
    

 

 

 
 
This is an electronic reprint of the original article.  
This reprint may differ from the original in pagination and typographic detail. 
 

Author(s): 

 

 

Title: 

 

Year: 

Version:  

 

Please cite the original version: 

 

 

  

 

 

All material supplied via JYX is protected by copyright and other intellectual property rights, and 
duplication or sale of all or part of any of the repository collections is not permitted, except that 
material may be duplicated by you for your research use or educational purposes in electronic or 
print form. You must obtain permission for any other use. Electronic or print copies may not be 
offered, whether for sale or otherwise to anyone who is not an authorised user. 

 

Efficient Time Integration of Maxwell's Equations with Generalized Finite Differences

Räbinä, Jukka; Mönkölä, Sanna; Rossi, Tuomo

Räbinä, J., Mönkölä, S., & Rossi, T. (2015). Efficient Time Integration of Maxwell's
Equations with Generalized Finite Differences. SIAM Journal on Scientific Computing,
37(6), B834-B854. https://doi.org/10.1137/140988759

2015



EFFICIENT TIME INTEGRATION OF MAXWELL’S EQUATIONS
WITH GENERALIZED FINITE DIFFERENCES∗

JUKKA RÄBINÄ†, SANNA MÖNKÖLÄ†, AND TUOMO ROSSI†

Abstract. We consider the computationally efficient time integration of Maxwell’s equations
using discrete exterior calculus (DEC) as the computational framework. With the theory of DEC,
we associate the degrees of freedom of the electric and magnetic fields with primal and dual mesh
structures, respectively. We concentrate on mesh constructions that imitate the geometry of the close
packing in crystal lattices that is typical of elemental metals and intermetallic compounds. This class
of computational grids has not been used previously in electromagnetics. For the simulation of wave
propagation driven by time-harmonic source terms, we provide an optimized Hodge operator and a
novel time discretization scheme with nonuniform time step size. The numerical experiments show
a significant improvement in accuracy and a decrease in computing time compared to simulations
with well-known variants of the finite difference time domain method.

Key words. Maxwell equations, mesh generation, crystal structure, discrete exterior calculus,
harmonic Hodge operator, nonuniform time discretization
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1. Introduction. We consider the time-dependent Maxwell’s system formulated
in a three-dimensional exterior space domain Ω as

∂D

∂t
−∇×H = J, in Ω× [t0, ttot],(1.1)

∂B

∂t
+∇×E = J∗, in Ω× [t0, ttot],(1.2)

(E,B,H,D) (t0) =
(
E0,B0,H0,D0

)
, in Ω,(1.3)

where E and H are the electric and magnetic fields, and D and B are the electric
and magnetic flux densities. The initial conditions, E0, B0, H0, and D0 are set at
the initial time t0, while the final state is considered at the final time ttot. The sys-
tem is applied with the constitutive relations D = εE and B = µH, where electric
permittivity, ε, and magnetic permeability, µ are tensor-valued space-dependent vari-
ables. The source functions, J = −σE and J∗ = −σ∗H, depend on the tensor-valued
space-dependent variables electric conductivity, σ, and magnetic conductivity, σ∗.

For solving (1.1)–(1.3) numerically, the physical quantities and the differential
operators must be discretized. Conventional methods, such as the standard finite
difference or finite element method, pay no attention to the geometric structure of
the physics behind the models. Since the vector-valued electric and magnetic fields are
not well-presented by nodal values, non-physical modes may occur in the numerical
solution [28]. That is why there is a growing interest in methods that maintain the
fundamental properties of continuum equations at the discrete level [1].

The finite difference time domain (FDTD) method, introduced by Yee [62], has
been used for several decades as a common method for solving electromagnetic prob-
lems in the space-time domain. Later on, it was recognized that the method’s fashion
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of locating the electric field variables on the edges and the magnetic field variables at
the centers of the mesh element surfaces is the key concept for preserving the continu-
ity of physical phenomena [25]. Originally, the FDTD was restricted to the structured
grids constructed by cubic elements, but there are certain generalizations to, e.g.,
three-dimensional nonuniform [39] and non-orthogonal [32] grids and two-dimensional
polyhedra [27]. Other physics-preserving methods that work in the style of staggered
finite difference grids include, e.g., mimetic finite difference (MFD) schemes [34].

The above-mentioned mentioned generalizations of the FDTD can be covered by
employing the metric-free language of differential forms [43] instead of the vector
field presentation. Thus, by applying exterior calculus (see, e.g., [20, 29, 54, 61]),
we concentrate on the discrete exterior calculus (DEC) of differential forms. The
approach follows the groundwork presented by Marsden and his group [23, 13, 14]
and pioneered in electromagnetics simulations by Bossavit and Kettunen [8]. Within
this framework, the differential operators can be presented exactly at the discrete
level. The physical characterization of the discretization is presented by the discrete
Hodge operators defining the connection between the primal and dual forms. The
discretization is independent of the coordinate systems, and the only source of the
discretization error is in the Hodge operator. With the orthogonality of the primal
and dual mesh elements, we ensure the diagonal construction of Hodge operators that
provides a significant savings in computing time.

The DEC-based discretization in polyhedral meshes was recently studied in [22,
45], but now we concentrate on partly structured nonuniform grids, based on the
structure of elemental metals and intermetallic compounds. Such natural crystals
form stable structures that minimize the potential energy. The structures are con-
structed from particles packed as close as possible to each other. The feature provides
an inspiring starting point for generating spatially isotropic grids that maintain the
uniform physical properties in all directions. This is important in electromagnetic
simulations in which the waves can propagate in any direction.

Time discretization has a significant role in the efficiency of the time-dependent
simulations. Since we use nonuniform grids, we need, instead of conventional staggered
leapfrog time discretization [62], a more flexible scheme that adjusts to the grid with
varying time step sizes. Lew et al. [33] presented for elastodynamics asynchronous
time stepping that was applied to electromagnetic problems by Stern et al. [50]. Since
the approach needs information from several earlier time steps, we proceed another
way by introducing a nonuniform leapfrog method, in which only the quantities at
the previous time step are needed to evaluate the variables.

The novelty of the present work is that we present, in section 2, nature-inspired
nonuniform grids that have not been used previously in the DEC context. Further,
in section 3, we provide an optimized Hodge operator for propagation of plane waves
and asynchronous leapfrog-style time discretization that is exact for time-harmonic
simulations. In section 4, we validate this state-of-the-art approach with numerical
experiments. Concluding remarks are presented in section 5.

