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In this work, we investigate the effects of the electron-electron interaction between a molecular junction
and the metallic leads in time-dependent quantum transport. We employ the recently developed embedded
Kadanoff-Baym method [Phys. Rev. B 80, 115107 (2009)] and show that the molecule-lead interaction changes
substantially the transient and steady-state transport properties. We first show that the mean-field Hartree-Fock
(HF) approximation does not capture the polarization effects responsible for the renormalization of the molecular
levels neither in nor out of equilibrium. Furthermore, due to the time-local nature of the HF self-energy, there
exists a region in parameter space for which the system does not relax after the switch-on of a bias voltage. These
and other artifacts of the HF approximation disappear when including correlations at the second-Born or GW
levels. Both these approximations contain polarization diagrams, which correctly account for the screening of
the charged molecule. We find that by changing the molecule-lead interaction, the ratio between the screening
and relaxation time changes, an effect which must be properly taken into account in any realistic time-dependent
simulation. Another important finding is that while in equilibrium the molecule-lead interaction is responsible
for a reduction of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO)
gap and for a substantial redistribution of the spectral weight between the main spectral peaks and the induced
satellite spectrum, in the biased system it can have the opposite effect, i.e., it sharpens the spectral peaks and
opens the HOMO-LUMO gap.

DOI: 10.1103/PhysRevB.85.075105 PACS number(s): 72.10.Bg, 71.10.−w, 73.63.−b, 85.30.Mn

I. INTRODUCTION

The electron transport through molecular devices has
gained remarkable interest during the last years, primarily due
to experimental advances in creating conductive molecule-
metal junctions.1,2 From the experimental point of view,
these systems are very attractive for their potential utilization
as the next-generation nanometer-scale building blocks for
future integrated circuits exceeding up to terahertz operating
frequencies. For theorists, the experimental realization of
electron transport through molecules opens up a new intriguing
and challenging playground for both theoretical and numerical
modeling of the underlying physical processes. Understanding
these processes at a microscopic level is crucial for the future
development of molecular electronics.

Considerable progress has been made to investigate both
steady-state3–13 and time-dependent14–17,19–32 transport prop-
erties of metal-nanostructure-metal junctions. As an increasing
trend, the system is partitioned into an explicitly treated
interacting region coupled to noninteracting electron reservoirs
(leads), which act as source and sink terminals. However, the
partitioning into an interacting and a noninteracting part is, in
general, not well justified due to the long-range nature of the
Coulomb interaction. Recently, there have been some advances
in calculating transport properties of nanoscale junctions
while incorporating the electron-elecron interaction in the
leads. Perfetto et al.33 recently found that by modeling the
electron-electron interaction in low-dimensional leads with
the Luttinger model, the initial correlation effects are not
washed out in the long-time limit and contribute substantially
to the steady-state current. Bohr et al.34 and Borda et al.35

investigated the effects of the lead-molecule interactions in the

interacting resonant level model and showed that it can lead
to a strong enhancement of the conductance. More recently,
these studies have been extended to long-range lead-molecule
interactions.36,37

Considerable attention has also been devoted to the effects
of surface polarization (or image charge formation). In
Refs. 38–42, it was shown that polarization effects can
dramatically change the quasiparticle gap of molecules near
the metallic surfaces where the dynamical correlation effects
and molecule-lead hopping integrals reduce the molecular
energy gap across the binding regime from gas phase to
physisorption. Clearly, this renormalization of the molecular
levels can have a large impact on the transport properties
of weakly coupled molecular junctions. Yet, the question of
how the molecule-lead interactions and, consequently, the
formation of an image charge affects the ultrafast electron
dynamics before a steady state (if any) is reached is still
unanswered. This paper wants to address two fundamental
issues: What is the time scale to screen molecular charge
fluctations induced by the sudden switch-on of an external
bias? What are the scattering processes (or Feynman diagrams)
relevant for an accurate description of the screening and
relaxation dynamics?

To answer these questions, we will use the Kadanoff-
Baym method, which has recently been applied to both
finite isolated43–47 and quantum transport systems16–18 and has
the merit of preserving all basic conservation laws.48,49 We
show that the mean-field Hartree-Fock (HF) approximation
suffers from several limitations in this context. Aside from
being unable to account for dynamical polarization effects,
the Hartree-Fock approximation can give rise to “unstable”
time-dependent solutions with persistent oscillations in density
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and current. All mean-field artifacts disappear when including
polarization effects in the self-energy, either at the second-
Born or GW level. These correlated solutions have recently
been assessed in the Anderson model,50 and good agreement
with time-dependent density matrix renormalization group
(DMRG) data was found.51 Here, we employ them for a
thorough analysis of the screening versus relaxation dynamics
as a function of the interaction strength, the molecule-lead
hopping integrals, and the external bias. We find that the
relaxation time τrel becomes shorter when increasing the
molecule-lead interactions at the second-Born and GW levels,
while the screening time τscr is roughly independent on the
interaction strength. Often, the time-dependent quantum trans-
port simulations are based on the assumption that τscr/τrel �
1. Our results show that the molecule-lead interaction can
substantially increase this ratio. Another remarkable effect of
the molecule-lead interaction is that for large enough biases,
the electronic correlations can sharpen the spectral peaks
and widen the gap between the levels of highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO). This behavior is exactly the opposite of the
equilibrium behavior and indicates that in the presence of
a current flow, the screening lengthens the HOMO-LUMO
quasiparticle lifetime and decreases (increases) the ionization
potential (electron affinity).

The paper is organized as follows. In Sec. II, we introduce
the model Hamiltonian for quantum transport simulations and
discuss the exact solution for zero molecule-lead hopping
integrals. We also give a short account of the theoretical
background and defer the reader to previously published
work for details. In Sec. III, we analyze the screening
versus relaxation time and the effect of the formation of an
image charge in the equilibrium spectral function. Section IV
deals with the short-time dynamics of the lead-molecule-lead
junction driven out of equilibrium by the sudden switch-on of a
constant bias, while Sec. V deals with the long-time dynamics,
and in particular with the absence of relaxation within HF and
the effects of screening in the I -V characteristic. The main
conclusions are then drawn in Sec. VI.

II. IMAGE CHARGE MODEL

A. Hamiltonian

To study the image charge effect, we consider a model
Hamiltonian that was introduced in Refs. 39 and 40. This
image charge model Hamiltonian is displayed schematically
in Fig. 1 and reads as

Ĥ (t) = Ĥmol + Ĥch(t) + V̂ − μN̂, (1)

where μ is the chemical potential and N̂ is the operator for the
total number of particles. The molecular region is modeled by a
two-level system representing the highest occupied molecular
orbital (H ) and the lowest unoccupied molecular orbital (L)
with energies εH and εL, respectively:

Ĥmol = εH n̂H + εLn̂L

+U0(n̂H↑n̂H↓ + n̂L↑n̂L↓) + UHLn̂H n̂L. (2)

The interaction strengths U0 and UHL account for the intralevel
and interlevel electron repulsion. Furthermore, we used the

HLU λrλl

0U

0U

. . . . . .

rU
l

U

lU

H

L
11 bb

right lead (r)left lead (l)

rU

FIG. 1. (Color online) Image charge model for quantum transport.

standard notation n̂i = ∑
σ=↑↓ n̂iσ for the particle number

operator of the molecular level i = H,L, where n̂iσ = ĉ
†
iσ ĉiσ

and ĉ
†
iσ and ĉiσ are the electron creation and annihilation

operators.
The second term in Eq. (1) describes the left (α = l) and

right (α = r) leads

Ĥch(t) =
∑
α=l,r

∞∑
i,j=1

∑
σ=↑↓

[
hα

ij + δijW
α(t)

]
ĉ
†
αiσ ĉαjσ , (3)

which are modeled as one-dimensional semi-infinite tight-
binding (TB) chains subject to time-dependent uniform bias
voltages Wα(t). The TB parameters hij of the chain are chosen
so that hij = b for i,j nearest neighbors and zero otherwise.
Finally, ĉ

†
αiσ and ĉαjσ are the creation and annihilation

operators for electrons in lead α, site i = 1,2, . . . ,∞, and
spin σ .

