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We compute the nuclear matrix elements (NMEs) corresponding to the neutrinoless double beta (0νββ)
decays of nuclei which attract current experimental interest. We concentrate on ground-state-to-ground-state
decay transitions mediated by light (l-NMEs) or heavy (h-NMEs) Majorana neutrinos. The computations are
done in realistic single-particle model spaces using the proton-neutron quasiparticle random-phase approximation
(pnQRPA) with two-nucleon interactions based on the Bonn one-boson-exchange G matrix. Both the l-NMEs and
the h-NMEs include the appropriate short-range correlations, nucleon form factors, and higher-order nucleonic
weak currents. In addition, both types of NMEs are corrected for the isospin symmetry by the recently proposed
method in which the particle-particle proton-neutron interaction parameter (gpp) is decomposed into isoscalar
(gT =0

pp ) and isovector (gT =1
pp ) parts. A detailed analysis of the l-NMEs and the h-NMEs is performed to benchmark

our computer code and to compare with other recent calculations which produce h-NMEs that are in tension with
each other.
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I. INTRODUCTION

The neutrinoless double beta (0νββ) decay is a traditional
way to search for physics beyond the standard model. It can
access the absolute neutrino mass and the fundamental nature
of the neutrino, i.e., whether it is a Dirac or a Majorana
particle (see, e.g., [1–3]). In this way it is complementary
to the neutrino oscillation experiments which can investigate
the neutrino mass differences and neutrino mixing amplitudes
to high precision already. The information to be extracted
from the 0νββ experiments is subject to uncertainties arising
from the uncertainties in the related nuclear matrix elements
(NMEs). Hence, it is extremely important to be able to compute
these NMEs as accurately as possible.

The half-lives of the standard-model variant of the 0νββ
decay, the two-neutrino double beta (2νββ) decay, have
a strong dependence on the NMEs which contain virtual
transitions through the 1+ intermediate states of the decay.
The 0νββ decays, on the other hand, proceed by virtual
transitions through intermediate states of all multipoles Jπ ,
J being the total angular momentum and π being the parity
of the intermediate state. Both the 2νββ and 0νββ NMEs
have been computed by a number of different models [1]
but lately the computations of the 0νββ NMEs by the
following models have drawn the attention of the double beta
community: the quasiparticle random-phase approximation
(QRPA), in its proton-neutron version (pnQRPA) (see [4]
and references therein) and its renormalized extensions [5,6],
the interacting shell model (ISM) [7], the (proton-neutron)
interacting boson model (IBA-2) [8], the Gogny-based energy-
density functional approach (EDF) [9], and the projected
Hartree-Fock-Bogoliubov mean-field scheme (PHFB) [10].
An extensive comparison of the double beta properties of the
aforementioned models is performed in [11].

The pnQRPA model is a mature and established model
to compute the NMEs of various double-beta-decay pro-
cesses [12]. However, it suffers from particular shortcomings
that are associated with its limited number of many-particle
configurations (in comparison with the ISM), its sensitivity to

the effective proton-neutron interaction in the particle-particle
channel of two-nucleon interactions (the “gpp problem”), and
the isospin breaking induced by the quasiparticle approxima-
tion lurking behind the pnQRPA treatment of many-body cor-
relations. The limited number of configurations in the pnQRPA
might not be that severe shortcoming for the computation of the
double beta decays since the centroids of the strong transitions
through the intermediate multipole states can be handled in
sufficient accuracy by the pnQRPA, in particular since it
can accommodate a large set of single-particle basis states
including all the relevant spin-orbit partner states [13,14].
The “gpp problem” is usually handled by the inspection of
the measured single-beta-decay rates [15,16] or 2νββ decay
rates [17–20]. Lately, the problem of isospin breaking has
been tackled in [21] where an isospin-restoration scheme for
the pnQRPA has been proposed.

Referring to the above-mentioned shortcomings of pn-
QRPA, in the present work we solve the “gpp problem” by
fixing the value of gpp such that the measured 2νββ half-lives
are reproduced by the computed 2νββ Gamow-Teller NMEs,
in the spirit of [17–21]. At the same time we perform the
isospin-symmetry restoration by the scheme proposed in [21].
Furthermore, we take into account the appropriate short-
range nucleon-nucleon correlations [22], and contributions
arising from the induced currents and the finite nucleon
size [23]. In [21] the NMEs corresponding to the exchange
of light Majorana neutrinos (l-NMEs) were treated for the
conservation of the isospin symmetry. Here we extend this
work to the exchange of heavy Majorana neutrinos and treat
the corresponding NMEs (h-NMEs) by the isospin-restoration
recipe of [21]. The computation of the h-NMEs has been,
and still seems to be, a problem. By this we refer to the very
different and contradictory results obtained in [3], [23], [24],
and [25]. In this work we will analyze and decompose the
h-NMEs to enable clean comparison with other calculations
with different methods.

This article is organized as follows: In Sec. II we give a
brief introduction to the underlying formalism of the 2νββ
and 0νββ decays. In Sec. III we discuss the determination of
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JUHANI HYVÄRINEN AND JOUNI SUHONEN PHYSICAL REVIEW C 91, 024613 (2015)

the model parameters, and display and discuss the obtained
double-beta-decay results for the l-NMEs and h-NMEs. The
final conclusions are drawn in Sec. IV.

II. COMPUTATIONAL FORMALISM

In this section the basic theoretical ingredients of the
computations are reviewed. The double-beta-decay half-lives
are defined in terms of the involved NMEs and the phase-space
factors. The NMEs are given in terms of the single-particle
matrix elements and the one-body transition densities. For
the calculation of the phase-space factors we refer to the
available literature at the appropriate places.