2. Discretization mesh. We discretize the three-dimensional spatial domain
with a pair of (primal) mesh and dual mesh elements. The primal mesh elements are
p-cells with dimension p = 0, 1, 2, 3 as follows: A 0-cell (node) is a vertex v ∈ R3. A
1-cell (edge) is defined as a line segment between two 0-cells, and it is oriented from
the first to the second node of the list. A 2-cell (face) is a convex planar polygon
surrounded by a finite set of edges. An oriented 3-cell (body) is a convex polyhedron
surrounded by a finite set of faces with outward-pointing normal vectors. To each
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p-cell, we assign a dual (3− p)-cell.
For constructing the dual mesh, we concentrate on the weighted circumcenters

to obtain the orthogonality of the primal and dual mesh elements. In practice, a
mesh and its (weighted) circumcentric dual mesh can be constructed by a (weighted)
Voronoi diagram from a set of (weighted) primal nodes [58, 2, 11, 46]. Each Voronoi
cell, centered by a node, corresponds to a dual body element. The Voronoi planes
(boundaries between the Voronoi cells) correspond to dual face elements, which are
assigned to primal edge elements between two nodes. Each Voronoi edge (the intersec-
tion of the Voronoi planes) generates a dual edge and a primal face. The dual nodes
and the primal bodies are generated from the crossing points of the Voronoi edges.
In general, the primal mesh is not simplicial. Convex polyhedral elements, such as
cubes, prisms, pyramids, octahedra etc., are possible as well. All of these elements fit
easily into the DEC framework.

There are also methods for minimizing the bias between the primal and dual
element positions. For instance, Hodge-optimized triangulation (HOT), tailored for
the DEC framework (see [40]), can be applied to unstructured triangulations. The
idea is to optimize the position and weight of each primal node with an iterative
algorithm by keeping the topological relations of the mesh unchanged.

We concentrate on a partly structured grid design and generate a mesh consisting
of structured and unstructured (e.g., curved boundaries) areas. This choice combines
the geometric flexibility of unstructured grids and the fast generation of structured
grids. Since the electromagnetic waves can propagate in any direction, it is important
to maintain uniform physical properties in all directions by using spatial grids that re
as isotropic as possible. Next, we recall certain natural crystal structures that can be
applied with the DEC framework.

2.1. Cubic crystal systems. Cubic tiling is the simplest and most common
way to fill a three-dimensional space. It is also the basis of cubic crystal systems,
which are used in crystallography to explain natural crystal structures. There are
three main structures in cubic crystal systems: primitive cubic, face-centered cubic
(FCC) and body-centered cubic (BCC) [10]. The primitive cubic structure leads to
a regular grid, which has a regular dual grid, corresponding to the conventional Yee
scheme [62].

The FCC structure can be constructed by the Voronoi diagram from the vertex
set, where the cubic grid vertices and the center points of each face element are united
as shown in Figure 1. The space tiling of the FCC structure is composed of alternating
regular octahedra and regular tetrahedra in a ratio of 1:2, as shown in Figure 2(a).
Each primal edge is of equal length, and the primal faces are equilateral triangles
of equal areas. The circumcentric dual faces are rhombuses (parallelograms with
four sides of equal length) with relation

√
2 between the longer and shorter diagonal

lengths. The circumcentric dual body elements are Kepler’s rhombic dodecahedra
consisting of 12 congruent rhombic faces [26].

The BCC structure is a tetrahedron structure, which is one of the Sommerville
grids [49]. The structure is constructed from the cubic grid by adding a vertex at
each body center (see Figure 1). The space tiling of the BCC grid is composed of con-
gruent tetrahedra, where each face is a congruent isosceles triangle (see Figure 2(b)).
The bottom edges are longer than the side edges by the relation 2 :

√
3. The dual

space tiling consists of truncated octahedra; each has six square faces and eight reg-
ular hexagonal faces, where all the edges have the same length. This tessellation is
known as the Kelvin structure, which was introduced in [55]. According to the Kelvin
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cubic FCC BCC

Figure 1. The vertices of cubic, FCC, and BCC grids are represented by the ◦ symbol on even
layers and by the + symbol on odd layers.

(a) The primal (left) and dual (right) elements of
the FCC structures.

(b) The primal (left) and dual (right) elements of
the BCC structures.

Figure 2. The FCC and BCC structures and the corresponding regular grids. The vertices of
the primal and dual elements are represented by small spheres.

conjecture, such a polyhedron was proposed as the best space tiling for minimizing
the total surface area of the interfaces between elements of equal volume. The BCC
structure (or Sommerville’s grid) is the simplest well-centered tetrahedral grid for
Yee-like simulation schemes, and it is preferred in several instances (see, e.g., [7, 57]).
Nevertheless, this construction is not likely to be optimal. The dihedral angle of a
regular tetrahedron is arccos 1

3 , and thus, in a hypothetical space tiling configuration,
we would need 2π/ arccos 1

3 (approximately 5.1) regular tetrahedra to share the same
edge [52]. From this, it can be concluded that in densely packed nearly regular tetra-
hedral tiling five or six tetrahedra should share the same edge. Therefore, the dual
elements should have either pentagonal or hexagonal faces. This is not the case with
either Kepler’s or Kelvin’s structure. Another class of tetrahedral space tilings has
this property, and they are known as tetrahedrally close-packed (TCP) structures.

2.2. Tetrahedrally close-packed structures. A mesh with sharp dihedral
angles is preferred when a Yee-like scheme is applied on tetrahedral meshes [7]. To
achieve grids with such angles, we recall the concept of TCP structures described by
Frank and Kasper [18]. In all of these structures, there are four combinatorial types
of Voronoi cells, which all have only pentagonal and hexagonal faces, with no adjacent
hexagons [51]. In the literature, the most common TCP structures are A15, C15, and
Z lattices. The other known TCP structures can be viewed as combinations of the
three basic structures [30, 15, 48]. The maximum dihedral angles of the A15, C15,
and Z elements are relatively sharp compared to the BCC structure [17]. However, it
is not obvious that the TCP structures are better for Yee-like schemes. For example,
the edge lengths differ less in the BCC tetrahedra than in the TCP structures [51].
The A15, C15, and Z structures are illustrated in Figure 3, and the vertices of each
TCP structure are listed in Table 1.

The A15 structure was first discovered in a molecule structure by Hartmann
Ebert, and Bretschneider [21]. It can be constructed by starting with a BCC lattice
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Figure 3. The vertex positions and primal and dual structures of the TCP structures A15,
C15, and Z.

Table 1
Relative vertex coordinates for the TCP structures are scaled into a unit cube.

