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Development of an Inductive NIS Thermometer

Z. Geng, K. M. Kinnunen and I. J. Maasilta

Nanoscience Center, Department of Physics, P.O. Box 35, FI-40014 University of Jyväskylä,
Finland

E-mail: zhgeng@jyu.fi

Abstract. We have studied an inductive readout for normal metal-insulator-superconductor
(NIS) tunnel junctions by using on-chip planar inductors and a DC SQUID (superconducting
quantum interference device) to develop a sensitive and fast thermometer for studies of nanoscale
heat conduction and bolometry. Our initial results show the feasibility of the concept, with a
good sensitivity for temperatures below 1 K for aluminum as the superconductor when voltage
biased close to the superconductor energy gap.

1. Introduction
The desire for sensitive bolometers has encouraged people to develop fast response, low
temperature and nanoscale normal metal-insulator-superconductor (NIS) tunnel junction
thermometers which can easily be integrated into antenna and absorber structures to form
the bolometer structure [1–3]. Such a device has strong temperature-dependent current-voltage
characteristics, submicron size, low self heating and natural bandwidth up to few MHz[4], and
has been used extensively in studies of low-temperature thermal transport [5–7]. It is also an
attractive candidate for far-infrared bolometry applications [8].

However, in all previous applications the NIS thermometer is working under constant current
bias with a measurement of the temperature dependence of the voltage (or resistance) across the
tunnel junction V (T ) [9]. In contrast, in this study we have fabricated a novel on-chip sub-Kelvin
symmetric SINIS thermometer, which is biased with DC voltage and read out using four on-chip
planar inductors to amplify and inductively couple the current signal to a DC SQUID mounted
on the 1 K stage of the refrigerator. By using this method, we can measure the conductance bias
and the temperature dependence of the conductance of the NIS tunnel junctions above audio
frequency range and pre-amplify the signal before the SQUID.

2. SINIS thermometer
The basic principle of a NIS thermometer is based on the existence of the energy gap ∆ of
the superconducting electrode. Ideally, at T → 0, for low bias voltage |eV | < ∆, electrons
cannot tunnel from the occupied states of the normal metal to the superconductor because of
the energy cost of creating quasiparticle excitations. However, when eV = ∆, quasiparticle
injection becomes possible and tunneling current will first sharply increase and then becomes
linear as a function of V . For T > 0, the presence of thermally excited electrons in the normal
metal allows some electrons to tunnel at a lower voltage, giving an exponential tail of the current
in the region below eV = ∆. This tail can be used in sensitive thermometry.
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In practice, typically two NIS junctions are used in series symmetrically (SINIS) in order to
double the signal responsivity, and thus the tunneling current can be written as [10]:

I(V, T ) =
1

2eRT

∫ ∞
−∞

nS(E)[fN (E − eV/2, TN )− fN (E + eV/2, TN )]dE (1)

where nS(E) is the superconducting density of states (DOS) given by BCS theory, fN (E) is the
Fermi-Dirac distribution of the normal metal island, TN is the temperature of normal metal,
V is the voltage bias across both junctions and RT is the tunneling resistance of a junction,
independent of V and T .

From the equation we can see that the I−V characteristics, and therefore also the conductance
G(T ) of the tunnel junction, are related to the temperature of the normal metal. This
dependence is normally measured under a constant current bias by measuring the voltage
response with a differential voltage amplifier at room temperature [6]. In this experiment, we
instead bias the SINIS tunnel junction with constant voltage, and then apply an 26 kHz frequency
excitation signal across the tunnel junction, and measure the conductance directly using a lock-in
amplifier, with an inductively coupled SQUID amplifier at the 1 K stage as a preamplifier stage,
as shown in Fig.1. The potential benefits of the SQUID readout are: (i) increased sensitivity
due to the low-temperature preamplifier stage (ii) increased read-out bandwidth, as capacitive
loading of the wiring is reduced, and (iii) reduced external noise heating radiated down from the
read-out circuit. This last issue is typically limiting the operational range of SINIS thermometers
to > 100 mK if no strong measures are taken to filter the high-frequency noise.