A. Two-neutrino double beta decays

The half-life of the 2νββ decay can be written in the form[
t

(2ν)
1/2 (0+

i → 0+
f )

]−1 = g4
AG2ν |M (2ν)|2 , (1)

where gA is the weak axial-vector coupling constant and G2ν

stands for the leptonic phase-space factor without including
gA in a way defined in [26]. The initial ground state is denoted
by 0+

i and the final ground state by 0+
f . The involved Gamow-

Teller NME is written as

M (2ν) =
∑
m

M
(2ν)
GT (1+

m) , (2)

where

M
(2ν)
GT (1+

m) = M f(1+
m)M i(1+

m)[
1
2 (� + E(1+

m)) − Mic2
]
/mec2

. (3)

Here � is the nuclear mass difference of the initial and final
0+ ground states, E(1+

m) is the energy of the mth 1+ state, and
Mic

2 is the mass energy of the initial nucleus. The denominator
is scaled by the electron rest mass. The involved transition
amplitudes read

M i(1+
m) =

(
1+

m‖
∑

k

t−k σ k‖0+
i

)
, (4)

M f(1+
m) =

(
0+

f ‖
∑

k

t−k σ k‖1+
m

)
, (5)

where the transition operators contain the Pauli spin matrix
indicating a Gamow-Teller transition between the initial/final
0+ states and the intermediate 1+ states.

In the case of the pnQRPA the expression (3) has to be
written in the form

M̃
(2ν)
GT (1+

m) =
∑

n

M f(1+
m)〈1+

m|1+
n 〉M i(1+

n )

Dm

, (6)

where the quantity Dm is the energy denominator containing
the average energy of the 1+ states emerging from the two
pnQRPA calculations, one for the initial nucleus and the other
for the final nucleus. The denominator can thus be written as

Dm = (
1
2� + 1

2 [E(1+
m) + Ẽ(1+

m)] − Mic
2
)
/mec

2 , (7)

where Ẽ(1+
m) is the energy of the mth 1+ state in a pnQRPA

calculation based on the initial ground state and E(1+
m) the

same for a calculation based on the final ground state. The
quantity 〈1+

m|1+
n 〉 is the overlap between the two sets of 1+

states and it can be written as

〈1+
m|1+

n 〉 =
∑
pn

[
X

1+
m

pnX̄
1+

n
pn − Y

1+
m

pn Ȳ
1+

n
pn

]
. (8)

The overlap factor takes care of the matching of the corre-
sponding states in the two sets of states based on the initial
and final even-even reference nuclei. The amplitudes X and Y
(X̄ and Ȳ ) come from the pnQRPA calculation starting from
the final (initial) nucleus of the double beta decay.

In principle, the expression (2) should also contain the
Fermi contribution, i.e., (2) should go over to

M (2ν) →
∑
m

M
(2ν)
GT (1+

m) +
(

gV

gA

)2 ∑
m

M
(2ν)
F (0+

m) , (9)

where the Fermi NME (for pnQRPA) reads

M̃
(2ν)
F (0+

m) =
∑

n

M f(0+
m)〈0+

m|0+
n 〉M i(0+

n )

Dm

, (10)

with

M i(0+
n ) = (0+

n ‖
∑

k

t−k ‖0+
i ) , (11)

M f(0+
m) = (0+

f ‖
∑

k

t−k ‖0+
m) . (12)

Here the denominator and the overlap factor correspond to the
expressions (7) and (8) with the 1+ intermediate states replaced
by the 0+ intermediate states. However, we will force this
contribution to be zero by the procedure described in Sec. III A.
This is justified since in the case of isospin symmetry, obeyed
by the nuclear forces to good extent, the Fermi contribution to
the 2νββ NME (9) should vanish. Thus only the Gamow-Teller
contribution is left and the final 2νββ NME will be the one
of (2).

B. Neutrinoless double beta decays

Assuming that the light or heavy Majorana-neutrino ex-
change is the dominant mechanism over the other possible
mechanisms, the 0νββ half-life for a ground-state-to-ground-
state transition can be written as[

t
(0ν)
1/2 (0+

i → 0+
f )

]−1 = g4
AG0ν |M (0ν)|2η2

x , (13)

where G0ν is a phase-space factor for the final-state leptons
defined here without the axial-vector coupling constant gA.
The quantity ηx describes the physics beyond the standard
model. For the light-neutrino exchange (sum over the mass
eigenstates mj of light neutrinos) the ηx factor denotes the
effective mass

ηm = 〈mν〉 =
∑

j=light

(
U l

ej

)2
mjc

2 (14)

and for the heavy-neutrino exchange (involving the mass
eigenstates Mj of heavy neutrinos) the ηx factor stands for

ηM =
∑

j=heavy

(
U h

ej

)2 mp

Mj

. (15)
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Here the amplitudes U l
ej and U h

ej are the components of the
electron row of the neutrino-mixing matrix including both light
and heavy neutrinos.

The nuclear matrix element M (0ν) in (13) is defined as

M (0ν) = M
(0ν)
GT −

(
gV

gA

)2

M
(0ν)
F + M

(0ν)
T , (16)

where the double Fermi, Gamow–Teller, and tensor nuclear
matrix elements are defined as

M
(0ν)
F =

∑
k

(0+
f ||

∑
mn

hF(rmn,Ek)||0+
i ) , (17)

M
(0ν)
GT =

∑
k

(0+
f ||

∑
mn

hGT(rmn,Ek)(σm · σ n)||0+
i ) , (18)

M
(0ν)
T =

∑
k

(0+
f ||

∑
mn

hT(rmn,Ek)ST
mn||0+

i ) , (19)

where the tensor operator reads

ST
mn = 3[(σm · r̂mn)(σ n · r̂mn)] − σm · σ n . (20)

The summation over k in Eqs. (17), (18), and (19) runs over all
the states of the intermediate odd-odd nucleus, rmn = |rm −
rn| is the relative distance between the two decaying neutrons,
labeled m and n, and r̂mn = (rm − rn)/rmn. The ground state of
the initial even-even nucleus is denoted by 0+

i and the ground
state of the final even-even nucleus is denoted by 0+

f , like in

the two-neutrino case. The tensor matrix element M
(0ν)
T has

been found to be small [18,19,27] but here we include it for
completeness.

