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Abstract

When calculating scattering probabilities in high momentum transfer hadronic
processes perturbatively in quantum chromodynamics (QCD) we find we have
to parametrize our ignorance of the hadron structure into so called parton
distribution functions (PDF). Even though we cannot derive these parton
distributions through perturbation theory, we are able to find analytically
the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) equations which
govern their scale evolution.

By considering deeply inelastic lepton–hadron scattering (DIS) we see that in
massless QCD collinear divergences are produced. Including these divergent
terms into the definitions of parton distributions leads to finite physical
quantities and to the DGLAP evolution. In this thesis we derive the DGLAP
equations and the related Altarelli–Parisi splitting functions to the leading
logarithmic accuracy.

Tiivistelmä

Laskettaessa suuren liikemäärävaihdon hadronisten prosessien sirontatoden-
näköisyyksiä häiriöteoreettisesti kvanttiväridynamiikan (QCD) avulla jou-
dumme parametrisoimaan tietämättömyyttämme hadronien rakenteesta nk.
partonijakaumafunktioihin (PDF). Vaikka nämä partonijakaumat eivät ole
johdettavissa häiriöteoreettisesti, voidaan niiden skaalaevoluutiota määrit-
tävät Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) -yhtälöt löytää
analyyttisellä laskulla.

Tarkastelemalla syvästi epäelastista leptoni–hadroni sirontaa (DIS) näemme
massattoman QCD:n tuottavan kollineaarisia divergenssejä. Näiden divergent-
tien termien sisällyttäminen partonijakaumien määritelmään johtaa fysikaali-
sesti äärellisiin suureisiin ja DGLAP-yhtälöiden mukaiseen skaalaevoluutioon.
Tässä työssä johdetaan DGLAP-yhtälöt ja niihin liittyvät Altarelli–Parisi-
jakautumisfunktiot johtavaan logaritmiseen kertalukuun.
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Foreword

This thesis encompasses my current knowledge and understanding of the
scale evolution of parton distributions in hadrons. I am grateful for guidance
from Prof. Kari J. Eskola and Dr. Hannu Paukkunen who have supervised
this work. Paukkunen’s PhD thesis [1] has been an excellent introduction to
the subject. In there it is shown how one can neatly derive DGLAP evolution
equations through resummation of initial state collinear divergences. By the
used method one can very effectively find the splitting functions for gluon
to gluon and quark to gluon transitions, which are hard to achieve by other
means. The discussion here follows quite similar lines, but in more details at
places.

During the process of writing this thesis I also tried to extend the derivation
to show explicitly the presumed cancellation of other divergences (at least
in the first nontrivial order). This appeared to be quite tricky in the chosen
calculational machinery (light-cone gauge and Sudakov decomposition with
cut-off regulators) and the attempt ended up inconclusive. I would like to
thank my supervisors for patience during the time I took to study these matters.
Comments from Doc. Tuomas Lappi and Prof. Kimmo Kainulainen have also
been helpful.

Let these be my first baby steps on the way towards asymptotic freedom from
doubt, or what some people would call the truth.
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Chapter 1

Introduction

Our current best knowledge of fundamental particles and their interactions is
encoded into the standard model of particle physics. In addition to the electro-
magnetic and weak interactions given by a unified field theory with broken
U(1) × SU(2) symmetry, we believe the strong force of nature to be best de-
scribed with SU(3) symmetric gauge theory called quantum chromodynamics
(QCD).

At low energies this strong force binds quarks, fundamental building blocks of
matter carrying SU(3) color charge, into colorless hadrons. This phenomenon,
due to which no free quarks are observed in nature, is called confinement. To
study the internal structure of hadrons, we need a suitable probe for doing
so. For this, the deeply inelastic lepton–hadron scattering (DIS) appears to be
a good choice. We have only one hadron involved in the initial state and at
sufficiently low virtuality scales, the interaction can be mediated solely by a
photon.

Contrary to the quantum electrodynamics (QED) where the coupling constant
grows towards higher energies (smaller distances), in a non-abelian gauge
theory with sufficiently low number of active fermions (QCD), calculations
show that we should expect asymptotic freedom [2]. The more energetic the
scattering is, the more free quarks appear to be from internal interactions
and we can no more consider the lepton to scatter off a hadron as one entity,
but from an ensemble of its building blocks, named partons. These kinds of
processes, where due to a large momentum transfer distances smaller than the
dimensions of the hadron become important, are called hard processes.

The asymptotic freedom of QCD ensures that we can use perturbation theory in
calculating hard cross sections. However, care must be taken when terminating
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the expansion since higher order Feynman diagrams are plagued by various
kinds of divergences. Ultraviolet divergences are known to disappear in the
renormalization procedure, but cancellation of soft and collinear divergences
depends on the inclusiveness of the process at hand.

In the case of deeply inelastic scattering we find that certain collinear diver-
gences coming from initial state radiation persist and thus have to be computed
to all orders in perturbation theory. Luckily, by choosing an appropriate “phys-
ical” gauge, leading divergences can be made to appear in only a very limited
number of diagrams, which are easily summed up. These leading logarithms can
then be included to the definition of parton distribution functions (PDFs) which
become scale dependent in this resummation. In this thesis I will show how
one can extract these leading logarithms and how their resummation leads to
the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equations [3, 4,
5, 6].

I will be working in four space-time dimensions and with on-shell massless
initial and final state partons. This has the advantage that the relevant collinear
divergences are clearly visible and do not get mixed with other divergences.
However, there are also downsides to this approach. Namely, we do not
have a gauge invariant way to regulate ultraviolet divergences (this would
require dimensional regularization), for which reason we will not discuss the
ultraviolet renormalization to any detail here.

I begin the discussion with the basic notions about DIS and parton model in
Chapter 2. In Chapter 3 we turn on the QCD interactions to see the appearance
of collinear divergences in the first nontrivial order of the strong coupling
constant. The all orders calculation is discussed in Chapter 4 where we also
derive the DGLAP equations. Some concluding remarks are given in Chapter 5.
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Chapter 2

Deeply inelastic scattering

Let us consider the deeply inelastic scattering (DIS) process, where a lepton
` scatters off a hadron h, which breaks into a hadronic multi-particle state X
and we measure the energy and scattering angle of the outgoing lepton `′.
Symbolically we may write this as

`(l) + h(P)→ `′(l′) + X(PX), (2.1)

where we wrote in parentheses the four-momenta associated with the particles
(or group of particles). In the fully inclusive case we do not keep track of the
momenta of final state hadrons, but require a true multi-particle final state,
hence the name deeply inelastic, by demanding the invariant mass of the hadronic
state to be much greater than the initial hadron mass, W2

≡ P2
X �M2.

Since leptons do not carry color, the interaction is mediated via an electroweak
boson with momentum q = l − l′ as shown in the Fig. 2.1. We limit our
consideration to the neutral current process, where we have the same lepton

q

P

l

PX

l′

Figure 2.1: Deeply inelastic lepton–hadron scattering.
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in the initial and final states (` = `′). At reasonably low momentum transfer,
that is, less than the Z-boson mass,

Q2
≡ −q2 = −(l − l′)2

�M2
Z, (2.2)

this process is dominated by exchange of one (virtual) photon.

In addition to the momentum transfer Q2 defined above we will make use of
two other Lorentz-invariant variables, the Bjorken x

x ≡
Q2

2P · q
(2.3)

and the inelasticity

y ≡
P · q
P · l

. (2.4)

Together they fully describe the scattering kinematics. In the hadron rest
frame, which is often the laboratory frame of the experiment, these variables
are expressible as

Q2 = 4EE′ sin2 ϑ
2
,

x =
Q2

2Mν
, y =

ν
E
,

(2.5)

where we have neglected the lepton mass and E = l0 (E′ = l′0) is the energy of
the incoming (outgoing) lepton, ν = E − E′ is the amount of energy transfered
by the virtual photon and ϑ is the lepton scattering angle.

2.1 Unpolarized cross section

The unpolarized differential DIS cross section for a lepton plus n-particle final
state is1

dσn =
1

2(S −M2)
d3l′

(2π)32l′0

n∏
i=1

d3ki

(2π)32k0
i

(2π)4 δ
(
P + l − l′ −

∑n
j=1k j

) 〈∣∣∣M`h→`Xn
∣∣∣2〉 ,
(2.6)

where S ≡ (l + P)2 is the centre of mass energy squared and 〈. . .〉 denotes
the average over initial and sum over final state spin degrees of freedom.

1The discussion in this section follows closely to what was presented in [7].
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The matrix element can be read from the QED Feynman rules [8] which give
us

M
`h→`Xn = i

e2

q2 ū(l′, s′)γµu(l, s) 〈Xn({ki}, {σi})| Ĵµ(0)|h(P, σ)〉, (2.7)

where we denote by 〈Xn({ki}, {σi})|−ieĴµ(0) |h(P, σ)〉 the electromagnetic transition
current from the initial hadron state with momentum P and spin σ to the
n-particle final state with momenta k1, . . . , kn and spins σ1, . . . , σn. The spinors
u(l, s) and ū(l′, s′) come from having an incoming lepton with spin s and an
outgoing lepton with spin s′, respectively, −ieγµ is the lepton–photon vertex
with e the electron charge and the q2 denominator comes from the photon
propagator.

Now, for the inclusive cross section, we have to integrate over d3ki and sum
over n. We find we may write

dσ =
1

2(S −M2)
e4

q4

d3l′

(2π)32l′0
Lµν(l, l′) 4πM Wµν(P, q), (2.8)

where the leptonic tensor Lµν we are able to write in terms of particle four-
momenta (we neglect the lepton mass)

Lµν(l, l′) ≡
1
2

∑
s,s′

ū(l′, s′)γµu(l, s)ū(l, s)γνu(l′, s′) = 2 (lµl′ν + l′µlν − l · l′gµν), (2.9)

but for the hadronic tensor

4πM Wµν(P, q) ≡
1
2

∑
σ

∑
n

∑
σ1...σn

∫ n∏
i=1

d3ki

(2π)32k0
i

(2π)4 δ
(
P + q −

∑n
j=1k j

)
× 〈h(P, σ)| Ĵ†ν(0)|Xn({ki}, {σi})〉 〈Xn({ki}, {σi})| Ĵµ(0)|h(P, σ)〉

(2.10)

this task remains yet unsolved, since we have not discussed a way to compute
the transition currents. To this end, we need to model the structure of the
hadron in a way or another. We shall do this with the parton model as described
in Sec. 2.2.