The third term in Eq. (1) describes the interaction between
the molecular levels and the TB chains:

V̂ =
∑
α=l,r

∑
i=H,L

∑
σ=↑↓

λα(ĉ†α1σ ĉiσ + ĉ
†
iσ ĉα1σ )

+
∑
α=l,r

Uα(n̂α1 − 1)(N̂mol − 2). (4)

Here, λα and Uα are the hopping integrals (proportional
to the hybridization of the molecular levels) and Coulomb
interaction strengths between the HOMO and LUMO levels
and the terminal site of lead α. The quantity n̂α1 is the particle
number operator of site 1 of lead α, n̂α1 = ∑

σ=↑↓ ĉ
†
α1σ ĉα1σ ,

while N̂mol is the total number of particle operator of the
molecule N̂mol = n̂H + n̂L. We consider the system initially
in equilibrium at zero temperature, zero bias, Wα = 0, and at
half-filling. Then, the average density on the lead sites is unity,
while the average density of the HOMO and LUMO levels is
2 and 0, respectively. To guarantee the charge neutrality of the
interacting region, we subtracted a positive background charge
of 1 from n̂α1 and of 2 from N̂mol.

This completes the explanation and justification of the im-
age charge model (ICM). It can be considered as an extension
of the interacting resonant level model to study molecular
excitons and polarization effects. The ICM can, of course, be
further refined by including interactions in the leads and a
direct lead-lead interaction, and can be further generalized to
two- or three-dimensional leads, more molecular levels, etc.
Equation (1), however, provides the minimal model to study
the effects of image charges in the nonequilibrium properties
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of nanoscale junctions, and in this paper we will not discuss
any of the aforementioned extensions.

B. Uncontacted case: Exact solution

The ICM can be solved exactly for zero hybridization,
i.e., λr = λl = 0, since in this case the operators n̂H and
n̂L commute with the Hamiltonian and hence the number of
electrons on the H and L levels are conserved quantities.
Let us consider for simplicity the unperturbed Hamiltonian
Ĥ obtained from Eq. (1) by setting the bias Wα to zero. All
eigenstates of Ĥ have the form

|M,s〉 =
∏
j

θj ĉ
†
j |	s〉. (5)

Here, the ĉ
†
j operators create electrons on the molecular

level j ∈ {H ↑ ,H ↓ ,L ↑ ,L ↓}, and θj is either equal to
one or zero depending on what states one likes to occupy.
The corresponding molecular configuration is specified by the
collective quantum number M . The state |	s〉 is the tensor
product of the vacuum state of the molecule and the sth excited
state of the uncontacted leads and has the property n̂j |	s〉 = 0.
For example, a state with two electrons in the HOMO level
of the molecule is |H ↑ ,H ↓ ,s〉 = c

†
H↑c

†
H↓|	s〉. To find the

secular equation for the |	s〉, we apply Ĥ to |M,s〉 and find

Ĥ |M,s〉

=
[
Ĥmol + Ĥch +

∑
α

Uα(n̂α1 − 1)(N̂mol − 2)

]
|M,s〉

= [EM + EM,s]|M,s〉 = EM,s |M,s〉, (6)

where EM is the total energy of the isolated molecule with
Nmol electrons satifying the eigenvalue equation

Ĥmol|M,s〉 = EM |M,s〉, (7)

while EM,s is the total energy of the uncontacted leads in the
presence of the potential Uα(Nmol − 2) at the terminal sites

Ĥch(U )|M,s〉

≡
[
Ĥch(U = 0) +

∑
α

Uα(Nmol − 2)(n̂α1 − 1)

]
|M,s〉

= EM,s |M,s〉. (8)

This potential depends on the strength of the Coulomb
interaction Uα and on the number Nmol of electrons on
the molecule. Once we know the electronic configuration of
the molecule, the problem reduces to solving the eigenvalue
equation (8) for a noninteracting TB chain with an impuritylike
potential at the terminal site. If the molecule is charge neutral,
Nmol = 2, this potential is zero. However, adding (removing)
an electron from the charge-neutral molecule gives rise to
a potential +Uα (−Uα). This, in turn, causes a depletion
(accumulation) of charge, which is exactly the image charge.

It is worth stressing that the presence of the lead-molecule
interaction affects the total energies of the charged system
[see again Eq. (8)], and consequently changes the addition
and removal energies. Consider, for instance, the solution
for a simple two-site chain and a lead-molecule interaction

Ur = U and Ul = 0 (no coupling to the left lead). It is easy
to show that the electron affinity is A = εL + 2UHL + 2|b| −
2
√

(U/2)2 + b2, while the ionization energy is I = εH + U0 −
2|b| + 2

√
(U/2)2 + b2 (see Appendix A). The difference

A − I reduces with increasing U and the quasiparticle gap
collapses. This can also be viewed from another, more general,
point of view. Consider for simplicity that Uα = U for both
leads and that the intramolecular interactions U0 and UHL are
zero. If the molecule is charge neutral (Nmol = 2), the energies
of the N and N ± 1 particle ground states (with the constraint
that the electron is added to or removed from the molecule)
are given by

EN = 2εH + EGS(0), (9)

EN+1 = 2εH + εL + EGS(U ), (10)

EN−1 = εH + EGS(−U ), (11)

where we defined EGS(U ) to be the ground-state energy of the
Hamiltonian Ĥch(U ) of Eq. (8). Therefore, the electron affinity
A and ionization energy I read as

A = EN+1 − EN = εL + EGS(U ) − EGS(0), (12)

I = EN − EN−1 = εH + EGS(0) − EGS(−U ). (13)

Let |	GS(u)〉 be the ground state of Ĥch(U ). Then, according
to the Hellman-Feynman theorem,52

dEGS(u)

du
= 〈	GS(u)|dĤch(u)

du
|	GS(u)〉 (14)

and, therefore,

EGS(U ) − EGS(0) =
∑

α

∫ U

0
[nα1(u) − 1]du. (15)

From this equation, we see clearly how the ground-state energy
depends on the molecular occupation: If we add an electron
to the molecule, we push away charge from the first sites of
the leads and, hence, the integral is negative and the affinity
lowers. On the other hand, if we remove an electron from the
molecule, we attract charge to the first sites of the leads and
the ionization energy increases.

The bottom panel of Fig. 2 shows how the image charge
is built up in the lead. We plot the time evolution of the
density at the first site of a semi-infinite chain when the
impuritylike potential U = 0.5 is suddenly switched on at
time t = 0 on site 1. The different curves corre-
spond to different hopping parameters in the lead b =
−0.5,−1.0,−1.5,−2.0. By increasing b, the frequency of the
transient oscillations increases and the steady state is reached
faster. This behavior can be easily understood by inspecting
the imaginary part of the density response function χ11(ω)
(top right panel of Fig. 2). In Appendix B, we show that this
quantity has a maximum at ω ∼ 2|b|, which corresponds to the
oscillation frequency of the density. The width of the maximum
grows like 2|b| and its inverse gives the screening time, i.e.,
the time scale for the image charge formation. Furthermore,
from the top left panel, we see that χ11(ω = 0) behaves as
1/b, which is consistent with the larger induced charge in the
long-time limit.
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FIG. 2. (Color online) Top left and right panels: The real and
imaginary parts of the dynamical response function. Bottom panel:
The electron density at the terminal site of the TB chain as a function
of time when the impurity potential U = 0.5 is suddenly switched
on. The different curves correspond to different values of the hopping
parameter b = −0.5,−1.0,−1.5,−2.0.