The neutrino potentials hK (rmn,Ek), K = F,GT,T, are
different for the light and heavy Majorana neutrinos and are
given by the following two expressions:

h
(l)
K (rmn,Ek) = 2

π
RA

∫ ∞

0

qhK (q2)

q + Ek − (Mic2 + Mf c2)/2

×jλ(qrmn)dq (21)

for the light neutrinos and

h
(h)
K (rmn,Ek) = 1

mec2mpc2

2

π
RA

∫ ∞

0
q2hK (q2)jλ(qrmn)dq

(22)
for the heavy neutrinos. Here RA = 1.2A1/3 fm is the nuclear
radius, Mic

2 (Mf c2) is the ground-state mass energy of the
initial (final) nucleus, Ek is the energy of the nuclear state
k of the intermediate nucleus and jλ is the spherical Bessel
function with λ = 0 for the Fermi and Gamow-Teller NMEs
and λ = 2 for the tensor NME. The factors hK (q2) in (21)
and (22) include the contributions arising from the induced
currents and the finite nucleon size [23] and can be written
as

hF(q2) = −hF
VV(q2) , (23)

hGT(q2) = hGT
AA(q2) + hGT

AP(q2) + hGT
PP (q2) + hGT

MM(q2) , (24)

hT(q2) = hT
AP(q2) + hT

PP(q2) + hT
MM(q2) , (25)

with

hF
VV(q2) = [ĝV(q2)]2 , (26)

hGT
AA(q2) = [ĝA(q2)]2 , (27)

hGT
AP(q2) = − ĝA(q2)ĝP(q2)q2

3mpc2
, (28)

hGT
PP (q2) = [ĝP(q2)]2q4

12(mpc2)2
, (29)

hGT
MM(q2) = [ĝM(q2)]2q2

6(mpc2)2g2
A

, (30)

hT
AP(q2) = −hGT

AP(q2) , (31)

hT
PP(q2) = −hGT

PP (q2) , (32)

hT
MM(q2) = 1

2
hGT

MM(q2) . (33)

The dipole form factors we define here without the vector
and axial-vector coupling constants [they have already been
included in (13) and (16)] as

ĝV(q2) = [1 + q2/(�Vc2)2]−2 , (34)

ĝA(q2) = [1 + q2/(�Ac2)2]−2 , (35)

ĝM(q2) = (μp − μn)ĝV(q2) , (36)

ĝP(q2) = 2mpc
2ĝA(q2)

1

q2 + (mπc2)2
, (37)

where mπ is the pion mass, μp − μn = 3.70 is the anomalous
magnetic moment of the nucleon, and we take for the
vector mass (�Vc2)2 = 0.71 (GeV)2 and for the axial mass
(�Ac2)2 = 1.19 (GeV)2.

The nuclear matrix elements can be written in the pnQRPA
framework as

M
(0ν)
K =

∑
Jπ ,k1,k2,J ′

∑
pp′nn′

(−1)jn+jp′+J+J ′√
2J ′ + 1

×
{

jp jn J
jn′ jp′ J ′

}
(pp′ : J ′||OK ||nn′ : J ′)

×(
0+

f ||[c†p′ c̃n′ ]J ||Jπ
k1

)〈
Jπ

k1

∣∣Jπ
k2

〉(
Jπ

k2
||[c†pc̃n]J ||0+

i

)
,

(38)

where k1 and k2 label the different pnQRPA solutions for a
given multipole Jπ . The operators OK inside the two-particle
matrix element derive from (17), (18), and (19), and they can
be written as

OF = hF(r,Ek)[fCD(r)]2 , (39)

OGT = hGT(r,Ek)[fCD(r)]2σ 1 · σ 2 , (40)

OT = hT(r,Ek)[fCD(r)]2ST
12 , (41)

where ST
12 is the tensor operator (20) and r = |r1 − r2| is

the distance between the participating nucleons. The energy
Ek is the average of the kth eigenvalues of the pnQRPA
calculations based on the initial and final nuclei of the decay
and the overlap factor in (38) is the one of (8). The factor
fCD(r) takes into account the nucleon-nucleon short-range
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TABLE I. The key Hamiltonian parameters used in our present
calculations. The first column gives the decaying nucleus and the
second column gives the average of the proton and neutron pairing
parameters in the initial and final nuclei. The third column lists the
values of the isovector particle-particle parameter, and the last two
columns the values of the isoscalar particle-particle parameters for
the two representative values of the axial-vector coupling constant.

Nucleus 〈gpair〉 gT =1
pp gT =0

pp (gA = 1.00) gT =0
pp (gA = 1.26)

76Ge 1.10 1.12 1.02 1.06
82Se 1.00 1.01 0.96 1.00
96Zr 0.965 1.07 1.06 1.11
100Mo 1.09 1.11 1.07 1.09
110Pd 1.03 1.11 0.93 1.02
116Cd 1.01 0.86 0.98 1.01
124Sn 0.923 0.94 0.79 0.91
128Te 0.955 0.98 0.89 0.92
130Te 0.940 0.98 0.84 0.90
136Xe 0.930 1.00 0.77 0.80

correlations (SRC) [22,28] and in this work we use the
CD-Bonn parametrization [29] of the SRC with

fCD(r) = 1 − 0.46e−(1.52/fm2
)r2

[1 − (1.88/fm2)r2] . (42)

C. Transition densities in the pnQRPA

The pnQRPA states of the intermediate nucleus are written
as

|Jπ
k M〉 =

∑
pn

(
XJπ k

pn [a†
pa†

n]JM − Y Jπ k
pn [a†

pa†
n]†JM

)|QRPA〉 ,

(43)

where |QRPA〉 is the QRPA vacuum. The operator a
†
p (a†

n)
creates a proton (neutron) quasiparticle in the orbital p (n).
The sum runs over all proton-neutron configurations in the
chosen valence space. In the case 0+

f = 0+
gs the form (43) of

the pnQRPA state leads to the transition densities(
0+

f ||[c†p′ c̃n′ ]J ||Jπ
k1

) = √
2J + 1

[
v̄p′ ūn′X̄

Jπ k1
p′n′ + ūp′ v̄n′ Ȳ

J π k1
p′n′

]
,

(44)(
Jπ

k2
||[c†pc̃n]J ||0+

i

) = √
2J + 1

[
upvnX

Jπ k2
pn + vpunY

Jπ k2
pn

]
,

(45)

where v (v̄) and u (ū) correspond to the BCS occupation and
vacancy amplitudes of the initial (final) even-even nucleus.
The amplitudes X and Y (X̄ and Ȳ ) come from the pnQRPA
calculation starting from the initial (final) nucleus of the double
beta decay.