In terms of the Lorentz-invariant variables Q2, x and y we have

d3l′

(2π)32l′0
=

1
16π2

y
x

dQ2 dx, (2.11)

whereby we may write the Lorentz-invariant double differential cross sec-
tion

dσ
dQ2dx

=
4πα2

Q4

yM
2x(S −M2)

Lµν(l, l′) Wµν(P, q), (2.12)

where α ≡ e2/4π is the fine-structure constant.
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2.1.1 Structure functions

Using the translation properties2 of the fields and states and completeness of
the |Xn〉 states, we can simplify Eq. (2.10) into a form

Wµν(P, q) =
1

4πM
1
2

∑
σ

∫
d4x e−iq·x

〈h(P, σ)| Ĵ†ν(0) Ĵµ(x)|h(P, σ)〉. (2.13)

Contracting this with qµ gives us

qµWµν(P, q) = i
1

4πM
1
2

∑
σ

∫
d4x ∂µ

(
e−iq·x

〈h(P, σ)| Ĵ†ν(0) Ĵµ(x)|h(P, σ)〉
)

− i
1

4πM
1
2

∑
σ

∫
d4x e−iq·x

〈h(P, σ)| Ĵ†ν(0) ∂µ Ĵµ(x)|h(P, σ)〉,
(2.14)

where the first term is a four-surface integral, which vanishes since we expect
the electromagnetic current to go to zero infinitely far from the interaction
point, and the second term contains a four-divergence ∂µ Ĵµ(x), which is zero
by the conservation of the electromagnetic current. Hence we have

qµWµν(P, q) = 0. (2.15)

Now, since the leptonic tensor Eq. (2.9) is symmetric in exchange of the Lorentz
indices, only the symmetric part of Wµν will survive the contraction LµνWµν.
We can thus neglect any antisymmetric parts of the hadronic tensor and write
in the most general symmetric form satisfying Eq. (2.15)

Wµν(P, q) = −W1(P, q)
(
gµν −

qµqν

q2

)
+

W2(P, q)
M2

(
Pµ −

P · q
q2 qµ

) (
Pν −

P · q
q2 qν

)
,

(2.16)
where W1 and W2 are Lorentz-invariant structure functions. We can contract
this with the leptonic tensor

Lµν Wµν = W1(4 l′ · l) +
W2

M2 (4 P · l P · l′ + P2q2) (2.17)

to obtain the following expression for the cross section

dσ
dQ2dx

=
4πα2

Q4

1
x

{
F1(x,Q2) xy2 + F2(x,Q2)

(
1 − y − xy

M2

S −M2

)}
, (2.18)

2See e.g. [9] p. 34–35.
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where we defined the dimensionless structure functions

F1(x,Q2) ≡MW1, F2(x,Q2) ≡ νW2. (2.19)

In the limit where M2
� Q2 we can obtain these from the hadronic tensor

with

F2 = x
(
−gµν +

12x2

Q2 PµPν

)
MWµν,

F1 =
F2

2x
−

(
4x2

Q2 PµPν

)
MWµν.

(2.20)

2.2 Parton model

In the parton model, introduced in [10, 11], one pictures the hadron to be an
ensemble of pointlike constituents, partons (quarks and gluons), from which
the lepton scatters incoherently. For such a picture to hold, the scattering has
to be instantanous in the sense that the interaction times between partons
become much longer than the time in which the hard scattering occurs. This
is certainly true in a frame where the hadron is moving very fast, the infinite
momentum frame, of which the lepton–hadron center of mass frame is a good
approximation at high energies. In the said frame the hadron is Lorentz-
contracted and the lifetimes of virtual states are strongly dilated so that the
partonic structure of the hadron is frozen for the short period of time it takes
for the lepton to pass through it.

We can thus view the DIS cross section as a sum of elastic partonic scatter-
ings

dσ(P, q) =
∑

i

∫
dξ fi(ξ) dσ̂i(p, q), p = ξP, (2.21)

where fi is a parton distribution function with the interpretation that dξ fi(ξ) is
the mean number of partons “i” in the momentum interval [ξP, (ξ+ dξ)P]. The
differential partonic cross section is

dσ̂i =
1
2ŝ

d3l′

(2π)32l′0

∫
d3p′

(2π)32p′0
(2π)4 δ

(
p + l − l′ − p′

) 〈∣∣∣M`i→`i
∣∣∣2〉 , (2.22)

where we have assigned momentum p′ with the outgoing parton and the
center of mass energy squared of the lepton–parton system is ŝ ≡ (l + p)2 = ξS
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p′

p

P

q

fq

Figure 2.2: Hadronic part of the scattering in parton model.

when neglecting all the masses. In a similar fashion as with the hadronic cross
section we can single out the leptonic part and write

dσ̂i =
1
2ŝ

e4

q4

d3l′

(2π)32l′0
Lµν(l, l′) 4πM Ŵµν

i (p, q). (2.23)

where we have now defined the partonic tensor Ŵi.

Comparing the above equations with Eq. (2.8) and assuming that M2 is small
compared to S, we find we can associate

Wµν(P, q) =
∑

i

∫
dξ
ξ

fi(ξ) Ŵµν
i (p, q). (2.24)

This can be viewed pictorically as in Fig. 2.2, where we have adopted the cut
diagram notation [12]. Here objects on the left hand side of the cut contribute
to the scattering amplitude and on the right hand side to its complex conjugate,
whereas the objects extending over the cut (like fq here) are probability-like.
Cut lines in the middle are understood to be on-shell final state particles.

2.2.1 Born approximation

In Fig. 2.2 the parton lines are of course quarks since photon does not couple
to gluons. We have neglected all strong interactions as suggested by the
asymptotic freedom. In this leading order (LO), or “Born”, approximation the
partonic tensor is

4πM Ŵµν
q,Born =

∫
d[PS]1

1
e2

〈∣∣∣Mγ∗q→q
∣∣∣2〉µν

Born
, (2.25)

where, since we are now dealing with colored particles, we have promoted
〈. . .〉 to include also the average over initial and sum over final state color
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(in addition to spin) and we have introduced the notation for relativistically
invariant n-body phase space element

d[PS]n ≡

n∏
i=1

d3ki

(2π)32k0
i

(2π)4 δ
(
p + q −

∑n
j=1k j

)
. (2.26)

Now, in the simplest case of one-particle final state we just have

d[PS]1 = 2πd4p′ θ(p′0) δ(p′2) δ
(
p + q − p′

)
= 2π

x
Q2 δ(ξ − x), (2.27)

that is, in the LO, the Bjorken x measures the longitudinal fraction of hadron
momentum carried by the parton.

The square of the matrix element is obtained from the Feynman rules, yielding
for massless quarks

1
e2

〈∣∣∣Mγ∗q→q
∣∣∣2〉µν

Born
=

e2
q

2
Tr[/pγν/p′γµ], (2.28)

where eq is the fractional quark charge and p′ = p + q = q + ξP. Thus the
hadronic tensor in the (quark) parton model is

Wµν
Born =

∑
q

∫ 1

0

dξ
ξ

fq(ξ) Ŵµν
q,Born =

x
4MQ2 Tr[/Pγν(/q + x/P)γµ]

∑
q

e2
q fq(x). (2.29)

We have here supposed that the initial parton is a quark, but it could be as well
an antiquark. This would correspond to reversing the fermion line direction
in Fig. 2.2, or exchanging µ and ν in above formulae. But since the hadronic
tensor is symmetric, we can effectively take antiquarks into account by saying
that the summation over q in Eq. (2.29) (and from here on) should go over
antiquarks as well.

Neglecting the target mass we now obtain from Eq. (2.20) the structure functions
in the parton model,

2xF1(x) = F2(x) = x
∑

q

e2
q fq(x). (2.30)

Thus we find that in the parton model the structure functions are only functions
of x and do not depend on Q2 at all, a phenomenom called Bjorken scaling.
Further, from Eq. (2.18), we thus have the parton model prediction for the DIS
cross section (

dσ
dQ2dx

)
LO

=
∑

q

e2
q fq(x)

(
dσ̂

dQ2dx

)
Born

, (2.31)

9



with the partonic Born level cross section(
dσ̂

dQ2dx

)
Born

=
4πα2

Q4

{
y2

2
+

(
1 − y − xy

M2

S −M2

)}
. (2.32)
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Chapter 3

Appearance of collinear
divergences

The result obtained in Sec. 2.2.1 would have been the end of the discussion
if quarks did not interact with each other. But we should expect that the
same strong interaction which binds quarks into hadrons will affect the
scattering dynamics. Asymptotic freedom, through the smallness of the
coupling constant, ensures that these QCD interactions can be treated as small
corrections in perturbation theory, and the “naive” parton model result of
the previous section could be seen as a good first approximation. However,
there are certain corrections that we can not swipe under the carpet since they
become infinitely large for massless QCD. We discuss the appearance of such
(collinear) divergences in this chapter.

Gauge choice

Derivation of the gluon propagator requires fixing the gauge in which com-
putations are to be done. As we will see, a probabilistic interpretation of the
divergent contributions will require use of a special “physical” gauge. Our
choice is the axial gauge as formulated in App. A, with the gauge-fixing vector
set to be

n ≡ q + xP = q +
x
ξ

p. (3.1)

Notice that this vector coincides with the out going quark momentum in the
Born amplitude, Eq. (2.28). It also by definition satisfies n2 = 0, which along
with a gauge parameter choice λ = 0 specifies the light-cone gauge. In this
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gauge, the gluon propagator introduced in Eq. (A.7) reduces to

D ab
αβ(k) = δab i

k2 + iε
dαβ(k), dαβ(k) = −gαβ +

kαnβ + kβnα
k · n

. (3.2)

At times, it is convenient to split the propagator into two parts

dαβ(k) = dFeynman
αβ + dAxial

αβ (k) (3.3)

with

dFeynman
αβ = −gαβ, dAxial

αβ (k) =
kαnβ + kβnα

k · n
(3.4)

denoting the part identical to the Feynman gauge propagator and an additional
axial contribution.

This gauge is physical in the sense that only transverse polarizations propagate.
It is also free of Faddeev–Popov ghosts [13, 14]. The two physical polarization
states εµ(k, λ) (k2 = 0, λ = 1, 2) obey a sum rule∑

pol.

εµ(k) ε∗ν(k) = −gµν +
kµnν + kνnµ

k · n
= dαβ(k) (3.5)

as shown in App. A.3.

3.1 Real gluon emission

Let us consider the process where the quark emits a gluon before or after the
scattering. The relevant cut diagrams are shown in Fig. 3.1. We notice that
these diagrams contain intermediate propagators which diverge at the on-shell
limit1

t2 = (p − k)2 = −2p0k0(1 − cosθ)→ 0,

s2 = (p′ + k)2 = 2p′0k0(1 − cosθ′)→ 0.
(3.6)

This happens if either of the final state particle energy vanishes, k0, p′0 → 0,
which we call a soft divergence, or if the gluon is emitted along the direction
of the incoming or outgoing quark, θ, θ′ → 0, and we talk about a collinear
divergence2.

1Notice here that t and s are momentum vectors and are not to be confused with the
Mandelstam variables [15].

2Often the name mass divergence is used for collinear divergences since they appear at the
limit of vanishing quark mass.
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Figure 3.1: Real gluon emission corrections to the quark scattering.

3.1.1 Phase space considerations

To extract the transverse degrees of freedom, we apply the Sudakov decompo-
sition [16] as described in App. B.1 to the gluon momentum

k = (1 − z)p + βn + k⊥. (3.7)

Now, since we have k2 = 0, these variables are related by

k2
⊥

= −k2
⊥

= 2(1 − z)βp · n (3.8)

and from p′2 = 0 we also have

(1 − z) = (1 −
x
ξ

)(1 − β). (3.9)

The transverse components of the gluon momentum thus vanish (k2
⊥
→ 0) at

three distinct limits:

1. β → 0, ξ → x
z , for any z, corresponding to the limit where the gluon is

emitted collinearly to the direction of the incoming quark (soft when
ξ→ x),

2. z → 1, ξ → x, for any β, corresponding to the limit where the gluon is
emitted collinearly to the direction of the outgoing quark (gluon soft
when β→ 0, quark soft when β→ 1),

13



3. z → 1, β → 1, for any ξ, corresponding to the limit where the gluon is
emitted collinearly to the direction of the gauge vector (coinciding with
the outgoing quark when ξ→ x).

In terms of Sudakov variables we write
1
t2 = −

1 − z
k2
⊥

,
1
s2 =

β(1 − β)
k2
⊥

(3.10)

to find that these denominators diverge at the limits 1 and 2, respectively (and
are finite otherwise). In the Feynman gauge these would be the only collinear
divergences but when working in the light-cone gauge we produce also
additional ones. The polarization sum Eq. (3.5) contains a denominator

1
k · n

=
1

(1 − z)p · n
=

2β
k2
⊥

, (3.11)

which diverges at the limits 2 and 3. Dokshitzer et al. [17] have circumvented
this problem by using a planar gauge where these “spurious”, unphysical
divergences are translated to a kinematically inaccessible area. Here we just
take for granted that they cancel in the end without affecting the physical
cross-section.

