
space is perhaps the most difficult aspect of BMA, and “In many problems, the subjective
elicitation of prior hyperparameters is extremely difficult”. Also, there are multiple ways
to choose non-informative priors for parameters, which can have unintended influences on
posterior model probabilities (Clyde, 1999; Gelman, 2006). Clyde (1999), Draper (1999) and
George (1999) also warn about the idea of equally weighted models a priori, which can lead to
surprising results if the chosen set of models contains multiple models which give practically
identical forecasts. This results in a higher prior probability for this particular model set at
the expense of other models, even though one actually wants to use non-informative model
priors. The cited writers deal with regression analysis, but the same situation arises also in
a time series context, where multiple seemingly unrelated models can produce very similar
forecasts.

There are also some non-Bayesian model combining methods. One can think of multiple
ways of weighting the forecasts from different models, and thus the problem of model selection
is essentially replaced with the choice of the weighting scheme between competing models (one
could perhaps argue that the same is also true for the Bayesian model averaging, where the
choice of the model is replaced with the choice of priors and a set of models). Burnham
and Anderson (2002) suggest using Akaike weights (computed from AIC or AICc) as model
averaging weights in linear regression settings. Chatfield (1996) suggests that even a simple
average of forecasts can perform reasonably well.

If the goal is to find a single model for prediction, parsimonious and flexible models should
be preferred over complex models (especially if the model selection is based on data and not
exogenous information). As the model complexity increases, the danger of overfitting and
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model misspecification increases. Complex models can also be less robust to structural breaks.
Chatfield (2004) argues that models with explanatory variables can often produce a better
in-sample fit than models without external information, but are more easily misspecified (for
example, variables which have no out-of-sample predictive power are erroneously included),
and are more sensitive to model assumptions. Armstrong (2001) states that complex models
should only be used if they are well supported by theory, and we have a large amount of
high quality data available from the past. As an example, Armstrong (2001) reviewed 32
selected studies and found that only in five cases the more complex forecasting method gave
more accurate results than exponential smoothing method. Also in general, the accuracy of
out-of-sample forecasts is likely to be worse than that of in-sample forecasts. Therefore, the
performance of the selected model should be tested with the data which was not used in the
model selection and parameter estimation.

A time series cross-validation (Hyndman and Athanasopoulos, 2014) can be used to assess
the accuracy of forecasts. In the time series cross-validation, observations are added to the
training set sequentially starting with some initial series. For example, only observations up
to time t are used in forecasting the observation t+ h (where h is the forecast horizon), and
the mean square error or other measure of accuracy is computed. Then the model is estimated
again using the training set augmented with the observation yt+1, and yt+1+h is forecasted. A
similar method can also be used for assessing the sensitivity of the model selection procedure
and the parameter estimation.

In Article III the focus was on interpolation and aggregated estimates. As part of the
model validation, a thinning experiment was used where parts of the data were excluded from
the parameter estimation, and the aggregated estimate of the excluded data was computed.
The exclusion was done randomly and not sequentially, as the interest was in interpolation
as opposed to extrapolation.
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Summary of original publications

Article I considers the effects of parameter estimation uncertainty in the prediction inter-
val computations of autoregressive models. An importance sampling approach based on a
Bayesian framework is introduced, which takes account of the uncertainty of parameter esti-
mates. Thus the method produces prediction intervals which are closer to the nominal level
(in the frequentist sense) than the standard plug-in approach, where this uncertainty is ig-
nored. The effects of different weakly informative priors are compared. Because the method
seems to work at least as well as the plug-in method, it could be used as a default method
for the computation of prediction intervals for autoregressive models. Compared to MCMC
based methods, the suggested method is more straightforward to implement and understand,
and an estimate for the error due to simulation can also be easily obtained. The method is
also computationally more efficient, as there is no need to sample future observations but only
model parameters. Method for checking the average coverage probabilities is also presented,
which can be used to assess the accuracy of the chosen prior.

Article II extends the theory of Article I to ARMA models with explanatory variables by
defining the model in a Gaussian state space form, and several prior distributions are again
compared. As in Article I, the method performs significantly better than the standard plug-
in method. The results suggest that simple uniform prior with stationarity and invertibility
constraints is a good default prior for these types of models.

Article III considers the estimation of yearly nutrient fluxes in four Finnish rivers in southern
Finland. Due to the sparse recordings of nutrient concentrations, missing daily data need
to be interpolated before aggregated estimates of yearly fluxes can be made. A logarithmic
transformation is also used in order to linearize the relationship between concentrations and
water flow which induces bias. A state space modeling approach is used for simulating missing
observations in the original scale, which are then used to produce yearly point and interval
estimates for phosphorus and nitrogen fluxes. Simulation experiments are used to examine
the effects of the model uncertainty, violations of normality assumptions, and highly sparse
data. Comparison to ordinary regression model is also considered, showing how using an
unrealistic model produces seemingly more accurate estimates and leads to completely wrong
and unrealistic inference regarding the effects of yearly sample sizes.

Article IV introduces the R package KFAS for exponential family state space modeling. KFAS
supports state space models with the observations from Gaussian, Poisson, binomial, negative
binomial and gamma distributions. After introducing the basic theory behind the state space
modeling in Gaussian and non-Gaussian cases, examples of different types of models in a state
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space form is provided. An application to alcohol related deaths in Finland is used to illustrate
the functionality of the package, and comparison to alternative Bayesian modeling framework
using INLA package is presented. Although commercial software with similar features exists,
KFAS is a unique R package with its support for multivariate exponential family state space
models, with optional use of exact diffuse initialization and importance sampling approaches.
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Abstract

It is well known that the so called plug-in prediction intervals for
autoregressive processes, with Gaussian disturbances, are too narrow,
i.e. the coverage probabilities fall below the nominal ones. However,
simulation experiments show that the formulas borrowed from the
ordinary linear regression theory yield one-step prediction intervals,
which have coverage probabilities very close to what is claimed. From
a Bayesian point of view the resulting intervals are posterior predic-
tive intervals when uniform priors are assumed for both autoregressive
coefficients and logarithm of the disturbance variance. This finding
opens the path how to treat multi-step prediction intervals which are
obtained easily by simulation either directly from the posterior dis-
tribution or using importance sampling. A notable improvement is
gained in frequentist coverage probabilities. An application of the
method to forecasting the annual gross domestic product growth in
the United Kingdom and Spain is given for the period 2002–2011 using
the estimation period 1962–2001.
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1 Introduction

A traditional approach to time series forecasting usually involves a selection
of a family of suitable models, e.g. the class of autoregressive integrated mov-
ing average (ARIMA) models. Then using different model selection criteria
within the family based of autocorrelation and partial autocorrelation func-
tions together with formal criteria such as Akaike or Bayesian information
criterion, the analyst chooses a suitable “best fitting” representative from the
model family, estimates the parameters, makes diagnostic checks, and if he is
happy with his choice computes predictions and the prediction intervals. The
prediction intervals are usually computed as if the chosen model were correct
and the parameters completely known, with no reference to the process of
model selection. Chatfield (1993, 1996) has strongly criticized the omission
of model uncertainty in forecasting. Clements and Hendry (1999, sections
1.3.8 and 2.2) introduce a detailed taxonomy of forecast errors, and stress
the effects of the structural breaks in time series forecasting. As a remedy
they propose robustifying forecasts for example by differencing and intercept
corrections.

It is the common view of references given in the previous paragraph that
the parameter uncertainty is often a minor source of prediction errors in
practical applications when the sample size is large enough. Clements and
Hendry (1999, p. 128) remark that although the parameter uncertainty is
unlikely to lead to serious forecast failure it may have larger effect in conjunc-
tion with model misspecification. Nevertheless, we believe that it is justified
to handle also this part of the model uncertainty. In textbooks it is a com-
mon topic, see for example Harvey (1993, p. 58-59). Here we show how to
make corrections in a fairly simple way under autoregressive (AR) models.

Several proposals have been made for improving prediction intervals when
parameters are estimated. One group of solutions focus on finding a more
accurate prediction mean squared error in the presence of estimation; see, for
example Phillips (1979), Fuller and Hasza (1981), Ansley and Kohn (1986),
Quenneville and Singh (2000), and Pfeffermann and Tiller (2005). Both
analytic and bootstrap approaches are tried.

Barndorff-Nielsen and Cox (1996) give general results for prediction in-
tervals in the presence of estimated parameters. These results are further
developed for time series models by Vidoni (2004, 2009). Unfortunately
fairly complicated expressions appear already in rather simple models. Boot-
strap solutions are given by several authors; see for example Beran (1990),
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Masarotto (1990), Grigoletto (1998), Kim (2004), Pascual, Romo, and Ruiz
(2004), Clements and Kim (2007), Kabaila and Syuhada (2008), and Ro-
driguez and Ruiz (2009).

Our aim is to find solutions for prediction interval problems using a
Bayesian viewpoint with a requirement of objectivity for our predictions.
Berger (2006) strongly encourages the use of the term “objective Bayes” in
such situations. Operationally “objectivity” in our application means adopt-
ing priors which produce prediction intervals which exhibit approximately
same coverage probabilities in both Bayesian and frequentist sense.

There is a vast literature on matching posterior and frequentist inferences
to some degree of approximation. Methods based on invariance arguments,
on information criteria or divergence measures as well as on asymptotic ex-
pansions are tried. The introduction section of Fraser et al. (2010) gives a
short review on these as well as a list of relevant references to their own works
and others. The starting point of their approach is to replace p value compu-
tations in a sample space with with posterior integration over the parameter
space. Matching the Bayesian and frequentist coverage probabilities of pre-
diction intervals in regression models with independent cases are treated in
Datta and Mukerjee (2003) and Datta and Mukerjee (2004). A common
feature in all these approaches is that often the so called Jeffreys’s prior or
its modification shows up as a solution. As we will see it happens also in
this article. In a recent article of Arellano and Bonhomme (2009), where the
main issue is the bias reduction in panel data models, the authors use a prior
related to Jeffreys’s prior. A predecessor in the bias reduction with the help
of Jeffreys’s prior is given by Firth (1993).

Early examples using the Bayesian approach in autoregressive models are
given by Zellner (1971, p. 188) and Chow (1974). Later Broemeling and Land
(1984) showed, among other things, that using a normal-gamma prior for the
parameters the one-step ahead prediction follows a t distribution (understood
as a location-scale family). They further deduced that all predictions up to
k step ahead have a joint predictive density which consists of the product of
k univariate t densities. Thompson and Miller (1986) propose a simulation
method for computing prediction intervals based on the Bayesian arguments
called “sampling the future”. This differs from our approach. We com-
pute the prediction interval by simulating directly the posterior prediction
probability which is more accurate and considerably less time consuming.
Liu (1994) develops an approximation to their method, and Snyder, Ord,
and Koehler (2001) make an approximate extension of it to ARIMA mod-
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els. They also compare several types of prediction intervals in terms of the
frequentist coverage probabilities.

After the emergence of Markov Chain Monte Carlo simulation the Bayesian
paradigm has gained increasing popularity in time series and econometrics;
see for example Geweke (2005) and Prado and West (2010) and references
therein. A thorough exposition of the Bayesian forecasting is given by Geweke
and Whiteman (2006). Nevertheless, in forecasting under AR model either
direct simulation or importance sampling is fast and sufficient. Based on
independent simulation replicates it also renders rather simple formulas for
assessing the Monte Carlo simulation error.

2 Motivation

Consider an AR(p) process

yt = β0 + β1yt−1 + · · ·+ βpyt−p + εt, t = 1, . . . , n, . . . , (2.1)

where the errors εt are independently drawn from N(0, σ2), and coefficients
βj, j = 0, . . . , p, are arbitrary fixed values. Assume that we have observed
y−p+1, . . . , yn. Write xt = (1, yt−1, . . . , yt−p)

′, and let X be the matrix with
rows x′t, t = 1, . . . , n. Further let Y = (y1, . . . , yn)′ and β = (β0, β1, . . . , βp)

′.
Then the model (2.1) can be written as Y = Xβ+ε. If we condition on the
starting values y′0 = (y−p+1, . . . , y0) we are led to the conditional likelihood

Lc(β, σ) = (2π)−
n
2 σ−n exp

(
− 1

2σ2
(Y −Xβ)′(Y −Xβ)

)
. (2.2)

The conditional maximum likelihood estimates for β coincide with the
least squares estimates

β̂ = (X ′X)−1X ′Y , (2.3)

and the maximum likelihood estimate for σ2, corrected by the degrees of
freedom, is

s2 =
(Y −Xβ̂)′(Y −Xβ̂)

n− p− 1
. (2.4)

The predictive value for yn+1 is x′n+1β̂, and the standard prediction interval
with approximate coverage probability 1− 2α is

x′n+1β̂ ± szα, (2.5)
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where zα is the α quantile of the standard normal distribution. In practice,
the true coverage may be considerably below the nominal value 1− 2α.

Let us suppose for a moment that we have an ordinary regression model
with some truly exogeneous variables. Then using the same notation, X and
xn−1, as before the exact coverage probability is obtained by

x′n+1β̂ ± stα,n−p−1
√

1 + x′n+1(X
′X)−1xn+1, (2.6)

As is well known, the extra factor here compared to (2.5) involving the ex-
ogeneous variable takes into account the estimation error in regression co-
efficients. In addition, a minor correction is done by replacing the normal
quantile with that from Student’s t with n − p − 1 degrees of freedom. Al-
though the assumptions of AR models do not satisfy the assumptions leading
to (2.6), our simulations show that the very same intervals (2.6) have prac-
tically correct coverage probabilities also under the AR models.