A15 (see [17]) C15 (see [19]) Z (see [17])
(0, 0, 0) (0, 0, 0) (0, 0, 0) ,

(
0, 0, 1

2

)(
1
2
, 1
2
, 1
2

) (
0, 1

2
, 1
2

)
,
(
1
2
, 0, 1

2

)
,
(
1
2
, 1
2
, 0

) (
1
2
, 1
2
, 0

)
,
(
1
2
, 1
2
, 1
2

)
(
0, 1

2
, 1
4

) (
1
4
, 1
4
, 1
4

)
,
(
1
4
, 3
4
, 3
4

)
,
(
3
4
, 1
4
, 3
4

)
,
(
3
4
, 3
4
, 1
4

) (
1
6
, 1
2
, 1
4

)
,
(
5
6
, 1
2
, 1
4

)(
0, 1

2
, 3
4

) (
2
6
, 0, 1

4

)
,
(
4
6
, 0, 1

4

)(
1
2
, 1
4
, 0

) (
1
8
, 1
8
, 5
8

)
,
(
1
8
, 3
8
, 7
8

)
,
(
3
8
, 1
8
, 7
8

)
,
(
3
8
, 3
8
, 5
8

)(
1
2
, 3
4
, 0

) (
1
8
, 5
8
, 1
8

)
,
(
1
8
, 7
8
, 3
8

)
,
(
3
8
, 5
8
, 3
8

)
,
(
3
8
, 7
8
, 1
8

) (
1
4
, 1
4
, 3
4

)
,
(
1
4
, 3
4
, 3
4

)(
1
4
, 0, 1

2

) (
5
8
, 1
8
, 1
8

)
,
(
5
8
, 3
8
, 3
8

)
,
(
7
8
, 1
8
, 3
8

)
,
(
7
8
, 3
8
, 1
8

) (
3
4
, 3
4
, 3
4

)
,
(
3
4
, 3
4
, 3
4

)(
3
4
, 0, 1

2

) (
5
8
, 5
8
, 5
8

)
,
(
5
8
, 7
8
, 7
8

)
,
(
7
8
, 5
8
, 7
8

)
,
(
7
8
, 7
8
, 5
8

) (
1
2
, 0, 3

4

)
,
(
0, 1

2
, 3
4

)

and inserting two vertices on each face of the original cubic grid (see Figure 3). The
dual body elements of A15 are an irregular dodecahedron (12-hedron with pentago-
nal faces) centered at each BCC lattice vertices and a tetrakaidecahedron (14-hedron
with two hexagonal and 12 pentagonal faces) around each of the other vertices. This
structure was found to be a counterexample to Kelvin’s conjecture on minimal sur-
faces [59]. In modern knowledge, this Weaire–Phelan structure partitions a three-
dimensional space into cells of equal volume, with the smallest surface area between
them. Therefore, it is applied, e.g., in modeling bubble foams [31].

The C15 structure was first observed in a molecule structure by Friauf [19] and
Laves (see, e.g., [42]). The fundamental structure of C15 is constructed from 24
vertices, listed in Table 1. From the three basic TCP structures, C15 has the smallest
maximum dihedral angle, 74.20 degrees [17]. The replicable dual structure consists of
sixteen 12-hedra and eight 16-hedra.

All the grids considered in this paper, except the Z structure, are symmetric in
positive and negative x-, y- and z-directions. The Z grid, defined as A4B3 by Frank
and Kasper [18], has different properties in all three coordinate directions. Still, the
grid is symmetric on the x-y plane in 60-degree increments. The fundamental structure
of the Z grid is repeated in h increments in y- and z-directions and in

√
3h increments

in the x-direction (see Figure 3). The listed x-coordinates of Table 1 should then be
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multiplied by
√

3 to obtain the correct tiling. The replicable dual structure consists
of six 12-hedra, four 14-hedra and four 15-hedra [51].

3. Computational model. The theory of electromagnetism can be expressed,
in a natural way, with the exterior calculus of differential forms (see, e.g., [13, 23, 50]).
The vector fields in model (1.1)–(1.3) are replaced by discrete counterparts such
that E = (E1, . . . , En)T and H = (H1, . . . ,Hm)T are discrete 1-forms, and D =
(D1, . . . , Dn)T , B = (B1, . . . , Bm)T , J = (J1, . . . , Jn)T and J∗ = (J∗1 , . . . , J

∗
m)T are

discrete 2-forms. The discrete 1-form values Ei and Hj are defined as the integrals
of the corresponding vector field over the primal and dual edge elements Ei and E∗j ,
respectively. Similarly, the 2-form values are defined as the integrals over the corre-
sponding primal face Fj and dual face F∗i such that

Ei :=

∫
Ei
E · d`, Bj :=

∫
Fj

B · da, J∗j :=

∫
Fj

J∗ · da,(3.1)

Hj :=

∫
E∗j

H · d`, Di :=

∫
F∗i

D · da, Ji :=

∫
F∗i

J · da.(3.2)

The m× n incidence matrix d1 represents the neighboring relations and relative
orientations of the primal edges and faces. The nonzero entry (d1)j,i = ±1 means
that the edge Ei is included in the boundary of the face Fj . The sign of the entry
depends on the relative orientation defined by the counterclockwise circulation. Since∫
Fj
∇×E · da =

n∑
i=1

(d1)j,iEi = (d1E)j ,

∫
F∗i
∇×H · da =

m∑
j=1

(d1)j,iHj = (dT1 H)i,

the discretized integral version of (1.1)–(1.2) can be expressed as ∂D
∂t − dT1 H = J

and ∂B
∂t + d1E = J∗, where d1 and its transpose dT1 represent the discrete exterior

derivatives.
The constitutive relations and the source functions are applied by the concept of

the discrete Hodge star operator ?, which is a mapping from the discrete 1-form to a
discrete 2-form. Basically, we determine n × n matrices ?ε, ?σ and m ×m matrices
?µ and ?σ∗ to satisfy the equations

D = ?εE, B = ?µH, J = −?σE, J∗ = −?σ∗H.(3.3)

The spatially discrete Maxwell’s system is then presented as
∂E

∂t
= ?ε−1

(
dT1 H − ?σE

)
,

∂H

∂t
= −?µ−1 (d1E + ?σ∗H) ,(3.4)

where E and H are the vectors of degrees of freedom, associated with the primal and
dual edges, respectively.