III. RESULTS AND DISCUSSION

In this section we present and discuss the results of
the calculations. The presentation of the material serves the
purpose of a detailed comparison with other presently available
and future calculations by different methods.

A. Determination of model parameters

In the present calculations we adopt the single-particle
bases used in the 0νββ calculations of [18,19], i.e., the
orbitals 1p − 0f − 2s − 1d − 0g − 0h11/2 for the A = 76,82
systems, the orbitals 1p − 0f − 2s − 1d − 0g − 0h for the
A = 96,100 systems, and the orbitals 1p − 0f − 2s − 1d −
0g − 2p − 1f − 0h for the A = 116,128,130,136 systems.
The same orbitals are used for both neutrons and protons. In

TABLE II. Decomposition of the presently calculated l-NMEs in terms of the contributions indicated in Eqs. (23)–(25).

MF MGT MT

Nuclear transition gA VV MM PP AP AA MM PP AP

76Ge −→ 76Se 1.00 1.743 0.510 0.681 −2.089 5.972 −0.037 0.100 −0.340
1.26 1.741 0.314 0.664 −2.016 5.477 −0.024 0.103 −0.353

82Se −→ 82Kr 1.00 1.291 0.368 0.494 −1.514 4.262 −0.029 0.077 −0.257
1.26 1.291 0.226 0.481 −1.455 3.870 −0.019 0.079 −0.269

96Zr −→ 96Mo 1.00 1.441 0.395 0.520 −1.543 3.890 −0.037 0.097 −0.294
1.26 1.438 0.239 0.498 −1.447 3.165 −0.023 0.096 −0.297

100Mo −→ 100Ru 1.00 1.634 0.444 0.582 −1.715 4.306 −0.044 0.113 −0.338
1.26 1.632 0.276 0.574 −1.676 3.959 −0.028 0.113 −0.342

110Pd −→ 110Cd 1.00 2.315 0.622 0.834 −2.595 7.769 −0.046 0.120 −0.347
1.26 2.316 0.376 0.799 −2.439 6.596 −0.030 0.126 −0.371

116Cd −→ 116Sn 1.00 1.496 0.349 0.469 −1.452 4.238 −0.031 0.079 −0.218
1.26 1.496 0.220 0.469 −1.452 4.238 −0.019 0.079 −0.218

124Sn −→ 124Te 1.00 2.332 0.624 0.831 −2.561 7.519 −0.063 0.165 −0.509
1.26 2.328 0.364 0.767 −2.273 5.408 −0.043 0.178 −0.570

128Te −→ 128Xe 1.00 1.777 0.525 0.690 −2.048 5.232 −0.068 0.176 −0.541
1.26 1.777 0.331 0.690 −2.048 5.232 −0.043 0.176 −0.541

130Te −→ 130Xe 1.00 1.523 0.467 0.617 −1.838 4.878 −0.060 0.156 −0.475
1.26 1.524 0.284 0.593 −1.738 4.276 −0.039 0.161 −0.496

136Xe −→ 136Ba 1.00 0.894 0.303 0.402 −1.222 3.338 −0.034 0.088 −0.271
1.26 0.894 0.188 0.395 −1.192 3.165 −0.022 0.090 −0.278
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FIG. 1. Multipole decomposition of the l-NME M (0ν) for 76Ge, 82Se, 96Zr, 100Mo, 110Pd, 116Cd, 124Sn, and 128Te.

addition, we also extend our calculations to the systems A =
110,124. For A = 110 we use the same neutron basis as for the
A = 116,128,130,136 systems and the same proton basis as
for the A = 76,82 systems. For A = 124 we use the same basis
set as for the A = 116,128,130,136 systems. The choice of the
single-particle bases was guided by practical considerations:
The orbitals left out from the active single-particle space have
BCS occupation probabilities which are essentially 1 (core
states) or 0 (high-lying states). As long as the number of
included single-particle states is reasonable, the adjustment
of the pairing and pnQRPA parameters in each given single-
particle space guarantees that the produced 0νββ NMEs are
stable and essentially of the same magnitude irrespective of
the number of included single-particle states [17]. Hence, it is

expected that the presently produced l-NMEs and h-NMEs are
stable against increase in the single-particle model space.

The single-particle energies were obtained from
the Coulomb-corrected Woods-Saxon potential with the
parametrization of Ref. [30], optimized for nuclei close to
the β stability line. This is a justified choice since the
double-beta-decaying nuclei lie always close to the bottom
of the valley of beta stability. Small adjustments of the proton
and/or neutron single-particle energies in the vicinity of the
respective Fermi surfaces were done in the way done in [18,19]
and thus our present results are directly comparable with those
of [18,19] in this respect. The adjustments were done to better
reproduce the low-lying spectra of the neighboring odd-mass
nuclei. This also improves the computed energy spectra of the
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FIG. 2. Multipole decomposition of the h-NME M (0ν) for 76Ge, 82Se, 96Zr, 100Mo, 110Pd, 116Cd, 124Sn, and 128Te.

intermediate odd-odd nuclei, and the experimental low-lying
energy spectra are usually well reproduced by the calculations,
although the ordering of the levels is not always perfect due to

the high density of low-energy states in odd-odd nuclei. This,
however, is not a serious problem when computing the 0νββ
NMEs.
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FIG. 3. Multipole decomposition of the l-NME M (0ν) for 130Te and 136Xe.
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TABLE III. Values of the computed l-NMEs. Columns 3–5 show the decomposition of the presently calculated total NMEs (column 6)
in terms of the Fermi, Gamow-Teller, and tensor contributions. The total NMEs have been compared with those of [21] in the third last
column, the second last column showing the ratios between our present results and those of Ref. [21]. The last column shows the relative
difference(|M (0ν)[21] −M (0ν)|/M (0ν)) between the present results and the results of [21].