One can argue that since we are considering a process inclusive with respect
to final state partons, by the Kinoshita–Lee–Nauenberg (KLN) theorem [18,
19], any divergences coming from soft or final state collinear radiation should
cancel, but we expect divergences from emission of a gluon along the direction
of the incoming quark to persist since we are not including incoming collinear
gluons [20]. Thus only the first limit in the above list is relevant to our
calculations. In this “forward” collinear region (1 − z) is kept non-zero (exept
for the soft limit) and we may write

β =
k2
⊥

2(1 − z)p · n
→ 0 as k2

⊥
→ 0. (3.12)

By doing so, we are extracting forward collinear divergences into divergent
k2
⊥

-integrals, whereas other (final state collinear, soft and gauge induced)
divergences are contained in divergent z-integrals.

The differential phase space element for two final state particles can be writen
in terms of Sudakov variables by the aid of Eq. (B.6) as

d[PS]2 =
x

2ξQ2 dz
d2k⊥
(2π)2 θ(k0)θ(p′0)

× δ

(
z2
−

(
1 +

x
ξ

)
z +

x
ξ

+
x
ξ

(
1 −

x
ξ

) k2
⊥

Q2

)
,

(3.13)
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where the delta function appears to have two different solutions

z = z± =
1
2


(
1 +

x
ξ

)
±

√(
1 −

x
ξ

)2

− 4
x
ξ

(
1 −

x
ξ

) k2
⊥

Q2

 . (3.14)

Since we require z to be real, the discriminant inside the square root must be
positive, and thus

k2
⊥
≤
ξ − x

4x
Q2. (3.15)

First of the step functions above gives a kinematical constraint

1 − z +
x

ξ(1 − z)
k2
⊥

Q2 ≥ 0, (3.16)

which is true only for z ≤ 1.

At the collinear limit the two solutions given in Eq. (3.14) simplify to

z+ = 1 + O
(
k2
⊥

)
, z− =

x
ξ

+ O
(
k2
⊥

)
, (3.17)

and thus we find that z+ does not contribute to the forward collinear divergence
since it would render the t2 denominator given in Eq. (3.10) nondivergent. We
can thus safely set z = z− from here on. Actually, the requirement

1 − z −
(x
ξ

)2 k2
⊥

Q2 ≥ 0 (3.18)

coming from the second step function in Eq. (3.13) holds for z = z1 strictly
speaking only at k2

⊥
= 0, or equivalently, z− = x/ξ. Hence in the relevant part

of the phase space the delta function in Eq. (3.13) may be writen as

δ(z − z−)∣∣∣2z− − (1 + x
ξ )
∣∣∣ =

ξ
z(1 − z)

δ
(
ξ −

x
z

)
(3.19)

and we thus have

d[PS]2 =
x

Q2

dz
2z(1 − z)

d2k⊥
(2π)2 δ

(
ξ −

x
z

)
. (3.20)
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3.1.2 Initial state radiation

After taking the color and spin average, the contribution from the ladder
diagram, Fig. 3.1 (a), reads

1
e2

〈∣∣∣Mγ∗q→qg
∣∣∣2〉µν

Ladder
= g2

s
1

NC
Tr[tata]

e2
q

2
1
t4

∑
pol.

Tr[/p/ε/tγν/p′γµ/t/ε∗], (3.21)

where t = p − k is the intermediate quark momentum and, by using Eq. (A.15),
the color factor can be re-expressed as

1
NC

Tr[tata] = CF. (3.22)

Using the polarization sum given in Eq. (3.5) we find∑
pol.

/ε∗/p/ε =
2

1 − z
(/k + β/n), (3.23)

from which one easily obtains∑
pol.

/t/ε∗/p/ε/t =
2

1 − z

(
1 + z2

1 − z

)
k2
⊥ /p + O

(
k2
⊥
/k⊥

)
. (3.24)

Putting this back to Eq. (3.21), we observe that in the first term above, the factor
k2
⊥

cancels with another coming from t4 leaving single k2
⊥

to the denominator,
and the higher order terms are not collinearly divergent. The remaining final
state quark momentum in the trace can be expressed as

p′ = n + O (k⊥) (3.25)

and thus we have

1
e2

〈∣∣∣Mγ∗q→qg
∣∣∣2〉µν

Ladder
= 4παs CF

(
1 + z2

1 − z

)
2(1 − z)

k2
⊥

e2
q

2
Tr[/pγν/nγµ] + . . . , (3.26)

where the ellipsis contains all the terms nondivergent in the forward collinear
limit.

Now, taking the phase space integral we obtain the divergent contribution to
the quark tensor

4πM Ŵµν
q,Ladder =

∫
d[PS]2

1
e2

〈∣∣∣Mγ∗q→qg
∣∣∣2〉µν

Ladder

= αs
x

Q2

∫ 1

x

dz
z

CF

(
1 + z2

1 − z

) e2
q

2
Tr[/pγν/nγµ] δ

(
ξ −

x
z

) ∫ k2
⊥max

0

dk2
⊥

k2
⊥

+ . . . ,

(3.27)
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where from Eq. (3.15) we have

k2
⊥max =

1 − z
4z

Q2, (3.28)

but the lower limit for the transverse momentum is zero making the integral
formally infinite. We will regulate the collinear divergence by introducing a
cut-off k2

⊥
≥ m2, by which the integral becomes∫ k2

⊥max

m2

dk2
⊥

k2
⊥

= log
Q2

m2 + log
1 − z

4z
. (3.29)

Integrating over ξwe then find the ladder diagram contribution to the hadronic
tensor

Wµν
Q,Ladder =

∑
q

∫ 1

0

dξ
ξ

fq(ξ) Ŵµν
q,Ladder

LL
=

x
4MQ2 Tr[/Pγν(/q + x/P)γµ]

∑
q

e2
q
αs

2π
log

(
Q2

m2

) ∫ 1

x

dz
z

CF

(
1 + z2

1 − z

)
fq

(x
z

)
,

(3.30)

where LL on top of the equality sign denotes that we are only including the
large “mass” logarithm log(Q2/m2) and the label Q is added to denote that
this contribution comes from summation over initial quarks (and antiquarks)
in distinction from the initial gluon contribution which we will calculate in
Sec. 3.3. Notice in the z-integral the lower bound z ≥ x coming from the
reguirement that ξ ≤ 1, but also that the integral is divergent at the soft z→ 1
limit. This divergence will get regulated by the inclusion of virtual corrections,
which we consider in Sec. 3.2.

3.1.3 Interference terms

The rainbow diagram in Fig. 3.1 (b) obviously does not contribute to initial state
“forward” collinear divergence, but the interference diagrams in Fig. 3.1 (c),
which contain single t2 denominators might do. These diagrams are but
complex conjugates of each other, so it is sufficient to consider only the one on
the left hand side, which contributes to the squared matrix element by

1
e2

〈∣∣∣Mγ∗q→qg
∣∣∣2〉µν

Interference
= g2

s CF

e2
q

2
1

t2s2

∑
pol.

Tr[/pγν/s/ε/p′γµ/t/ε∗], (3.31)
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where we have
1

t2s2 = −
x
ξQ2

1 − β
k2
⊥

(3.32)

and thus a collinear divergence is produced only if the trace contains a term
without k⊥-dependence. In the region where k ≈ (1 − z)p it is quite easy to
show that no such term exists. First, one notices that

/t/ε∗/p = 2zp · ε∗/p + O (/k⊥) (3.33)

and since the polarization sum contracted with p yields∑
pol.

p · ε∗εν =
2β

1 − z
nν +

1
1 − z

k⊥ν = O (k⊥) , (3.34)

where β = O
(
k2
⊥

)
as given by Eq. (3.12), the matrix element contains only

collinearly nondivergent terms in this kinematical region and thus they do
not contribute in the leading logarithmic level here. Notice however the 1 − z
denominators which can lead to divergences in other kinematical limits.

3.2 Virtual corrections

The gluon, real emission of which we considered in the previous section, might
as well get reabsorbed by the quark. The short lifetime of this intermediate
state allows it to be virtual, with undefined momentum over which we have
to integrate. To treat these virtual corrections the right way, we have to use the
LSZ reduction formula [21], which for the process γ∗q→ q reads

iMγ∗q→q(p, q) =
√

Zq(p)
√

Zq(p′) Amp. , (3.35)

where “Amp.” refers to sum of all possible amputated diagrams (see below)
and p′ = p + q. By an amputated diagram we mean a diagram which cannot be
separated into two unconnected parts by removing a single propagator line.
Expanding to the order αs we have

Amp. = + + O
(
α2

s

)
. (3.36)
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The quark field-strength renormalization factor Zq can be found as the multiplicati-
ve factor of the one-particle pole of the self-energy corrected propagator

Zq(p)
i/p
p2

p2
→0
∼

i/p
p2 +

i/p
p2

[
−iΣ(p)

] i/p
p2 + . . . , (3.37)

where the symbol∼ denotes that the poles of both sides are identical3 and Σ is
the quark self-energy, which we will compute to the one loop order in Sec. 3.2.1.
At leading order we simply have Zq = 1 and hence we did not need to take
it into account in our Born level calculation in Sec. 2.2.1. Moreover, we may
write

Zq = 1 + δZ(1)
q + O

(
α2

s

)
, (3.38)

with δZ(1)
q containing the order αs corrections. Squaring Eq. (3.35) we then find

that at NLO∣∣∣Mγ∗q→q
∣∣∣2 =

(
1 + δZ(1)

q (p) + δZ(1)
q (p′)

) ∣∣∣Mγ∗q→q
∣∣∣2
Born

+ 2Re
∣∣∣Mγ∗q→q

∣∣∣2
VC

+ O
(
α2

s

)
,

(3.39)
where “VC” refers to vertex correction, diagrammatically

∣∣∣Mγ∗q→q
∣∣∣2
VC

= . (3.40)

We shall compute this diagram in Sec. 3.2.2. Since δZ(1)
q (p′) contributes only

to the cancellation of the singularities in the final state radiation it will be
neglected from the present discussion.

3.2.1 Quark self-energy

The one-loop quark self-energy diagram reads

−i δ ji Σ(p) =
p − k

k

i j

= g2
s CF δ ji

∫
d4k

(2π)4

γα(/p − /k)γβ

[(p − k)2 + iε][k2 + iε]
dαβ(k),

(3.41)

3For a more complete treatise on the subject, see e.g. [8].
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where i and j are color indices and in the diagram all momenta are taken to
flow from left to right. Using Eq. (3.3) we may write

Σ(p) = ΣFeynman(p) + ΣAxial(p) (3.42)

to denote the part equivivalent to the Feynman gauge and an additional axial
contribution.

We again exploit the Sudakov decomposition

k = αp + βn + k⊥, β =
k2 + k2

⊥
− α2p2

2αp · n
, (3.43)

whereby the denominator coming from quark propagator takes a form

(p − k)2 + iε = −
1 − α
α

[
k2 +

1
1 − α

k2
⊥
− αp2

− iε′
]

(3.44)

where we used a shorthand notation

ε′ ≡
α

1 − α
ε ,

 ε′ > 0 if 0 < α < 1

ε′ < 0 if α < 0 or α > 1.
(3.45)

Feynman part

We can use the decomposition further to obtain

dFeynman
αβ γα(/p − /k)γβ = −gαβ γα(/p − /k)γβ = 2

{
(1 − α)/p − β/n − /k⊥

}
, (3.46)

where the term odd in k⊥ vanishes under integration and the Feynman gauge
part of the self energy reads

ΣFeynman(p) = −i
αs

2π
CF

1
2π

∫
dα
2|α|

dk2dk2
⊥

α
1 − α

1
[k2 + 1

1−αk2
⊥
− αp2 − iε′][k2 + iε]

× 2
{

(1 − α)/p −
1
α

(k2 + k2
⊥
− α2p2)

/n
2p · n

}
. (3.47)

Here we note that we can separate the k2 integral into two parts, one with a
k2 in the numerator and one without. Working out first the latter one, we see
that we have two distinct poles in the complex plane. When α < 0 or α > 1
both of these lie in the lower half-plane as shown in the Fig. 3.2 (a). Closing
the contour counterclockwice in the upper half-plane no poles get enclosed
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Re k2

Im k2

−iε

−
1

1−αk2
⊥

+ αp2 + iε′

(a) α < 0 or α > 1

Re k2

Im k2

−iε

−
1

1−αk2
⊥

+ αp2 + iε′

(b) 0 < α < 1

Figure 3.2: The pole structure and integration contours used in Eq. (3.48).

and with the arc integral vanishing when taken to infinity, the integral yields
zero for these values of α.