Combining the formulas (2.2)–(2.4) with the identity

(Y −Xβ)′(Y −Xβ) = (Y −Xβ̂)′(Y −Xβ̂)

+ (β̂ − β)′(X ′X)(β̂ − β)

the conditional likelihood function (2.2) can be written as

Lc(β, σ) = (2π)−
n
2 σ−n exp

(
−(n− p− 1)s2

2σ2

)
× exp

(
− 1

2σ2
(β̂ − β)′(X ′X)(β̂ − β)

)
. (2.7)

Until now we have had the frequentist approach. But it is also illuminating
to see the prediction interval (2.6) from a Bayesian point of view, where β
and σ are now treated as a random vector and variable. If we multiply the
likelihood Lc(β, σ) by the improper prior p(β, σ) = 1/σ, we find, as is well
known in the ordinary regression, that a posteriori

(n− p− 1)s2

σ2

∣∣∣∣ Y ∼ χ2(n− p− 1),

β |Y , σ ∼ N(β̂, σ2(X ′X)−1). (2.8)

These together lead to the result that the interval (2.6) is a Bayesian pre-
dictive interval with exact coverage probability 1 − 2α. The corresponding
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frequentist coverage probability is, however, only approximate

P

(
yn+1 ∈ x′n+1β̂ ± stα,n−p−1

√
1 + x′n+1(X

′X)−1xn+1

∣∣∣∣β, σ) ≈ 1− 2α.

(2.9)
However, in section 5 we will find that the approximation (2.9) is very

good when the coefficients are well within the stationarity region. The ap-
proximation seems to be worst in the nearly unit root cases. The explanation
is likely to be as follows. If the coefficients are not too close to the boundary
of the stationarity region, the sampling distribution of β̂ is approximately as
in in (2.8) when the roles of β and β̂ are interchanged. On the other hand
this not true in the nearly unit root case. So the question arises what is
“good” prior in AR models in general. It turns out that using a certain mod-
ification of Jeffreys’s prior seems to be preferred to uniform prior in nearly
unit root models. One solution to the nearly unit root problem is provided
by Clements and Hendry (1999, p. 92) who recommend in some cases to
impose a unit root albeit it were not warranted by the unit root test.

At this point it might be interesting to recall the vigorous debate that
broke out in the early 1990’s between Peter Phillips and Christopher Sims
on the value of unit root econometrics as such and its relation to Bayesian
approach in statistics and econometrics, see Sims and Uhlig (1991), Phillips
(1991), Sims (1991) and their references. The unit root inference is not an
issue here. The Bayesian controversy focused on the choice of an appropriate
prior distribution. Nevertheless, we do not want to revive this controversy
here simply because we are not so much interested in inferences on autore-
gressive coefficients themselves but rather in prediction intervals. The role
of the prior in this article is to produce a good weighting scheme for the
predictive distribution.

3 Predictive distributions

3.1 Uniform prior

In this section we develop prediction formulas under the Bayesian paradigm
employing the noninformative uniform prior for (β, log σ), i.e. the prior takes
the form p(β, σ) = 1/σ, for β ∈ Rp+1 and σ > 0. We have already seen
that when k = 1 the predictive distribution is Student’s t. But for k > 1
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the predictive distribution is not known to be any common distribution.
Therefore we have to rely on simulation.

We use a generic notation p(·) for a density. The Bayesian predictive
density of yn+k is defined as the conditional density of yn+k given Y . It is
obtained by integration as

p(yn+k |Y ) =

∫
p(yn+k |β, σ,Y ) p(β, σ |Y ) dβ dσ, (3.1)

where p(β, σ |Y ) is the posterior density of (β, σ). In AR models with nor-
mally distributed errors the density p(yn+k |β, σ,Y ) can be written explicitly.
Recall the prediction formulas given β, σ2,Y (see for example Box et al.
(2008, chap. 5)) and designate ŷn(k) = E(yn+k |Y ,β), k = 0,±1,±2, . . ..
Note that when k ≤ 0 we have ŷn(k) = yn+k. The equation (2.1) immedi-
ately yields recursion for predicted values

ŷn(k) = β0 + β1 ŷn(k − 1) + · · ·+ βp ŷn(k − p), k = 1, 2, . . . .

It is also plain from (2.1) that for some constants ψ1, ψ2, . . . depending on β
we have

yn+k − ŷn(k) = εn+k + ψ1 εn+k−1 + · · ·+ ψk−1 εn+1.

Box et al. (2008) gives recursions for the coefficients ψj as follows

ψj = β1 ψj−1 + · · ·+ βp ψj−p, j ≥ 1, ψ0 = 1, and ψj = 0 for j < 0.

We find ψ1 = β1, ψ2 = β2
1 + β2 and so on. The prediction error variance,

given β, σ2, is then σ2(1 + ψ2
1 + · · ·+ ψ2

k−1) = σ2v2(β).
In the further development it is useful to introduce a more detailed nota-

tion ŷn(k;β) = E(yn+k |Y ,β). Then

yn+k |β, σ2,Y ∼ N(ŷn(k;β), σ2v2k(β)).

Combining this with (3.1) and changing the order of integration we find

P (yn+k ≤ b |Y ) = E

[
Φ

(
b− ŷn(k;β)

σvk(β)

) ∣∣∣∣∣Y
]
, (3.2)

where Φ is the cumulative distribution function of the standard normal dis-
tribution. When k > 1 we cannot do the integration involved analytically.
Nevertheless, a Monte Carlo solution is straightforward. We can proceed as
follows:
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1. Draw independent qi, i = 1, . . . , N from χ2(n − p − 1), and let σ2
i =

(n− p− 1)s2/qi.

2. Draw βi from N(β̂, σ2
i (X

′X)−1), independently for i = 1, . . . , N .

3. Compute the average

P̄N(b) =
1

N

N∑
i=1

Φ

(
b− ŷn(k;βi)

σivk(βi)

)
. (3.3)

The prediction interval is then found by solving separately both P̄N(b) = α
and P̄N(b) = 1−α. Let the solutions be b̂α, b̂1−α respectively. Then (b̂α, b̂1−α)
is the prediction interval with posterior coverage probability 1−2α when N is
large. Broemeling and Land (1984) noted that multi-step predictions can be
constructed through a sequence of one-step predictions each step involving
t distribution. However, they do not suggest any computational method
how to utilize this in practice. Thompson and Miller (1986) continued the
work of Broemeling and Land by proposing the Bayesian simulation of the
future values yn+1, . . . , yn+k. The prediction limits are then derived from the
quantiles of the simulated values. This is more time consuming as well as
being less accurate than what we suggest here.

3.2 Prediction With General Prior

Combine the conditional likelihood (2.2) and a general prior p(β, σ)/σ. Then
by (2.7) and (2.8) the joint posterior is

p(β, σ |Y ) ∝ σ−(n−p)e−(n−p−1)s
2/(2σ2)

×σ−p−1 exp

(
− 1

2σ2
(β̂ − β)′(X ′X)(β̂ − β)

)
×p(β, σ).

It can be evaluated using importance sampling. In the simulation algorithm
only the item 3 need be changed to

3’ Compute the weighted average

P̄N,w(b) =

∑N
i=1wiΦ

(
b−ŷn(k;βi)
σivk(βi)

)
∑N

i=1wi
, (3.4)

wi = p(βi, σi). (3.5)
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The prediction interval is then solved as before.
It is also possible to incorporate the starting values (y−p+1, . . . , y0) = y′0

into the likelihood. Denote cov(y0 |β, σ) = σ2V = σ2V (β), and E(yi |β) =
µ = µ(β), i = −p+ 1, . . . , 0. The matrix V can be obtained from the Yule-
Walker equations, see Box et al. (2008, p. 58), and µ = β0/(1−β1−· · ·−βp).
To obtain the full likelihood, the conditional likelihood (2.2) is just multiplied
by

p(y0 | β, σ) = (2π)−
p
2σ−p|V |−

1
2 exp

(
− 1

2σ2
(y0 − µ1)′V −1(y0 − µ1)

)
.

This leads to changing the weights in step 3’. The new weights are

wi = I(βi ∈ R× Sp) p(βi, σi)p(y0 |βi, σi) (3.6)

where I(·) is an indicator and Sp is the stationarity region of AR(p) process.
The first coordinate of βi can, of course, take any real value.

3.3 Standard Errors for Monte Carlo Prediction Lim-
its

Here we give simple formulas for approximate standard errors when comput-
ing the prediction limits by Monte Carlo simulation. Let bα be such that
P (yn+k ≤ bα |Y ) = α in (3.2), and b̂α be such that P̄N(b̂α) = α in (3.3). The
first order Taylor expansion at b̂α leads to

b̂α − bα ≈
α− P̄N(bα)

P̄ ′N(b̂α)
,

where P̄ ′N is the derivative of P̄N . The variance of the numerator on the right
side can be estimated from the sample values by S2/N where

S2 =
1

N − 1

N∑
i=1

[
Φ

(
b̂α − ŷn(k;βi)

σivk(βi)

)
− α

]2
.

Define

s.e.(b̂α) =
S/
√
N

P̄ ′N(b̂α)
=

S∑N
i=1

1
σivk(βi)

ϕ
(
b̂α−ŷn(k;βi)
σivk(βi)

)
/
√
N
,
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where ϕ is the density of the standard normal distribution. Omitting the
details we can show that (b̂α − bα)/s.e.(b̂α) tends to the standard normal
distribution as N →∞.

In case we use a weighted average as in (3.5) and (3.6), a similar technique
leads to the standard error

s.e.(b̂α) =
S∑N

i=1
wi

σivk(βi)
ϕ
(
b̂α−ŷn(k;βi)
σivk(βi)

)
/
√
N
,

S2 =
1

N − 1

N∑
i=1

[
αwi − wiΦ

(
b̂α − ŷn(k;βi)

σivk(βi)

)]2
.

4 Priors

Here we give some examples of the priors that are likely to give improvements
for frequentist coverage probabilities. A popular principle to generate priors,
often improper, is to follow Jeffreys’s rule which leads to the square root of
the determinant of the information matrix. Applying this to the conditional
likelihood (2.2) we first find that

∂2Lc
∂β∂β′

= − 1

σ2

n∑
t=1

xtx
′
t.

The information matrix is obtained by taking the expectation given the pa-
rameters and changing the sign. Assuming stationarity yields

−E
[
∂2Lc
∂β∂β′

]
=

n

σ2
E [x1x

′
1] =

n

σ2

(
1 µ1′

µ1 V + µ211′

)
.

The determinant of the matrix involved is easily seen to equal |V | (note that
V depends only on βj, j = 1, . . . , p). Now we take the convention that the
parameter groups {σ}, {β0} and {β1, . . . , βp} are independent a priori, and
that log σ, β0 are uniform. This leads to the prior we here call Jeffreys’s
prior.

pJ(β, σ)/σ = I(σ > 0)I(β ∈ R× Sp)σ−1
√
|V (β)|. (4.1)

The uniform prior over the stationarity region is

pU(β, σ)/σ = I(σ > 0)I(β ∈ R× Sp)σ−1.
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In our simulations we combine these priors with the full likelihood, i.e. the
weights are p(y0 |βi, σi)pJ(βi, σi) and p(y0 |βi, σi)pU(βi, σi) for Jeffreys’s
and uniform on the stationarity region priors, respectively. Note that when
Jeffreys’s prior is used the determinant |V | cancels when forming the weights.

For the stationary AR(1) model Jeffreys’s marginal prior density of β1 is

pJ(β1) =
1

π
√

1− β2
1

, |β1| < 1

= 0, otherwise,

and for AR(2) the marginal prior density of (β1, β2) is

pJ(β1, β2) =
1

(1 + β2)
√

(1− β2)2 − β2
1

, β1 + β2 < 1, β2 − β1 < 1,

|β2| < 1,
= 0, otherwise.

Note that the first density is proper whereas the second one is not; the latter
property is true for all AR(p) with p > 1.

Without a stationarity restriction Berger and Yang (1994) defined an
alternative proper marginal prior density for the AR(1) model as

pR(β1) =
1

2π
√

1− β2
1

, |β1| < 1,

=
1

2π|β1|
√
β2
1 − 1

, |β1| > 1,
(4.2)

which they call a reference prior. It is easily seen that the reference prior
is invariant under the transformation β1 → 1/β1. Note that the reference
prior should be combined with the conditional likelihood (2.2), and then it
produces peaks also in the posterior at β1 = ±1. There is no use to combine
it with the full likelihood because then it reduces to Jeffreys’s prior. There
seems to be no generalization available of the reference prior to higher order
models.

5 Simulation experiments

In this section we compare different priors as regards their ability to match
the frequentist coverage probabilities to the Bayesian ones. Thus, we now
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turn back to the frequentist interpretation of the probability. Suppose that
we have a realization from an autoregressive process with parameters β, σ
which are fixed but unknown. Despite of this we wish to compute the predic-
tion interval (bα, b1−α) via a Bayesian route from the probability distribution
(3.2). Although the posterior coverage probability is exactly 1 − 2α, the
corresponding frequentist probability usually is not. It refers to infinite se-
quence of new realizations from the same model with parameters β, σ, and
it is defined by the probability

P (bα ≤ yn+k ≤ b1−α |β, σ),

where all yn+k, bα, b1−α are random. In short, the frequentist coverage proba-
bility is an average coverage probability over the realizations. The conditional
frequentist coverage probability P (bα ≤ yn+k ≤ b1−α |Y ,β, σ) is a random
variable, and in an actual application we do not know this probability. In our
simulation experiment the values bα, b1−α are replaced by b̂α, b̂1−α obtained
from (3.3) (apart from the case of the uniform prior with k = 1).