l-NMEs, present results l-NMEs [21]

Nuclear transition gA M
(0ν)
F M

(0ν)
GT M

(0ν)
T M (0ν) M (0ν) Ratio Diff. %

76Ge −→ 76Se 1.00 −1.74 5.07 −0.28 6.54 6.781 0.964 4
1.26 −1.74 4.44 −0.27 5.26 5.571 0.944 6

82Se −→ 82Kr 1.00 −1.29 3.61 −0.21 4.69 6.032 0.778 29
1.26 −1.29 3.12 −0.21 3.73 5.018 0.743 35

96Zr −→ 96Mo 1.00 −1.44 3.26 −0.23 4.47 3.769 1.19 16
1.26 −1.44 2.46 −0.22 3.14 2.957 1.06 6

100Mo −→ 100Ru 1.00 −1.63 3.62 −0.27 4.98 7.287 0.683 46
1.26 −1.63 3.13 −0.26 3.90 5.850 0.667 50

110Pd −→ 110Cd 1.00 −2.32 6.63 −0.27 8.67 7.820 1.11 10
1.26 −2.32 5.33 −0.28 6.52 6.255 1.04 4

116Cd −→ 116Sn 1.00 −1.50 3.61 −0.17 4.93 5.328 0.925 8
1.26 −1.50 3.48 −0.16 4.26 4.343 0.981 2

124Sn −→ 124Te 1.00 −2.33 6.41 −0.41 8.34 4.958 1.68 41
1.26 −2.33 4.27 −0.43 5.30 2.913 1.82 45

128Te −→ 128Xe 1.00 −1.78 4.40 −0.43 5.74 6.164 0.931 7
1.26 −1.78 4.21 −0.41 4.92 5.084 0.968 3

130Te −→ 130Xe 1.00 −1.52 4.12 −0.38 5.27 5.310 0.992 1
1.26 −1.52 3.41 −0.37 4.00 4.373 0.915 9

136Xe −→ 136Ba 1.00 −0.89 2.82 −0.22 3.50 2.975 1.18 15
1.26 −0.89 2.56 −0.21 2.91 2.460 1.18 15

We use the Bonn G matrix as the two-body interaction
and fine tune it in the standard way (see, e.g., [31–33]):
The pairing parameters of the BCS were adjusted by fit-
ting the phenomenological pairing gaps, extracted from the
nucleon separation energies. The residual Hamiltonian for
the pnQRPA calculation contains two scaling parameters:
one in the particle-hole channel (the gph parameter) and one
in the particle-particle channel (the gpp parameter). These
two parameters carry over to the A and B matrices of
the pnQRPA [31] such that the particle-hole contribution
is proportional to the particle-hole matrix element, i.e., ∝
gph〈pn−1; Jπ |V |p′n′−1; Jπ 〉, where Jπ is the multipole of the
states in the intermediate odd-odd nucleus, and the particle-
particle contribution is proportional to the two-body matrix
element, i.e., ∝ gpp〈pn; Jπ |V |p′n′; Jπ 〉.

Traditionally, the gph parameter is fixed by fitting the
centroid of the giant Gamow-Teller resonance (GTGR) in the
1+ channel of the calculations. This is also the procedure
which we adopt in the present calculations. In the cases where
data are available the computed beta strength, B(GT), of
the GTGR is larger than the measured one. This is usually
associatedwith the missing of strength in the charge-exchange
reaction experiments probing the GTGR region. The missing
of strength is reflected in the unsatisfactory fulfillment of
the model-independent Ikeda 3(N − Z) sum rule by the
data. Contrariwise, this sum rule is perfectly obeyed by
the pnQRPA calculations. The 0νββ NMEs depend only
weakly on the gph parameter: an increase in gph lifts the
GTGR energy higher and reduces the Gamow-Teller strength
at low energies. This, in turn, makes smaller gpp values

reproduce the experimental 2νββ-decay half-life in a pnQRPA
calculation.

The experimental location of the isobaric analog state (IAS)
is not always well reproduced by the pnQRPA calculations.
This owes to the fact that the present pnQRPA calculations
are not self-consistent, i.e., the single-particle energies are
not generated by the same Hamiltonian which is used in the
pnQRPA calculations, as discussed in [34]. This might increase
artificially the 0+ contributions in the 0νββ NMEs, but as seen
in Sec. III B the 0+ contributions are quite small and thus under
control.

The gpp parameter can be adjusted by fitting the measured
2νββ-decay half-life, compiled, e.g., in [35], and more recently
in [36]. This procedure was followed in, e.g., [17–21].
Recently, an improved method was proposed in [21] where
the NMEs corresponding to the exchange of light Majorana
neutrinos (l-NMEs) were treated for the conservation of the
isospin symmetry. There the particle-particle parts of the
pnQRPA matrices, referring to the above discussion, were
divided into isoscalar (T = 0) and isovector (T = 1) parts
by the decomposition

gpp〈pn; Jπ |V |p′n′; Jπ 〉
→ gT =1

pp 〈pn; Jπ ; T = 1|V |p′n′; Jπ ; T = 1〉
+ gT =0

pp 〈pn; Jπ ; T = 0|V |p′n′; Jπ ; T = 0〉 . (46)

We can now adjust the parameters gT =1
pp and gT =0

pp indepen-
dently in the following way: The isovector parameter gT =1

pp can
be adjusted such that the Fermi NME of (10) vanishes and thus
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TABLE IV. Decomposition of the presently calculated h-NMEs in terms of the contributions indicated in Eqs. (23)–(25).