C. Many-body treatment

The ICM does not have an exact solution for the contacted
case, and to study it both in and out of equilibrium, we
use the nonequilibrium Green’s function (NEGF) method

based on time propagation of the embedded Kadanoff-Baym
equations.16,17,48,53 The basic quantity in the formalism is the
one-particle Green’s function

Gkl(z,z
′)=−iδσkσl

Tr
{
T

[
e−i

∫
c

dz̄ Ĥ (z̄)ĉkσk
(z)ĉ†lσl

(z′)
]}

Tr
{
e−i

∫
c

dz̄ Ĥ (z̄)
} , (16)

where we used the notations ĉkσk
and ĉ

†
lσl

to denote electron
annihilation and creation operators either in the molecule or in
the leads. Note that since the Hamiltonian is invariant under
rotations in spin space (along the entire Keldysh contour),
then the Green’s function is diagonal in the spin indices and
independent of the spin component. We therefore use only
the orbital indices to specify its matrix elements. In the above
definition, z,z′ are the time indices on the Keldysh contour
c, T is the time-ordering operator on the Keldysh contour,
and Tr{. . .} signifies the trace over the Fock space of all
many-body states. The Green’s function G is the solution
of the integrodifferential equation of motion on the Keldysh
contour

[i∂z − h(z)]G(z,z′) = δ(z,z′) +
∫

c

dz̄
[G](z,z̄)G(z̄,z′),
(17)

where h(z) is the Hamiltonian in the one-particle Hilbert space,
δ(z,z′) is the contour delta function, and 
[G] is the self-
energy kernel containing all the information on the many-
body and embedding effects.16,17 For the purpose of a practical
implementation of the Hamiltonian (1), we divide the system
into interacting (C) and noninteracting (α) regions and write
the single-particle part and the interaction part of C as [see
Eq. (1)]

[h]ij (t) =

⎛
⎜⎜⎝

−2Ul + Wl(t) λl λl 0
λl εH − Ul − Ur 0 λr

λl 0 εL − Ul − Ur λr

0 λr λr −2Ur + Wr (t)

⎞
⎟⎟⎠ , [v]ij =

⎛
⎜⎜⎝

0 Ul Ul 0
Ul U0 UHL Ur

Ul ULH U0 Ur

0 Ur Ur 0

⎞
⎟⎟⎠ . (18)

Using this notation, the Hamiltonian (1) transforms into

Ĥ =
∑
ij∈C

∑
σ=↑↓

hij (t)ĉ†iσ ĉjσ + 1

2

∑
ij∈C

∑
σ=↑↓

vij ĉ
†
iσ ĉ

†
jσ ĉjσ ĉiσ

+
∑
α=l,r

∑
ij∈α

∑
σ=↑↓

[
hα

ij + δijW
α(t)

]
ĉ
†
αiσ ĉαjσ − μN̂, (19)

where C contains the molecular levels and also the terminal
sites of the leads subjected to the bias voltages Wα(t).
Furthermore, α = L,R are the noninteracting parts of the left
and right leads. We choose U0 = UHL = ULH = 1, μ = 0,
εH = −2, and εL = −1 throughout the rest of this paper.

We will solve Eq. (17) with a Hartree-Fock, second-Born
(2B), and GW many-body self-energy. The quality of the

2B and GW self-energy has recently been assessed in the
Anderson model50 by comparing the time-dependent current
and density against time-dependent DMRG results.51 Good
agreement was found in the parameter regime that we discuss
below.

It is instructive and useful for our later analysis to discuss the
many-body approximations in the uncontacted case. However,
we stress that in the results section, we used many-body self-
energies evaluated at the fully contacted and self-consistent
Green’s functions. Since the number of electrons in the H

and L levels are conserved quantities in the uncontacted
case, the Green’s function GHk = δHkGHH and similarly
GLk = δLkGLL for all levels and sites k of the system. The HF
approximation consists of the first two diagrams in Fig. 3(a).
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FIG. 3. Self-energy diagrams for λl = λr = 0. (a) The only
nonzero diagrams of the GW self-energy. (b) Second-order self-
energy diagrams that are zero. All higher-order diagrams are also
zero.

The labels of the vertices refer to the molecular levels H ,
L, and the terminal site of lead α (which is simply denoted
by 1 independently of α). The 2B self-energy is obtained by
adding to the HF self-energy the first bubble diagram and
the second-order exchange diagram. For zero hybridization,
however, the second-order exchange diagram vanishes since it
either contains an off-diagonal element of the Green’s function
(which is zero) or a product of lesser and greater diagonal
element of the molecular Green’s functions, e.g., G>

HH G<
HH .

Having the equilibrium system with two electrons in H and
zero in L, it must be G<

LL = G>
HH = 0. Consequently, only

the first bubble diagram survives and the 2B self-energy
diagrams are all displayed in Fig. 3(a). Note that if the external
vertices of the bubble self-energy diagram lie on the terminal
site of the leads [second diagram of Fig. 3(b)], the diagram
vanishes. This is a direct consequence of the fact that the
polarization diagram with H or L as vertices is proportional
to the product G>

HHG<
HH or G>

LLG<
LL, which is zero. For

the same reason, the first diagram of Fig. 3(b) is also zero.
The physical origin of this result is that one can not create
particle-hole excitations on the molecules without changing
the number of electrons in the H/L levels. The many-body
self-energy in the GW approximation is 
 = iGW where the
screened interaction W is approximated as a geometric series
of bare polarization diagrams connected by interaction lines.
Since the only bare polarization diagram is the particle-hole
propagator going from 1 to 1, the GW approximation coincides
with the 2B approximation. In our ICM, there is no direct
interaction between two electrons on the terminal site of the
leads. It is therefore reasonable to expect that the 2B and GW
approximations perform similarly for small hybridizations. As
we shall see in the next section, this expectation is indeed
confirmed by our numerical calculations.

III. COMPETING TIME SCALES AND SPECTRAL
PROPERTIES

In the previous section, we have seen that there is a
characteristic screening time to build up charge after the
addition or removal of an electron to or from the molecule.
In the case that the molecule is contacted to the leads, there is
another time scale that plays a role. This is the relaxation time
to disperse the excess charge on the molecule into the leads. It

-1.0

-0.5

0

0.5

1.0

    

HF
2B

-1.0

-0.5

0

0.5

1.0

 0  10  20  30  40

(b) b = −0.6,     U = 1.0,          = −0.2

t

(a) λ

λ

b = −0.6,     U = 1.0,          = 0

FIG. 4. (Color online) Green’s function G>
LL(t,0) for (a) HF and

2B with b = −0.6, U = 1, and λ = 0, (b) HF and 2B with b = −0.6,
U = 1.0, and λ = −0.2.

is the ratio between the screening time and the relaxation time
that tells us how the system behaves under nonequilibrium
conditions. The aim of this section is to extract these time
scales from the equilibrium properties of the contacted system
and to analyze the effects of the screening on the equilibrium
spectral function. This will help us to gain insight in the more
complicated case of quantum transport discussed in the next
section. The analysis will be carried on using many-body
Green’s function methods since the contacted case is no longer
analytically solvable.

A. Screening and relaxation times

In this section, we study the response of the system
to the sudden addition or removal of an electron on the
molecule within the HF, 2B, and GW approximations. The
response of an added electron is encoded into the G> and
G< Green’s functions, which we can calculate within these
many-body approximations both in real time and in frequency
space. For instance, the LUMO Green’s function G>

LL(t,0) =
−i〈ĉL(t)ĉ†L(0)〉 gives the probability amplitude of finding a
particle on the LUMO level at time t after being created at time
0. In Fig. 4, we plot the real part of this quantity. This Green’s
function oscillates with a characteristic frequency equal to the
addition energy of an electron to the LUMO level. In Fig. 4(a),
we compare the HF and 2B results for λl = λr = 0, Ul = 0,
Ur = U = 1, and b = −0.6. The correlated 2B curve exhibits
a short transient with a characteristic time scale ∼ 1/b. This
transient has to be attributed to the buildup of the image charge,
and its duration is consistent with the previous analysis of
Fig. 2. Note that no transient is visible in the HF approximation,
which therefore fails to describe the formation of the image
charge. The interplay between the screening time and the
relaxation time can be investigated by contacting the molecule
to the leads. In Fig. 4(b), we consider the same parameters
as in Fig. 4(a) except for λr = λ = −0.2, i.e., the molecule is
contacted to the right lead. The main difference to the previous
case is that both the HF and 2B curves are damped (relaxation).
Similarly to the uncontacted case, there is no evidence of
screening in the HF approximation.