The construction of the discrete Hodge operator relies on the grid quality. Since
we assume the orthogonality of the primal and dual grids, the isotropic material
parameters lead to diagonal Hodge operators, which can be presented as diagonal
matrices. We apply the diagonal Hodge operators for anisotropic material parameters,
but the duality restriction is slightly stronger, as discussed in [44, Section 3.3]. The
local material parameters are obtained from the tensor fields by

εi : =
1

|F∗i � Ei|

∫
F∗i �Ei

εnEi · nEidv, σi : =
1

|F∗i � Ei|

∫
F∗i �Ei

σnEi · nEidv,(3.5)

µj : =
1

|Fj � E∗j |

∫
Fj�E∗j

µnE∗j · nE∗j dv, σ∗j : =
1

|Fj � E∗j |

∫
Fj�E∗j

σ∗nE∗j · nE∗j dv,(3.6)
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where the unit direction vector of the edge E is nE and the convex hull of the face F
and the edge E is presented as F � E , the volume of which is |F � E|. Conventional
Yee’s discrete Hodge operators [6, 14, 16, 3, 40] are based on the assumption of linear
vector fields, and the components are expressed as

?εY eei,i = εi
|F∗i |
|Ei|

, ?µY eej,j = µj
|Fj |
|E∗j |

, ?σY eei,i = σi
|F∗i |
|Ei|

, ?σ∗Y eej,j = σ∗j
|Fj |
|E∗j |

,(3.7)

where |F| represents the area of the face F , and |E| is the length of the edge E .

3.1. Harmonic Hodge operator. The only source of the discretization error is
in the Hodge operator, the accuracy of which can be enhanced by making assumptions
about the nature of the wave and minimizing the errors in (3.3). We concentrate on
the special case of time-harmonic plane waves and present the components of the
direction-dependent discrete forms Ed and Dd such that

(3.8) Ed
i :=

∫
Ei
Ed

0 e
iω
√
εiµi(p·d)·d`, Dd

i :=

∫
F∗i
εiE

d
0 e

iω
√
εiµi(p·d)·da, i = 1, . . . , n,

where d is the propagation direction, Ed
0 is a complex-valued initial vector, i is the

imaginary unit, ω is the angular frequency and p is the spatial position. We seek ?ε
that minimizes the squared norm of the error Rd

i := Ed
i − (?εi,i)

−1Dd
i .

First, we consider a coordinate-oriented cubic grid of edge length h, where the
primal edge Ei is an origin-centered line segment on the z-axis and the corresponding
dual face F∗i is an origin-centered square on the x-y plane. By assuming a plane
wave propagating in homogeneous material in the x-direction with wavelength λ, the
direction-dependent exact Hodge operator ?εd is written as

(3.9) ?εdi,i =
Dd
i

Ed
i

=

∫ h
2

−h2

∫ h
2

−h2
εi(E

d
0 )ze

i 2πxλ dydx∫ h
2

−h2
(Ed

0 )zei 2πxλ dz
= εi

eiπhλ − e−iπhλ

i 2π
λ

= ?εY eei,i

sin(πhλ )
πh
λ

,

where (Ed
0 )z is the z-component of the initial vector and ?εY eei,i is the value obtained by

Yee’s Hodge operator. If the edge length is small compared to the wavelength, the two
Hodge operators are close to equal. The larger the elements, the more Yee’s Hodge
operator overestimates the material terms. Since the systematic error is repeated
throughout the domain, Yee’s Hodge operator produces a wavelength that is too
short.

To obtain a harmonic Hodge operator for more general usage, we integrate the
terms of (3.8) in all propagation directions and operate in spherical coordinates with
d = (cos(θ), sin(θ) cos(φ), sin(θ) sin(φ))T . We consider a geometry that is symmetric
with the azimuth angle φ and simplify the integration by setting φ = 0. We assume
that a primal edge Ei, centered at the origin, is pointing in the x-direction, and that
the corresponding origin-centered circular dual face F∗i , of radius r, is orthogonal to
the edge on the y-z plane (see Figure 4). To expand the exponential function in a
Taylor series, the edge and the face element are assumed to be small compared to the
wavelength.

We concentrate on the x-component of the initial vector (Ed
0 )x and set an auxiliary

variable α := iω
√
εiµi sin θ. We also change the variables such that z = r sinu,

dz = r cosu du, and
√
r2 − z2 = r cosu to obtain the Wallis integral (see, e.g., [47]),
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3 x

y

z
i

*
iF

Figure 4. Elements for harmonic Hodge integration.

and we get the power series presentation

Dd
i =

∫ r

−r

∫ √r2−z2
−
√
r2−z2

εi(E
d
0 )xe

iω
√
εiµiy sin θdydz = εi(E

d
0 )x

∫ r

−r

∞∑
n=0

2α2n
(√
r2 − z2

)2n+1

(2n+ 1)!
dz

= εi(E
d
0 )x

∞∑
n=0

2α2nr2n+2

(2n+ 1)!

∫ π
2

−π2
(cosu)

2n+2
du = |F∗i |εi(Ed

0 )x

(
1 +

(αr)2

8
+

(αr)4

192
+ . . .

)
.

Respectively, we set an auxiliary variable β := iω
√
εiµi cos θ and formulate Ed

i by one-
dimensional integration over the edge element to get the power series presentation

Ed
i = |Ei|(Ed

0 )x

∞∑
n=0

(β|Ei|)2n

22n(2n+ 1)!
= |Ei|(Ed

0 )x

(
1 +

(β|Ei|)2

24
+

(β|Ei|)4

1920
+ . . .

)
.

By minimizing the error Rd
i in the squared norm with ?εi,i = ?εharmi,i , we get the

harmonic Hodge operator

?εharmi,i =

∫ π
0

∫ 2π

0
Dd
i D

d
i sin θ dφdθ∫ π

0

∫ 2π

0
Ed
i D

d
i sin θ dφdθ

≈ εi
|F∗i |
|Ei|

κi,(3.10)

κi =

(
1− κF

5 +
κ2
F

56

1− κF
10 −

κE
120 +

κ2
F

280 + κFκE
1680 +

κ2
E

22400

)
,(3.11)

where κi is the curvature correction for the Hodge term ?εharmi,i , κF = ω2εiµir
2, and

κE = ω2εiµi|Ei|2. The harmonic Hodge operators for magnetic permeability, electric
conductivity, and magnetic conductivity can be presented as, respectively,

(3.12) ?σharmi,i = σi
|F∗i |
|Ei|

κi, ?µharmj,j = µj
|Fj |
|E∗j |

κ∗j , ?σ∗harmj,j = σ∗j
|Fj |
|E∗j |

κ∗j ,

where the curvature correction κ∗j is computed similarly to (3.11), but between the
elements Fj and E∗j instead of F∗i and Ei.