For 0 < α < 1 the pole − 1
1−αk2

⊥
+ αp2 + iε′ gets shifted to the upper half-plane.

Closing the contour clockwise from the below enclosing the −iε pole as shown
in Fig. 3.2 (b), we get a nonzero contribution from its residue. Hence we
obtain

∫
∞

−∞

dk2

[k2 + 1
1−αk2

⊥
− αp2 − iε′][k2 + iε]

=


−2πi

1 − α
k2
⊥
− α(1 − α)p2

if 0 < α < 1

0 if α < 0 or α > 1.
(3.48)

Turning our look now on to the integral with an additional k2 in the numerator,
we notice that we cannot perform the contour integral directly, as the arc
integral would not vanish. Instead we write∫

∞

−∞

dk2 k2

[k2 + 1
1−αk2

⊥
− αp2 − iε′][k2 + iε]

=

∫
∞

−∞

dk2

[k2 + 1
1−αk2

⊥
− αp2 − iε′]

− iε
∫
∞

−∞

dk2

[k2 + 1
1−αk2

⊥
− αp2 − iε′][k2 + iε]

,

(3.49)

where the result of the second integral on the lower line is just the one given in
Eq. (3.48) and the prefactoring ε takes this term to zero. For the first integral
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Re k2

Im k2

+iε′

−iε′

(a) α < 0 or α > 1

Re k2

Im k2

+iε′

−iε′

(b) 0 < α < 1

Figure 3.3: The pole structure and integration contours used in Eq. (3.51).

we shift the integration variable k2
→ k2

−
1

1−αk2
⊥

+ αp2 to obtain∫
∞

−∞

dk2

[k2 + 1
1−αk2

⊥
− αp2 − iε′]

=

∫
∞

−∞

dk2

k2 − iε′
=

∫
∞

−∞

dk2 k2 + iε′

(k2)2 − (ε′)2

= iε′
∫
∞

−∞

dk2

[k2 − iε′][k2 + iε′]
,

(3.50)

where in the last equality we dropped the k2 from the numerator as its
contribution vanishes as an odd integral. We have again two poles, locations
of which are dependent on the value of α in a way shown in Fig. 3.3. By
closing the contour in the upper half-plane in both cases, a different pole gets
enclosed at each time and the sign of the residue changes accordingly. Thus
we have∫

∞

−∞

dk2 k2

[k2 + 1
1−αk2

⊥
− αp2 − iε′][k2 + iε]

=

+πi if 0 < α < 1

−πi if α < 0 or α > 1.
(3.51)

In Eq. (3.47) this expression is multiplied with (|α|(1−α))−1 and integrated over
α, which gives us∫ 0

−∞

dα
|α|

(−πi)
1 − α

+

∫ 1

0

dα
|α|

(+πi)
1 − α

+

∫
∞

1

dα
|α|

(−πi)
1 − α

. (3.52)

By performing a change of variable α → 1 − α one finds that the first inte-
gral above just cancels the last one and thus only the integral from 0 to 1
survives.
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Combining the results, we have

ΣFeynman(p) = −
αs

2π
CF

∫ 1

0
dα

∫
∞

0

dk2
⊥

k2
⊥
− α(1 − α)p2

×

{
(1 − α)/p −

1 − 2α
2α(1 − α)

(k2
⊥

+ α(1 − α)p2)
/n

2p · n

}
,

(3.53)

where the term proportional to /n is odd in α-integration and thus vanishes4.
Performing the k2

⊥
-integral for the remaining part we obtain

ΣFeynman(p) = − /p
αs

2π
CF

∫ 1

0
dα (1 − α) log

(
Λ2

−α(1 − α)p2

)
, (3.54)

where we regulated the ultraviolet divergence by a simple cut-off k2
⊥
< Λ2.

Axial part

We still have to work out the axial contribution. Using the Sudakov decompo-
sition we find

dAxial
αβ (k)γα(/p − /k)γβ =

kαnβ + kβnα
k · n

γα(/p − /k)γβ =
4
α2

(
k2 +

1
1 − α

k2
⊥

)
/n

2p · n
+

2
α
/k⊥,

(3.55)
where again the term odd in k⊥ can be dropped and thus we have

ΣAxial(p) = −i
αs

2π
CF

1
2π

∫
dα
2|α|

dk2dk2
⊥

4
α

k2 + 1
1−αk2

⊥

[k2 + 1
1−αk2

⊥
− αp2 − iε′][k2 + iε]

/n
2p · n

.

(3.56)

The k2-integral can be performed as in the Feynman part. This time the
k2-numerator part given by Eq. (3.51) gets multiplied with (|α|α)−1 and thus
contributes with∫

−1

−∞

dα
|α|

(−πi)
α

+

∫ 0

−1

dα
|α|

(−πi)
α

+

∫ 1

0

dα
|α|

(+πi)
α

+

∫
∞

1

dα
|α|

(−πi)
α

. (3.57)

Notice that we have now split the integral into four parts. The first and last
ones cancel as before, whereas the two in the middle combine into a symmetric

4This is expected since in the Feynman gauge n would be mere an aid for the loop-
momentum parametrization and the result should only depend on p. I thank Dr. Paukkunen
for pointing this out.
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integral ∫ 0

−1

dα
|α|

(−πi)
α

+

∫ 1

0

dα
|α|

(+πi)
α

= πi
∫ 1

−1

dα
α2 = 2πi

∫ 1

0

dα
α2 . (3.58)

Putting this together with the contribution from k2
⊥

-numerator part as given
by Eq. (3.48) we have

ΣAxial(p) = −
p2

2p · n
/n
αs

2π
CF

∫ 1

0
dα

2(1 − α)
α

log
(

Λ2

−α(1 − α)p2

)
(3.59)

Full one-loop propagator

Combining the results, we find that the quark self-energy has the form

Σ(p) = ΣFeynman(p) + ΣAxial(p) = A/p + B
p2

2p · n
/n, (3.60)

where A and B contain the integrals in Eqs. (3.54) and (3.59) along with
(αs/2π) CF. Thereby the one-loop corrected propagator becomes

i/p
p2 +

i/p
p2

[
−iΣ(p)

] i/p
p2 = [1 + A + B]

i/p
p2 − B

i/n
2p · n

. (3.61)

The second term is less singular at p2
→ 0 (as long as p 9 n) and hence the

NLO correction to field-strength renormalization factor for the incoming quark
with momentum p is

δZ(1)
q (p) = A + B = −

αs

2π
CF

∫ 1

0
dα

1 + α2

1 − α
log

(
Λ2

−α(1 − α)p2

)
. (3.62)

We can make a further note that at this one-loop order

δZ(1)
q (p) u(p) = (A + B) u(p)

p2
→0
=

i/p
p2

[
−iΣ(p)

]
u(p), (3.63)

so bearing in mind that
√

Zq(p) = 1+ 1
2δZ(1)

q (p)+O
(
α2

s
)
, we can diagrammatically

express5 (cf. [22])

√
Zq(p) = +

1
2

+ O
(
α2

s

)
. (3.64)

5Note here that a naive summation of non-amputated diagrams is not valid since diagrams
with self-energy insertions are suppressed by factor of one half.
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Identifying the quark virtuality with the cut-off “mass”, −p2 = m2, we now ex-
tract the large logarithmic self-energy contribution to the hadronic tensor

Wµν
Q,SE

LL
= −

x
4MQ2 Tr[/Pγν(/q + x/P)γµ]

∑
q

e2
q
αs

2π
log

(
Q2

m2

)
CF

(∫ 1

0
dα

1 + α2

1 − α

)
fq(x),

(3.65)
where we have neglected the ultraviolet divergent term with log(Λ2/Q2) and
all the logarithmic α-integrals. We will not be conserned about the ultraviolet
divergences any further than this, but trust on the renormalizability of QCD to
ensure that all the physical observables are free from ultraviolet divergences
after a proper renormalization of the fields and couplings have been made.

3.2.2 Vertex correction

The vertex correction diagram, as given in Eq. (3.40), reads after averaging

1
e2

〈∣∣∣Mγ∗q→q
∣∣∣2〉

VC
= i CF g2

s

e2
q

2

∫
d4k

(2π)4

Tr[/pγν/p′γβ(/p′ − /k)γµ(/p − /k)γα]
[(p′ − k)2 + iε][(p − k)2 + iε][k2 + iε]

dαβ(k),

(3.66)
where we can immediately take the external quarks to be on-shell, and thus
p′ = n. Using the Sudakov decomposition we then find

(p − k)2 + iε = −
1 − α
α

[
k2 +

1
1 − α

k2
⊥
− iε′

]
, ε′ =

α
1 − α

ε (3.67)

and
(p′ − k)2 + iε = k2

− 2αp · n + iε, (3.68)

which, we find, gives an additional pole to the k2-plane, as shown in Fig. 3.4,
compared to the self-energy diagram.

As in Eq. (3.3), we may split dαβ into two parts. Using the transverse momentum
tensor integrals (B.7) and (B.8) of App. B.2 we obtain

−gαβ Tr[/pγν/p′γβ(/p′ − /k)γµ(/p − /k)γα] = 2
1 − α
α

{
k2 + k2

⊥
− 2αp · n

}
Tr[/pγν/nγµ],

(3.69)
from where we find the Feynman gauge contribution to be

1
e2

〈∣∣∣Mγ∗q→q
∣∣∣2〉

VC,Feynman
= −i

αs

2π
CF Tr[/pγν/nγµ]

1
2π

∫
dα
2|α|

dk2dk2
⊥

×
2
{
k2 + k2

⊥
− 2αp · n

}
[k2 + 1

1−αk2
⊥
− iε′][k2 − 2αp · n + iε][k2 + iε]

.
(3.70)
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−
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(b) 0 < α < 1

Figure 3.4: The pole structure of the vertex correction diagram.

The three-propagator structure now ensures the vanishing of arc integrals
in Fig. 3.4 (a) and (b) even if we have k2 in the numerator. Again, only the
0 < α < 1 part survives and we have

1
e2

〈∣∣∣Mγ∗q→q
∣∣∣2〉

VC,Feynman
=
αs

2π
CF Tr[/pγν/nγµ]

∫ 1

0
dα

1 − α
α

∫ Λ2

0
dk2
⊥

×

{
1 − α

k2
⊥

+ 2α(1 − α)p · n
−

1
k2
⊥

}
,

(3.71)

where the second term in the braces appears to be divergent at the limit k2
⊥
→ 0.

But we have to combine this with the axial part. Dropping once again terms
odd in k⊥ we find

kαnβ + kβnα
k · n

Tr[/pγν/p′γβ(/p′ − /k)γµ(/p − /k)γα] = 2
1 − α
α

{
k2
− 2αp · n

}
Tr[/pγν/nγµ],

(3.72)
from where we obtain the axial contribution

1
e2

〈∣∣∣Mγ∗q→q
∣∣∣2〉

VC,Axial
=
αs

2π
CF Tr[/pγν/nγµ]

∫ 1

0
dα

1 − α
α

∫ Λ2

0

dk2
⊥

k2
⊥

, (3.73)

which exactly cancels the collinear divergence in Eq. (3.71). Hence the vertex
correction does not contribute to the leading logarithm analysis we are after
here.
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Figure 3.5: Initial gluon contributions to the NLO scattering.