Let us now address in more detail the dependence of the
relaxation time on the molecule-lead interaction U . In most
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FIG. 5. (Color online) Green’s function G>
LL(t,0) for HF and 2B

with b = −1.0 [(a) and (b)] and b = −0.6 [(c) and (d)] and λ = −0.2
and different values of U .

physical situations, the bandwidth of the metallic leads is
much larger than the molecule-lead coupling b � λ. Then,
for small values of U , the relaxation time is proportional
to τrel ∼ �−1 ∼ |b|/λ2. This time scale depends both on the
molecule-lead coupling and the lead hopping. On the other
hand, the screening time τscr ∼ 1/|b| is a property of the lead
only, and the ratio τrel/τscr ∼ (b/λ)2 is always larger than unity.
If the interaction U becomes comparable to or larger than b,
then this analysis is not valid anymore. In Appendix C, we
show that already at the HF level U renormalizes the relaxation
time according to τrel ∼ �−1(1 − CU )2, where C is a positive
real constant weakly dependent on U for small values of U .
This is illustrated in the top panels of Fig. 5 where we display
the real part of G>

LL(t,0) for b = −1.0 and λr = λ = −0.2
at the HF and 2B levels. We see in both cases that by increasing
the molecule-lead interaction U , we lower the relaxation time.
The renormalization of the lead coupling (or the embedding
SE) also affects the positions of the molecular quasiparticle
levels. The renormalization leads to a small upward shift of
the LUMO level and a downward shift of the HOMO level,
i.e., a slight opening of the HOMO-LUMO gap. This is clearly
visible in Fig. 5(a), where we see a slight increase in the
frequency of the LUMO oscillation when we increase U . In
Fig. 5(b) for 2B, on the other hand, we see a much more drastic
decrease of the oscillation frequency due to the image charge
effect, which HF fails to describe properly.

We note that the small upward shift within the HF approx-
imation of the LUMO level with increasing U can lead to an
increase of the relaxation time when the level is close to the
band edge. This is because the upward shift pushes the LUMO
level close to the band edge where the imaginary part of the
embedding self-energy decreases rapidly and compensates the
renormalization introduced by the interaction U . In this case,
the spectral peak describing the position and lifetime of the
molecular quasiparticle level becomes also highly asymmetric
and non-Lorenzian, which leads to a nonexponential decay of
the Green’s function in real time. These features are illustrated
in Fig. 5(c), where we consider the case of lead hopping

b = −0.6. The LUMO level for U = 0 is located at 1, which
is close to the band edge of 2|b| = 1.2. An increase of U

to 1.3 pushes the level very close to the band edge and we
then see a corresponding increase in relaxation time with a
nonexponential decay. In the case of 2B [Fig. 5(d)], the image
charge effect pushes the level inward, away from the band
edge, and we see that the relaxation time again decreases with
increasing U . Comparing Fig. 5(d) to 5(b), we see further
that increasing the lead hopping b leads to a slight decrease
of the image charge effect (frequency change for U 
= 0) and
increase of the relaxation time, in agreement with the analysis
of Sec. II B and the relation τrel ∼ �−1 ∼ |b|/λ2.

The difference between the HF and the correlated results
in real time translates into a different spectral structure in
frequency space. In Fig. 6, we display the quasiparticle
spectral functions [see Eq. (20)] for the LUMO level ALL(ω),
corresponding to the Green’s functions G>

LL(t,0). This is done
for the 2B approximation using b = −0.6 and different values
of U . For the uncontacted case, the 2B result coincides with
the GW result, as discussed in Sec. II C. The corresponding
spectral function for U = 1.0 is displayed in the left panel,
while in the right panel we have λ = −0.2 and we plot the
spectral function for different values of U . The very fast
oscillations in the left panel are due to the finite-time interval
in the Fourier transform. They are not present in the right panel
due to damping of the Green’s function in the contacted case.
Aside from the main peak located at the electron affinity, we
observe a shoulder of width � ≈ 4|b| at higher energies. At
finite hybridization λ = −0.2, this shoulder is smoother and
partially merges with the main peak. The shoulder originates
from the particle-hole continuum of excitations induced by
the sudden addition of an electron to the LUMO state. They
are the excitations that allow for the dynamical screening of
the extra charge on the molecule. In mathematical terms, the
shoulder arises by Fourier transforming the initial transient of
the 2B curve in Figs. 4 and 5. Since no transient was observed
in HF, the HF spectral function will consist only of a main
peak at the electron affinity. Both 2B and GW incorporate the
correct physics through the polarization diagram of Fig. 3(a),
which nicely illustrates how an extra electron on the LUMO
can excite a particle hole on the terminal site of the leads.
For small hybridizations, the polarization is approximatively
equal to the response function of Fig. 2, which explains the
width 4|b| of the shoulder. We further see in the right panel of
Fig. 6 that while the peak moves leftward with increasing U ,
the width of the plateau remains roughly constant at 4|b|. The
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FIG. 6. (Color online) LUMO spectral function in the 2B approx-
imation for b = −0.6, U = 1.0, and λ = 0 (left panel), b = −0.6,
λ = −0.2, and U = 0,1.0,1.3 (right panel).
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screening time is therefore independent of the molecule-lead
interaction.

The message to take home is that the molecule-lead
interaction has a large impact on the ratio τrel/τscr and, in
principle, can turn it to be smaller than one. These kinds of
exotic situations would occur in leads with flat bands as, e.g.,
those modeled by Tasaki.54 In most metallic systems, this is
not the case, and in the remainder of this paper we will study
the regime τrel/τscr > 1.

B. Equilibrium spectral function

In this section, we investigate the effects of screening
on the spectral features of the molecule in equilibrium. We
calculate the molecular spectral function Amol(ω) as a sum of
the projected spectral components Aii(ω) as

Amol(ω) = − 1

π

∑
i=H,L

Im
[
GR

ii(ω)
]

(20)

for Ul = λl = 0 and for zero and finite hybridization λr = λ

with the right lead. The results are shown in Fig. 7 for λ = 0
and in Fig. 8 for λ = −0.2.

Let us start by analyzing the performance of the HF
approximation. The first observation is that for λ = 0, the
HOMO-LUMO gap and the intensities of the peaks remain
unchanged as the interaction strength Ur = U increases. This
can easily be understood from the explicit form of the HF
HOMO and LUMO energies

εHF
H = (εH − U ) + nH U0 + 2nLUHL + 2n1U, (21)

εHF
L = (εL −U ) + nLU0 + 2nH UHL + 2n1U. (22)

At half-filling, the average density n1 = n1r of the right
terminal site is 1/2 and hence the dependence on U cancels off.
In the case of finite hybridization λ = −0.2 (Fig. 8), the HF
peaks shift slightly outward and broaden due to the renor-
malization of the embedding self-energy [or, equivalently,
the renormalization of the hybridization λ → λ + UG<

H1 (see
Appendix C)]. It is then clear that for λ = 0, the intensities
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do not change since GH1 = 0. Similar renormalization effects
have been observed in Ref. 55. In the HF approximation, the
self-energy of the H/L levels couples only to the density
at the terminal site of the lead and thus misses entirely the
particle-hole coupling responsible for the screening.