From the computational point of view, the dual faces are not circular but polygo-
nal. That is why we compute an approximation of r2, involved in (3.11), for arbitrarily
shaped polygonal face elements. Essentially, the maximum internal sphere of radius
rmin and the minimal external sphere of radius rmax define the lower and upper limits
for the radius of the element (see Figure 5). For regular polygons, rmin corresponds
to the distance between the face center and the midpoint of the edge. Respectively,
rmax corresponds to the distance between the face center and the vertex. By using
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rmin

rmax

Figure 5. The internal and external
spheres define the lower and upper limits of the
radius r of the element (dotted sphere).

rmax
1

rmax
2

rmax
4

rmax
3

rmin
1

rmin
2

rmin
3

rmin
4

Figure 6. For an irregular quadrilateral,
r is replaced by the mean value computed from
the distances rmin

j and rmax
j , j = 1, . . . , 4.

the approximation r2 ≈ 1
3 (2(rmin)2 + (rmax)2) for deriving κi and κ∗j , the first three

terms of the Taylor polynomials in (3.11) are exactly those obtained by the polyno-
mial integration. In general, for an irregular polygon with n edges, we approximate
r2 as a mean value

r2 ≈ 1

3n

n∑
j=1

(2(rminj )2 + (rmaxj )2),(3.13)

where rminj and rmaxj are the internal and external radii associated with the jth edge
and vertex (see Figure 6). We approximate the edge length as the average of the
n edge lengths. Obviously, the number of operations needed to compute r2 for an
irregular element is n times that for a regular element.

3.2. Time discretization. Typically, staggered leapfrog time discretization is
used in the Yee-like schemes due to its simplicity and energy-preserving properties
(see, e.g., [62, 13, 53, 60, 36]). The method is only of second-order accuracy, but it
can be improved by using additional information about the time evolution of elec-
tromagnetic waves. In the FDTD context, there exists an exact leapfrog method for
time-harmonic problems [35]. In what follows, we present a modification, general-
ized to the DEC framework. We also proceed further and propose an entirely new
nonuniform version of the method.

First, we set t0 as the initial time and divide the time period T into time steps,
each of which has length ∆t. At the kth time step, the time-discretized form of the
variables E and H are defined as

Ek := E(tk − ∆t
2 ), Hk := H(tk), k = 0, 1, 2, . . .(3.14)

where tk = t0 + k∆t. Since we consider time-harmonic problems, we set E(t) =
Re(Êe−iωt) and H(t) = Re(Ĥe−iωt), where Ê and Ĥ are complex-valued spatial
variables. This presentation leads to the following exact time discretization formulas:

∂E

∂t

(
tk
)

=
Ek+1 − Ek

2
ω sin ω∆t

2

, E(tk) =
Ek + Ek+1

2 cos ω∆t
2

,

∂H

∂t

(
tk + ∆t

2

)
=
Hk+1 −Hk

2
ω sin ω∆t

2

, H(tk + ∆t
2 ) =

Hk +Hk+1

2 cos ω∆t
2

.

Time stepping is obtained by starting with the initial conditions E0 and H0 and



10 J. RÄBINÄ, S. MÖNKÖLÄ, T. ROSSI
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H2

Figure 7. Staggered leapfrog time stepping.
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Ei
k

Ei
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0

Figure 8. Stability is determined by the dif-
ference between the successively computed values.

computing E at time tk + ∆t
2 and H at time tk+1, k = 0, 1, 2, . . . , (see Figure 7), by

Ek+1 = Ek +

(
?ε

2
ω sin ω∆t

2

+
?σ

2 cos ω∆t
2

)−1 [
dT1 H

k − ?σ Ek

cos ω∆t
2

]
,(3.15)

Hk+1 = Hk −

(
?µ

2
ω sin ω∆t

2

+
?σ∗

2 cos ω∆t
2

)−1 [
d1E

k+1 +
?σ∗ Hk

cos ω∆t
2

]
.(3.16)

Basically, the formulas are obtained from conventional Yee’s leapfrog method by scal-
ing the discrete Hodge operators ?ε and ?µ by ϕ

sinϕ and ?σ and ?σ∗ by 1
cosϕ , where

ϕ = ω∆t
2 . Thus, the harmonic leapfrog method has the same convergence and energy

conservation properties as Yee’s leapfrog method.

3.2.1. Stability. The leapfrog method described above is conditionally stable.
That is, the stability of the time discretization depends on the length of time step
∆t, which, for its part, must be adjusted to the grid size. Since we use, in general,
unstructured grids, we optimize the time step size for each element and validate the
stability condition.

We start by formulating a stability criterion that prevents excessively large changes
in the differences between the successively computed values. We assume a nonnega-
tive real value Emax, limiting the values of Ei such that |Ei| ≤ Emaxi for all i (see
Figure 8), implying that∣∣(Ek+1

i − Eki )− (Eki − Ek−1
i )

∣∣ =
∣∣(Ek+1

i − Eki ) + (Ek−1
i − Eki )

∣∣
≤
∣∣Ek+1

i − Eki
∣∣+
∣∣Ek−1

i − Eki
∣∣ ≤ 4Emaxi .

That is, we can choose a constant C that defines, by the formula∣∣(Ek+1
i − Eki )− (Eki − Ek−1

i )
∣∣ ≤ CEmaxi ,(3.17)

how large the allowed changes can be. If C = 4, then Ei is allowed to vary between
−Emaxi and Emaxi on the consecutive time steps. Thus, we can set an upper limit
C ≤ 4.

However, by assuming that ?σ = ?σ∗ = 0 and applying (3.15)–(3.16) with the
time step size ∆tEi for Ei, we can see that

(Ek+1
i − Eki )− (Eki − Ek−1

i ) = −
(

2

ω
sin

ω∆tEi
2

)2 (
?ε−1dT1 ?µ

−1d1E
k
)
i
.(3.18)

By combining (3.17) and (3.18), we can write the stability criterion as(
2

ω
sin

ω∆tEi
2

)2

≤ CEmaxi∣∣(?ε−1dT1 ?µ
−1d1Ek

)
i

∣∣ .(3.19)
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Figure 9. In nonuniform time stepping, ∆t is divided into smaller steps only where this is
needed. In this 1-dimensional illustration, the circles with a number inside represent time instances
of Ei and Hj . The arrows illustrate the chronological order of the computation.

Since (2/ω) sin(ω∆tEi/2) < ∆tEi , we can write a sufficient condition to fulfill the
stability criterion (3.17) for Ei with the time step size ∆tEi , and for Hj with the time
step size ∆tHj , such that,

∆tEi ≤
√

CEmaxi∣∣(?ε−1dT1 ?µ
−1d1

)
i
Emaxi

∣∣ , ∆tHj ≤

√√√√ CHmax
j∣∣∣(?µ−1d1?ε−1dT1

)
j
Hmax
j

∣∣∣ .(3.20)

The choices of Emaxi and Hmax
j determine the distribution for the nonuniform time

step sizes. For the numerical experiments presented in section 4, we use the limit
values

Emaxi =
1

√
?εi,i

, Hmax
j =

1
√
?µj,j

,(3.21)

because we have discovered that this choice enables an efficient simulation.

3.2.2. Nonuniform leapfrog method. The nonuniform leapfrog method is
initialized by computing the maximal local time step sizes ∆tEi and ∆tHj by (3.20).
After that, the global time step ∆t, which is the smallest uniform iteration block to
be repeated, is selected between the minimal and maximal values of the local time
step sizes ∆tEi and ∆tHj .