3.3 Initial gluons

At the NLO level we have to include also the possibility that the initial parton
is a gluon decaying into a quark–antiquark pair from which the lepton scatters.
The relevant cut diagrams are shown in Fig. 3.5.

3.3.1 Scattering from a gluon induced quark

Take a look at the left hand side diagram of Fig. 3.5 (a). We denote its
contribution to the squared matrix element by

1
e2

〈∣∣∣Mγ∗g→qq̄
∣∣∣2〉µν

Ladder
= g2

s
1

N2
C − 1

Tr[tata]
e2

q

2
1
t4

∑
pol.

Tr[/k/ε/tγν/p′γµ/t/ε∗], (3.74)

where this time, by using Eq. (A.14), the color factor becomes

1
N2

C − 1
Tr[tata] = TF. (3.75)

We can use the polarization vector sum to obtain∑
pol.

/t/ε∗/k/ε/t = 2/t((1 − z)/p + β/n)/t =
2

1 − z

(
(1 − z)2 + z2

)
k2
⊥ /p + O

(
k2
⊥
/k⊥

)
, (3.76)

and thus we have

1
e2

〈∣∣∣Mγ∗g→qq̄
∣∣∣2〉µν

Ladder
= 4παs TF

(
(1 − z)2 + z2

) 2(1 − z)
k2
⊥

e2
q

2
Tr[/pγν/nγµ] + . . . .

(3.77)
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We may here apply the same phase space element, Eq. (3.20), which we used
for the real gluon emission from an initial quark. This gives the following
contribution to the partonic tensor

4πM Ŵµν
g,Ladder =

∫
d[PS]2

1
e2

〈∣∣∣Mγ∗q→qg
∣∣∣2〉µν

Ladder

= αs
x

Q2

∫ 1

x

dz
z

TF

(
(1 − z)2 + z2

) e2
q

2
Tr[/pγν/nγµ] δ

(
ξ −

x
z

) ∫ Q2

m2

dk2
⊥

k2
⊥

+ . . . .

(3.78)

We have already taken into account all the initial gluons in taking the color
sum, but the flavor of the final quark is still free and has to be summed over.
The contribution to the hadronic tensor thus becomes

Wµν
G,Ladder

LL
=

x
4MQ2 Tr[/Pγν(/q + x/P)γµ]

×

∑
q

e2
q
αs

2π
log

(
Q2

m2

) ∫ 1

x

dz
z

TF

(
(1 − z)2 + z2

)
fg

(x
z

)
,

(3.79)

where in the summation over q we are, as before, also including antiquarks and
thus the right hand side diagram in Fig. 3.5 (a) has been included here.

3.3.2 Interference terms

We still need to consider the interference diagrams in Fig. 3.5 (b) which come
with the following kind of contribution to the squared amplitude

1
e2

〈∣∣∣Mγ∗g→qq̄
∣∣∣2〉µν

Interference
= g2

s TF

e2
q

2
1

t2u2

∑
pol.

Tr[/kγν/u/ε/p′γµ/t/ε∗], (3.80)

where we have only single k2
⊥

in the denominator,

1
t2u2 = −

x(1 − x)
ξ2Q2

1
k2
⊥

. (3.81)

In the trace we have

/t/ε/k = 2z(1 − z)p · ε∗/p + O (/k⊥) (3.82)

and the polarization sum gives∑
pol.

p · ε(p)εν(p) = 0. (3.83)

Thus no k2
⊥

-divergence appears in these diagrams and also for initial gluons
the leading logarithm contribution comes from the ladder diagrams.
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3.4 Summation of divergences

We may now combine the divergent parts found in the previous sections.
Summing the initial quark contributions from the ladder diagram and self-
energy contributions, Eqs. (3.30) and (3.65), we find

Wµν
Q,NLO

LL
=

x
4MQ2 Tr[/Pγν(/q+x/P)γµ]

∑
q

e2
q
αs

2π
log

(
Q2

m2

) ∫ 1

x

dz
z

CF

(
1 + z2

1 − z

)
+

fq

(x
z

)
,

(3.84)
where (

1 + z2

1 − z

)
+

≡

(
1 + z2

1 − z

)
− δ(1 − z)

∫ 1

0
dα

1 + α2

1 − α
(3.85)

is a so-called plus distribution (in general g+), formally defined in integration
against a suitably smooth test function f as∫ 1

0
dx g+(x) f (x) ≡

∫ 1

0
dx g(x)

(
f (x) − f (1)

)
. (3.86)

Notice that the z-integral in Eq. (3.84) is now finite. Let us define a multiplicative
convolution

h ⊗ f (x) =

∫ 1

x

dz
z

h(z) f
(x

z

)
= f ⊗ h (x) , (3.87)

which has a unit element 1(z) = δ(1 − z),

1 ⊗ f (x) =

∫ 1

x

dz
z
δ(1 − z) f

(x
z

)
= f (x). (3.88)

We can then write Eq. (3.84) in a form

Wµν
Q,NLO

LL
=

x
4MQ2 Tr[/Pγν(/q + x/P)γµ]

∑
q

e2
q
αs

2π
log

(
Q2

m2

)
Pqq ⊗ fq (x) , (3.89)

where

Pqq(z) ≡ CF

(
1 + z2

1 − z

)
+

(3.90)

is the Altarelli–Parisi splitting function for quark to quark transition [5]. Since in
the light-cone gauge the large logarithmic contributions come only from initial
state radiation and not from interference with the outgoing quark, we may
interpret

αs

2π
log

(
Q2

m2

)
Pqq(z) (3.91)
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Figure 3.6: The large logarithmic contributions to the hadronic tensor in NLO.

as the probability density for the quark to lose a fraction 1− z of its momentum
by radiating a gluon before interacting with the photon. This probabilistic
interpretation would not have been possible in a covariant gauge, where also
the interference diagrams give large logarithmic contributions. Similarly for
the initial gluon contribution coming from Eq. (3.79) we may write

Wµν
G,NLO

LL
=

x
4MQ2 Tr[/Pγν(/q + x/P)γµ]

∑
q

e2
q
αs

2π
log

(
Q2

m2

)
Pqg ⊗ fg (x) , (3.92)

with the splitting function for gluon to quark transition

Pqg(z) ≡ TF

(
(1 − z)2 + z2

)
. (3.93)

These two large logarithmic contributions to the hadronic tensor can be
pictured as in Fig. 3.6, where the splitting functions are understood to be
convoluted with the parton distribution below it and to come with the factor
(αs/2π) log(Q2/m2).

We may now, a posteriori, verify our assumption that only divergences coming
from emissions along the initial parton line persist after summation of all the
relevant diagrams. The splitting functions Pqq,Pqg above are exactly the same
as those found as coefficients of 1/ε poles in dimensional regularization after
cancellation of all the other divergences [7, 23]. Combining the above terms with
the leading order result from the previous chapter, we find the following O (αs)
large logarithm corrected cross section(

dσ
dQ2dx

)
NLO

LL
=

∑
q

e2
q

{ [
1 +

αs

2π
log

(
Q2

m2

)
Pqq

]
⊗ fq (x) +

αs

2π
log

(
Q2

m2

)
Pqg ⊗ fg (x)

}
×

(
dσ̂

dQ2dx

)
Born

. (3.94)
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Chapter 4

Leading logarithm
approximation

It should not be a surprise that soft and collinear divergences appear also in
higher orders of αs. We take a leap of faith and trust our previous assumptions
that, order by order, only divergences related to radiation along the direction
of the initial parton remain after summing all the diagrams. As we will see,
at each order the leading divergence is of the form αn

s logn(Q2/m2) and in the
light-cone gauge these leading logarithms appear only in ladder type diagrams.

4.1 Two-gluon emission

Let us now work our way through a case where an incoming quark emits two
gluons before the scattering. We parametrize the gluon momenta as

k1 = (1 − z1)p + β1n + k1⊥, β1 =
k2

1⊥

2(1 − z1)p · n
,

k2 = (1 − z2)z1p + β2n + k2⊥, β2 =
k2

2⊥

2(1 − z2)z1p · n
,

(4.1)

so that in the context of the ladder diagram Fig. 4.1, z1 and z2 are given the
interpretation of being fractions of momentum left to the quark at the first and
second emission of a collinear gluon, respectively. Using similar arguments as
for the two particle final state, the three particle phase space element reduces
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Figure 4.1: Ladder diagram for two-gluon emission.

at the forward (gluons moving to the direction of the initial quark) collinear
limit to

d[PS]3 =
1

2π
x

Q2

dz1

2z1(1 − z1)
d2k1⊥

(2π)2

dz2

2z2(1 − z2)
d2k2⊥

(2π)2 δ
(
ξ −

x
z1z2

)
, (4.2)

with z1, z2 ≤ 1 and z1z2 ≥ x.

Here one should notice that we could as well have the final state gluon with
momentum k2 to come from the lower quark–gluon vertex and the gluon with
momentum k1 to come from the upper vertex, corresponding to a diagram
similar to Fig. 4.1 but with the gluon lines crossed both on the left and right
hand side of the diagram. Since we are integrating over the momenta and
summing over the polarizations and color of the final state gluons, we can
switch all the labels and thereby the contribution from this diagram is identical
to the ladder diagram in Fig. 4.1.

To avoid counting over the same final state many times we always divide by
factorial n! after integrating over the momenta and summing all the contri-
butions with n identical particles in the final state [8]. Hence the calculation
for emission of two gluons from the initial quark resolves to computing just
the contribution from the ladder diagram and the possible interference terms
which we treat in Sec. 4.1.2.

4.1.1 Two-rung ladder

Let us evaluate the ladder diagram for two-gluon emission given in Fig. 4.1

1
e2

〈∣∣∣Mγ∗q→qgg
∣∣∣2〉µν

Ladder
= g4

s

e2
q

2
1

NC
Tr[tatbtbta]

1
t4
1t4

2

∑
pol.

Tr[/p/ε1/t1/ε2/t2γ
ν
/p′γµ/t2/ε

∗

2/t1/ε
∗

1],

(4.3)
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where again from Eq. (A.15) we obtain

1
NC

Tr[tatbtbta] = C2
F. (4.4)

Using the decomposition given in Eq. (4.1) we find∑
pol.

/t1/ε
∗

1/p/ε1/t1 =
2

1 − z1

(
1 + z2

1

1 − z1

)
k2

1⊥/p + O
(
k2

1⊥/k1⊥

)
(4.5)

and further that∑
pol.

/t2/ε
∗

2/p/ε2/t2 =
2

1 − z2

(
1 + z2

2

1 − z2

)
k2

2⊥/p + O
(
k2

2⊥/k2⊥

)
+ O (k1⊥) . (4.6)

The final state quark momentum also approaches at the forward collinear limit
that of the Born level

/p′ = /n + O (/k1⊥) + O (/k2⊥) . (4.7)

Now, as for the one gluon emission, we may write

1
t2
1

= −
1 − z1

k2
1⊥

, (4.8)

but the denominator from upper quark propagator takes a more peculiar
form

1
t2
2

= −
1 − z2

k2
2⊥ + (1 − z1 + z1z2)k2

1⊥ + 2(1 − z2) k1⊥ · k2⊥
(4.9)

To perform transverse momentum integrals we will power expand the above
expression. In the phase space region where k2

1⊥< k2
2⊥ we have

1
t2
2

= −
1 − z2

k2
2⊥

∞∑
n=0

(
(1 − z1 + z1z2)

1 − z2

1 − z1

k2
1⊥

k2
2⊥

+ 2(1 − z2)
k1⊥ · k2⊥

k2
2⊥

)n

. (4.10)

Hence we find the matrix element Eq. (4.3) to be of the form

1
e2

〈∣∣∣Mγ∗q→qgg
∣∣∣2〉µν

Ladder
=

1
k2

1⊥

1
k2

2⊥

A + B
(

k2
1⊥

k2
2⊥

)
+ C

(
k2

1⊥

k2
2⊥

)2

+ . . .