The situation is radically different in the correlated 2B and
GW approximations. In both cases, the HOMO-LUMO gap,
corresponding to the difference A − I between the electron
affinity and the ionization potential, narrows in agreement with
the discussion of Sec. II B. The added (removed) electron and
its image charge bind together, thereby decreasing (increasing)
the addition (removal) energy. The stronger is the interaction
U and the larger is the gap reduction. In the 2B and GW
approximations, the added and removed electron couples not
only to the density, but also to the particle-hole continuum of
the lead. It is through this latter coupling that the charged sys-
tem can lower its energy by exciting particles from occupied to
unoccupied levels of the charge-neutral system. The resulting
effect is to accumulate or deplete charge in the neighborhood
of the terminal site, i.e., to screen the excess charge of the
molecule. Note also that in the case λ 
= 0, the coupling to
the particle-hole continuum provides an extra channel for
quasiparticle scattering and induces quasiparticle broadening
to the spectral peaks. The differences between the uncontacted
and contacted spectral functions must be attributed to charge
transfer processes and the consequent formation of image
charges in the molecule. This molecular polarization effect
was recently found to reduce the HOMO-LUMO gap even
further.39

To assess the quality of the correlated approximations
and the importance of self-consistency, we display in Fig. 7
the position of the exact H/L peak (calculated from the
Hellman-Feynman theorem) as well as the position of the
peaks as obtained from a one-shot 2B calculation with HF
Green’s function [denoted with 2B(HF)]. As can be seen from
Fig. 7, the GW results are in very good agreement with the
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UHL = U0 = −b = 1 and λ = 0.

exact ones. The position of the spectral peaks in the correlated
approximations are obtained from the quasiparticle equation

ω − εHF
i − Re

{

R

ii(ω)
} = 0, (23)

where 
R
ii(ω) is the retarded many-body self-energy projected

onto the i = H,L molecular level. In Fig. 9, we display the
graphical solution of Eq. (23) with 2B(HF) self-energy and
i = H . For this plot, we have chosen UHL = U0 = −b = 1
and U = 0.5 (left panel) and U = 1.5 (right panel). Already,
one iteration of the self-consistency cycle captures the correct
trend. The zero of Eq. (23) moves toward higher energies with
increasing U . An analogous calculation for the LUMO level
shows that the zero moves toward lower energy. In conclusion,
the inclusion of polarization effects into the self-energy has two
main effects in equilibrium: the redistribution of the spectral
weight due to particle-hole excitations (satellite spectrum) and
the collapse of the HOMO-LUMO gap. As we shall see, the
situation is radically different out of equilibrium.

IV. QUANTUM TRANSPORT: SHORT-TIME DYNAMICS

In order to investigate the short-time transport properties
of the system of Fig. 1, we consider λl = λr = λ and Ul =
Ur = U . We will analyze the transient dynamics after the
sudden switch-on of a bias Wl = −Wr = W in the leads.
Note from Eqs. (18) and (19) that the bias is applied also to the
terminal (interacting) sites of the leads. We will refer to the left
and right currents as the current flowing through the left and
right interacting-noninteracting interfaces correspondingly. In
all simulations, we set λ = −0.2 and hence work in the weak
tunneling regime to highlight correlation effects.

A. HF approximation

In Figs. 10 and 11, we show the time-dependent currents
[Figs. 10(a) and 11(a)], ground-state and nonequilibrium
steady-state spectral functions [Figs. 10(b) and 11(b)], termi-
nal site densities [Figs. 10(c) and 11(c)], and HOMO-LUMO
densities [Figs. 10(d) and 11(d)] for the HF approximation
with molecule-lead interaction U = 0.0,0.5,1.0. In Fig. 10,
we consider the “small” bias case Wl = −Wr = 0.8 for which
the equilibrium H/L levels εHF

H/L = ∓1 remain outside the bias
window, while in Fig. 11 the bias is set to Wl = −Wr = 1.2
so that the equilibrium H/L levels lie inside the bias window.
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FIG. 10. (Color online) (a) Time-dependent right current for
U = 0.0,0.5,1.0. (b) Ground-state (GS) and steady-state spectral
functions of Eq. (20). (c) Time-dependent densities n1r (t) and n1l(t) at
the terminal sites. (d) Time-dependent HOMO and LUMO densities
nH (t) and nL(t). In all the plots, the simulations have been performed
within the HF approximation with bias Wl = −Wr = 0.8.

For zero molecule-lead interaction U = 0 and small bias,
the current flowing through the system is almost zero [see
Fig. 10(a)], in agreement with the fact that the H/L levels are
outside the bias window. A finite current instead sets in for
large bias [see Fig. 11(a)]. The physics is here very similar to
that of the noninteracting resonant transport regime. On the
other hand, the current increases substantially at finite U for
small bias. Furthermore, by increasing U , the frequency and
the amplitude of the oscillations in the current and density
become larger. We recall that in the HF approximation, the
equilibrium quantities are fairly independent of U . These
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FIG. 11. (Color online) (a) Time-dependent right current for
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functions of Eq. (20). (c) Time-dependent densities n1r (t) and n1l(t) at
the terminal sites. (d) Time-dependent HOMO and LUMO densities
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results show that at finite bias the situation is completely
different.

To understand the differences between the equilibrium and
the nonequilibrium cases, we observe that the gap in the
nonequilibrium spectral function reduces considerably at finite
U . For instance, Fig. 10(b) shows that for U = 0.5 and 1.0, the
H/L levels have already entered the bias window [−0.8,0.8].
To trace back the physical origin of this effect, we write the
HF energies of the H/L levels as

εHF
H = εH − 2U + U0nH + 2UHLnL + 2U [n1r + n1l],

εHF
L = εL − 2U + U0nL + 2UHLnH + 2U [n1r + n1l],

where we took into account that the molecule is now connected
to both leads. The terms containing an explicit dependence
on U cancel off since the sum of the terminal site densities,
n1r (t) + n1l(t), remains roughly at its ground-state value
during the entire time evolution [Fig. 10(c) and 11(c)]. Thus,
it is not the lead polarization that affects the level positions,
but rather the polarization of the molecular region, i.e., the
difference nH − nL. Figures 10(d) and 11(d) indicate that the
molecular polarization increases as U becomes large. This
analysis shows that in the HF approximation, the reduction of
the gap induced by U has the same nature observed earlier16

and has nothing to do with the image charge effect. However,
as we will see later, this effect already has a big impact on the
resulting current-voltage characteristics.

The main frequency of the oscillations in the transient
density and current originate from the electronic transitions
from the left electrochemical potential μl = εF + Wl to the
LUMO level and also from the HOMO level to the right
electrochemical potential μr = εF + Wr (for the symmetric
bias considered here, these transitions have the same energy).
This can easily be verified by calculating the discrete Fourier
transform of the transient current I (ω). In Fig. 12, we show
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FIG. 12. (Color online) (a) Fourier transform of the transient
current of Fig. 11 with U = 1.0. (b) Ground-state and steady-
state spectral functions Amol(ω) for U = 1.0. (c) Time-dependent
density matrix components GL,1l(t,t+) and G1l,L(t,t+) for U = 0.0
and U = 1.0 (d) HF time-dependent density matrix components
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with bias Wl = −Wr = 1.2.

I (ω) for U = 1.0 and the large bias case Wl = −Wr = 1.2
[Fig. 12(a)] along with the ground-state and nonequilibrium
steady-state spectral functions [Fig. 12(b)]. The Fourier
transform I (ω) exhibits a sharp peak at ω ≈ 1.0 with a
smearing toward lower frequencies down to ω ≈ 0.2. The
smearing is a direct consequence of including the transient
part of I (t) in the Fourier transform. The value of εHF

H/L is
∓1.0 in equilibrium, while it is about ∓0.2 at the steady
state [see Fig. 12(b)]. As the HOMO-LUMO gap collapses,
the transition energy between the left (right) electrochemical
potential and the LUMO (HOMO) level changes from 0.2
to 1.0. The aforementioned smearing toward low frequency
is the fingerprint of the dynamical renormalization of the
transition frequency. Another consequence of the collapse of
the steady-state gap with increasing U is that εHF

H/L moves
further away from μl/r where the density of states has a
square-root divergence (resonance condition). This is clearly
illustrated in Fig. 11(b). The further away the levels are from
resonance, the harder it is for electrons to tunnel, which in turn
implies a larger oscillation amplitude and a smaller average
current.

The transient oscillations are also visible in the off-diagonal
components of the time-dependent density matrix Gij (t) ≡
Gij (t,t+), which is displayed in Figs. 12(c) and 12(d) for
U = 0 and 1.0. The component GL,1l(t) and G1l,L(t) oscillate
with the same main frequency as the current and densities.
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The same holds true for GH,1r (t) and G1r,H (t) (not shown).
On the contrary, GH,1l(t) and G1l,H (t) have a very weak high-
frequency component superimposed to the main frequency.
Initially, the HOMO level is fully occupied and electronic
transitions from μl to εHF

H are blocked. Similarly, the LUMO
level is initially empty, so there are no electronic transitions
from μr to εHF

L . As the time passes, however, the HOMO
occupation decreases while the LUMO occupation increases
and these transitions become possible. They are located around
1.4 and 2.0 and can be seen in the Fourier transform of the
current (the current is indeed given in terms of off-diagonal
elements of the density matrix). Even though present, the
transitions between the HOMO and the LUMO levels are
extremely small since there is no direct hopping between the
two levels.