The chosen priors are uniform, uniform on the stationarity region, Jef-
freys’s prior (4.1) and the reference prior (4.2) of Berger and Yang (1994)
for AR(1). In all comparisons we have used 50,000 replicates, where each
replicate is a realization from a stationary AR(p) process of length n + p.
Within each replicate the Monte Carlo sample size is N = 50. In this type
of simulation experiments N need not be large, because the main variation
in coverage probabilities is due to the different replicates. Nevertheless, in
an actual application N should be considerably larger as is seen in the next
section. All computations are done in the R environment (R Development
Core Team, 2012).

Start with AR(1). Figure 5.1 shows the coverage probabilities of one-step
ahead prediction intervals (2.6) based on the t distribution for several values
of β1, when n = 30. Here, and in all other experiments, we are aiming for the
coverage probability of 0.9. For negative β1 the coverage probabilities tend to
be slightly above the nominal value whereas when β1 is close to 1, they drop
below the nominal value. However, note that even for β1 = 0.9 the coverage
probability is 0.894. The standard errors of coverage probabilities are less
than 3 × 10−4 in all cases. Although not shown in the figure the prediction
intervals appear to have approximately equal tail probabilities. The coverage
probabilities of the standard prediction intervals stay below 0.88.

Figure 5.2 shows the coverage probabilities of multi-step prediction for
AR(1) processes with different prior choices and four different parameter
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values for β1. The standard error of coverage probability was less than 7 ×
10−4 in all cases. The reference prior seems to be slightly preferred compared
to others. Especially, when β1 is near to 1, the reference prior leads to
coverage probabilities that are closest to the nominal frequentist coverage
probability. Elsewhere the priors give almost the same coverage probabilities.
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Figure 5.1: Coverage probabilities of one-step ahead predictions in AR(1) models when
n = 30. The nominal coverage is 0.9. Dots are the estimated values, based on 50000
replicates. The upper dots relate to the Bayesian intervals with uniform prior and the
lower ones to standard intervals.

In order to examine the differences between plug-in method and the
Bayesian method with different priors in the case of AR(2) processes, we
use nine different parameter combinations for β1 and β2. The parameters are
defined through the roots of the characteristic equation

β(r) = 1− β1r − β2r2 = 0.
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Figure 5.2: Coverage probabilities of multi-step ahead predictions in AR(1) models with
different values of β1 when n = 30. The nominal coverage is 0.9. The top dashed black
line is based on the reference prior and the bottom dotted line represents the standard
coverage probabilities. The lines based on the uniform (solid dark grey line), Jeffreys
(light grey dashed line) and uniform stationary (black dot-and-dash line) prior are almost
indiscernible apart from the case β1 = 0.9.

Let the roots be r1 and r2. Then the parameters β1 and β2 can be written as

β1 =
1

r1
+

1

r2
, β2 = − 1

r1r2
.

The reciprocals of the roots and the corresponding parameters β1 and β2 are
in Table 5.1.

Figure 5.3 shows the coverage probabilities for each process with the
nominal coverage probability of 0.9 and n = 30. The standard error of the
coverage probability was less than 5× 10−4 in all cases. The Bayesian meth-
ods perform much better in all cases. Figures 5.4 and 5.5 show the spectral
densities and the associated autocorrelation functions of the corresponding
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processes. The spectral densities are scaled such that the total density inte-
grates to 1.
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Table 5.1: The AR(2) models used in the simulation experiments.

r−11 r−12 β1 β2
0.9 0.5 1.4 −0.45
0.9 −0.5 0.4 0.45
−0.9 0.5 −0.4 0.45
−0.9 −0.5 −1.4 −0.45

0.5 0.5 1.0 −0.25
0.5 −0.5 0 0.25

0.9 exp( i
5
) 0.9 exp(− i

5
) 1.76 −0.81

0.9 exp( iπ
2

) 0.9 exp(− iπ
2

) 0 −0.81
0.9 exp( i3π

4
) 0.9 exp(− i3π

4
) −1.27 −0.81
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As in the case of AR(1) process, the standard plug-in method gives much
smaller coverage probabilities than the Bayesian method. We further see
that when the mass of the spectral density function in Figure 5.4 is mostly on
the smaller frequencies, corresponding to the slowly decaying autocorrelation
function in Figure 5.5, the coverage probabilities stay under the nominal
coverage probability. Furthermore, Jeffreys’s prior performs slightly better
than the other priors. The plug-in method is very poor, especially for longer
forecast horizons.

When the mass of the spectral density function is mostly peaked on the
medium or high frequencies and the corresponding autocorrelation functions
alternate, the forecast horizon does not seem to affect the coverage proba-
bilities neither for the Bayesian nor for the plug-in methods. The Bayesian
methods are almost exactly equal to the nominal coverage or somewhat ex-
ceed it, while the plug-in method is staying clearly below the nominal cover-
age. In the case where the spectral density function is very flat, the Bayesian
methods give coverage probabilities slightly over the nominal level, while
the plug-in method stays below. Assuming stationarity with uniform prior
seems to provide coverage probabilities little below those of the uniform and
Jeffreys’s priors.

6 Annual gross domestic product growth

As an empirical example we applied our method to forecasting the annual
gross domestic product (GDP) changes (in percentages) in the United King-
dom (UK) and Spain (Figure 6.1). The data is from World Bank’s databank
(http://databank.worldbank.org). Observations from 1962–2001 are used for
finding an appropriate model for each series. Then the series are forecast
for 10 years ahead 2002-2011. In the following we first pretend, as far as
possible, that we do not know what has happened in the forecast period.
Afterwards when future has been revealed, we try to learn from it.

Based on the autocorrelation and partial autocorrelation functions, we
assume an AR(1) model for both series. The least squares estimates of the
autoregressive coefficients are 0.35 for the UK and 0.65 for Spain. The esti-
mates for β0 are 1.77 (UK) and 1.25 (Spain) and for σ 1.93 (UK) and 1.83
(Spain).

The residuals of the Spanish series are well behaved. There is neither
apparent autocorrelation nor deviation from normality. As for the residuals
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Figure 5.3: The coverage probabilities of the nine AR(2)-processes given in Table 5.1,
with n = 30. The nominal coverage is 0.9. The black dotted line shows the coverage
probabilities of the traditional plug-in method. The other lines are related to the Bayesian
methods; the solid dark grey line corresponds to the uniform prior, the light grey dash to
Jeffreys’s prior, and the dot-and-dash line to the uniform stationary prior.

from the UK series, there appears to be two fairly large negative residuals
which stem from the large drops in 1974 and 1980 (i.e. 2 in 40 years).
Therefore we should not be surprised to see at least one aberrant value in
the forecast period of ten years. No autocorrelation is left in the residuals
of the UK series. Granted, we should take into account possible outlying
values, but it would require models outside autoregressive family, which is
beyond the scope of this article. Therefore we forecast with the estimated
model also in this case. In summary, we expect that the Spanish GDP is
likely to stay within 90% interval during the forecast period with possibly at
most one minor violation. But we are more uncertain whether this holds for
the GDP of the UK.
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Figure 5.4: The scaled spectral density functions of the nine AR(2)-processes from Table
5.1.

Now, of course, we know that the preceding reasoning is too optimistic.
In 2001 there were not any indication of the financial crisis starting in 2008.
Figure 6.1 shows the actual values, the 90% prediction intervals and the
point predictions for both series. The latter values in the Bayesian fore-
casting are posterior medians, computed by setting α = 0.5. As expected,
the Bayesian method produces wider prediction intervals than the standard
plug-in method for both series and substantially wider for the Spanish series.
We expected at most one minor violation in the Spanish series, whereas we
see one large drop below the 90% prediction limit. In the UK series there are
one value at the boundary (in 2008) and one significantly below the bound-
ary (in 2009). The former is plausible bearing in mind the drops in 1974
and 1980, whereas latter is exceptionally low. But in both cases the main
body of values in 2002–2011 especially those in 2010 and 2011 are well within
boundaries. In summary, the values in 2009 are exceptionally low in both
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Figure 5.5: The autocorrelation functions of the nine AR(2)-processes from Table 5.1.

series compared to what our model predicts.
There is also one more thing we can learn. Although the differences

between the Bayesian intervals are mostly negligible, we see that Jeffreys’s
prior leads to significantly higher upper limit for the Spanish series. The same
is true also for the the point forecasts (i.e. medians). A closer examination
of the importance weights using Jeffreys’s prior shows that large values are
associated with a large values of the autoregressive coefficient. This seems to
be due to the large difference between the first observation and the stationary
mean, leading to doubts on the stationarity of the series. Our conclusion
is that the uniform prior combined with the conditional likelihood is more
preferable to Jeffreys’s prior in this case.

What should we think of the drops in 2009 occurring in both series?
Looking at the series as such and ignoring other information they seem to
be single unlikely events rather than the sign of a structural break. There
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are at least two arguments for this. Firstly, the values after 2009 (in 2010
and 2011) fit rather well into the main body of the data. Secondly, we
computed prediction bands such that the observed values of the year 2009
are lying exactly on the boundary. The corresponding coverage probabilities
are 1 − α with α = 0.0016 for the UK and with α = 0.0078 for the Spanish
series. Moreover the values in 2009 are also extremely aberrant compared
with those in the 40 year period 1962–2011. In summary, the values in 2009
are highly improbable in the light of the rest of the data.

Nevertheless, the accumulated information on world economy and the
crisis concerning the euro countries till the end of 2012 makes us think that
the assumption of a structural break should still be considered seriously. If
we are to forecast from 2012 onwards we should carefully explore the methods
suggested by Clements and Hendry (1999).

Table 6.1 gives numeric information on the predictions and prediction
intervals related to our application under the assumption that our model is
correct. Firstly, it contains the actual prediction limits with their Monte
Carlo standard errors obtained from the formulas in section 3.3. Secondly,
it shows the coverage probabilities for both models in case they were true.
The forecasting horizon is k = 1, 10 and the nominal coverage is 0.90. The
two Bayesian methods give one-step ahead prediction intervals which are
practically correct. When k = 10, the coverage probabilities for the UK
slightly differ from the nominal ones. The standard method gives intervals
which have coverage probabilities below the nominal level in both cases.
These comparisons concern the chosen models only, not the actual series: The
reported coverage probabilities are averages corresponding to AR(1) models
with coefficients 0.35 and 0.65. This explains why the actual intervals for the
Spanish series with uniform and Jeffrey’s priors are of considerably different
widths, though their coverage probabilities are close to each other on the
average. The deviance may also be related to the aberrant starting value.
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Figure 6.1: The annual GDP 1962–2001 in the UK and Spain together with the point
predictions, actual values and 90% prediction intervals for the years 2002–2011. Solid
grey lines represents intervals and point estimates computed by the Bayesian method with
uniform prior, the grey dashed lines corresponds to the Bayesian method with Jeffreys’s
prior and black dotted line corresponds to the standard plug-in method.
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Table 6.1: Coverage probabilities and prediction limits, with standard errors, related to
the fitted models for the UK and SPA GDP series. The forecast horizon is 2002–2011,
and the nominal coverage probability is 0.9.

Uniform prior Jeffreys’s prior Plug-in
k = 1 k = 10 k = 1 k = 10 k = 1 k = 10

United Kingdom
Coverage 0.900 0.906 0.900 0.907 0.883 0.881

b̂1−α 6.164 6.388 6.089 6.269 6.037 6.091

s.e.(b̂1−α) 0.002 0.003 0.002 0.003 – –

b̂α -0.448 -0.960 -0.462 -1.003 -0.321 -0.687

s.e.(b̂α) 0.002 0.003 0.002 0.003 – –
Spain

Coverage 0.899 0.892 0.899 0.895 0.881 0.850

b̂1−α 6.766 8.014 7.159 9.825 6.647 7.521

s.e.(b̂1−α) 0.002 0.005 0.003 0.021 – –

b̂α 0.498 -1.066 0.546 -1.097 0.616 -0.395

s.e.(b̂α) 0.002 0.006 0.003 0.011 – –
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We have used the sample size of N = 100, 000 in our Monte Carlo sim-
ulation, and therefore the standard errors are fairly small. Standard errors
should decrease at the rate 1/

√
N that is also confirmed by our experiments.

With N = 1000 the standard errors are approximately tenfold compared to
those in Table 6.1.

We have also compared the probabilities that the future value lies below
the lower limit or above the upper limit. They seem to be approximately
equal. Thus, our method seems to produce equal tail prediction intervals.

7 Discussion

We have shown the benefits of the Bayesian approach to prediction interval
calculations under autoregressive schemes. Our message to the practitioners
is that there are appropriate prior distributions leading to improved predic-
tion intervals compared to those obtained by the common plug-in method.
It has turned out that the uniform and Jeffreys’s priors meet most practical
goals for such intervals. Jeffreys’s prior might have a slight advantage as
regards coverage probabilities, although the dependence on the initial obser-
vations may have detrimental effects if the starting values are too far from
their mean. Our simulation method is straightforward and easy to under-
stand and to implement. An estimate for the Monte Carlo error can also be
obtained.