 , (4.11)

where the ellipsis contains also terms with higher power of k2
1⊥ in numerator

than the k2
2⊥ in denominator and we are able to neglect any odd powers of k1⊥
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and k2⊥ since they would integrate to zero. The phase space integration then
contains various terms of the following form

∫ Q2

m2
dk2

2⊥

∫ k2
2⊥

m2
dk2

1⊥ (k2
2⊥)r−1 (k2

1⊥)s−1

=



O

(
log2

(
Q2

m2

))
, if r = s = 0

O

(
log

(
Q2

m2

))
+ O

(
(m2)r) , if r , s = 0

O

(
(m2)s log

(
Q2

m2

))
, if r = 0 , s

O

(
log

(
Q2

m2

))
+ O

(
(m2)s) , if r = −s , 0

O
(
(m2)s) + O

(
(m2)r+s) , if 0 , r , −s , 0

.

(4.12)

That is, the double integral diverges worse than logarithmically if s < 0,
r ≤ s = 0 or r + s < 0. Of these only the case r = s = 0, which produces a double
logarithm, appears in Eq. (4.11).

If k2
1⊥> k2

2⊥, then instead

1
t2
2

=
−(1 − z1)

1 − z1 + z1z2

1
k2

1⊥

∞∑
n=0

(
1 − z1

(1 − z1 + z1z2)(1 − z2)
k2

2⊥

k2
1⊥

+
2(1 − z1)

1 − z1 + z1z2

k1⊥ · k2⊥

k2
1⊥

)n

(4.13)
and the matrix element

1
e2

〈∣∣∣Mγ∗q→qgg
∣∣∣2〉µν

Ladder
=

1
k4

1⊥

A + B
(

k2
2⊥

k2
1⊥

)
+ C

(
k2

2⊥

k2
1⊥

)2

+ . . .

 (4.14)

contains at worst just logarithmically divergent terms. We thus find that
the leading divergence comes from the region of phase space where the two
transverse momenta are strongly ordered, with k2

1⊥ � k2
2⊥ � Q2, producing the

following leading logarithm contribution∫
d[PS]3

1
e2

〈∣∣∣Mγ∗q→qgg
∣∣∣2〉µν

Ladder

LL
=
α2

s

2π
x

Q2

∫ 1

x

dz2

z2
CF

(
1 + z2

2

1 − z2

) ∫ 1

x/z2

dz1

z1
CF

(
1 + z2

1

1 − z1

)
δ
(
ξ −

x
z1z2

)
×

e2
q

2
Tr[/pγν/nγµ]

1
2

log2

(
Q2

m2

) (4.15)
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Figure 4.2: Non-ladder diagrams for two-gluon emission.

or, at the hadronic tensor level

Wµν
Q,2G-Ladder

LL
=

x
4MQ2 Tr[/Pγν(/q + x/P)γµ]

∑
q

e2
q

1
2

(
αs

2π

)2

log2

(
Q2

m2

)
×

∫ 1

x

dz2

z2
CF

(
1 + z2

2

1 − z2

) ∫ 1

x/z2

dz1

z1
CF

(
1 + z2

1

1 − z1

)
fq

( x
z1z2

)
.

(4.16)

Here again we have taken the antiquark contributions from diagrams with
reversed fermion lines to be included implicitly.

The soft divergences at limits z1, z2 → 1 get again regulated by self-energy
insertions [1]. We omit, however, the discussion here. The general structure
can still be seen from Eq. (4.16) and after substituting the terms in parentheses
with appropriate plus distributions the contribution to the hadronic tensor
reads

x
4MQ2 Tr[/Pγν(/q + x/P)γµ]

∑
q

e2
q

1
2

(
αs

2π

)2

log2

(
Q2

m2

)
Pqq ⊗ Pqq ⊗ fq (x) . (4.17)

4.1.2 Non-ladder diagrams

Also at this order of αs various non-ladder diagrams, like those in Fig. 4.2
appear. But they all can easily be shown to be sub-leading. Consider the
diagram in Fig. 4.2 (a), which contributes to the matrix element by

1
e2

〈∣∣∣Mγ∗q→qgg
∣∣∣2〉µν

Non-ladder,(a)
= g4

s

e2
q

2
1

NC
Tr[tbtatbta]

1
t2
1u2

1t4
2

×

∑
pol.

Tr[/p/ε2/u1/ε1/t2γ
ν
/p′γµ/t2/ε

∗

2/t1/ε
∗

1],
(4.18)
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where t2
1, t2

2 are as before and with u1 = p − k2 we have

1
u2

1

= −
(1 − z2)z1

k2
2⊥

. (4.19)

When evaluating the trace in Eq. (4.18) we can use a similar trick as introduced
in Sec. 3.1.3. First we notice that

/t1/ε
∗

1/p = 2z1p · ε∗1/p + O (/k1⊥) (4.20)

and then use the polarization sum∑
pol.

p · ε∗1/ε1 =
2β1

1 − z1
/n +

1
1 − z1

/k1⊥ = O (/k1⊥) (4.21)

to see that no terms free from k1⊥ are contained in the trace. Likewise we
have

/p/ε∗2/u1 = 2(1 − z1 + z1z2)p · ε∗2/p + O (/k2⊥) ,
∑
pol.

p · ε∗2/ε2 = O (/k2⊥) . (4.22)

In the phase space region where k2
1⊥< k2

2⊥ the matrix element thus is of the
form

1
e2

〈∣∣∣Mγ∗q→qgg
∣∣∣2〉µν

Non-ladder,(a)
=

1
k4

2⊥

A + B
(

k2
1⊥

k2
2⊥

)
+ C

(
k2

1⊥

k2
2⊥

)2

+ . . .

 , (4.23)

and when k2
1⊥> k2

2⊥

1
e2

〈∣∣∣Mγ∗q→qgg
∣∣∣2〉µν

Non-ladder,(a)
=

1
k4

1⊥

A + B
(

k2
2⊥

k2
1⊥

)
+ C

(
k2

2⊥

k2
1⊥

)2

+ . . .

 , (4.24)

neither of the series containing divergences higher than singly logarithmic
order in integration over both transverse momenta. Similarly, any diagrams
like those in Fig. 4.2 (b) and (c) can be shown to be subleading.

4.2 Additional ladder diagrams

The observation that leading logarithms appear only in ladder type diagrams
holds also for processes other than the two-gluon emission [24]. We will now
move on to calculate these contributions.
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Figure 4.3: Two-rung ladder diagram with vertical gluons.

4.2.1 Vertical line gluons

Concider the process of initial quark and virtual photon going to a quark of the
initial kind plus a quark–antiquark pair. The ladder diagram, shown in Fig. 4.3
has gluons in vertical lines and contributes to the matrix element with

1
e2

〈∣∣∣Mγ∗q′→q′q̄q
∣∣∣2〉µν

Ladder
= g4

s

e2
q

2
1

NC
Tr[tatb] Tr[tbta]

1
t4
1t4

2

Tr[/k2γ
η/t2γ

ν
/p′γµ/t2γ

α]

× dαβ(t1) dηω(t1) Tr[/pγω/k1γ
β], (4.25)

where the color factor simplifies to

1
NC

Tr[tatb] Tr[tbta] = TFCF. (4.26)

A straightforward calculation shows that by using Eq. (B.8) the lower line in
Eq. (4.25) can be written in a form

dαβ(t1) dηω(t1) Tr[/pγω/k1γ
β]

=
1 + (1 − z1)2

z1

2k2
1⊥

z1(1 − z1)

(
−gαη +

pαnη + pηnα
p · n

)
+ O

(
k2

1⊥k1⊥

)
.

(4.27)

In contracting the leading part with the remaining trace we find

/t2γ
α/k2γ

η/t2

(
−gαη +

pαnη + pηnα
p · n

)
= 2

k2
2⊥

1 − z2

(
(1 − z2)2 + z2

2

)
z1/p + . . . , (4.28)

where the ellipsis again contains all the different kinds of sub-leading terms.

Performing the phase space integration, the following leading logarithmic
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term is produced∫
d[PS]3

1
e2

〈∣∣∣Mγ∗q′→q′q̄q
∣∣∣2〉µν

Ladder

LL
=
α2

s

2π
x

Q2

∫ 1

x

dz2

z2
TF

(
(1 − z2)2 + z2

2

) ∫ 1

x/z2

dz1

z1
CF

(
1 + (1 − z1)2

z1

)
× δ

(
ξ −

x
z1z2

) e2
q

2
Tr[/pγν/nγµ]

1
2

log2

(
Q2

m2

)
.

(4.29)

We find that this time no soft divergences appear, and thus this diagram
contributes to the hadronic tensor by

x
4MQ2 Tr[/Pγν(/q + x/P)γµ]

∑
q,q′

e2
q

1
2

(
αs

2π

)2

log2

(
Q2

m2

)
Pqg ⊗ Pgq′ ⊗ fq′ (x) , (4.30)

where we now found a new splitting function for gluon to quark transition

Pgq(z) ≡ CF

(
1 + (1 − z)2

z

)
. (4.31)

4.2.2 Gluon initiated diagrams

Let us next include the contribution from initial gluons. The ladder diagram
in Fig. 4.4 (a) with the squared matrix element contribution

1
e2

〈∣∣∣Mγ∗g→q̄gq
∣∣∣2〉µν

Ladder
= g4

s

e2
q

2
1

N2
C − 1

Tr[tatbtbta]
1

t4
1t4

2

Tr[/k1/ε
∗

1/t1/ε2/t2γ
ν
/p′γµ/t2/ε

∗

2/t1/ε1],

(4.32)
where

1
N2

C − 1
Tr[tatbtbta] = TFCF, (4.33)

contains familiar elements. First, just as in Eq. (3.76), we notice that∑
pol.

/t1/ε
∗

1/k1/ε1/t1 =
2

1 − z1

(
(1 − z1)2 + z2

1

)
k2

1⊥ /p + O
(
k2

1⊥/k1⊥

)
, (4.34)

and then exactly as in Eq. (4.6)∑
pol.

/t2/ε
∗

2/p/ε2/t2 =
2

1 − z2

(
1 + z2

2

1 − z2

)
k2

2⊥/p + . . . . (4.35)
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Figure 4.4: Two-rung ladder diagrams for initial gluon contribution.

After integrating over the phase space we have∫
d[PS]3

1
e2

〈∣∣∣Mγ∗g→q̄gq
∣∣∣2〉µν

Ladder

LL
=
α2

s

2π
x

Q2

∫ 1

x

dz2

z2
CF

(
1 + z2

2

1 − z2

) ∫ 1

x/z2

dz1

z1
TF

(
(1 − z1)2 + z2

1

)
× δ

(
ξ −

x
z1z2

) e2
q

2
Tr[/pγν/nγµ]

1
2

log2

(
Q2

m2

)
.

(4.36)

Here again the soft divergence in the z2-integration gets regulated by inclusion
of a quark self-energy correction. Omitting the details, we just add the
following term to the hadronic tensor

x
4MQ2 Tr[/Pγν(/q + x/P)γµ]

∑
q

e2
q

1
2

(
αs

2π

)2

log2

(
Q2

m2

)
Pqq ⊗ Pqg ⊗ fg (x) , (4.37)

where the splitting functions are familiar from the previous order calcula-
tion.

The ladder diagram containing three-gluon vertices in Fig. 4.4 (b) gives

1
e2

〈∣∣∣Mγ∗g→gq̄q
∣∣∣2〉µν

Ladder
= g4

s

e2
q

2
1

N2
C − 1

Tr[tatb] f acd f bcd 1
t4
1t4

2

∑
pol.