The sudden switch-on of the bias gives rise to density shock
waves in the leads with features similar to the density at the
terminal sites. In Fig. 13, we show the transient dynamics of
the HF density in the noninteracting part of the right lead for
U = 0.0 (top panel) and for U = 1.0 (bottom panel) when the
bias voltage is Wl = −Wr = 1.2. The shock wave reaches site
j after a time j/vF where in our case the Fermi velocity vF =
2b. No matter how far site j is, the density at this site exhibits
damped oscillations, the initial amplitude and relaxation time
of which is independent of j and increases with U .

B. Correlated approximations

The inclusion of correlations changes considerably the
physical picture. Let us focus on the large bias case Wl =
−Wr = 1.2 and calculate the same quantities as in Fig. 11
but within the 2B and GW approximations. The results are
displayed in Figs. 14 and 15, respectively. The first important
feature is that the relaxation time is much shorter than in the
HF case due to the many-body broadening of the HOMO
and LUMO levels [see Figs. 14(b) and 15(b)]. In the same
figures, we also show the ground-state spectral function for
the same values of U . As expected, the GS gap between the
HOMO and LUMO peaks reduces with increasing U due to
the image charge effect. In the biased system for U = 0, the
bias-dependent gap closing9,16 brings the levels so close to
each other that we can observe only one very broad peak.
Interestingly and surprisingly, the effect of increasing U in
the biased system is to open the gap and to sharpen the
spectral peaks. In the 2B approximation with molecule-lead
interaction U = 1.0, the nonequilibrium steady-state gap is
even larger than the ground-state gap. The GW approximation
attenuates the gap opening compared to the 2B approximation,
but the sharpening of the peaks is well visible also in this case.
The gap opening in the out-of-equilibrium system has never
been reported before and, as we shall see below, has profound
consequences on the I -V curve.

V. QUANTUM TRANSPORT: LONG-TIME DYNAMICS

In this section, we investigate the effects of the image charge
on the long-time dynamics of the lead-molecule-lead system
within the HF, 2B, and GW approximations. As we shall see,
a nontrivial post-transient dynamics develops at the HF level.
The inclusion of correlations does always bring the system
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FIG. 14. (Color online) (a) Time-dependent right current for
U = 0.0,0.5,1.0. (b) Ground-state (GS) and steady-state spectral
functions of Eq. (20). (c) Time-dependent densities n1r (t) and n1l(t) at
the terminal sites. (d) Time-dependent HOMO and LUMO densities
nH (t) and nL(t). In all the plots, the simulations have been performed
within the 2B approximation with bias Wl = −Wr = 1.2.

in a steady-state regime. We will show how this regime is
attained and calculate current and densities in the steady state
for different bias voltages and molecule-lead interaction.

A. HF approximation and post-transient dynamics

We focus on the large bias regime and strong molecule-lead
interaction U = 1.0. In the previous section, we showed that
current and densities seem to relax after the transient behavior
induced by the sudden switch-on of a bias voltage. However,
by extending further the propagation time window, something
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FIG. 15. (Color online) (a) Time-dependent right current for
U = 0.0,0.5,1.0. (b) Ground-state (GS) and steady-state spectral
functions of Eq. (20). (c) Time-dependent densities n1r (t) and
n1l(t) at the terminal sites. (d) Time-dependent HOMO and LUMO
densities nH (t) and nL(t). In all the plots, the simulations have
been performed within the GW approximation with bias Wl =
−Wr = 1.2.
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FIG. 16. (Color online) Time-dependent right current (top panel)
and total number of particles in the molecule (bottom panel) for
bias voltages in the range [0.7,1.2] and molecule-lead interaction
U = 1.0.

unexpected occurs. We find that the steady state is metastable,
and oscillations with increasing amplitude develop to then
stabilize in a periodic state. In Fig. 16, we display long-time
simulations of the right current I (t) (top panel) and the total
number of particles in the molecule Nmol(t) (bottom panel)
for bias voltages in the range [0.7,1.2]. In this range, the
equilibrium HOMO and LUMO levels lie in the bias window.
The frequency of the oscillations increases as the bias voltage
is increased, which is a clear indication that the dominant
transitions are those between the leads and the molecular
levels.

In Fig. 17, we display the time-dependent left and right
currents [Fig. 17(a)] as well as the terminal-site densities
[Fig. 17(c)] and molecular densities [Fig. 17(d)] for Wl =
−Wr = 0.8. According to these results, the post-transient
periodic state corresponds to a sequence of charge blockades
with opposite sign of the electron-liquid acceleration (time
derivative of the current) between two consecutive blockades.
The oscillations are therefore due to a charge sloshing between
the molecular levels and the terminal sites. The metastability
of a steady-state solution in which current and densities are
given by the average value of the time-dependent results is
due to the combination of the constant flow of electrons from
left to right and the self-consistent nature of the Hartree-Fock
potential. Finally, we emphasized that the amplitude of the ac
current superimposed to the dc current depends on where the
current is measured.
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FIG. 17. (Color online) (a) Time-dependent left, right, and total
currents. (b) Fourier transform of the total current. (c) Time-
dependent terminal site densities. (d) Time-dependent HOMO and
LUMO densities and the total number of particles in the molecule. In
all panels, U = 1.0 and the bias voltage is Wl = −Wr = 0.8.

In Fig. 17(b), we report the Fourier transfrom of the
total current Itot(ω). The main peak at ω ≈ 0.4 is smeared
out toward higher frequencies up to ω ≈ 0.6, indicating
the occurrence of electronic transitions between levels, the
position of which changes dynamically in time. We also
observe higher-frequency satellites around ω ≈ 1.2,1.8. These
satellites occur exactly at the positions of odd harmonics of the
main frequency. The absence of even harmonics is due to the
fact that the external driving field is an odd function in space.

The persistent oscillatory behavior reported in this section
is most likely an artifact of the HF approximation and, as
we shall see in the next section, disappears in the 2B and
GW approximations. Within HF, the system knows only the
instantaneous density and there is no damping mechanism to
wash out the oscillations. These oscillations are sustained by
the finite bias voltage and originate from the instantaneous
Coulombic feedback.

B. Steady-state properties: HF, 2B, and GW approximations

In Fig. 18, we show the HF time-dependent currents and the
resulting I -V characteristic (bottom right panel) for different
interaction strengths U = 0.0,0.5,1.0. Since the HF currents
for U = 1.0 do not attain a steady state for large enough
bias, the I -V characteristic is in this case calculated with
the dc part of the current (average value). The inclusion of
the molecule-lead interaction deforms the I -V characteristics
dramatically. First, increasing the interaction strength, the
threshold is shifted toward smaller bias values. Second,
increasing the interaction strength up to U = 1.0 gives rise to
an extra step in the I -V curve. The shift of the I -V step toward
smaller biases is related to the gap-closing mechanism, which
in the HF approximation is entirely due to the intramolecular
interactions U0 and UHL (see Sec. IV A).

The extra step in the HF I -V curve (bottom panel of Fig. 18)
corresponds to a charged state of the molecule. In Fig. 19,
we plot the number of particles (per spin) in the molecule
Nmol for interaction U = 1.0. There exists a narrow window
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FIG. 18. (Color online) HF time-dependent right current for different interaction strengths U = 0,0.5 (top left and right panels) and U = 1.0
(bottom left panel). The I -V curves extracted from the long-time limit are displayed in the bottom right panel.

of applied biases Wl = −Wr ∈ [0.55,0.6] for which Nmol ≈
1.35. We have also checked (not shown here) that this window
can be extended by increasing the molecule-lead coupling λ.
The excess molecular charge produces a Hartree barrier on
the terminal sites, which prevents the current to increase (see
plateau in the I -V curve for U = 1). As the bias becomes
larger, electrons gain enough energy to overcome the barrier
and the current increases again.