It is plain that when the length of the time series increases, the parameter
uncertainty decreases and thus also the coverage probabilities get closer to
the nominal level. For example in AR(1) case, with n = 100, h = 10, and
β1 = 0.5, the coverage probability of the plug-in method roughly achieves the
nominal probability. But any guidelines when to use the simulation method
proposed here, instead of the plug-in method, seems to require massive Monte
Carlo experimenting. The reason is that the outcome depends on many
variables: the length of the series and forecasting horizon, the order of the
model and the chosen coefficients. We believe that the proposed approach
could be taken as a default method, because it is computationally so light
and hardly ever gives results worse than the plug-in method.

The prediction intervals are computed under the Gaussian assumption.
We have made some simulation experiments under AR(1) and AR(2) models,
where the true errors are from Student’s t distribution with 5 degrees of
freedom and from Laplace distribution, but we still compute the prediction
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intervals under Gaussian assumption. In both cases the coverage probabilities
are smaller than in the case where the true errors are Gaussian, but usually
the difference is about one percentage point or less. Although such a small
experiment does not afford any general conclusions, it makes us to conjecture
that the method is fairly robust against minor deviation from normality.

Although we have handled univariate AR processes only, the method
could be extended to general ARIMA and vector autoregressive models, but
more careful considerations of prior distributions are then needed. In addi-
tion, these complex models can be more sensititive to structural breaks and
other issues discussed by Clements and Hendry (1999).

Finally, when dealing with a particular data set, some evidence of the
adopted prior is obtained by simulating the estimated model as we have
done in section 6.
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IMPROVED FREQUENTIST PREDICTION
INTERVALS FOR ARMA MODELS BY SIMULATION

Jouni Helske and Jukka Nyblom
University of Jyväskylä

1 Introduction

In a traditional approach to time series forecasting, prediction intervals are usually
computed as if the chosen model were correct and the parameters of the model com-
pletely known, with no reference to the uncertainty regarding the model selection
and parameter estimation. The parameter uncertainty may not be a major source
of prediction errors in practical applications, but its effects can be substantial if the
series is not too long. The problems of interval prediction are discussed in depth in
Chatfield (1993, 1996) and Clements & Hendry (1999).

Several proposals have been made for improving prediction intervals when pa-
rameters are estimated. One group of solutions focus on finding a more accu-
rate prediction mean squared error in the presence of estimation; e.g. see Phillips
(1979), Fuller & Hasza (1981), Ansley & Kohn (1986), Quenneville & Singh
(2000), and Pfeffermann & Tiller (2005). Both analytic and bootstrap approaches
are tried. Barndorff-Nielsen & Cox (1996) give general results for prediction inter-
vals in the presence of estimated parameters. These results are further developed for
time series models by Vidoni (2004, 2009). Bootstrap solutions are given by sev-
eral authors; see for example Beran (1990), Masarotto (1990), Grigoletto (1998),
Kim (2004), Pascual, Romo & Ruiz (2004), Clements & Kim (2007), Kabaila &
Syuhada (2008), and Rodriguez & Ruiz (2009).

Here we show how to take into account the parameter uncertainty in a fairly simple
way under autoregressive moving average (ARMA) models. We construct predic-
tion intervals having approximately correct frequentist coverage probability, i.e. an
average coverage probability over the realizations is approximately correct under
the true parameter values. Due to the uncertainty in parameter estimation, the tradi-
tional plug-in method usually provides prediction intervals with average coverage
probabilities falling below the nominal level. Our proposed method is based on
Bayesian approach. Therefore the coverage probability is exactly correct if one is
ready to accept the chosen prior distribution. But our aim is to find such priors that
yield approximately correct coverage probabilities also in the frequentist sense. As
a computational device the fairly simple importance sampling is employed in poste-
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rior calculations. The method is an extension of the approach proposed by Helske &
Nyblom (2013) for pure autoregressive models. The paper is organized as follows.
Sections 2 and 3 derive general results, and section 4 applies them to ARMA mod-
els. Section 5 discusses prior distributions. Section 6 compares the plug-in method
to Bayesian solutions by means of simulation experiments. Section 7 presents an
application to real data. Section 8 concludes.

2 The model

We start with a fairly general linear model and later apply the results to ARMA
models. Assume that the observations y1, . . . , yn are stacked in a vector y satisfying
the model

y |ψ, σ,β ∼ N(Xβ, σ2Vψ), (1)

whereX is the n× k matrix of fixed regressors with rows x′t = (xt1, . . . , xtk), and
σ2Vψ is the covariance matrix depending on the parameters (ψ1, . . . , ψr)

′ = ψ. We
assume thatX is of full rank k. The error vector is defined as ε = y−Xβ. Plainly
ε ∼ N(0, σ2Vψ). Next recall the well known identity

(y −Xβ)′V −1ψ (y −Xβ) = (y −Xβ̂ψ)′V −1ψ (y −Xβ̂ψ)

+ (β − β̂ψ)X ′V −1ψ X(β − β̂ψ),

where
β̂ψ = (X ′V −1ψ X)−1X ′V −1ψ y.

The estimate β̂ψ is the generalized least squares estimate for β when ψ is known.
Define also

S2
ψ = (y −Xβ̂ψ)′V −1ψ (y −Xβ̂ψ).

Then the likelihood can be written as

p(y |ψ,β, σ) = (2π)−
n
2 σ−n|Vψ|−

1
2 exp

(
− 1

2σ2
(y −Xβ)′V −1ψ (y −Xβ)

)
= (2π)−

n
2 σ−n|Vψ|−

1
2 exp

(
−
S2
ψ

2σ2

)
× exp

(
− 1

2σ2
(β − β̂ψ)X ′V −1ψ X(β − β̂ψ)

)
.

Although our main purpose is to derive frequentist prediction intervals, we use the
Bayes approach in their construction. Therefore, assume now that the parameters
β, σ and ψ are random and have a joint prior distribution. Moreover, ψ is indepen-
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dent from β and σ with (β, log σ) having the improper uniform prior distribution.
Let p(ψ) be the prior of ψ. Then the joint prior is of the form p(ψ)/σ. These
assumptions lead to the joint posterior density

p(β,ψ, σ |y) ∝ p(ψ)σ−n−1|Vψ|−
1
2 exp

(
− 1

2σ2
(y −Xβ̂)′V −1ψ (y −Xβ̂)

)
× exp

(
− 1

2σ2
(β − β̂)X ′V −1ψ X(β − β̂)

)
∝ p(ψ)|Vψ|−

1
2σ−(n−k+1) exp

(
−
S2
ψ

2σ2

)
(2)

×σ−k exp

(
− 1

2σ2
(β − β̂)X ′V −1ψ X(β − β̂)

)
. (3)

Let us factorize the posterior as

p(ψ, σ,β |y) = p(ψ |y)p(σ |ψ,y)p(β |ψ, σ,y).

The formula (2)–(3) yield the conditional posteriors

β |ψ, σ,y ∼ N
(
β̂ψ, σ

2(X ′V −1ψ X)−1
)
,

S2
ψ

σ2

∣∣∣∣ ψ,y ∼ χ2(n− k).

For ψ, the marginal posterior is

p(ψ |y) ∝ p(ψ)|Vψ|−
1
2 |X ′V −1ψ X|−

1
2S
−(n−k)
ψ , (4)

whenever the right side is integrable. In section 4, ψ and the related covariance
matrix Vψ are specified through an appropriate ARMA model.

3 Bayesian prediction intervals

Assume that the future observations yn+1, yn+2, . . . come from the same model (1)
with known values xn+1,xn+2, . . .. Let

E(yn+h |y,β, σ,ψ) = ŷn+h|n(β,ψ) (5)

var(yn+h |y,β, σ,ψ) = σ2v2n+h|n(ψ). (6)

Then

yn+h |y,β, σ,ψ ∼ N(ŷn+h|n(β,ψ), σ2v2n+h|n(ψ)), h = 1, 2, . . . ,
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where for simplicity of notation the dependence on xn+1, . . . ,xn+h is not explicitly
shown. Then the Bayesian prediction intervals boils down to computing posterior
probabilities of the form

P (yn+h ≤ b|y) = E

[
Φ

(
b− ŷn+h|n(β,ψ)

σvn+h|n(ψ)

) ∣∣∣∣ y] ,
where E(· |y) refers to expectation with respect to the posterior distribution of
(β, σ,ψ).

In practice the computation is accomplished by simulation. Suppose that we have
the maximum likelihood estimate ψ̂ and its approximate large sample covariance
matrix Σ̂. Then we employ the following importance sampling for computing pre-
diction intervals:

(i) Draw ψj from N(ψ̂, Σ̂), and compute the weight

wj =
p(ψj | y)

g(ψj)
,

where p(ψj | y) is defined in (4) and

g(ψj) ∝ exp

(
−1

2
(ψj − ψ̂)′Σ̂

−1
(ψj − ψ̂)

)
.

(ii) Draw qj ∼ χ2(n− k) independently from ψj , and let σ2
j = S2

ψj
/qj .

(iii) Draw βj ∼ N(β̂ψj
, σ2

j (X
′V −1ψj

X)−1).

(iv) Repeat (i)–(iii) independently for j = 1, . . . , N .

(v) Compute the weighted average

P̄N(b) =

∑N
j=1wjΦ

(
b−ŷn+h|n(βj ,ψj)

σjvn+h|n(ψj)

)
∑N

j=1wj
. (7)

(vi) Find the values bα and b1−α such that P̄N(bα) = α and P̄N(b1−α) = 1 −
α. When N is large (bα, b1−α) yields a prediction interval with coverage
probability 1− 2α.
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4 Regression with ARMA errors

The regression model with ARMA errors is defined by the equations

yt = β1xt1 + · · ·+ βkxtk + εt, (8)

εt = φ1εt−1 + . . .+ φpεt−p + ξt + θ1ξt−1 + . . .+ θqξt−q, (9)

where ξt are independent for all t and drawn from N(0, σ2). Thus, the process {εt}
is ARMA(p, q) that we assume stationary and invertible. This is a special case of
the model in section 2 with ψ′ = (φ1, . . . , φp, θ1, . . . , θq). Let r = max(p, q + 1).
For notational convenience we add zeros to either autoregressive or moving average
parameters such that we have φ1, . . . φr and θ1, . . . , θr−1. Of course, if r = 1 there
are no moving average parameters. Following Durbin & Koopman (2001, pp. 46–
47) the model (8)–(9) can be put into a state space form as

yt = z′tαt, (10)

αt+1 = Tαt +Rξt+1, (11)

where z′t = (x′t, 1, 0, . . . , 0),

αt =


βt
εt

φ2εt−1 + . . .+ φrεt−r+1 + θ1ξt + . . .+ θr−1ξt−r+2

...
φrεt−1 + θr−1ξt

 ,

T =


I 0 0 · · · 0

0′ φ1 1 0
...

... . . .
0′ φr−1 0 1

0′ φr 0 · · · 0

 , R =


0

1

θ1
...

θr−1

 .

Note that this formulation implies that actually βt is constant β. The initial distri-
bution for α1 is N(0,P 1) with

P 1 =

(
κI 0

0 Γ

)
, (12)

where κI corresponds to β1, and Γ is the covariance matrix of the stationary
ARMA component of αt.

Let T φ and Rθ be the blocks of T and R, respectively, related to the ARMA
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process. Then Γ satisfies Γ = T φΓT ′φ +RθR
′
θ and is given by

vec(Γ) = (I − T φ ⊗ T φ)−1vec(RθR
′
θ),

see Durbin & Koopman (2001, p. 112). The vec(·) notation stands for the column-
wise transformation of a matrix to a vector.

The initial distribution for β1 is actually defined through the limit κ → ∞ which
corresponds to the improper constant prior for β assumed in section 2. Durbin &
Koopman (2001, Ch. 5) gives the updating formulas under this assumption called
diffuse initialization. Thus, the Kalman filter together with the diffuse initialization
automatically yields the values

E(βn+1 | y, σ,ψ) = β̂ψ,

cov(βn+1 | y, σ,ψ) = σ2(X ′V −1ψ X)−1.

Additionally the Kalman filter gives the prediction errors

et|t−1 = yt − E(yt | y1, . . . , yt−1, σ,ψ), t = 1, . . . , n,

and their variances

var(et|t−1) = var(yt | y1, . . . , yt−1, σ,ψ) = σ2v2t|t−1, t = 1, . . . , n.

Due to the improper uniform prior of β, i.e. the diffuse initialization, some vari-
ances v2t|t−1 → ∞, as κ → ∞ (Durbin & Koopman, 2001, sect. 5.2.1). Let
F = {t | v2t|t−1 is finite, t = 1, . . . , n}. Then given ψ we have, by the results
of Durbin & Koopman (2001, sect. 7.2.1), that

∑
t∈F

e2t|t−1
v2t|t−1

= S2
ψ,∏

t∈F

v2t|t−1 = |V ψ|−
1
2 |X ′V −1ψ X|

− 1
2 .

Because X is of rank k, the number of finite variances is n − k. We have now all
elements for the algorithm of section 3 except the prior p(ψ) that is discussed in
the next section.
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5 Jeffreys’s rule for priors

Good candidates for the prior meeting our purposes is found by Jeffreys’s rule
which leads to the square root of the determinant of the Fisher information ma-
trix. Apart from an additive constant, the log-likelihood is here

`(β, σ,ψ) = −n log σ − 1

2
log |Vψ| −

1

2σ2
(y −Xβ)′V −1ψ (y −Xβ).