Tr[/k2γ
η/t2γ

ν
/p′γµ/t2γ

α]

× dαβ(t1) dηω(t1)
{
(k1 + p)βgδγ + (t1 − k1)γgβδ − (t1 + p)δgγβ

}
×

{
(k1 + p)ωgσρ + (t1 − k1)ρgωσ − (t1 + p)σgρω

}
ε1γ(p)ε∗1ρ(p)

× ε∗2δ(k1)ε2σ(k1),
(4.38)

where the color factor can be simplified to

1
N2

C − 1
Tr[tatb] f acd f bcd = TFCA. (4.39)
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Here a somewhat lengthy calculation (which was here done with help of
Mathematica) shows us that

dαβ(t1) dηω(t1)
{
. . .

}βδγ{
. . .

}ωσρ ∑
pol.

ε1γ(p)ε∗1ρ(p)ε∗2δ(k1)ε2σ(k1)

= 2
(1 − z1

z1
+

z1

1 − z1
+ z1(1 − z1)

) 2k2
1⊥

z1(1 − z1)

(
−gαη +

pαnη + pηnα
p · n

)
+ O

(
k2

1⊥k1⊥

)
(4.40)

and the contraction with upper part of the diagram goes as in Eq. (4.28).

The phase space integration over Eq. (4.38) now yields

∫
d[PS]3

1
e2

〈∣∣∣Mγ∗g→gq̄q
∣∣∣2〉µν

Ladder

LL
=
α2

s

2π
x

Q2

∫ 1

x

dz2

z2
TF

(
(1 − z2)2 + z2

2

) ∫ 1

x/z2

dz1

z1
2CA

(1 − z1

z1
+

z1

1 − z1
+ z1(1 − z1)

)
× δ

(
ξ −

x
z1z2

) e2
q

2
Tr[/pγν/nγµ]

1
2

log2

(
Q2

m2

)
. (4.41)

The appearance of a splitting function for gluon to gluon transition can be seen
in the above expression, but we once again find a divergent 1− z1 denominator
which asks to be regulated. This will be done with a virtual correction coming
from a gluon self-energy insertion, which we consider next.

4.2.3 Gluon self-energy

Just like we found for the quark, the gluon propagator obtains corrections
from the field-strength renormalization factor

Zg(p)Dµν(p)
p2
→0
∼ Dµν(p) + Dµη(p) [iΠηω(p)] Dων(p) + . . . , (4.42)

where the gluon self-energy Πηω we will now calculate at one-loop order.
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Quark loop

Take a look at the following quark loop contribution to the gluon self-
energy

i δab Π
ηω
q (p) =

p − k

k

a, ω b, η

= g2
s n f TF δ

ab
∫

d4k
(2π)4

Tr[/kγη(/p − /k)γω]
[(p − k)2 + iε][k2 + iε]

,

(4.43)

where the color factor came from Eq. (A.14) and we have accounted for the
sum over fermion species by factor n f . Now, if we parametrize

Π
ηω
q (p) = Agηω + Bpηpω, (4.44)

we aptly find that

A =

(
pηnω
p · n

− p2 nηnω
(p · n)2

)
Π
ηω
q (p),

B =
nηnω

(p · n)2 Π
ηω
q (p).

(4.45)

Let us first evaluate the contraction with nηnω. In terms of Sudakov variables
we have

Tr[/k/n(/p − /k)/n] = 8α(1 − α)(p · n)2 (4.46)

and thus

nηnω
(p · n)2 Π

ηω
q (p) = i

αs

2π
n f TF

1
2π

∫
dα
2|α|

dk2dk2
⊥

8α2

[k2 + 1
1−αk2

⊥
− αp2 − iε′][k2 + iε]

=
αs

2π
4n f TF

∫ 1

0
dαα(1 − α) log

(
Λ2

−α(1 − α)p2

)
, (4.47)

where on the second line we used Eq. (3.48). The contraction with pηnω
produces a trace

Tr[/k/p(/p − /k)/n] = −4 (k2
⊥
− α(1 − α)p2) p · n, (4.48)
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so that eventually

pηnω
p · n

Π
ηω
q (p) = −2n f TF

αs

2π

∫ Λ2

0
dk2
⊥
∝ Λ2. (4.49)

This ultraviolet divergence linear in Λ2 is residual to our usage of cut-off
regularization, which breaks translational and gauge invariances [25]. To
regulate ultraviolet divergences without breaking these symmetries, we should
use dimensional regularization [26] instead. Actually, if gauge invariance is to
be preserved, the following Ward identity would hold

pηΠηω(p) = 0, (4.50)

whereby Eq. (4.49) should vanish in gauge invariant renormalization. But here
as before, we do not concern ourselves with the systematics of renormalization
and by extracting the leading logarithmic term we write

Π
ηω
q (p) LL

= −
2
3

n f TF
αs

2π
log

(
Λ2

−p2

) (
p2gηω − pηpω

)
. (4.51)

Gluon loop

Next we’ll turn to look at the gluon loop contribution

i δba Π
ηω
g (p) =

p − k

k

a, ω b, η

=
1
2

g2
s CA δ

ba
∫

d4k
(2π)4

1
[(p − k)2 + iε][k2 + iε]

dαβ(p − k) dγδ(k)

×

{
(k + p)αgηγ + (p − 2k)ηgαγ + (k − 2p)γgηα

}
×

{
(k + p)βgωδ + (p − 2k)ωgβδ + (k − 2p)δgωβ

}
,

(4.52)

where the factor of one half in the front comes from having two identical
bosons in the loop. The tensor structure is

Π
ηω
g (p) = Agηω + Bpηpω + C(pηnω + pωnη) + Dnηnω (4.53)
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since we now have additional dependence on the gauge vector. Using the
previously obtained methods and keeping only the terms leading to logarithmic
divergences, a direct calculation (where again Mathematica was exploited)
shows that

A = CA
αs

2π

∫ 1

0
dα

(
α2
− α + 2 −

1
α
−

1
1 − α

)
log

(
Λ2

−α(1 − α)p2

)
p2 + . . . ,

B = CA
αs

2π

∫ 1

0
dα

(
2α2
− 2α +

1
2

)
log

(
Λ2

−α(1 − α)p2

)
,

C = CA
αs

2π

∫ 1

0
dα

(
−3α2 + 3α −

5
2

+
1
α

+
1

1 − α

)
log

(
Λ2

−α(1 − α)p2

)
p2

p · n
+ . . . ,

D = CA
αs

2π

∫ 1

0
dα

(
3α2
− 3α +

5
2
−

1
α
−

1
1 − α

)
log

(
Λ2

−α(1 − α)p2

)
p4

(p · n)2 + . . . ,

(4.54)

and thus we may write the gluon loop contribution to the self-energy in leading
logarithm approximation as

Π
ηω
g (p) LL

= CA
αs

2π
log

(
Λ2

−p2

) { (
11
6
− 2

∫ 1

0

dα
1 − α

) (
p2gηω − pηpω

)
(4.55)

+

(
2 − 2

∫ 1

0

dα
1 − α

) (
pη −

p2

p · n
nη

) (
pω −

p2

p · n
nω

) }
.

We should of course include the contribution from the tadpole diagram

i δba Π
ηω
g,tadpole =

k

a, ω b, η

= g2
s CA δ

ba
∫

d4k
(2π)4

1
[k2 + iε]

dγδ(k)
(
2gωηgγδ − gωδgγη − gωγgηδ

)
= O

(
Λ2

)
, (4.56)

but it contains no mass logarithms (the loop propagator is independent of the
momentum p) and thus does not contribute to our calculation.
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Full one-loop propagator

We have found the relevant part of gluon self-energy to be of the form

Πηω(p) = Π1

(
p2gηω − pηpω

)
+ Π2

(
pη −

p2

p · n
nη

) (
pω −

p2

p · n
nω

)
(4.57)

but when enclosing it between two propagators

Dµη(p) [iΠηω(p)] Dων(p) = Π1
i

p2

(
−gµν +

pµnν + pνnµ
p · n

)
− iΠ2

nµnν
(p · n)2 (4.58)

we can see that only Π1 contributes to the one-particle pole. The latter term
would also lead to a loss of leading logarithm if the self-energy diagram is
inserted in the middle of the ladder. The leading logarithmic part of the one
loop correction to the gluon propagator hence is

δZ(1)
g (p) LL

=
αs

2π
log

(
Λ2

−p2

) {
CA

(
11
6
− 2

∫ 1

0

dα
1 − α

)
−

2
3

n f TF

}
. (4.59)

When inserted to the initial gluon leg of the one-rung ladder diagram in
Fig. 3.5 (a), this produces a correction which regulates the soft divergence in
Eq. (4.41). This procedure leads to the following contribution to the hadronic
tensor

x
4MQ2 Tr[/Pγν(/q + x/P)γµ]

∑
q

e2
q

1
2

(
αs

2π

)2

log2

(
Q2

m2

)
Pqg ⊗ Pgg ⊗ fg (x) , (4.60)

where the splitting function for gluon to gluon transition is

Pgg(z) ≡ 2 CA

(
1 − z

z
+

z
(1 − z)+

+ z(1 − z)
)

+
(11

6
CA −

2
3

n f TF

)
δ(1 − z). (4.61)

4.3 Generalization to higher orders

A general structure begins to emerge. For every new order in αs the leading
logarithms appear in the ladder diagrams with strongly ordered transverse
momenta k2

1⊥ � . . . � k2
n⊥ � Q2. Combined with virtual corrections, their

contribution to the cross section is free from soft divergences and every rung
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Figure 4.5: Splitting functions in LLA.

can be effectively replaced by convolution with a suitable splitting function (the
four possibilities have been collected to Fig. 4.5) so that the O

(
αn

s
)

contribution
to the cross section becomes

∑
i, j,...,m,q

e2
q

1
n!

(
αs

2π

)n
logn

(
Q2

m2

)
Pqm ⊗ . . . ⊗ P ji︸           ︷︷           ︸

n times

⊗ fi (x)
(

dσ̂
dQ2dx

)
Born

, (4.62)

where the factorial n! comes from the nested transverse momentum integrals.
Summing over n, these contributions form an exponential series and the DIS
cross section in leading logarithm approximation becomes

dσ
dQ2dx

LL
=

∑
q

e2
q

(
1 0

)
exp

[
αs

2π
log

(
Q2

m2

) (
Pqq Pqg

Pgq Pgg

)]
⊗

(
fq

fg

)
(x)

(
dσ̂

dQ2dx

)
Born

,

(4.63)
where the (1, 0) vector is present to ensure that the last splitting is into a
quark.
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4.3.1 Redefinition of parton distribution functions

We have seen that the collinear divergences appear when intermediate propa-
gators get to on-shell (long lived) real particles. It would then make sense to
include these long distance effects to the definition of the initial state. Let us
define the scale-dependent parton distribution functions to all orders of collinear
singularities and αs in the leading logarithm approximation the following
way (

fq(x,Q2)
fg(x,Q2)

)
≡ exp

[
αs

2π
log

(
Q2

m2

) (
Pqq Pqg

Pgq Pgg

)]
⊗

(
fq

fg

)
(x) . (4.64)

The DIS cross section then becomes

dσ
dQ2dx

=
∑

q

e2
q fq(x,Q2)

(
dσ̂

dQ2dx

)
Born

. (4.65)

This is a manifestation of the factorization theorem [27] which says that in hard
processes the collinear divergences can be factored to scale dependent parton
distribution functions and the remaining partonic cross section is free from
divergences. This feature is not specific to leading order result obtained here,
but applies also at higher orders.

The Q2 dependence of the quark density in Eq. (4.65) breaks the absolute Bjorken
scaling that we found in the “naive” parton model. These scaling violations
have been observed in DIS experiments (see [28]) and their explanation has
been considered as one of the triumphs of QCD.