The global time step is divided for each element Ei and Hj by integer numbers
sEi and sHj , respectively (see Figure 9). For deriving (3.20), we assumed that the
values Hj , neighbors of the values Ei, are discretized by using the same time step size
∆tEi . For nonuniform time stepping, we loosen the condition by requiring that the
neighboring values be discretized at the same level of the time step size. That is, if
the primal edge Ei corresponding to Ei lies on the boundary of the primal face Fj
corresponding to Hj , we set

sEi ≥
∆t

min
{

∆tEi ,∆tHj
} , sHj ≥

∆t

min
{

∆tHj ,∆tEi
} .(3.22)

These inequalities offer a small enough time step size for each element, but the
energy conservation is not guaranteed, since the time stepping is asynchronous. We
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Table 2
The element sizes of the random Voronoi cube.

Minimum Mean Maximum
Primal edge length 0.0100 0.129 0.309
Primal face area 7.95e-5 0.00628 0.0273
Dual edge length 1.44e-6 0.0442 0.201
Dual face area 1.03e-11 0.00384 0.0288

synchronize the time stepping by selecting the numbers sEi and sHj such that they
can be written as a power of three, i.e., s = 3u ∈ {1, 3, 9, 27, . . . }. With this selection,
each neighboring element, which has finer time stepping than the current element, also
has a midpoint instance for the current value update (see Figure 9). This property
is the basis for the leapfrog methods, and thus, we call this scheme a nonuniform
leapfrog method.

The time stepping of the nonuniform leapfrog method is carried out in chronolog-
ical order. The value updates are strictly iterative, meaning that a new value Enewi

or Hnew
j can be computed from the latest instance of values. Thus, no extra stor-

age is required during the computation. The following two equations illustrate the
value updates in the nonuniform leapfrog method, where the new values replace the
previous values immediately. Similarly to (3.15)–(3.16), we can write

Enewi := Ei + 2

(
ω?εi,i

sinϕEi
+

?σi,i
cosϕEi

)−1
 m∑
j=1

(dT1 )j,iHj −
?σi,i

cosϕEi
Ei

 ,(3.23)

Hnew
j := Hj − 2

(
ω?µj,j
sinϕHj

+
?σ∗j,j

cosϕHj

)−1
[

n∑
i=1

(d1)j,iEi +
?σ∗j,j

cosϕHj
Hj

]
,(3.24)

where ϕEi := ω∆t
2sEi

and ϕHj := ω∆t
2sHj

.

4. Numerical experiments. In this section, we report the numerical exper-
iments for the accuracy of the Hodge operator using different grids. We start the
experiments by considering the stability of the nonuniform leapfrog method. After
that, we concentrate on the simulated wavelength in different wave propagating di-
rections. The last numerical example shows how the wavelength error is correlated
to the overall efficiency of the method. All simulations are run with the grids pre-
sented in section 2, and the properties of each grid are analyzed. Yee’s Hodge and
harmonic Hodge approximations of section 3 are also compared. The algorithms are
implemented in the C++ programming language.

4.1. Stability of the nonuniform leapfrog method. In the first example, we
focus on the stability, computational efficiency, and energy conservation of nonuniform
time stepping. The simulation domain Ω is a cube of edge length 2 that is discretized
using the randomly generated mesh (see Figure 10(a)). The boundary of the mesh
is constructed with squares of edge length 0.1. The interior nodes are generated by
a uniform density function resulting in mesh density of one node per volume 10−3.
The minimal distance between nodes is controlled by regenerating each node that is
less than 0.01 from another node. The primal and dual meshes are constructed with
the Delaunay triangulation method, where the three-dimensional Voronoi diagram is
applied [12, 38, 41, 2, 11]. The range of the element sizes is wide, as shown in Table 2.
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(a) Random mesh. (b) The initialized wave is
trapped inside the domain.

Figure 10. The energy conservation is simulated in a cube of edge length 2.

We solve (1.1)–(1.3), where the material parameters are set as ε = µ = 1 and
σ = σ∗ = 0. At t0 = 0, the initial terms E0 = (0, cos (2πx) , sin (2πx))

T and H0 =

(0,− sin (2πx) , cos (2πx))
T satisfy a circularly polarized plane wave with wavelength

λ = 1 propagating along the x-axis, through the y-z plane. The wave is trapped
inside the domain by setting on the boundary of the domain the Dirichlet boundary
condition, E×n = 0 andH·n = 0, where n is the outward-pointing unit normal vector.
For the time interval [0, 1000T ], where T = 1 is the period of the electromagnetic
wave, we apply uniform and nonuniform time stepping schemes with stability constant
C = 4. The minimum and maximum values of the time step factors sEi and sHj in
(3.23)–(3.24) are 1 and 81, respectively, which means there is a remarkable difference
between the smallest and largest time step sizes. In the uniform time stepping scheme,
we use the smallest time step involved in the nonuniform scheme. We performed the
simulations on a single Intel Xeon E5-2670 processor at 2.60 GHz. The CPU time
used for one time period T with the uniform leapfrog method was 17.8 seconds, while
the time consumption with the nonuniform leapfrog method was 1.05 seconds per
time period T . Thus, the nonuniform time stepping caused significant improvement
in the simulation efficiency.

The energy P := 1
2

(
ET ?εE +HT ?µH

)
was computed after each time period and

is presented in Figure 11. The numerical experiments show that the energy conser-
vation is exact with the uniform leapfrog method. When the nonuniform leapfrog
method is used, the energy varies slightly with time. However, the values of the en-
ergy seem to be bound between upper and lower limits. The standard deviation of
the energy is 0.0040, which means the relative standard deviation compared to the
mean value is 0.028%. Thus, we can deduce that the energy is conserved in the long
term.

The results indicate that the system is stable with uniform and nonuniform time
stepping schemes with stability constant C = 4. With another simulation, we found
that neither time stepping scheme produced a stable system with constant C = 4.5.
Thus, the stability criterion nominates a very tight bound for the time step size in
the current random mesh discretization. However, we have found that with certain
spatial discretizations the constant C = 4 is not sufficient for the convergence. Thus,
we prefer using term C = 2 to obtain a reliable criterion, and this constant is applied
in the simulations.

4.2. Simulated wavelength. In the second experiment, we consider the sim-
ulated wavelength in different propagation directions. The computational domain
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Figure 11. Uniform time stepping conserves the energy exactly. With nonuniform time step-
ping, the energy remains almost constant during the long-term simulation.
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Figure 12. Test geometry for the simu-
lated wavelength experiment.