MF MGT MT

Nuclear transition gA VV MM PP AP AA MM PP AP

76Ge −→ 76Se 1.00 139.4 40.5 81.1 −218.7 458.1 − 5.5 12.7 −34.0
1.26 139.5 25.5 80.1 −215.3 448.2 − 3.4 12.7 −34.3

82Se −→ 82Kr 1.00 102.0 28.1 58.0 −156.9 329.3 − 4.0 9.6 −25.7
1.26 102.0 17.6 57.1 −154.0 321.2 − 2.6 9.7 −26.2

96Zr −→ 96Mo 1.00 114.2 35.7 66.2 −175.5 359.1 − 6.5 14.4 −37.0
1.26 114.3 22.5 64.9 −171.3 346.3 − 4.1 14.2 −36.8

100Mo −→ 100Ru 1.00 127.1 40.0 74.9 −198.4 405.5 − 7.9 17.3 −44.3
1.26 126.9 25.2 74.5 −196.9 400.3 − 5.0 17.4 −44.5

110Pd −→ 110Cd 1.00 167.6 47.1 97.0 −263.4 557.5 − 8.1 18.0 −46.3
1.26 168.0 29.6 94.8 −256.1 536.4 − 5.3 18.7 −48.2

116Cd −→ 116Sn 1.00 102.1 25.9 54.6 −148.4 314.1 − 5.6 12.3 −31.3
1.26 102.1 16.3 54.6 −148.4 314.1 − 3.5 12.3 −31.3

124Sn −→ 124Te 1.00 168.7 49.6 99.3 −267.7 561.4 −10.7 23.8 −61.4
1.26 168.7 31.0 95.1 −253.8 521.5 − 7.0 24.6 −64.2

128Te −→ 128Xe 1.00 138.5 45.8 86.7 −230.4 471.9 −11.7 25.8 −66.4
1.26 138.5 28.8 86.7 −230.3 471.7 − 7.3 25.7 −66.4

130Te −→ 130Xe 1.00 119.9 40.2 76.6 −203.9 419.5 −10.4 22.8 −58.8
1.26 119.5 25.1 75.1 −198.9 405.5 − 6.7 23.4 −60.5

136Xe −→ 136Ba 1.00 61.0 22.7 43.3 −115.0 235.8 − 6.7 14.6 −37.4
1.26 61.8 14.2 42.5 −112.6 230.1 − 4.1 14.4 −37.0

the isospin symmetry is restored for the 2νββ decay. We then
keep this adjusted value of gT =1

pp in the further calculations for
the 0νββ decay. We can independently vary gT =0

pp to reproduce
the measured 2νββ-decay half-life and again use this value
in the calculation of the 0νββ NMEs. It should be noted here
that for the A = 110 and A = 124 nuclear systems there is
no 2νββ-decay data so we used beta-decay data for A = 110
and for A = 124 we took the 2νββ NMEs proposed in [21].
Like in [21], we found in the present study that the value of
the isovector parameter is very close to the average of the
pairing parameters of the BCS, fitted in the initial and final
even-even nuclei for each 0νββ transition (see Table I of [21]
for reference). We list the values of all these parameters for
the present calculations in Table I.

B. Matrix elements for light-neutrino exchange

Let us start the presentation of our results by a discussion
of the NMEs corresponding to the exchange of a light
Majorana neutrino (the l-NMEs). The l-NMEs have been
decomposed according to the terms of (23)–(25) in Table II. In

Figs. 1(a)–1(h) we have plotted the QRPA multipole decom-
position of the total l-NME M (0ν) for the decays of 76Ge, 82Se,
96Zr, 100Mo, 110Pd, 116Cd, 124Sn, and 128Te, and in Figs. 3(a)
and 3(b) for the decays of 130Te and 136Xe. All decompositions
are calculated with the bare value of the axial-vector coupling
gb

A = 1.26.
The isoscalar parameter gT =0

pp , which was adjusted to
reproduce the 2νββ decay data, forces the 1+ contribution
to have a negative value in nuclei 96Zr, 100Mo, and 124Sn.
The interference with the rest of the contributions reduces the
magnitude of the final l-NME for these decays. This effect
was already noticed in [19] for the 96Zr and 100Mo cases. Here
it has to be pointed out that although the 1+ contribution to
the 0νββ l-NME is negative in the quoted three cases, the
2νββ NME is positive and it has not yet crossed zero to the
negative side. This also means that the pnQRPA solutions are
at a safe distance from their breaking point. Due to the neutrino
potential present in (40) the sign of the total 1+ contribution
can change when going from the 2νββ to the 0νββ decay. The
leading multipole component is 1− for a majority of decays
exceptions being the decays of 76Ge, 82Se, and 136Xe. For
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FIG. 4. Multipole decomposition of the h-NME M (0ν) for 130Te and 136Xe.
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TABLE V. Values of the computed h-NMEs. Columns 3–5 show the decomposition of the presently calculated total NMEs (column 6) in
terms of the Fermi, Gamow-Teller, and tensor contributions. The total NMEs are compared with those of [3] in the fourth last column, and with
the results of [25] in the second last column. The third last and last columns show the ratios between our present matrix elements and those
computed in Refs. [3] and [25].

h-NMEs, present results h-NMEs

Nuclear transition gA M
(0ν)
F M

(0ν)
GT M

(0ν)
T M (0ν) M ′(0ν) M ′(0ν) [3] Ratio M (0ν) [25] Ratio

76Ge −→ 76Se 1.00 −139.4 361.0 −26.8 473.6 298.3 317 0.941
1.26 −139.5 338.5 −25.0 401.3 401.3 412 0.974 163 2.46

82Se −→ 82Kr 1.00 −102.0 258.5 −20.2 340.2 214.3 312 0.687
1.26 −102.0 241.9 −19.1 287.1 287.1 408 0.704 132 2.18

96Zr −→ 96Mo 1.00 −114.2 285.5 −29.2 370.5 233.4
1.26 −114.3 262.5 −26.6 307.9 307.9 135 2.28

100Mo −→ 100Ru 1.00 −127.1 321.9 −34.9 414.0 260.8 311 0.839
1.26 −126.9 303.0 −32.2 350.8 350.8 404 0.868 224 1.57

110Pd −→ 110Cd 1.00 −167.6 438.3 −36.4 569.5 358.7
1.26 −168.0 404.7 −34.8 475.7 475.7 208 2.28

116Cd −→ 116Sn 1.00 −102.1 246.3 −24.6 323.8 204.0
1.26 −102.1 236.7 −22.5 278.5 278.5 149 1.87

124Sn −→ 124Te 1.00 −168.8 442.6 −48.4 563.0 354.6
1.26 −168.7 393.8 −46.6 453.4 453.4 120 3.78

128Te −→ 128Xe 1.00 −138.5 374.0 −52.3 460.2 289.9
1.26 −138.5 356.8 −48.0 396.1 396.1 152 2.61

130Te −→ 130Xe 1.00 −119.9 332.3 −46.3 405.9 255.7 294 0.870
1.26 −119.5 306.8 −43.8 338.3 338.3 385 0.879 138 2.45

136Xe −→ 136Ba 1.00 −61.0 186.8 −29.5 218.3 137.3 125 1.10
1.26 −61.8 174.2 −26.7 186.3 186.3 172 1.08 109 1.71

76Ge and 82Se the leading component is 2− whereas for 136Xe
it is 3+. These observations are in agreement with the earlier
calculations of Refs. [17] and [19].