A straightforward calculation gives the information matrix

I(β, σ,ψ) =

 1
σ2 (X ′V −1ψ X) 0 0

0 2n
σ2

1
σ
I ′21(ψ)

0 1
σ
I21(ψ) I22(ψ),

 ,
[I21(ψ)]i = trace

(
V −1ψ

∂Vψ
∂ψi

)
, i = 1, . . . , r

[I22(ψ)]ij =
1

2
trace

(
V −1ψ

∂Vψ
∂ψi

V −1ψ

∂Vψ
∂ψj

)
, i, j = 1, . . . , r.

Hence,

|I(β, σ,ψ)|
1
2 =

1

σk+1

∣∣X ′V −1ψ X
∣∣ 12 ∣∣I22(ψ)− (2n)−1I21(ψ)I21(ψ)′

∣∣ 12 . (13)

Because we want the joint prior to be of the form p(ψ)/σ, we insert k = 0 in (13)
and define

p(ψ) ∝
∣∣X ′V −1ψ X

∣∣ 12 ∣∣I22(ψ)− (2n)−1I21(ψ)I21(ψ)′
∣∣ 12 . (14)

With this specification p(ψ)/σ is called here the exact joint Jeffreys prior. Note that
this prior depends on the sample size n. The approximate joint prior of the same
form is obtained with

p(ψ) ∝
∣∣X ′V −1ψ X

∣∣ 12 |Jψ| 12 , (15)

where
Jψ = lim

n→∞
n−1

(
I22(ψ)− (2n)−1I21(ψ)I21(ψ)′

)
.

Substituting either (14) or (15) to (4) we find that the determinant |X ′V −1ψ X| can-
cels.

Box et al. (2008, Ch. 7) gives useful results for the ARMA(p, q) models. We find
that J−1ψ /n is the large sample covariance matrix of the maximum likelihood es-
timate ψ̂. In the pure AR model we have |Vψ| = |Jψ|, although the matrices are
different. For the pure MA models the same determinant equation is approximately
true, but the same does not apply to the mixed models. The marginal Jeffreys priors
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are obtained by dropping off the factor
∣∣X ′V −1ψ X

∣∣ 12 in (14) and (15).

The numerical evaluation of the posteriors involves the determinant |Vψ|, the in-
verse V −1ψ and the partial derivatives of Vψ. For short series the determinant and
the inverse can be calculated directly. For longer series we can use the formu-
las provided by Lin & Ho (2008). The partial derivatives can be found recur-
sively as follows. Recall the state space representation (10)–(11) and the initial
covariance matrix Γ in (12). Due to stationarity of the process {αt} we find that
cov(αt+s,αt) = T sP 1, where the block T s

φΓ corresponds the autocovariance ma-
trix of the ARMA process. The position (1, 1) of this matrix shows cov(yt+s, yt).
We find the partial derivatives recursively for the autoregressive parameters

∂(T s
φΓ)

∂φj
=
∂T φ
∂φj

T s−1
φ Γ + T φ

∂(T s−1
φ Γ)

∂φj
, s = 1, 2, . . . .

For moving average parameters we have

∂(T s
φΓ)

∂θj
= T s

φ

∂Γ

∂θj
, s = 1, 2, . . . .

Because Γ satisfies Γ = T φΓT ′φ +RθR
′
θ, we find by differentiating on both sides

that

∂Γ

∂φj
= T φ

∂Γ

∂φj
T ′φ +

∂T φ
∂φj

ΓT ′φ + T φΓ
∂T ′φ
∂φj

,

∂Γ

∂θj
= T φ

∂Γ

∂θj
T ′φ +

∂Rθ

∂θj
Rθ +Rθ

∂R′θ
∂θj

.

which implies that

vec

(
∂Γ

∂φj

)
= (I − T φ ⊗ T φ)−1vec

(
∂T φ
∂φj

ΓT ′φ + T φΓ
∂T ′φ
∂φj

)
,

vec

(
∂Γ

∂θj

)
= (I − T φ ⊗ T φ)−1vec

(
∂Rθ

∂θj
Rθ +Rθ

∂R′θ
∂θj

)
.

6 Simulation experiments for ARMA models

Recall that our primary goal is to improve frequentist coverage probabilities in in-
terval prediction. For that purpose we have conducted simulation experiments to
find out the benefits of the Bayesian approach especially in relation to the standard
plug-in method. The latter method yields the well known intervals

ŷn+h|n(ψ̂, β̂)± zασ̂vn+h|n(ψ̂, β̂), σ̂ = S2/(n− k), (16)
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see (5) and (6).

In all simulations the length of the time series is 50, and the regression part consists
of the constant term β1 = β only, i.e. X = (1, . . . , 1)′. The affine linear trans-
formation on the observations yi 7→ a + cyi yields the same transformation on the
limits bα 7→ a + cbα in item (vi) of section 3. Therefore we can set in simulations,
without loss of generality, σ = 1, and β = 0. We simulate 5000 replicates from a
given ARMA process with fixed coefficients, and from each realization we estimate
the parameters by maximum likelihood, and compute the prediction intervals using
the plug-in method (16) as well as the Bayesian interval from the formula (7) with
N = 100. Because the main variation in simulations is between series, the sample
size in computing the prediction interval need not be large. Because in simulation
we know all the parameters we can compute the frequentist conditional coverage
probability

P (bα ≤ yn+h ≤ b1−α |y, β = 0, σ = 1,ψ),

where ψ specifies the parameters used in a simulation, and the limits bα, b1−α are
fixed. Averaging these probabilities over the 5000 replications of y from the same
model, gives us a good estimate of the frequentist coverage probability

P (bα ≤ yn+h ≤ b1−α | β = 0, σ = 1,ψ),

where all yn+h, bα, b1−α are random. This frequentist coverage probability is used
when we compare the plug-in method and the five different Bayesian methods. The
joint priors p(ψ)/σ used in the experiment are defined through p(ψ) as follows:

• Uniform prior p(ψ) ∝ 1.

• Approximate joint Jeffreys’s prior p(ψ) ∝ |X ′V −1ψ X| 12 |Jψ|
1
2 .

• Approximate marginal Jeffreys’s prior p(ψ) ∝ |Jψ|
1
2 .

• Exact joint Jeffreys’s prior

p(ψ) ∝
∣∣X ′V −1ψ X

∣∣ 12 ∣∣I22(ψ)− (2n)−1I21(ψ)I21(ψ)′
∣∣ 12 .

• Exact marginal Jeffreys’s prior

p(ψ) ∝
∣∣I22(ψ)− (2n)−1I21(ψ)I21(ψ)′

∣∣ 12 .
All the five priors above are constrained onto the the stationarity and invertibility
regions. Figure 1 shows the coverage probabilities of one step ahead prediction
intervals for ARMA(1,1) processes with varying values of φ and θ. In all cases the
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Bayesian methods are superior to the plug-in method, and the differences between
priors are rather small. The drop in the curves occurs in the neighborhood of φ +

θ = 0 which corresponds to the white noise process, i.e. the parameters are then
unidentified. Also the nearly white noise processes yield unstable estimates for φ
and θ.

The Figure 2 shows the results for the ten step ahead predictions, where again the
plug-in method stays below the nominal level in all cases. On the other hand, the
coverage probabilities of the Bayesian method is somewhat over the nominal level
in most cases, except when the autoregressive parameter φ is near the bounds of the
stationary region. Also the variation between different priors is somewhat larger
here than in the one step ahead predictions. In most cases the uniform prior is the
closest to the nominal level. The variation due to the moving average part is smaller
here than in the one step ahead predictions.

In Figure 3 the coverage probabilities of ARMA(2,1) processes are shown, with
varying parameter values and forecast horizon ranging from one to ten. Cases where
φ1 = −1.4 correspond to alternating autocorrelation function, and in these cases
coverage probabilities are usually higher than in non-alternating cases (φ1 = 1.4).
Also, uniform stationary prior seems to perform slightly worse than Jeffreys’s pri-
ors. Again in all cases the Bayesian methods are superior to the plug-in method.
In non-alternating cases the marginal Jeffreys priors seem to give higher coverages
than the joint versions, but in alternating cases the difference is negligible. Overall,
Bayesian methods perform relatively well.

7 Predicting the number of Internet users

As an illustration, we apply our method to the series of the number of users logged
on to an Internet server each minute over 100 minutes. The data is previously
studied by Makridakis et al. (1998) and Durbin & Koopman (2001). The former
authors fitted ARMA(3,0) to the differenced series, whereas the latter ones pre-
ferred ARMA(1,1) for the same series. We use here the first 84 differences for
model fitting, and then compute the prediction intervals for the next 15 time points.
The Akaike information criterion suggests ARMA(1,1) as the best model. The esti-
mated ARMA coefficients are φ̂ = 0.65, θ̂ = 0.49. The additional two estimates are
β̂ = 0.84, and σ̂2 = 10.07. The complete time series with the simulated 90% pre-
diction intervals are shown in Figure 4, together with median estimates which are
computed by setting α = 0.5 in the Bayesian calculations. For the plug-in method,
the mean is used. These simulations are based on 100,000 replicates. As the dif-
ferences between exact and approximate versions of Jeffreys’s prior turns out to
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Figure 1. Coverage probabilities of one step ahead prediction intervals for
ARMA(1,1) processes. The lines are: black dotted line = plug-in method,
the solid black line = approximate joint Jeffreys’s prior, the solid gray
line = exact joint Jeffreys’s prior, the dashed black line = approximate
marginal Jeffreys’s prior, the dashed gray line = exact marginal prior, the
dot-and-dash line = uniform stationary prior.

be negligible, only approximate versions are shown. However, difference between
joint and marginal priors is evident: marginal priors give substantially larger upper
bounds for the prediction intervals. The upper bounds given by uniform prior is
between the different Jeffreys priors, whereas the plug-in gives much smaller up-
per bounds than any of simulated intervals. On the lower bounds, differences are
smaller.
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Figure 2. Coverage probabilities of ten step ahead prediction intervals for
ARMA(1,1) processes. The lines are: black dotted line = plug-in method,
the solid black line = approximate joint Jeffreys’s prior, the solid gray
line = exact joint Jeffreys’s prior, the dashed black line = approximate
marginal Jeffreys’s prior, the dashed gray line = exact marginal prior, the
dot-and-dash line = uniform stationary prior.

Given that the estimated model is correct, we can compute the average coverage
probabilities of the intervals. These are given in Table 1 when the forecast horizon
h = 15. The prediction limits and their standard errors are also given. The reported
mean coverage probabilities are based on 10,000 series replicates. Within each
replicate 100 values are used in (7) for the Bayesian prediction interval.
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Figure 3. Coverage probabilities of the prediction intervals of varying step sizes for
ARMA(1,1) processes. The lines are: black dotted line = plug-in method,
the solid black line = approximate joint Jeffreys’s prior, the solid gray
line = exact joint Jeffreys’s prior, the dashed black line = approximate
marginal Jeffreys’s prior, the dashed gray line = exact marginal prior, the
dot-and-dash line = uniform stationary prior.

8 Discussion

In this paper we have extended the importance sampling approach presented in
Helske & Nyblom (2013) from AR models to general ARMA models, and studied
the effect of different prior choices on the coverage probabilities using simulated
and real data. Extension of this approach to integrated ARMA models is straight-
forward. As may be inferred from sections 2 and 3, our method could be applied
also to models outside the ARIMA framework. Compared to Markov Chain Monte
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Figure 4. The prediction bands for the change of the number of users logged on to
the Internet during the last 15 minutes. The lines are the black dotted line
= the traditional plug-in method, the solid black line = approximate joint
Jeffreys’s prior, the dashed black line = approximate marginal Jeffreys’s
prior, the solid gray line = uniform stationary prior.

Table 1. Coverage probabilities and prediction limits for the Internet series with
forecast horizon h = 15 and the nominal coverage probability of 0.9.

Uniform Joint Marginal Plug-in
Coverage 0.906 0.900 0.914 0.866
b̂α -9.73 -9.54 -10.09 -8.57
s.e.(b̂α) 0.02 0.02 0.06 –
b̂1−α 11.83 11.53 12.46 10.29
s.e.(b̂1−α) 0.02 0.01 0.02 –

Carlo methods, we argue that method presented here is more straightforward to im-
plement and understand, and it could also be computationally cheaper as we are
only sampling the model parameters, not the future observations itself. Although
we do not need to concern ourselves with the convergence problems of MCMC
methods, careful checking of obtained importance weights is still needed. For ex-
ample if the estimated model parameters are near the boundary of the stationary
region with large variance, most of the weights can be zero due to the stationary
constraint and there can be few simulated parameters with very large weights which
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dominate the whole sample. On the other hand, this should also be visible in the
standard errors of the prediction limits, which are easily obtained during prediction
interval computation.

Our simulation studies show that a simple uniform prior with stationarity and in-
vertibility constraints performs relatively well in most cases. As the uniform prior
is computationally much cheaper than the different versions of Jeffreys’s prior, we
feel that it could be used as a default prior in practical cases. In addition, a similar
check as in section 7 regarding the average coverage probabilities can give further
information on the accuracy of the adopted prior.
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Estimating aggregated nutrient fluxes in four
Finnish rivers via Gaussian state space models
Jouni Helskea*, Jukka Nybloma, Petri Ekholmb and Kristian Meissnerb

Reliable estimates of the nutrient fluxes carried by rivers from land-based sources to the sea are needed for efficient abate-
ment of marine eutrophication. Although nutrient concentrations in rivers generally display large temporal variation,
sampling and analysis for nutrients, unlike flow measurements, are rarely performed on a daily basis. The infrequent
data calls for ways to reliably estimate the nutrient concentrations of the missing days. Here, we use the Gaussian state
space models with daily water flow as a predictor variable to predict missing nutrient concentrations for four agricultur-
ally impacted Finnish rivers. Via simulation of Gaussian state space models, we are able to estimate aggregated yearly
phosphorus and nitrogen fluxes, and their confidence intervals.