Figure 13. Directions of simulation cases
illustrated on a cross section of a unit sphere.

is a sphere of radius 5. Inside the domain, we use the same parameters as in sec-
tion 4.1. The electromagnetic wave propagates with the angular frequency ω = 2π
at speed c = 1; that is, the theoretical wavelength is λ = 1. To let the elec-
tromagnetic waves travel out from the computational domain without reflections,
we surround the domain with an absorbing boundary layer [24] of thickness 2λ
(see Figure 12). The absorbing layer is set such that ε = µ = 1, and the elec-
tric and magnetic conductivities, σ and σ∗, satisfy the condition σ

ε = σ∗

µ = 0.4Υ,
where Υ is the outward distance from the surface of the inner sphere. The sim-
ulation is started with the initial values E0 = 0 and H0 = 0, and the circularly
polarized incident waves Einc = (0, cos (2π(x− t)) , sin (2π(x− t)))T and Hinc =

(0,− sin (2π(x− t)) , cos (2π(x− t)))T are generated by a source function defined on
the absorbing layer.

For spatial discretization of the domain and the absorbing layer, we use six dif-
ferent grids, presented in section 2. These are cubic, FCC, BCC, A15, C15, and Z
grids. The lengths of the edge elements in the cubic grid are h = λ

10 , whereas the
other grids are scaled to keep the computing time fixed (see Table 3). To validate the
spatial isotropy, the simulations are run in 10 different wave propagation directions,
d, labeled from A to J (see Figure 13). All the grids, except the Z grid, are symmetric
in positive and negative x-, y-, and z-directions. With those grids, the selection of
directions is comprehensive. The directions from A to J cover 1/48 of the full unit
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Table 3
Primal and dual (*) element sizes of scaled grids. The grids are scaled by constants 1.0, 2.12,

1.84, 2.92, 4.20, and 2.92. The corresponding computing time for one time period with h = 0.1 is
reported in seconds.

Cubic FCC BCC A15 C15 Z
Edge h 1.50h 1.59h–1.84h 1.46h–1.79h 1.48h–1.82h 1.46h–1.84h
*Edge h 0.92h 0.65h 0.42h–0.91h 0.54h–0.87h 0.54h–0.97h
Face h2 0.97h2 1.20h2 1.07h2–1.38h2 0.95h2–1.35h2 0.92h2–1.38h2
*face h2 0.79h2 0.42h2–1.10h2 0.63h2–1.30h2 0.75h2–1.05h2 0.65h2–1.62h2
Body h3 0.40h3–1.59h3 0.52h3 0.52h3–0.58h3 0.39h3–0.58h3 0.45h3–0.60h3
*Body h3 2.38h3 3.11h3 3.04h3–3.14h3 2.87h3–3.53h3 2.79h3–3.46h3

CPU time (s) 1.1360 1.1364 1.1654 1.1552 1.0912 1.1663
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(a) Yee’s Hodge operator.
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(b) Harmonic Hodge operator.

Figure 14. The relative error of the simulated wavelength. Each grid is tested with 10 propa-
gation directions, labeled from A to J, and the non-symmetric Z grid is additionally rotated in six
different orientations to cover all the directions.

sphere area, and due to overlapping directions, the symmetry directions of the 10
cases cover 218 directions in the full unit sphere. The Z grid is tested in six different
coordinate axis permutations to cover all these directions. The angle between the
adjacent directions is about 15 degrees.

The grids are uniform throughout the domain, implying that the time stepping
scheme (3.23)–(3.24) is applied with sEi = sHj = 1. Thus, the time stepping strategy
is equal to the uniform leapfrog method (3.15)–(3.16). For each wave propagation
direction, the values of the simulated wavelength are observed after the simulation is
run through 500 time periods on a line of length 8λ, which is parallel to the wave
propagation direction and centered at the domain center (see Figure 12). The phase
error of the simulated wave is computed at several positions on the line. The position
and the phase error are plotted on an x-y grid, and a simple linear regression curve is
fitted on the result. The slope defines the wavelength error. Yee’s Hodge and the har-
monic Hodge operators are considered, and the errors of the directional wavelengths
are illustrated in Figure 14. The relative L2 norm of the difference of the solutions
at the end of the last two time periods was less than 10−6; in all cases, this implies a
well-converged result.

The wavelength error statistics are reported in Table 4. In the case of Yee’s Hodge
operator (see Figure 14(a)), the largest error, 1.63%, occurs with the cubic grid in
orthogonal case A. This error seems to be close to the factor between the exact Hodge
operator ?εd and Yee’s Hodge ?εY ee in (3.9). Naturally, the computed wavelength
varies with the propagation direction. On average, the most accurate results are
achieved with the FCC grid. In that case, the average error is 0.82%, while for the
other grids, it is between 0.96%and 1.00%. However, the tetrahedral grids have the
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Table 4
Statistics of the wavelength error: average, standard deviation, and minimum and maximum

of the absolute values.

Yee’s Hodge
Average Stdev Max Min

Cubic -0.96% 0.37% 1.63% 0.53%
FCC -0.82% 0.21% 1.08% 0.44%
BCC -1.00% 0.08% 1.08% 0.85%
A15 -0.98% 0.10% 1.13% 0.85%
C15 -0.98% 0.03% 1.05% 0.94%
Z -0.97% 0.07% 1.20% 0.88%

Harmonic Hodge
Average Stdev Max Min

Cubic 0.00% 0.35% 0.65% 0.04%
FCC -0.04% 0.20% 0.30% 0.01%
BCC 0.00% 0.07% 0.13% 0.01%
A15 -0.02% 0.09% 0.15% 0.03%
C15 -0.02% 0.03% 0.07% 0.00%
Z -0.01% 0.06% 0.18% 0.01%

smallest directional dependencies for the wavelength. The cubic grid has the largest
directional dependency with a standard deviation of 0.37%. On the whole, the same
characteristics are observed with the harmonic Hodge operators (see Figure 14(b)).
However, the average wavelength is moved very close to the exact solution (error ≤
0.04%) when the harmonic Hodge operator is considered. It seems that the C15 grid
is the most isotropic; with this grid the standard deviation of the error is 0.03%.

The current consideration shows how the wavelength varies by the propagation
direction in staggered grids. Different grids have unique properties, and the wave-
length error in each direction depends on the element size and the selection of the
grid. If the harmonic Hodge operator is used, the systematic error on the wavelength
is very small. Next, we will study how these results transfer to the simulation of a
scattering problem.

4.3. Scattering by a sphere. We consider the accuracy and efficiency of the
method in a spherical computational domain of radius 2.7, in which the spherical
scatterer of radius 2.5 is centered. Inside the scatterer, the material parameters are
ε = 2.5599, σ = 0.064π, µ = 1, and σ∗ = 0. The material parameters ε = µ = 1 and
σ = σ∗ = 0 are applied in the rest of the computational domain. Accordingly, the
wavelength is λ = 0.625 inside the scatterer and λ = 1 in the computational domain
outside the scatterer.