We present our final l-NMEs (16) in Table III and compare
them there with the results of Ref. [21] for two values
of the axial-vector coupling constant, namely the effective
one, geff

A = 1.00 and the bare one gb
A = 1.26 (Ref. [21] uses

gb
A = 1.27 but the difference is insignificant). The agreement

is quite good in most cases. However, there seems to be larger
deviations for the nuclei 100Mo and 124Sn and perhaps also for
82Se. In the case of 100Mo the Tübingen-Caltec result is about
50% larger than ours. In the case of 124Sn the magnitudes go
in the opposite direction, the Tübingen-Caltec matrix element
being only about 60% of our result. The differences between
the two calculations vary quite much from one nucleus to
the other. One reason may be the gpp sensitivity of the 1+

contribution: The details of the 1+ contribution may vary
between the two calculations, in particular concerning the
negative contribution which is very case dependent.

As can be seen from Table III the NMEs for gb
A = 1.26

are much smaller than those for geff
A = 1.00. This stems from

two sources: (a) The factor (gV/gA)2 in (16) diminishes the
contribution from the Fermi matrix element (which is the same
for both values of gA), and (b) the magnitude of the Gamow-
Teller NME diminishes due to the reduced 1+ contribution to
it, caused by the fitting of the 2νββ half-life. The negative 1+
contribution in some of the 0νββ NMEs enhances the effect
even further, like in the cases of 96Zr, 100Mo, and 124Sn. The
choice of the two bordering values geff

A = 1.00 and gb
A = 1.26

is based on a kind of ad hoc convention: The bare value gb
A =

1.26 is a natural upper limit and geff
A = 1.00 corresponds to

the commonly adopted shell-model quenching [37,38]. The

TABLE VI. Evolution of the h-NMEs when going from the Miller-Spencer (M-S) to the Argonne (Ar) and CD-Bonn (CD-B)
parametrizations of the Jastrow function (42). Columns 2 and 3 show the present results for M-S and Argonne parametrized h-NMEs.
Columns 4–9 show the ratios of matrix elements computed with different parametrizations.

Present results Ratios [3]/[23] Ratios [25]

Nuclear transition M-S Ar Ar/M-S CD-B/M-S Ar/M-S CD-B/M-S Ar/M-S CD-B/M-S

76Ge −→ 76Se 151.0 284.4 1.88 2.66 8.13 12.64 2.22 3.39
82Se −→ 82Kr 107.9 203.5 1.89 2.66 8.77 13.60 2.37 3.71
100Mo −→ 96Ru 125.5 244.8 1.95 2.80 8.75 13.60 1.66 2.26
130Te −→ 130Xe 113.5 232.1 2.04 2.98 10.39 16.67 2.09 3.14
136Xe −→ 136Ba 60.7 126.7 2.09 3.07 11.35 12.20 2.07 3.11
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TABLE VII. Effect of the isospin symmetry restoration on the
l-NMEs for selected nuclei. In the calculations marked by “old”
there is only one particle-particle parameter gpp = gT =0

pp , with values
displayed in Table I. Here bare value of the axial-vector coupling was
used.

Nuclear transition Parameters M
(0ν)
F M

(0ν)
GT M

(0ν)
T

76Ge −→ 76Se old −1.95 4.44 −0.27
new −1.74 4.44 −0.27

82Se −→ 82Kr old −1.32 3.12 −0.21
new −1.29 3.12 −0.21

96Zr −→ 96Mo old −1.37 2.45 −0.22
new −1.44 2.46 −0.22

100Mo −→ 96Ru old −1.67 3.14 −0.26
new −1.63 3.13 −0.26

130Te −→ 130Xe old −1.71 3.42 −0.37
new −1.52 3.41 −0.37

issue of the effective value of gA is yet unsettled for the 0νββ
decays. Some attempts have been made to address this issue by
analyzing β− and 2νββ decays within the pnQRPA framework
in [39–43] by using a much quenched effective value of gA.
However, it is still unclear how this effective gA relates to the
one used in the 0νββ calculations (see, e.g., the discussion
in [41,43]).

C. Matrix elements for heavy-neutrino exchange

Here we present our results for the NMEs corresponding to
the exchange of a heavy Majorana neutrino (the h-NMEs).
These NMEs are decomposed according to (23)–(25) in
Table IV. In Figs. 2(a)–2(h) we have plotted the QRPA
multipole decomposition of the total h-NME M (0ν) for the
decays of 76Ge, 82Se, 96Zr, 100Mo, 110Pd, 116Cd, 124Sn,
and 128Te, and in Figs. 4(a) and 4(b) for decays of 130Te
and 136Xe. All decompositions are again calculated with
the bare value of the axial-vector coupling, gb

A = 1.26. The
multipole decompositions have much more irregular shape
for the heavy neutrino exchange than for the light neutrino
exchange. Multipole strength is distributed towards higher
angular-momentum values. There seems to be no characteristic
leading multipole, either.

TABLE VIII. Effect of the isospin symmetry restoration on the
h-NMEs for selected nuclei. In the calculations marked by “old”
there is only one particle-particle parameter gpp = gT =0

pp , with values
displayed in Table I. Bare value of the axial-vector coupling was used.