The effect of model uncertainty is evaluated through a Monte Carlo experiment, where randomly selected sets of nutri-
ent measurements are removed and then predicted by the remaining values together with re-estimated parameters. Results
show that our model performs well for rivers with long-term records of flow. Finally, despite the drastic decreases in nutri-
ent loads on the agricultural catchments of the rivers over the last 25 years, we observe no corresponding trends in riverine
nutrient fluxes. Copyright © 2013 John Wiley & Sons, Ltd.

Keywords: simulation; sparse data; interpolation; Kalman filter; Kalman smoother

1. INTRODUCTION
Abatement of marine eutrophication calls for reliable estimates of the nutrient fluxes carried by rivers from land-based sources to the sea.
Monitoring programs of many important rivers in Finland, and elsewhere, typically involves daily measurements of water flow, but due
to the costs, much more infrequent sampling and analysis of phosphorus and nitrogen concentrations. Yet, the concentrations of nutrients
often show large temporal variation, especially in rivers receiving loading from diffuse sources (Kauppila and Koskiaho, 2003). The more
infrequent the water quality data are, the more sensitive the flux estimates are to the method used to estimate the concentrations for the
unsampled days. Several interpolation and extrapolation methods have been suggested to estimate missing monitoring data (Young et al.,
1988; Rekolainen et al., 1991; Kronvang and Bruhn, 1996; Quilbé et al., 2006). Although many of the methods simply assume that the
observation made on a specific day represents the concentration level for a longer period (e.g., between the midpoints of the preceding,
current, and next observation), other approaches make use of the relationship between the concentration and some other variable, usually
the flow.

Our aim is to develop a method for estimating fluxes of total phosphorus and total nitrogen for rivers mainly impacted by diffuse loading
from agriculture for a given period, commonly a year. For prediction of the missing nutrient concentration measurements, we use a time
varying regression model with an additional autoregressive component using the water flow measurements as predictor variables. Various
simulation techniques are employed for evaluating our results. As a general framework, we use Gaussian state space models together with
Kalman filter and smoother.

2. METHODS
2.1. Interpolation via state space models and simulation

Our approach to modeling nutrient concentrations and fluxes is based on state space modeling with Kalman filtering, smoothing, and
interpolation. The form of the Gaussian state space model sufficient for our purposes is

* Correspondence to: Jouni Helske, University of Jyväskylä Department of Mathematics and Statistics, P.O.Box 35 (MaD) Jyväskylä, FI 40014. E-mail:
jouni.helske@jyu.fi

a University of Jyväskylä, Department of Mathematics and Statistics, Finland

b Finnish Environment Institute, Finland
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yt DXtˇt C �t ; �t �NID.0;H/ (1)

ˇtC1 D Tˇt C �t ; �t �NID.0;Q/; t D 1; 2; : : : ; T (2)

where NID stands for “normally and independently distributed.” The first row (1) is called an observation equation and the second row (2) a
state equation. The observed process fyt g may be a scalar or vector valued. The unobserved state process fˇt g is often a vector process. The
process starts with ˇ1 � N.b1; P1/ independently of error processes f�t g; f�t g. In our application the system matrix T is a time invariant
diagonal matrix, whereas the system matrices Xt contain time varying predictor values. The state process fˇt g is a latent process of time
varying levels and regression coefficients. The model is defined in more detail in Sections 4.1 and 4.2. Further, the covariance matrices H
and Q are time invariant.

In our application the interpolation problem arises because there are missing observations. Let Y comprise all the non-missing observa-
tions. If the value yt at time t is missing, then the Kalman smoother provides its estimate as the conditional mean Oyt D Xt Ǒt together with
Ǒ
t DE.ˇt jY / and the conditional covariance matrix Var.yt jY /D St . The Gaussian assumption then yields

yt jY �N. Oyt ; St / (3)

which can be used for obtaining prediction error limits. Plainly, the interpolated value is unbiased in the sense that E.yt � Oyt /D 0.
Formula (3) is useful for single missing values. However, our primary interest is a nonlinear compound measure over a time span

t C 1; : : : ; t C s of length s (e.g., a calendar year), denoted by

mt;s D

sX
iD1

qtCie
ytCi

where qt is the water flow on the day t , and eyt is the daily nutrient concentration. If we had the values qt and yt measured on each day, then
we would have correct nutrient fluxes. Admittedly, this is not exactly true due to the measurement errors, but it would satisfy the practical
needs of evaluating the yearly fluxes. In the subsequent analysis, we focus on the effects of missing nutrient measurements compared to the
ideal case of having all measurements.

In section 4, we define our model. Under the specified model, we replace the missing values with the estimates that are simply their
conditional expectations. Furthermore, to assess their accuracy, we need the conditional variances as well. Formally, we need to determine

mt;s DE

"
sX
iD1

qtCie
ytCi

ˇ̌̌̌
ˇ Y

#
(4)

Vt;s D Var

"
sX
iD1

qtCie
ytCi

ˇ̌̌̌
ˇ Y

#
(5)

Although the conditional means are easily estimated by using known results of log-normal variables, the variances are more complicated
because of correlations between the smoothed state variables (see Durbin and Koopman (2002, section 4.5)). Therefore, we rely on simu-
lations (see Durbin and Koopman (2002)). Additionally, these simulations allow easy constructions for the prediction intervals, which are
analytically intractable, because the distribution of the sum of the log-normal variables cannot be given in a closed form.

For simulating the missing observations conditionally on Y , we simulate realizations . Q̌; Q�/ from their joint conditional distribution
p.ˇ; �jY /. Then simulated observations are obtained from Qyt DXt Q̌t C Q�t ; t D 1; : : : ; n. As we are simulating conditionally on Y , Qyt D yt
if yt is observed, as yt belongs to Y . The simulation from p.ˇ; �jY / can be done by augmenting state vector ˇt with disturbance �t , sim-
ilarly as in Durbin and Koopman (2001, p. 131), and by using the simulation smoothing algorithm of Durbin and Koopman (2002) for the
augmented state vector. With a large number of replications, the conditional mean (4) and variance (5) are computed naturally as averages.
More specifically, let Qy1j ; : : : ; Qynj be the j th simulated series, and

Qms;t;j D

sX
iD1

qtCie
QytCi;j

Then, with N replicates, the conditional expectations and variances are obtained respectively as

mt;s D
1

N

NX
jD1

Qms;t;j

Vt;s D
1

N

NX
jD1

. Qms;t;j �mt;s/
2
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Assuming that the estimated model is true, the accuracy of the yearly total nutrient fluxes can be computed in terms of prediction
intervals. The prediction interval with coverage probability 1 � 2˛ is found by taking the r th smallest and the r th largest value among
f Qms;t;j g; j D 1; : : : ; N with r D N˛; denoted as Qms;t;low and Qms;t;up. Assuming the estimated parameters true, the required prediction
interval is

Œ Qms;t;low; Qms;t;up�

The other measure of accuracy is the coefficient of variationp
Vt;s

mt;s

All the computations in this paper have been done in R (R Development Core Team, 2012), using the state space modeling package KFAS
(Helske, 2012), where the simulation of the state vector is done by using the simulation smoothing with two antithetic variables to reduce
the error due to the simulation (Durbin and Koopman, 2002).

2.2. Model fitting and evaluation

The unknown parameters of the nutrient concentration model can be estimated by maximum likelihood method, by using the Kalman filter for
computing the log-likelihood of the model. The Kalman filter updating formulas yield us the predicted state btC1 D E.ˇtC1 jy1; : : : ; yt /,
the prediction XtC1btC1 for ytC1, the prediction error vtC1 D ytC1 � XtC1btC1, and the prediction error variance (or the covariance
matrix in multivariate case) Var.vt /D Ft .

The log-likelihood of a linear Gaussian state space model can be written in terms of prediction errors and their covariance matrices, which
in applications, depend on unknown parameters. Let us denote the parameter vector by  , and let vt; and Ft; be the prediction errors and
their covariance matrices under  . Then the likelihood is given by

logL. /D�
np

2
log 2� �

1

2

nX
tD1

�
log jFt; j C v

0
t; F

�1
t; vt; 

�
where p is the dimension of yt .

The non-stationary part of the state vector is initialized by the diffuse method suggested by (Durbin and Koopman, 2001), whereas the
stationary components are assumed to have a stationary distribution at start. When the series fyt g is multivariate, we transform it into a
univariate form as in Durbin and Koopman (2001). This enables us to treat totally and partially missing values automatically as well as
automatically adjust the likelihood correctly.

The effect of model uncertainty, comprising parameter uncertainty and the uncertainty due to model choice, is evaluated by removing k
nutrient measurement vectors from the dataset. The model is then fitted to the thinned data. Let fk be the total nutrient flux of the removed
days, and bf k is the corresponding figure estimated using the thinned dataset. The relative error due to thinning is then .bf k � fk/=fk .
Assuming the model is true and ignoring the parameter estimation error, the difference ek D bf k � fk has mean zero. Furthermore, with
larger k, the average error per day ek=k tends to be smaller. The same is true also for the relative error ek=fk D .ek=k/=.fk=k/. Therefore,
if we plot the absolute relative errors jek j=fk on the thinning size k, we expect to see a decreasing curve, given our model is true. However,
if these values remain more or less constant or are increasing, then our model is severely biased.

The overall effect of thinning is assessed through a Monte Carlo experiment. We remove randomly k nutrient measurement vectors and
compute the mean relative error

MREk D
1

B

BX
iD1

jbf i;k � fi;k j
fi;k

(6)

where B denotes the number of random replicates and i refers to i th replicate.

3. DATA
Our data consist of the concentrations of total phosphorus and total nitrogen, and daily water flow measurements from four rivers located in
southern Finland, Paimionjoki, Aurajoki, Porvoonjoki, and Vantaanjoki, during 1985–2010. The nutrient data are taken from the databases
of the Finnish Environment Institute. Total phosphorus and total nitrogen concentrations have been determined spectrometrically from water
samples after digestion with peroxodisulphate.

The catchments of these rivers all have a high proportion of the agricultural land (24–43%, Table 1), and the soil is dominated by clay,
which renders the water turbid. Much of the phosphorus in these rivers is transported in association with eroded soil particles. In addition, the
catchments contain only few lakes (lake percentage 0.30–2.6), which results in high day to day variation in flow. In all the rivers, agriculture
is the major source of nutrients.
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Table 1. Catchment characteristics of the rivers studied

Paimionjoki Aurajoki Porvoonjoki Vantaanjoki

Catchment area, km2 1088 874 1273 1686
Lakes, % 1.6 0.3 1.3 2.3
Agricultural land, % 42.8 36.8 31.2 23.8
Constructed area, % 2.5 4.8 4.1 9.2
Mean flow, m3s�1 9.5 8.5 12.7 15.9
Wastewater load, % of total flux 0.5 0.7 12.3 6.3

At the beginning of our observation period, the Porvoonjoki has received substantial waste–water loading from the city of Lahti,
but due to improved treatment the share of waste–water to total loading has decreased with time, to an average 12% of the anthro-
pogenic loading. In the Vantaanjoki, the respective proportion of waste–water loading is 6.3%, whereas in the other two rivers, it is
below 1%.

Daily measurements on nutrient concentrations are available for only 5–10% of the time, whereas flow measurements are usually avail-
able for each day. A few flow measurements are missing in the Paimionjoki and Aurajoki series. For the Paimionjoki, flow measurements
are missing from mid-October to mid-November for 2004, whereas for the Aurajoki, flow values are missing on a single day in 1985
and on a total of 99 days between 2004–2010. The missing flow measurements in Paimionjoki and Aurajoki are estimated from an aux-
iliary four variate state space model defined as in (1) and (2) with all matrices Xt and T being identity matrices. The model is called a
local level model, for example, see Harvey (1989). Amisigo and van de Giesen (2005) have used a similar model to patch gaps in daily
riverflow series.

4. RESULTS
4.1. Relating nutrient concentration and river flow

It can be argued, as has been done by Wartiovaara (1975) and Rankinen et al. (2010), that the high water flow due to the precipitation has
two opposite effects on the nutrient loadings. Precipitation increases the diffuse loading from the agriculture while simultaneously diluting
waste–water loading. We have tried to take both these aspects into account. In Figure 1, we have plotted the concentrations on the flow, both
in logarithms, but due to zero values, we have first added one to the flow values. To address both of the mutually opposing effects caused by
precipitation-induced high flows, we have decided to regress the log-concentration yt on both log.1C qt /, and 1= log.2C qt /. In the latter,
we have added two to ensure a finite value. Figure 1 includes also some regression curves: the loess curves of first degree (Cleveland and
Devlin, 1988), and the ordinary least squares regression of yt on ˇ0C ˇ1 log.1C qt / and on ˇ0C ˇ1 log.1C qt /C ˇ2= log.2C qt /.