The electric and magnetic fields can be considered sums of the incident waves Einc
and Hinc and the scattered waves Esca and Hsca, such that E = Einc + Esca and
H = Hinc +Hsca. Thus, we concentrate on the accuracy and efficiency of the scheme
by solving (1.1)–(1.3) for the scattered wave fields Esca and Hsca. The incident wave
components are Einc = (0, cos (2π(x− t)) , 0)

T and Hinc = (0, 0, cos (2π(x− t)))T ,
presenting a fully polarized plane wave of angular frequency ω = 2π and time period
T = 1, and propagating in the direction of the positive x-axis.

Essentially, we use the same grid types and Hodge operators as in the experiments
presented in section 4.2. The interior of the scatterer is discretized by using four
different discretization levels for each of the six grid types. The mesh resolution for
the simple cubic mesh is defined such that the simulations are run with the edge
element lengths 1

11.2 ,
1
16 ,

1
22.4 , and

1
32 , corresponding to 7, 10, 14, and 20 elements

per wavelength inside the scatterer. The elements of the other grids are scaled by the
factors presented in Table 3.

The boundary of the scatterer is covered by triangles (see Figure 15(a)) and the
space between the boundary and the interior grid is constructed with the Voronoi tes-
sellation. The boundary triangulation is optimized by the HOT optimization method,
discussed in section 2, to improve the element quality. Further, the boundary sur-
face is stretched in the radial direction to the domain surface, so that a layer of



EFFICIENT TIME INTEGRATION OF MAXWELL’S EQUATIONS 17

(a) The spherical domain with a cubic grid
inside the scatterer.

(b) The domain discretized by cubes for
the Yee scheme simulation.

Figure 15. Examples of discretizations for simulating scattering by a sphere.
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Figure 16. Relative error of the Mueller matrix, integrated over all scattering directions.

thickness 1.7, filling the domain and absorbing layer, is generated outside the scat-
terer. The elements outside the scatterer are scaled to match each discretization level
(see Figure 15(a)). The 1.5 thick perfectly matched layer (PML) [4] is set outside
the domain using the conductivities σ and σ∗ for the outgoing wave by the relation
σ
ε = σ∗

µ = 0.5Υ, where Υ is the outward distance from the surface of the inner sphere.
An asynchronous time stepping scheme with harmonic time stepping formulas was
applied in these simulations to obtain an optimal time step size for each part of the
mesh, as presented in section 3.2.2.

For comparison, we also perform the same simulations with the classical Yee
scheme, where the simulation domain is discretized by uniform cubic elements. The
spherical scatterer of radius 2.5 is centered in a cubic domain, of edge length 5.4,
corresponding to the smallest cube that can contain the spherical domain of radius
2.7 (see Figure 15(b)). To maintain the same time consumption as in the other
scattering simulations, the edge element lengths 1

8 ,
1

11.2 ,
1
16 , and

1
22.4 are applied in

the whole simulation domain. The domain is surrounded by the PML of thickness 1.5
with the same formula as in the case of the other grids. Yee’s Hodge operator and
Yee’s leapfrog time discretization scheme are applied.

In the beginning of the simulation, the variables were initialized with the values
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Figure 17. CPU times needed to reach target accuracies.

E0 = 0 and H0 = 0. After 500 time periods were simulated, the relative L2 norm
of the difference between the consecutive periods decreased to less than 4 · 10−4, in
each case, implying a relatively well-converged solution. To elaborate the accuracy
of the method more precisely, the simulated fields are observed on the boundary
between the domain and the PML. Then, the near-field solution is transferred to the
far-field solution by the technique applied to the FDTD method in [56]. The far-
field scattering data is applied to produce the Mueller matrix [5], which includes the
scattering intensities and polarization in all scattering directions. Figure 16 illustrates
the relative error, measured by the L2 norm, of Mueller matrices compared to the
exact Mie solution [9] computed by the Mie scattering code presented in [37].

The simulation time increases as the element size becomes smaller. Naturally,
a smaller element size implies a finer discretization and a smaller error. For each
grid type, the relative error is smaller in the case of the harmonic Hodge operator
compared to Yee’s Hodge operator. The simple cubic mesh with the harmonic Hodge
operator seems to produce about equally efficient simulations as the FCC grid with
Yee’s Hodge operator. The grid types affect the accuracy in a similar way as expected
by the results presented in section 4.2.

With Yee’s Hodge operator, the FCC grid produces the most accurate results.
By using the FCC grid, a particular accuracy, expressed as relative error, is achieved
with considerably lower CPU time than by using any other grid with Yee’s Hodge
operator (see Figure 17). For instance, if we set the target relative error to be 5–
10%the CPU time required to solve the problem with the FCC grid is around one
fifth of that required with the simple cubic mesh and less than one tenth compared
to the Yee approach. As a matter of fact, all of the bars presenting the Yee scheme
are truncated from the top in Figure 17. That is because the scheme needs more than
7500 seconds to provide any of the considered accuracies. This is also the case with
the schemes related to the other truncated bars.

As time-harmonic problems are considered, even higher CPU time savings are
gained by utilizing the harmonic Hodge operator. In that case, the simulation with
the simple cubic mesh demands the most CPU time, while the most accurate results
are obtained with the C15 and Z grids. The simulations with the C15 grid reach a
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prescribed accuracy five times faster than the simulations with the simple cubic mesh.
Further, the simulations based on the harmonic Hodge operator can be even faster
with the Z grid than with the C15 grid if high accuracy is required. Thus, by selecting
an appropriate grid and a sophisticated Hodge operator, we managed to decrease the
time consumption to a small percentage compared to the conventional methods based
on cubical grids and Yee’s Hodge operator.

5. Conclusions. We considered time-dependent electromagnetics in the frame-
work of spatial discretizations based on quasi-uniform three-dimensional polyhedral
grids, inspired by the structure of natural crystals and by discrete exterior calculus.
By applying the conventional leapfrog time integration, we obtain a general purpose
scheme for transient simulations in complex media. Since there is a wide range of ap-
plication areas, such as remote sensing and terahertz spectroscopy, that benefit from
time evolution of time-harmonic waves or pulses, we further improved the accuracy of
the approach for time-harmonic waves. We optimized the Hodge operator for decreas-
ing the error of the simulated wavelength and presented an asynchronous leapfrog-style
time discretization that provides enhanced efficiency with non-structured grids. We
showed that by selecting an appropriate grid and a sophisticated Hodge operator, the
simulation can be run using only a small percentage of the computing time needed
with the classical Yee scheme.
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