Nuclear transition Parameters M
(0ν)
F M

(0ν)
GT M

(0ν)
T

76Ge −→ 76Se old −142.7 338.6 −24.9
new −139.5 338.5 −25.0

82Se −→ 82Kr old −102.5 242.1 −19.1
new −102.0 241.9 −19.1

96Zr −→ 96Mo old −112.6 262.6 −26.6
new −114.3 262.6 −26.6

100Mo −→ 96Ru old −127.7 302.9 −32.1
new −126.9 303.2 −32.2

130Te −→ 130Xe old −123.6 307.3 −43.7
new −119.5 307.0 −43.8

We present our final h-NMEs (16) in Table V for geff
A = 1.00

and gb
A = 1.26. We compare our NMEs with the results of

Ref. [3] and [25] in the last four columns of the table (Ref. [3]
uses gb

A = 1.25 and Ref. [25] gb
A = 1.269 but, as stated before,

the difference is negligible). The primed matrix element M ′(0ν)

of Ref. [3] is defined as

M ′(0ν) =
(

gA

gb
A

)2

M (0ν). (47)

As seen in the third last column of Table V our h-NMEs
compare rather well with the Tübingen-Caltec matrix elements
of Ref. [3]. There seems to be a significant difference between
our present results and those computed by the Yale group [25].
The last column of Table V shows that an average constant
of proportionality between our results and those of the Yale
group is about 2.3.

In Table VI we investigate the evolution of the h-
NMEs for nuclei 76Ge,82Se, 100Mo, and 130Te when moving
from the Miller-Spencer to the softer Argonne and CD-
Bonn parametrizations of the short-range correlation func-
tion (42). We also compare this evolution with those given
by Refs. [23], [3], and [25]. In the sixth and seventh column
of Table VI the ratios are defined as the results of [3] divided
by the results of [23]. Our M-S correlated h-NMES differ
considerably from the old Tübingen calculations [23]. They
also differ substantially from those computed by the Yale
group [25], but the ratios listed in Table VI are essentially
the same for the present and the Yale calculations. This means
that our h-NMEs behave similarly to those of the Yale group
when we change the correlations from M-S to Argonne and
CD-Bonn and only the absolute values of the h-NMEs differ
between the two calculations. The ratios of the Tübingen
computed h-NMEs are strikingly different from the present
and Yale results: the Tübingen h-NMEs increase by a factor of
8.0 to 12.0 when going from M-S to Argonne and CD-Bonn.
Most likely there is some problem with the calculated values
of h-NMEs in Ref. [23].
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The effect of the isospin symmetry restoration procedure
on the magnitudes of the light-exchange and heavy-exchange
nuclear matrix elements is investigated in Tables VII and VIII.
The Gamow-Teller and tensor parts are hardly affected at all
in both cases. The effect on the Fermi matrix element, M

(0ν)
F ,

is ranging from small to negligible. For the h-NMEs there are
no previous results to compare with but the results for the
l-NMEs can be compared with those of [21]. The presently
obtained small effect on M

(0ν)
F by the isospin restoration is at

odds with the results of Ref. [21] where a significant reduction
in the Fermi matrix element was observed when moving from
the old to the new parametrization. There also the values of
the old Fermi NMEs were considerably higher than in the
present calculations. So, in fact, after the isospin restoration
the Fermi l-NMEs of the present calculation and those of [21]
are surprisingly close to each other.

The 0νββ transition operators OK in (38) depend on the
relative distance r between the two decaying neutrons. In
Figs. 5 and 6 we have plotted the radial dependence of the
matrix elements M

(0ν)
F , M

(0ν)
GT , M

(0ν)
T , and the full NME M (0ν)

for both the light and heavy neutrino exchange cases. The
two figures show clearly the different nature of the two decay
mechanisms. The light neutrino exchange, being a long range
process, collects strength to the NME still beyond the nucleon
separation of 8 fm. For the heavy neutrino exchange the neu-
trino potential is a contact interaction and the corresponding
matrix element cuts off completely after about 4 fm. When
doing computations with different parametrizations of the
SRC it was noticed that the tensor part is not sensitive to the
chosen parametrization. The reason for this behavior becomes

clear from Figs. 5 and 6. In both decay modes the tensor part
switches on only after the decaying nucleons are about 1 fm
apart so the presence of the Jastrow function does not affect
them much.

IV. CONCLUSIONS

In this work we have calculated the nuclear matrix elements
of the neutrinoless double beta-minus decays mediated by
the light (light NMEs) or heavy (heavy NMEs) Majorana
neutrino. The matrix elements have been computed for ten key
decays of immediate experimental interest. The calculations
have been done by using realistic two-body interactions
and single-particle bases, and including up-to-date nucleon-
nucleon short-range correlations, nucleon form factors and
induced weak currents of nucleons. We also use a recently
proposed method to improve on the isospin properties of the
two-neutrino and neutrinoless double Fermi nuclear matrix
elements. We decompose both the light and heavy NMEs
in several different ways to benchmark our computer code
and to enable clean comparison with the existing and future
calculations done by using different model frameworks.

We found in the calculations that the light and heavy
NMEs behave qualitatively and even quantitatively in a similar
way as the ones calculated recently by the Tübingen-Caltec
group [3,21]. The heavy NMEs differ considerably from
the old Tübingen calculations [23] and the recent Yale
calculations [25].

The uncertainties of the present calculations, stemming
from the determination of the values of the model parameters,
are well under control owing to the fact that experimental
data were used at every step of the process. This ideology in
determining the values of the pairing and pnQRPA parameters
yields also the computed NMEs stable against variations
in the size of the single-particle model space. The largest
uncertainty pertains to the variation of the value of the
axial-vector coupling constant gA. There is no known recipe
how to determine the value of gA for the neutrinoless double
beta decays of nuclei. The conservative range of variation
gA = 1.00–1.26, adopted in this work, induces an interval
of the l-NMEs and h-NMEs such that the endpoints of the
interval can be inferred from Tables III and V, respectively.
Due to the rather large width of the interval of the NME values,
it becomes more and more important in the future to have a
reliable estimate of the value of gA in the NME calculations.
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