By visual inspection, the relation between the concentration and the flow seems to be linear or slightly curved in a log scale. Moreover,
the loess curve and the regression curve from model with two predictor variables are quite close to each other, whereas the regression line
from model with one predictor lies apart, especially for nitrogen measurements. Therefore, in some cases, it seems clearly beneficial to
include both x1;t D log.1C qt / and x2;t D 1= log.2C qt / D 1= log .1C ex1t / as the predictor variables in the model. To treat all series
equally, both predictors are present in each model. Note that this visual inspection with regression and loess curves is about finding the
proper relationship between concentration and flow, and it ignores the time aspect of the problem which, as we will later see, is an important
part of the modeling.

4.2. State space specification

As the phosphorus and nitrogen concentration measurements are correlated, we model them together but separately for each river. The model
applied to each river is of the form

yPt D �
P C ˛Pt C ˇ

P
1;tx1;t C ˇ

P
2;tx2;t C �

P
t

yNt D �
N C ˛Pt C ˇ

N
1;tx1;t C ˇ

N
2;tx2;t C �

N
t

˛tC1 D T˛t C �t

ˇtC1 D ˇt C �t

(7)

where
�
yPt ; y

N
t

�
is a bivariate process of the logarithms of phosphorus and nitrogen concentrations, respectively; ˇt consists of all coef-

ficients ˇij;t , i D P;N; j D 1; 2, and ˛t consists of zero-mean first-order autoregressive processes ˛Pt and ˛Nt with T D diagŒ�P ; �N �
containing the corresponding autoregressive parameters. The disturbance processes �t � N.0;†�/, �t � N.0;†�/, and �t � N.0;†� /
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Figure 1. Scatter plots of log-concentrations of nutrients and log.1 C qt /, with loess curves of first degree (solid line), the regression curves with one
explanatory variable (dotted line) and with two explanatory variables (dashed line). The circles correspond to the phosphorus measurements and triangles to

the nitrogen measurements

are independent of each other. For simplicity, †� is assumed to be a diagonal matrix. When the diagonal elements are positive, the regres-
sion coefficients vary according to a random walk allowing the dependence between the flow and the nutrient concentration to change
in time.

Note that the model collapses to an ordinary regression model when †� D 0 and T D 0 (i.e., �P D �N D 0). The first restriction means
that the regression coefficients ˇt are constants. The second one implies that level processes ˛Pt ; ˛

N
t are white noise processes merged into

the errors �Pt and �Nt , respectively.
Zero variances for the components of coefficient process ˇt are sometimes obtained. The state space modeling automatically handles the

zero variances in the covariance matrices so that the time invariant regression coefficients coincide with the appropriate generalized least
squares estimates. Also, the simulation algorithm is capable of handling the constant states without modifications.

The long-term seasonal weather conditions such as the starting times of snowmelt and autumn rains, as well as the short-term weather
conditions such as daily temperature or precipitation also affect concentrations. We assume here that their effects come mainly through
flow. In addition, we assume that other environmental effects are mostly captured by the latent autoregressive level processes and coef-
ficient processes of the flow series. We deliberately aim at a parsimonious model with practical formulas for the interpolation of the
nutrient fluxes, although the true phenomena behind the variation of nutrient concentrations are obviously more complicated than our model
suggests.

4.3. Estimated nutrient fluxes and model parameters

The yearly estimates of the nutrient fluxes obtained by simulating the model are given in Table A.1 in the Appendix. Yearly estimates of nutri-
ent fluxes with their simulated 95% prediction intervals are also shown in Figure 2. Each river exhibits a similar fluctuating patterns without
a clear trend. Especially yearly phosphorus fluxes, but also nitrogen fluxes clearly peak in 2008, followed by an even larger drop in 2009.
Overall, fewer nutrient measurements result in somewhat wider prediction intervals for Porvoonjoki and Vantaanjoki than for Paimionjoki
and Aurajoki.

The estimated values of the unknown variance and autoregressive parameters are shown in Table 2.
Occasionally, the estimation process yields the variance estimates close to zero (i.e., values less than 10�8). In such cases, these are

replaced with fixed zeros, and estimation process for other parameters is repeated. In all cases, the likelihood remained practically unchanged.
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Figure 2. The estimated values and the simulated 95% prediction intervals of the yearly phosphorus and nitrogen fluxes

Standard errors of the estimates are computed by inverting the Hessian matrix given by the optimization function optim in R. The variance
parameters are estimated in logarithmic scale. By using their standard errors, the confidence intervals for the log-variances can be obtained.
Then the confidence intervals for the variances themselves are easily derived.

In all models, the values of autoregressive parameters are close to one (0:95� 0:98), and therefore the standard errors might not be very
useful, as the sampling distributions are far from normal distribution. The correlations 	�P ;�N between the disturbances of the autoregres-
sive processes are around 0.5 for all rivers. This indicates moderate long-term correlation between the underlying phosphorus and nitrogen
concentration processes at a given flow level. The instantaneous correlations 	�P ;�N , again given the flow, are smaller and more variable:
0.2 or slightly higher in the Paimionjoki and Porvoonjoki, and negligible in the Aurajoki and Vantaanjoki.

The coefficient processes are shown in Figure 3. Somewhat larger regression coefficients of the reciprocal log-flow of the Porvoonjoki
and Vantaanjoki compared with those of Paimionjoki and Aurajoki are in concordance with the fact that the former rivers are subject to
higher waste–water loads. Otherwise, the interpretation of the regression coefficient processes is difficult. Nevertheless, as predictive tools,
individual river-specific models appear to be highly useful.

4.4. Model criticism

We have also tested models where the autoregressive processes have been replaced with random walks (i.e., �P D �N D 1) and a mul-
tivariate local level model without regressors, but where the concentration processes are augmented with water flow. In addition, we also
tested the ordinary multivariate regression model. All these models yield large autocorrelations of the standardized residuals, and in case
of time-varying models, there is a clear inverse relationship between the size of residuals and observed concentration. These apparent
violations are avoided by using the model (7). However, even despite obvious violations of model assumptions, yearly estimates of the
nutrient fluxes from different time varying models have very similar coefficients of variation with deviations being usually less than one
percentage point.
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Table 2. Estimates of the unknown parameters and their standard errors in parenthesis

Paimionjoki Aurajoki Porvoonjoki Vantaanjoki


2
�P
1

1:3� 10�7 0 6:4� 10�7 9:0� 10�8

log
�

2�11

�
�15:83.2:07/ — �14:27.1:05/ �16:22.3:75/


2
�P
2

1:4� 10�6 0 7:8� 10�5 5:5� 10�5

log
�

2�12

�
�13:46.3:39/ — �9:46.0:89/ �9:81.0:88/


2
�N
1

0 0 2:1� 10�5 7:7� 10�6

log
�

2�21

�
— — �10:78.0:64/ �11:78.0:98/


2
�N
2

2:9� 10�6 5:8� 10�6 3:1� 10�4 3:9� 10�5

log
�

2�22

�
�12:74.1:52/ �12:06.1:00/ �8:08.1:03/ �10:15.0:82/


2
�P

5:4� 10�3 1:0� 10�2 1:1� 10�2 7:0� 10�3

log
�

2
�1

�
�5:23.0:16/ �4:58.0:14/ �4:51.0:19/ �4:96.0:25/


2
�N

8:3� 10�3 1:1� 10�2 4:0� 10�3 4:0� 10�3

log
�

2
�2

�
�4:80.0:13/ �4:47.0:13/ �5:51.0:24/ �5:51.0:25/


2
�P

3:1� 10�2 1:8� 10�2 6:5� 10�3 2:2� 10�2

log
�

2�1

�
�3:47.0:13/ �4:02.0:19/ �5:04.0:89/ �3:81.0:33/


2
�N

3:0� 10�2 1:7� 10�2 1:5� 10�2 1:3� 10�2

log
�

2�2

�
�3:49.0:14/ �4:09.0:22/ �4:21.0:30/ �4:32.0:35/

	�P ;�N 0:58 .0:04/ 0:46.0:04/ 0:53.0:06/ 0:48.0:06/

	�P ;�N 0:26.0:08/ 0:07.0:12/ 0:20.0:29/ 0:02.0:24/

�P 4:47.0:13/ 3:83.0:10/ 3:11.0:25/ 2:72.0:29/

�N 7:63.0:15/ 7:62.0:11/ 7:04.0:23/ 6:83.0:24/

�P 0:98.0:004/ 0:95.0:006/ 0:95.0:009/ 0:96.0:007/

�N 0:98.0:003/ 0:96.0:005/ 0:98.0:006/ 0:98.0:005/

In the case of the ordinary regression model, the coefficients of variation are often substantially smaller. In Figure 4, the coefficients of
variation are plotted against the yearly sample sizes of the concentration measurements. The coefficients of variation from the model (7)
depend on the yearly sample sizes, whereas results from the ordinary regression model are overoptimistic and counterintuitive: uncer-
tainty in the yearly flux estimate is independent from the amount of measurements in a given year. Both models use the daily water
flow for the prediction of the missing concentration measurements, but the ordinary regression is immune to the time order of the mea-
surements, and only the total number of measurements is important. However, we acknowledge that because yearly flux estimates are
always conditioned on the model, all models underestimate the true errors of yearly flux estimates, and none of the models considered
is “true”.

The quantile-to-quantile plots of the standardized residuals of the models reveal heavier tails compared with the normal distribution. This
would be problematic if the interest is on the daily values, but because we are interested in yearly values, we believe that the possible
non-normality is not critical here. This is because the yearly measure of nutrient fluxes is a sum, which tends to be more normal than its
components by the central limit theorem. For evaluating the effects of non-normality, we have made a simulation experiment where the
errors �t are a random sample from a heavy-tailed bivariate t -distribution with three degrees of freedom scaled to have Var.�t / D †� .
New values representing the concentration measurements, on the same days as the true ones, are then simulated from the model with the
estimated parameters. By using these simulated measurements, we fit our proposed model (under Gaussian assumptions), and we computed
the coefficients of variation for the yearly fluxes. The coefficients of variation from the simulation are, on the average, within one percentage
point of those obtained from the actual dataset thus displaying the negligible effect of non-normality.

The main purpose of our model is to estimate the yearly nutrient flux. To this end, we developed the thinning experiment explained at the
end of section 2.2. We have made five experiments by randomly removing 10%, 20%, 30%, 40%, and 50% from the concentration values.
The resulting relative errors (6) are reported in Table A.2 in the Appendix. The number of simulations is B D 2000, and each time, the
parameters are re-estimated. If the model is correct, we expect a decreasing trend, and this is mostly what we observe. The loss of relative

accuracy with 30% thinning is about 5% or less. However, the mean absolute errors MAEk D
PB
iD1 j

bf i;k � fi;k j=B increase rapidly as

expected when thinning is increased (Table A.3 in the Appendix). When measuring bias using average errors AEk D
PB
iD1.

bf i;k �fi;k/=B
(Table A.4 in the Appendix), the total phosphorus flux is underestimated in all rivers, whereas the total nitrogen flux is usually overestimated,
except for Aurajoki, where the nitrogen flux is underestimated. Overall, the results suggest that our model performs well enough for practical
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Figure 3. The smoothed coefficient processes corresponding to the predictor variables log.1C qt / (left) and 1= log.2C qt / (right) for all four rivers. The
black lines represent the processes corresponding to phosphorus observations, and the gray lines correspond to the nitrogen observations. Constant horizontal

line corresponds to the null variance of the coefficient process
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Figure 4. The relationship between coefficients of variation for yearly nutrient flux and the number of yearly nutrient concentration observations. The figure
on left corresponds to final model (7), and the figure on right to the ordinary regression model

purposes. For the ordinary regression model, the mean relative and absolute errors are always larger, and prominently so for nitrogen fluxes.
The average errors show that the ordinary regression model overestimates the nitrogen fluxes more than our model, whereas the bias of
phosphorus fluxes is slightly smaller. Finally, we note that removing predictor 1= log.2C qt / from the final model (7) always worsens the
model performance compared with including it.
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5. DISCUSSION
We have used Gaussian state space models with partially sparse data for modeling the yearly nutrient fluxes of four rivers running through
catchments dominated by agricultural land use. The large proportion of “missing” daily nutrient concentration measurements for correspond-
ing daily flow measurements increased the uncertainty regarding the model selection, parameter estimation, and prediction, thus encouraging
the use of models with simple structure and large flexibility.

During the observational period covered by this study, Finnish agricultural farmlands experienced a substantial decrease in phosphorus
and nitrogen balance OECD (2012). Despite this drastic decrease in nutrient balance, we did not observe any corresponding trends in nutrient
fluxes over the last 25 years for any of the four rivers examined here. Greatly reduced nutrient balances do not always lead to concurrent
reduction in riverine nutrient fluxes, for example, due to high nutrient reserves in soil and groundwater (e.g., Stålnacke et al. (2004)). More-
over, although nutrient balances form a crucial indicator of the risk of nutrient losses from agriculture, changes in other agricultural practices
or in climate may have had an opposite effect on the load (Ekholm et al., 2007).

While we have reported results when the daily water flow is only predictor variable, we have also augmented the model with locally
important variables such as daily air temperature, precipitation, and several functions of these. To examine the possible effect of large scale
climate patterns, we have also used the North Atlantic Oscillation and Arctic Oscillation indices in combination with flow. Additions of
variables operating at either small (temperature and precipitation) or large scales (North Atlantic Oscillation or Arctic Oscillation) did not
improve results for any of the models we used.