Figure 1. (a) Measurement setup for this experiment. AC and DC voltage signals are applied to
the SINIS tunnel junction. Two read outs are used, (i) direct DC read out with one current pre-
amplifier and one voltage pre-amplifier to measure the DC IV characteristics of tunnel junction
(standard way), (ii) DC SQUID read out in combination with a on-chip transformer to measure
the conductance of the junction using lock-in detection. (b) SEM micrograph of the sample.
The upper inset shows one NIS junction, the lower inset shows the Niobium washer and coil.

3. Experiment
The SINIS tunnel junction is fabricated with conventional electron beam lithography (EBL) and
shadow evaporation techniques in an ultra high vacuum (UHV) chamber into Al−AlOx−Cu−
AlOx − Al structure, with film thicknesses of 60 nm for Al and 80 nm for Cu. The junction
size was 1 µm2 and the AlOx was formed by thermal oxidation in pure oxygen atmosphere.
Four pairs of niobium input washers (thickness 60 nm) and output coils (thickness 120 nm)
are fabricated on the same chip with EBL and UHV evaporation, separated by a 200 nm HV
deposited AlOx insulator layer (Fig. 1) . A thin gold layer (6 nm) is used on the niobium layer
to prevent oxidization and to allow electronic connection to the SINIS tunnel junctions and
bonding pads. The sample we studied has a total tunneling resistance of RT = 800Ω, with 27.4
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nH output coils, 400 pH input washers and a measured coupling constant of K = 0.83 between
them.

The sample was measured in a compact dilution refrigerator with a base temperature of
about 50 mK. A two stage DC SQUID amplifier fabricated at NIST Boulder is also mounted on
the 1 K stage of the refrigerator and connect to the sample stage with superconducting Nb-Ti
wires and superconducting Al bonding wires on the chip [11]. A calibrated RuO thermometer is
mounted on the sample stage to monitor the stage temperature, and a metallic resistor is used
as a heater on the stage, so that a PID controller can stablize the stage temperature.

4. Results

Figure 2. The temperature dependence of SINIS tunnel junction conductance G(T ) with
varying bath temperature from 50 mK to 1 K from the SQUID and DC measurements. Different
curves correspond to different bath temperatures. Open circles: SQUID measurement, lines DC
measurement. Inset: Zoom-in at the useful range of V.

Figure 2 shows the results of G(V ) for both the standard DC measurements and SQUID
measurements at four different bath temperatures between 50 mK and 1 K. The solid lines in
Figure 2 are the calculated conductance curves from DC measurement (numerical differentiation)
and the open circles are the SQUID measurement results. The SQUID measurement results
follow extremely well the DC results for all temperatures, showing that our measurement scheme
works. The inset (b) shows the same conductance data from 0.1 mV to 0.6 mV, which is the
functional regime for our thermometry.

Figure 3 gives the temperature dependence of the SINIS tunnel junction conductance G(T )
from 50 mK to 1 K with different voltage biases from the SQUID measurement. An interesting
observation is that there is a strongly temperature-dependent regime below T < 0.2 K with
opposite responsivity (G increasing with T rather than decreasing as observed at T > 0.2 K)
when the bias voltage is near the superconductor energy gap ∆. This part can be used as a very
sensitive thermometer at temperatures lower than ∼ 0.2 K. We stress that this responsivity is
still good at our base temperature 50 mK, especially considering that no filters were used in
the measurement wires. In contrast, in the higher temperature regime (from 200 mK to 1 K),
a lower bias voltage will give a higher G(T ) sensitivity to the temperature, and thus one can
choose it accordingly.
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Figure 3. G(T ) for the SQUID measurement. Different colors corresponds to different bias
voltages between 0.05 mV to 0.4 mV. 2∆ is approximately 0.45 mV.

5. Conclusions
In conclusion, we have fabricated a SINIS tunnel junction thermometer with an integrated on-
chip inductive readout coupled with a sensitive SQUID amplifier. Our data indicates that it
is feasible to use this scheme to directly measure the conductance of SINIS tunnel junction at
audio frequencies. The frequency of operation of this type of device is not limited to audio
frequency range, but could possibly be extended to RF (up to few MHz), where limitations of
SQUID amplifier and SINIS internal thermal time constants are met.
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