The excess charge on the molecule changes also the spectral
function. In Fig. 20, we plot the full spectral function of the
interacting region as well as the local spectral functions of
the HOMO, LUMO, and the terminal sites in the ground and
steady states for U = 1.0 and for bias Wl = −Wr = 0.55
within the HF approximation. The HF spectral function of the
charged molecule exhibits two sharp structures close to the left
and right band edges (they are separated by Wl − Wr = 1.1).
The induced Hartree barrier pushes electrons away from the
terminal sites and gives rise to well-localized hole states. The
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FIG. 19. (Color online) Time-dependent number of electrons on
the molecule Nmol(t) versus the applied bias voltage. HF approxima-
tion with U = 1.0.

structure of the peaks is indeed similar to that of a split-off state
(antibound state), which forms in the presence of an external
positive potential at the end site of a semi-infinite chain (see
Appendix A). In our case, this potential is vα = Wα + vH with
Hartree potential vH = 2U (Nmol − 1) ≈ 0.7.

The formation of the additional step in the I -V curve is
probably another artifact of the HF approximation. In Figs. 21
and 22, we show the transient and steady-state currents for U =
0,0.5 and U = 1.0 and bias voltage in the range [0,1.2] within
the 2B and GW approximations. As for the HF approximation,
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FIG. 20. (Color online) Ground-state (GS) and steady-state spec-
tral functions in the HF approximation for U = 1.0 and bias Wl =
−Wr = 0.55. (a) Full spectral function of the interacting region. (b)
Spectral function on the terminal site of the left lead. (c) HOMO and
LUMO spectral functions. (d) Spectral function on the terminal site
of the right lead.

075105-12



IMAGE CHARGE DYNAMICS IN TIME-DEPENDENT . . . PHYSICAL REVIEW B 85, 075105 (2012)

0
0.2

0.4
0.6

0.8
1.0

1.2

 0
 10

 20
 30

 40
 50

 60
 0

 0.03
 0.06
 0.09
 0.12
 0.15
 0.18

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.2  0.4  0.6  0.8  1  1.2

U = 0.0
U = 0.5
U = 1.0

0
0.2

0.4
0.6

0.8
1.0

1.2

 0
 10

 20
 30

 40
 50

 60
 0

 0.04

 0.08

 0.12

 0.16

0
0.2

0.4
0.6

0.8
1.0

1.2

 0
 10

 20
 30

 40
 50

 60
 0

 0.02

 0.04

 0.06

 0.08

 0.1

t

t

t

Bias Voltage
Bias Voltage

Bias Voltage

Bias Voltage

I(t) I(t)

I(t)
IS

U = 0.0 U = 0.5

U = 1.0

FIG. 21. (Color online) 2B time-dependent right current for different interaction strengths U = 0,0.5 (top left and right panels) and U = 1.0
(bottom left panel). The I -V curves extracted from the long-time limit are displayed in the bottom right panel.

the onset of the current is shifted toward smaller bias values
when U increases. However, this effect is more pronounced in
the 2B and GW approximations, which properly incorporate
dynamical polarization effects to account for the formation of
the image charge. Another effect of correlations is to smoothen
the onset, in agreement with the appearance of a particle-hole
shoulder in the spectral function (see Sec. III A).

It is important to disentangle the scattering-induced broad-
ening due to the intramolecular interactions U0 and UHL from

that due to the molecule-lead interaction U . In Fig. 23, we
plot the full spectral functions of the interacting region within
the HF, 2B, and GW approximations for two different values
of U = 0 and 1.0. For U = 0 and within 2B and GW there
is a consistent broadening of the HOMO and LUMO peaks
when these levels enter the bias window. This effect was
reported previously in Refs. 9 and 17. However, for U = 1,
the 2B and GW spectral functions do not get broader as they
enter the bias window. The peaks preserve their shape and
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U = 1.0 (bottom left panel). The I -V curves extracted from the long-time limit are displayed in the bottom right panel.
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FIG. 23. (Color online) HF, 2B, and GW spectral functions for different bias voltage and lead-molecule interaction U = 0.0 and 1.0.

the HOMO-LUMO gap starts to open up. The molecule-lead
interaction has an effect opposite to that of the intramolecular
interaction on the broadening and the many-body shift of the
spectral peaks. This is a very important result according to
which image charge effects in the biased system contribute
to lengthen the HOMO (LUMO) quasiparticle lifetimes and
decrease (increase) the ionization potential (electron affinity).

VI. CONCLUSIONS

In conclusion, we provided a thorough analysis of the
effects of the dynamical formation of image charges at the
interfaces between a molecule and the metallic leads under
nonequilibrium conditions. The analysis has been carried out
within the embedded Kadanoff-Baym method using fully
self-consistent many-body approximations at the HF, 2B,
and GW levels. The mean-field HF approximation fails to
capture the polarization effects both in and out of equilibrium.
As a consequence, the equilibrium molecular levels are not
renormalized, while out of equilibrium, the renormalization is
solely due to the intramolecular interactions. We pointed out
that the shortcomings of the HF approximation are also at the
origin of other unphysical effects. There exists a finite range of
applied biases for which the molecule is artificially charged.

This causes a depletion of the electron density at the interfaces
and prevents the current to increase as the bias becomes
larger (plateau in the I -V characteristic). Furthermore, for
large enough bias and molecule-lead interaction, the molecular
system does not relax in the long-time limit. We reported
the occurrence of the undamped oscillations in current and
densities. These oscillations correspond to a charge sloshing
between the molecular levels and the terminal sites.

To cure the problems of the mean-field theory, we resorted
to the 2B and GW approximations. In both approximations, the
self-energy contains polarization diagrams, which correctly
account for the screening of the charged molecule and hence
are suited to describe the formation of image charges. In
all situations considered, we did not observe a plateau in
the I -V characteristic nor the absence of relaxation. An
important finding of our analysis is that by increasing the
molecule-lead interaction, the ratio between screening time
and the relaxation time changes and the screening time
is primarily determined by the properties of the lead. As
expected, the 2B and GW equilibrium HOMO-LUMO gap
closes when increasing the molecule-lead interaction. Thus,
the onset of the current in the I -V characteristic is shifted to
lower biases as compared to a noninteracting or mean-field
calculation. Another remarkable effect pertains the molecule
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spectral properties as a function of the applied bias. In
equilibrium, the molecule-lead interaction is responsible for
the reduction of the HOMO-LUMO gap and for a substantial
redistribution of the spectral weight to the satellites induced by
the electron correlations. By increasing the bias, the situation
changes. For zero molecule-lead interaction, the HOMO and
LUMO peak near each other and considerably broaden when
they enter the bias window. The effect of the molecule-lead
interaction is to keep the spectral peaks sharp and to open
the HOMO-LUMO gap. This effect is therefore exactly the
opposite of that generated by the intramolecular interactions.
All this phenomenology clearly shows the importance of a
proper description of electron correlations in time-dependent
and steady-state quantum transport.
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APPENDIX A: OTHER EXACT RESULTS OF THE IMAGE
CHARGE MODEL IN THE UNCONTACTED CASE

In this appendix, we derive some simple analytic result
for the ICM with λl = λr = 0, Ul = 0, and Ur = U . We
will show that the main qualitative features of the system
in equilibrium can be captured already by considering leads
of finite length. Let us consider the molecule with an extra
electron on the LUMO level and a right lead with only two
sites. The extra electron induces an impuritylike potential U

on the terminal site, and the single-particle eigenvalues of the
lead Hamiltonian are then given by ε1,2 = ∓

√
(U/2)2 + b2.

Let us denote by M = GS+ the molecular configuration
with the extra electron. At half-filling, the right lead has
two electrons and the eigenstates |GS+s〉 of Eq. (8) are
displayed in Fig. 24. Their energy is E0 = 2ε1, E1 = ε1 + ε2,
and E2 = 2ε2. In a similar manner, we can calculate the lead
eigenenergies for the molecule with an electron less. The re-
sulting ionization potential and electron affinity are I = E4 −
E3 = εH + U0 − 2|b| + 2

√
(U/2)2 + b2 and A = E5 − E4 =

εL + 2UHL + 2|b| − 2
√

(U/2)2 + b2 [see Eqs. (12) and (13)].
These energies correspond to the renormalized energies of the
HOMO and LUMO levels. We thus see that by increasing
the Coulomb interaction U , the HOMO and LUMO levels
approach each other, in agreement with the general result of
Sec. II B.