Many studies examining nutrient dynamics of rivers have stated the need for extensive datasets to be able to make precise statements on
the nutrient flux (e.g., Rekolainen et al. (1991)). Although we are conscious that the thinning of an originally sparse data by half can include
possible computational caveats and thus may lead to artifacts, our results seem to indicate that when daily flow data are available, relatively
sparse data on nutrient concentrations can be used to estimate yearly fluxes. If the aim of monitoring is to assess yearly fluxes of principal
nutrients from agriculturally dominated watersheds to receiving downstream locations (e.g., the sea), our findings imply the potential to
lower the frequency of water quality (i.e., nutrient) sampling intensities for rivers with permanent gauging stations and long-term records
of flow. It should be noted that these concentration measurements could be used for other types of analysis as well, where the number of
samples cannot not be reduced.
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APPENDIX

Table A.1. Annual fluxes (kg=km2/year) and the coefficient of variation in percentages for each river
and nutrient

Paimionjoki Aurajoki Porvoonjoki Vantaanjoki
P N P N P N P N

1985 57 (2.8) 469 (3.5) 53 (17.8) 547 (18.5) 71 (5.7) 1140 (5.6) 52 (7.0) 776 (6.0)
1986 99 (9.2) 939 (9.7) 100 (8.8) 1020 (9.6) 68 (10.7) 1132 (8.8) 76 (10.9) 1009 (9.7)
1987 63 (9.4) 596 (9.7) 72 (11.1) 609 (9.7) 63 (9.0) 1052 (7.5) 41 (9.0) 613 (7.2)
1988 81 (4.0) 772 (4.3) 85 (3.8) 867 (4.1) 66 (6.0) 1211 (6.3) 40 (6.7) 732 (6.0)
1989 69 (6.1) 929 (6.1) 62 (3.8) 1094 (4.1) 45 (9.0) 1314 (7.6) 40 (10.6) 842 (8.8)
1990 107 (3.6) 1312 (4.0) 96 (3.1) 1137 (3.1) 48 (10.9) 1494 (8.5) 45 (13.0) 1020 (11.0)
1991 92 (4.8) 1090 (4.5) 101 (3.6) 1076 (3.6) 52 (5.6) 1372 (5.3) 42 (6.2) 1064 (5.6)
1992 83 (5.2) 1041 (5.8) 72 (3.9) 945 (4.1) 54 (5.0) 1651 (4.9) 52 (6.2) 1134 (5.1)
1993 44 (6.0) 528 (6.2) 54 (3.1) 627 (3.3) 28 (7.4) 733 (6.4) 22 (7.3) 481 (6.8)
1994 67 (5.4) 690 (6.6) 73 (4.2) 729 (4.2) 46 (4.8) 896 (5.6) 41 (5.7) 611 (5.4)
1995 77 (6.9) 924 (7.6) 78 (4.6) 832 (4.7) 39 (5.1) 943 (4.9) 36 (6.3) 666 (5.2)
1996 92 (8.1) 907 (7.8) 94 (3.5) 980 (3.6) 45 (5.9) 1193 (5.3) 58 (7.6) 1042 (6.1)
1997 62 (6.9) 777 (7.5) 68 (4.4) 867 (4.8) 27 (3.7) 711 (3.1) 24 (4.1) 473 (3.0)
1998 96 (7.3) 1092 (8.2) 92 (4.0) 1017 (3.9) 61 (4.1) 1274 (3.6) 53 (4.8) 980 (3.8)
1999 68 (6.1) 872 (7.7) 79 (4.1) 950 (6.1) 43 (2.9) 1060 (3.1) 39 (4.0) 823 (3.2)
2000 117 (6.9) 1392 (7.1) 115 (3.7) 1317 (3.8) 53 (3.7) 1476 (3.2) 56 (4.8) 1176 (3.1)
2001 69 (5.1) 766 (5.6) 88 (4.0) 905 (3.6) 30 (4.3) 873 (4.0) 38 (4.3) 828 (3.4)
2002 42 (7.3) 501 (7.9) 39 (4.9) 391 (5.0) 27 (3.7) 856 (3.5) 23 (5.1) 563 (3.9)
2003 17 (8.8) 383 (12.1) 30 (10.0) 662 (10.8) 24 (4.5) 883 (3.9) 15 (7.1) 479 (5.9)
2004 78 (5.2) 1243 (5.2) 76 (6.1) 1251 (5.3) 66 (3.6) 1200 (3.0) 58 (4.1) 953 (3.1)
2005 65 (6.3) 717 (6.5) 65 (3.8) 722 (3.9) 42 (3.6) 919 (3.2) 42 (4.7) 772 (3.7)
2006 79 (6.4) 1091 (6.3) 106 (3.5) 1075 (3.6) 46 (3.2) 998 (3.3) 40 (4.2) 928 (3.5)
2007 83 (7.8) 1006 (8.0) 81 (6.6) 894 (6.8) 49 (3.8) 985 (3.5) 43 (4.8) 869 (4.3)
2008 159 (6.2) 1380 (6.2) 153 (3.7) 1245 (3.7) 83 (3.7) 1108 (3.3) 74 (4.1) 998 (3.2)
2009 42 (6.3) 400 (7.0) 35 (5.5) 335 (5.0) 32 (3.9) 609 (3.3) 22 (4.7) 348 (3.4)
2010 47 (5.4) 619 (5.6) 33 (5.6) 501 (5.1) 27 (3.8) 630 (3.6) 32 (4.8) 600 (3.4)

Table A.2. The mean relative error percentages and their standard errors for the final model (7) and for the
ordinary least squares regression model with two predictors (marked by �)

Paimionjoki Aurajoki Porvoonjoki Vantaanjoki
P N P N P N P N

MRE10 5.8 (0.09) 4.8 (0.08) 6.5 (0.11) 5.3 (0.11) 6.4 (0.11) 3.9 (0.07) 7.1 (0.13) 4.7 (0.08)

MRE�10 7.0 (0.12) 7.4 (0.13) 8.9 (0.15) 8.0 (0.14) 7.6 (0.13) 6.7 (0.11) 8.9 (0.15) 7.6 (0.13)

MRE20 4.5 (0.07) 3.6 (0.06) 5.4 (0.09) 4.6 (0.08) 5.0 (0.08) 3.0 (0.05) 5.8 (0.10) 3.7 (0.06)

MRE�20 5.0 (0.08) 5.9 (0.10) 6.8 (0.11) 6.3 (0.10) 6.0 (0.10) 5.1 (0.09) 7.0 (0.11) 6.0 (0.10)

MRE30 4.0 (0.06) 3.3 (0.06) 5.1 (0.08) 4.1 (0.07) 4.5 (0.07) 2.7 (0.05) 5.3 (0.09) 3.3 (0.06)

MRE�30 4.5 (0.07) 5.1 (0.09) 6.2 (0.10) 5.3 (0.09) 4.9 (0.08) 4.5 (0.07) 5.9 (0.10) 5.1 (0.09)

MRE40 3.6 (0.06) 3.2 (0.05) 4.9 (0.08) 3.8 (0.06) 4.3 (0.07) 2.7 (0.05) 5.2 (0.08) 3.1 (0.06)

MRE�40 4.1 (0.07) 5.0 (0.08) 5.7 (0.09) 4.9 (0.08) 4.7 (0.08) 4.2 (0.07) 5.7 (0.09) 4.7 (0.09)

MRE50 3.5 (0.06) 3.1 (0.05) 4.9 (0.08) 3.9 (0.06) 4.3 (0.07) 2.8 (0.05) 4.9 (0.08) 3.3 (0.06)

MRE�50 3.9 (0.07) 4.6 (0.08) 5.5 (0.09) 4.9 (0.08) 4.6 (0.07) 4.1 (0.07) 5.4 (0.09) 4.8 (0.08)

wileyonlinelibrary.com/journal/environmetrics Copyright © 2013 John Wiley & Sons, Ltd. Environmetrics (2013)



ESTIMATING AGGREGATED NUTRIENT FLUXES VIA GAUSSIAN STATE SPACE MODELS Environmetrics

Table A.3. The mean absolute errors (metric tons) and their standard errors for the final model (7) and for the
ordinary least squares regression model with two predictors (marked by �)

Paimionjoki Aurajoki Porvoonjoki Vantaanjoki
P N P N P N P N

MAE10 0.9 (0.02) 7.8 (0.14) 1.7 (0.03) 14.0 (0.32) 0.8 (0.02) 9.9 (0.17) 1.3 (0.03) 13.5 (0.24)

MAE�10 1.1 (0.02) 11.8 (0.20) 2.2 (0.04) 20.3 (0.35) 1.0 (0.02) 16.7 (0.28) 1.5 (0.03) 21.7 (0.38)

MAE20 1.4 (0.02) 11.8 (0.21) 2.7 (0.05) 23.7 (0.46) 1.3 (0.02) 15.1 (0.26) 2.0 (0.04) 20.9 (0.37)

MAE�20 1.6 (0.03) 19.0 (0.31) 3.4 (0.06) 31.4 (0.52) 1.6 (0.03) 25.4 (0.43) 2.4 (0.04) 33.8 (0.59)

MAE30 1.9 (0.03) 16.0 (0.28) 3.9 (0.07) 31.7 (0.55) 1.8 (0.03) 20.0 (0.35) 2.8 (0.05) 28.1 (0.50)

MAE�30 2.1 (0.04) 24.8 (0.42) 4.7 (0.08) 40.3 (0.66) 1.9 (0.03) 33.6 (0.55) 3.1 (0.05) 43.6 (0.77)

MAE40 2.3 (0.04) 20.9 (0.36) 5.0 (0.08) 39.1 (0.66) 2.3 (0.04) 26.9 (0.50) 3.6 (0.06) 35.3 (0.64)

MAE�40 2.6 (0.04) 32.2 (0.53) 5.8 (0.10) 48.9 (0.83) 2.5 (0.04) 41.5 (0.71) 3.9 (0.07) 53.4 (0.96)

MAE50 2.7 (0.05) 25.7 (0.44) 6.1 (0.10) 49.9 (0.79) 2.8 (0.05) 35.8 (0.65) 4.3 (0.07) 46.9 (0.82)

MAE�50 3.0 (0.05) 37.8 (0.64) 6.9 (0.11) 61.2 (1.05) 3.0 (0.05) 51.3 (0.88) 4.7 (0.08) 68.7 (1.20)

Table A.4. The mean errors (metric tons) and their standard errors for the final model (7) and for the ordinary least
squares regression model with two predictors (marked by �)

Paimionjoki Aurajoki Porvoonjoki Vantaanjoki
P N P N P N P N

ME10 �0.3 (0.02) �0.1 (0.22) �0.9 (0.05) �4.6 (0.43) �0.3 (0.02) �0.1 (0.28) �0.4 (0.04) 0.7 (0.39)

ME�10 �0.2 (0.03) 5.0 (0.31) �0.8 (0.06) 4.7 (0.57) �0.2 (0.03) 3.7 (0.46) �0.3 (0.04) 5.0 (0.61)

ME20 �0.6 (0.04) 0.6 (0.33) �1.8 (0.07) �9.0 (0.67) �0.6 (0.04) �0.5 (0.43) �0.9 (0.06) 1.2 (0.59)

ME�20 �0.2 (0.04) 10.7 (0.47) �1.5 (0.09) 9.4 (0.85) �0.4 (0.04) 8.8 (0.68) �0.6 (0.07) 11.5 (0.92)

ME30 �0.8 (0.05) 6.1 (0.43) �2.8 (0.09) �9.9 (0.87) �0.9 (0.05) 1.8 (0.57) �1.3 (0.07) 3.8 (0.80)

ME�30 �0.3 (0.06) 15.2 (0.60) �2.6 (0.12) 12.2 (1.09) �0.4 (0.05) 13.8 (0.88) �1.0 (0.08) 16.8 (1.19)

ME40 �0.9 (0.06) 9.1 (0.55) �3.7 (0.11) �11.4 (1.07) �1.3 (0.06) 2.6 (0.78) �1.9 (0.09) 5.5 (1.01)

ME�40 �0.2 (0.07) 22.2 (0.74) �3.2 (0.14) 18.4 (1.31) �0.7 (0.07) 19.0 (1.09) �1.5 (0.11) 22.4 (1.45)

ME50 �0.9 (0.07) 11.6 (0.68) �4.6 (0.13) �11.2 (1.34) �1.5 (0.07) 3.9 (1.03) �2.3 (0.11) 6.3 (1.33)

ME�50 �0.2 (0.09) 25.4 (0.90) �4.0 (0.17) 23.3 (1.64) �0.9 (0.08) 21.8 (1.36) �1.7 (0.13) 28.5 (1.84)

Environmetrics (2013) Copyright © 2013 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/environmetrics


	thesisHelskeSummary.pdf
	coverI.pdf
	ArticleI.pdf
	coverII.pdf
	ArticleII.pdf
	coverIII.pdf
	ArticleIII.pdf
	coverIV.pdf
	ArticleIV.pdf
	Introduction
	Gaussian state space model
	Log-likelihood of the Gaussian state space model

	State space models for exponential family
	Log-likelihood of the non-Gaussian state space model

	Residuals
	Functionality of KFAS
	Constructing common state space models with KFAS
	Structural time series
	ARIMA models
	Linear and generalized linear models
	Generalized linear mixed models

	Illustration
	Comparison to INLA
	Discussion
	Appendix: Filtering and smoothing recursions
	Filtering
	Smoothing