The density at the terminal site is unity if the molecule is
charge neutral. However, since the molecule with one electron
more (less) induces an impuritylike potential ∓U , the terminal
site density in this case changes according to

n1(u) =
∫ μ

−∞
A11(ω,u)dω, (A1)

where A11(ω,u) = − 1
π

Im[GR
11(ω,u)] is the spectral function

projected on the terminal site with an impuritylike potential

ε1
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ε1

ε2

L

H

Molecule Lead

FIG. 24. Electronic configuration for a two-site lead. For an extra
electron on the molecule, there are three energy eigenspaces for the
lead. Note that the parallel-spin electron states do not contribute in
the response properties since the bias preserves the spin orientation.

u = ∓U . The Green’s function can be calculated explicitly
from the Dyson equation and reads as

GR
11(ω,U ) = G

0,R
11 (ω)/

[
1 − UG

0,R
11 (ω)

]
. (A2)

Here, G0,R
11 is the unperturbed retarded Green’s function of the

semi-infinite lead and it reads as

G
0,R
11 (ω) = 1

2b2

{
(ω − sgn(ω)

√
ω2 − 4b2) (|ω| > 2|b|),

(ω − i
√

4b2 − ω2) (|ω| < 2|b|).
(A3)

If |U | exceeds the lead hopping b, a split-off state appears
outside the energy continuum. This is illustrated in Fig. 25,
where we plot the lead spectral function A11(ω,U ) for U =
0, 0.5, 1.0, 1.5. This split-off state appears as a pole in the
Green’s function of Eq. (A2) with the energy

ε(U ) = b

[
1 + (

U
b

)2(
U
b

)
]

. (A4)

Comparing the spectral structure of Fig. 25 with that of Fig. 20,
we conclude that the extra step in the HF I -V curve is due to
the formation of a split-off state, which prevents the current to
increase as the bias becomes larger.

APPENDIX B: DENSITY RESPONSE FUNCTION

We here calculate the density response function projected
onto the terminal site of a semi-infinite TB chain relevant
for the discussion of Sec. II B. For chains with Nch sites, the
single-particle eigenfunctions and eigenenergies of the system

are ψk(i) = (−1)i+1
√

2
Nch+1 sin(φki) and εk = −2b cos(φk),

where φk = kπ
Nch+1 , k = 1, . . . ,Nch. By definition, the (re-

tarded) density response function χij (ω) with site coordinates
(i,j ) reads as

χij (ω) = 2
∑
kl

(fk − fl)
ψ∗

k (i)ψl(i)ψk(j )ψ∗
l (j )

ω − (εl − εk) + iη
, (B1)

where, for zero temperature, fk = θ (μ − εk) are the single-
particle occupations and η is an infinitesimally small positive
constant. By inserting the explicit form of the eigenfunctions
and eigenvalues, changing the variables to k̄ = kπ/(Nch + 1),
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FIG. 25. (Color online) Formation of the split-off state (sharp
peak in the bottom right panel) as U increases. In all plots, b = −1.0.

and taking the Nch → ∞ limit, we get for the i = j = 1
component

χ11(ω) = 8

π2

∫ π

0
dk̄

∫ π

0
dl̄

(fk̄ − fl̄) sin2 k̄ sin2 l̄

ω − 2b(cos k̄ − cos l̄) + iη
,

where for the half-filled system here considered fk̄ = θ (π
2 −

k̄). This expression can be simplified further by changing the
variables to x = cos l̄ and y = cos k̄. The integral containing
fk̄ becomes

χ
(1)
11 (ω) = 8

π2

∫ 1

0
dy

∫ 1

−1
dx

√
1 − y2

√
1 − x2

ω − 2b(y − x) + iη

= �(1)(ω) − i�(1)(ω), (B2)

where �(1)(ω) = 1
π
P

∫
dω′ �(1)(ω′)

ω−ω′ is the real part and

�(1)(ω) = 4

π |b|
∫ 1

0
dy

√
1 − y2

√
1 − [y − ω/(2b)]2

×θ [y − ω/(2b) + 1]θ{1 − [y − ω/(2b)]} (B3)

is the imaginary part. Similarly, one obtains the integral χ
(2)
11

containing fl̄ . The sum χ11 = χ
(1)
11 + χ

(2)
11 can now easily be

calculated numerically.

APPENDIX C: EXPLAINING THE LEVEL BROADENING
IN THE HF APPROXIMATION

In this Appendix, we show that the molecule-lead interac-
tion in the presence of a finite hybridization renormalizes the
embedding self-energy already in the HF approximation, thus
explaining the broadening of the HF peaks in Fig. 8. Let us
denote simply by G and 
 the retarded components of the
Green’s function and self-energy, respectively. For simplicity,
we take λl = Ul = 0 and λr = λ, Ur = U and we denote by
1 the terminal site of the right lead. We start from the Dyson
equation for G(ω):

(ω − h − 
HF)G(ω) = 1, (C1)

where, in accordance with the notation of Sec. II C, h is the
Hamiltonian in the one-particle Hilbert space and has the
structure

h =
⎛
⎝ εH 0 hH,r

0 εL hL,r

hr,H hr,L hr,r

⎞
⎠ . (C2)

Here, hr,r is the tridiagonal matrix that describes the right lead
with matrix elements b on the upper and lower diagonals and
zero otherwise, while hi,r , with i = H,L, is the rectangular
matrix whose only nonvanishing entry is (hi,r )i,1 = λ. By
projecting the Dyson equation onto HH and r,H we find

(
ω − εH − 
HF

HH

)
GHH (ω) = 1 + [

hH,r + 
HF
H,r

]
Gr,H (ω),(

ω − hr,r − 
HF
r,r

)
Gr,H (ω) = [

hr,H + 
HF
r,H

]
GHH (ω).

By solving the second equation for Gr,H and inserting the
result in the first equation, we obtain the following solution
for GHH :

GHH (ω) = 1

ω − εH − 
HH

(C3)

with


HH = 
HF
HH + (

λ + 
HF
H1

)
G̃11(ω)

(
λ + 
HF

1H

)
. (C4)

In the above equation, G̃11 is the (1,1) matrix element of the
Green’s function of the uncontacted system (λ = 0) with the
same HF self-energy, i.e., G̃r,r = 1/(ω − hr,r − 
HF

r,r ). Note
that the only nonvanishing entry of the self-energy in the lead
is (
HF

r,r )11 = 
HF
11 . Next, we observe that the nonlocal HF

self-energy can be written as


HF
1H = iU

∫ μ

−∞

dω

2π
(−2i Im[G1H (ω)]), (C5)

and similarly for 
HF
1H . From the projected Dyson equation, we

have

G1H (ω) = G̃11(ω)
(
λ + 
HF

1H

)
GHH (ω). (C6)
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FIG. 26. (Color online) The value of the renormalization constant
as a function of U for b = −1.0 and λ = −0.2. The inset shows the
dependence of the factor C as a function of U .
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For the equilibrium system, we can always choose the
HF orbital to be real valued and therefore Im[
HF

1H ] = 0.
Then, by inserting Eq. (C6) into (C5) and solving for 
HF

1H ,
we find


HF
1H = λ

UC

1 − UC
, (C7)

where

C = 2
∫ μ

−∞

dω

2π
Im[G̃11(ω)GHH (ω)]. (C8)

This result together with its analogous for 
HF
H1 allows us to

cast the self-energy in Eq. (C4) in the form


HH = 
HF
HH +

(
1

1 − UC

)2


em
HH (ω), (C9)

where 
em
HH (ω) = λ2G̃11(ω) is the embedding self-energy of

the noninteracting system. Thus, the molecule-lead interaction
renormalizes the embedding self-energy and increases the
broadening of the HF spectral peaks. The value of the constant
C in Eq. (C8) can be determined numerically. In Fig. 26, we
display (1 − CU )−2 and C (inset) as a function of U . We see
that C is roughly constant for small U .
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