4.3.2 DGLAP evolution equations

Taking a Q2 derivative of the definition in Eq. (4.64) we find that the scale
evolution of the parton densities are governed by the following Dokshitzer–
Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equations [3, 4, 5, 6]

Q2 ∂
∂Q2

(
fq(x,Q2)
fg(x,Q2)

)
=
αs

2π

(
Pqq Pqg

Pgq Pgg

)
⊗

(
fq(Q2)
fg(Q2)

)
(x) . (4.66)

Even though we derived the DGLAP evolution equations in the context of
deeply inelastic scattering, the initial state evolution prior to a hard scattering
should not depend on the nature of the hard interaction and hence the parton
densities and their scale evolution should be universal, process independent.
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Thus the same equations should apply to the scale evolution in hard processes
in hadron–hadron collisions as well.

The form of Eq. (4.66) holds actually beyond leading logarithm approximation.
Keeping track of the sub-leading contributions of the type αn+1

s logn(Q2/m2),
αn+2

s logn(Q2/m2), one can see that the splitting functions actually have higher
order corrections

P ji = P(0)
ji +

αs

2π
P(1)

ji +
(
αs

2π

)2

P(2)
ji + . . . , (4.67)

where the first term in the series are the leading logarithm splitting functions
that we have derived here and the next-to-leading logarithm (NLL) terms have
been derived in [29, 30] and NNLL in [31, 32]. While the leading logarithm
quark to quark transition did not allow change in flavor,

P(0)
qq′ = 0 for q′ , q, (4.68)

in higher orders this becomes possible and we should write the DGLAP
equations in the form

Q2 ∂
∂Q2

(
fq(x,Q2)
fg(x,Q2)

)
=
αs

2π

(
Pqq′ Pqg

Pgq′ Pgg

)
⊗

(
fq′(Q2)
fg(Q2)

)
(x) , (4.69)

where fq and the splitting functions are now understood to be vectors and
matrices of appropriate dimensions.
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Chapter 5

Concluding remarks

In this thesis we have gone through the derivation of DGLAP evolution equa-
tions in the context of deeply inelastic scattering using Sudakov decomposition
in the light-cone gauge. In this formalism it was relatively easy to find the
leading mass logarithms related to initial state collinear divergences and factor
them into the definitions of parton distribution functions. We were able to
find the full set of DGLAP equations with also the splitting functions Pgq

and Pgg which are hard to achieve by other means. We also saw how the
plus function prescription in Pqq and Pgg arise from the inclusion of virtual
corrections without imposing momentum conservation requirements as was
done originally in [5].

We find that after this resummation the same cross section formula as in the
“naive” parton model holds in here with the “QCD-improved” parton model
as long as the bare parton densities are replaced with Q2 dependent ones. One
should notice that even though we have derived all the results in massless
QCD where the αs log(Q2/m2) terms approach infinity when the cut-off m2

is taken to zero, similar mass logarithms appear with massive quarks and
become large for high values of Q2, so their resummation is essential also in
the massive theory.

We did not go through the full renormalization procedure of propagators
and vertices in this thesis and thus also discussion about running of the
coupling constant has been omitted. But one can show [1, 24] that the
structure of the parton ladder is such that at the level of the DGLAP equations
the renormalization just leads to a substitution αs → αs(Q2). As we have
seen the cut-off regularization causes some complications to the structure
of ultraviolet divergences. To obtain a gauge invariant regularization one
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could do the calculations in dimensional regularization while extracting the
mass divergences by giving the initial partons a small virtuality p2, a method
effectively employed in [22].

It would have been instructive to show the cancellation of soft and final state
collinear divergences explicitly rather than relying on to general principles
(KLN theorem) at least in the first nontrivial order discussed in Chapter 3. But
due to the extra divergences produced by the light-cone gauge one should be
cautious when doing this. One can show in canonical quantization [33] that
one should employ a so called Mandelstam–Leibbrandt prescription [34, 35] to
the divergent k · n denominators. We did not discuss this complication at all in
our calculations since it should not have any effect to the initial state collinear
divergences in the region of phase space where these denominators surely are
nonvanishing. It is actually quite surprising how vaguely these “spurious”
divergences are discussed in the literature. Most of the standard references
where DGLAP equations are derived in light-cone gauge simply state that the
dominant region of divergences is the one along the direction of the initial
parton momentum with no reference at all to the possible complications caused
by this gauge choice.

Now, with the evolution equations just derived, we can predict the parton
densities at a scale Q2 if we know them at some lower scale Q2

0. But it is of
course not enough to have the evolution equations, for one needs to be able to
solve them as well. A brief review on some of the used methods can be found
in [36] and one very fast semianalytical approach [37] is also described in [1].
While we were able to derive the scale evolution from the theory of quantum
chromodynamics, no prediction of the actual form of the parton densities can
be given but these have to be determined experimentally. This is done through
the methods of global analysis, details of which can be found in e.g. [1, 38]. For a
given set of parton distribution functions, owing to their universality, we are
now able to calculate numerical estimates for any hard cross section.
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Appendix A

Quantum chromodynamics in the
axial gauge

A.1 QCD Lagrangian

Quantum chromodynamics (QCD) is a non-Abelian gauge theory with local
SU(NC) symmetry, where the number of colors is NC = 3. The Lagrangian is
given as

L = ψ̄(i /D −m)ψ −
1
4

Fa
µνF

a,µν, (A.1)

where ψ is the quark multiplet, m the associated mass matrix and the covariant
derivative is denoted as

Dµ = ∂µ − igsAa
µta, (A.2)

where Aa
µ are the gluon fields and gs denotes the strong coupling constant. The

gluon field strength tensor is

Fa
µν = ∂µAa

ν − ∂νA
a
µ + gs f abcAb

µAc
ν. (A.3)

The matrices ta are the SU(NC) generators and f abc the corresponding structure
constants, properties of which are given in App. A.4.

The Lagrangian given in Eq. (A.1) is invariant under an infinitesimal local
gauge transformation

ψ→ ψ + iαataψ, Aa
µ → Aa

µ +
1
gs
∂µα

a + f abcAb
µα

c, (A.4)
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consistently with the SU(NC) symmetry. Quantization of such a theory requires
removal of these unphysical degrees of freedom through gauge fixing [14]. In
particular, it is not possible to define the gluon propagator without fixing the
gauge [39]. For this reason, we add the following term

Lgauge-fixing = −
1

2λ
(nµAa

µ)2 (A.5)

to the lagrangian in Eq. (A.1), thus reducing our theory to the class of axial
gauges. The QCD Feynman rules [39, 40] for this gauge class are shown
below.

A.2 Feynman rules

Propagators

p
i j = δi j

i
/p −m + iε

(A.6)

k
a, α b, β = δab i

k2 + iε

{
−gαβ +

kαnβ + kβnα
k · n

−
(n2 + λk2) kαkβ

(k · n)2

}
(A.7)

Vertices

i j

a, α

= −igs ta
ji γ

α (A.8)

k

qp

c, γ b, β

a, α

= −gs f abc
{
(p − q)γgαβ + (q − k)αgβγ + (k − p)βgγα

}
(A.9)

d, δ

a, α

c, γ

b, β

=

−ig2
s

{
f abe f cde(gαγgβδ − gαδgβγ)

+ f ace f bde(gαβgγδ − gαδgβγ)
+ f ade f cbe(gαγgβδ − gαβgδγ)

} (A.10)
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Loop integrals

• For each loop with undetermined momentum k, integrate with
∫

d4k
(2π)4 .

• For each closed fermion loop, multiply by −1.

• For each closed loop containing n identical bosons, multiply by
1
n!

.

External lines

For an external quark with spin s and momentum p

• in initial state, add a spinor u(p, s) on the right,

• in final state, add a spinor ū(p, s) on the left,

and for antiquark

• in initial state, add a spinor v̄(p, s) on the left,

• in final state, add a spinor v(p, s) on the right.

For an external gluon with polarization λ and momentum k

• in initial state, add a vector εµ(k, λ),

• in final state, add a vector ε∗µ(k, λ),

where µ is the Lorentz index of the vertex to which this line is connected.

A.3 Spin and polarization sums

The spinors and polarization vectors from external lines obey the following
sum rules ∑

s

u(p, s) ū(p, s) = /p + m,∑
s

v(p, s) v̄(p, s) = /p −m,
(A.11)

∑
λ=1,2

εµ(k, λ) ε∗ν(k, λ) = −gµν +
kµnν + kνnµ

k · n
− n2 kµkν

(k · n)2 . (A.12)
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Proof of Eq. (A.12): We may produce the two physical polarization states
εµ(k, λ) (k2 = 0, λ = 1, 2) by introducing the Lorentz and gauge conditions

k · ε(k, λ) = 0, n · ε(k, λ) = 0,

respectively. We can then parametrize the polarization sum with∑
λ=1,2

εµ(k, λ) ε∗ν(k, λ) = Agµν + Bnµnν + C(kµnν + kνnµ) + Dkµkν,

where contractions with kµ and nµ imply that

B = 0, C = −
A

k · n
, D = n2 A

(k · n)2 .

Normalizing with ε(k, λ) · ε(k, λ) = −1 we find A = −1 and thus∑
λ=1,2

εµ(k, λ) ε∗ν(k, λ) = −gµν +
kµnν + kνnµ

k · n
− n2 kµkν

(k · n)2 .

A.4 Color algebra

The SU(NC) generator matrices ta (a = 1, . . . ,N2
C − 1) satisfy the following

commutation relation [39]:
[ta, tb] = i f abctc (A.13)

and are normalized with

Tr[tatb] = TF δ
ab, TF =

1
2
. (A.14)

We then have the following relations (i, j, k = 1, . . . ,NC):

ta
i jt

a
jk = CF δik, CF =

N2
C − 1
2NC

, (A.15)

f abc f abd = CA δ
cd, CA = NC, (A.16)

where in the case of NC = 3 the weights of the Casimir operator in the
fundamental and adjoint representations are,

CF =
4
3
, CA = 3, (A.17)

respectively.
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Appendix B

Kinematics

B.1 Sudakov decomposition

When extracting collinear divergences, it is convenient to parametrize momenta
using the Sudakov decomposition [16]. For a generic four-momentum k we
may write

k = αp + βn + k⊥, (B.1)

where p and n are arbitrary four-momenta (but have to satisfy p · n , 0), and
k⊥ is chosen such that

p · k⊥ = n · k⊥ = 0. (B.2)

If n2 = 0, as is often convenient to choose, then by squaring Eq. (B.1) we find
(for non-zero α)

β =
k2
− k2
⊥
− α2p2

2αp · n
. (B.3)

Thus, the vector k becomes parametrized by its virtuality k2, its transverse
component k⊥, and α, the fraction of momentum along p.

In a frame chosen so that

p = (p0, 0, 0, p3), n = (n0, 0, 0,n3) (B.4)

we have
k = (αp0 + βn0,k⊥, αp3 + βn3), k2

⊥
= −k2

⊥
(B.5)
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and the k-differential can be writen as

d4k = dαdk2 d2k⊥ |

∣∣∣∣∣∣ p0 +
dβ
dαn0 p3 +

dβ
dαn3

dβ
dk2 n0 dβ

dk2 n3

∣∣∣∣∣∣ |
= dαdk2 d2k⊥

∣∣∣∣∣ dβ
dk2

∣∣∣∣∣ |p0n3
− p3n0

|

= dαdk2 d2k⊥

∣∣∣∣∣ 1
2αp · n

∣∣∣∣∣ |p · n|
=

dα
2|α|

dk2 d2k⊥,

(B.6)

where we used the property that since n is a null vector, we have n3 = ±n0 in
this frame.

B.2 Transverse momentum tensor integrals

When integrating over the transverse momentum plane we obtain following
identities ∫

d2k⊥
kµ
⊥

D(k2
⊥

)
= 0, (B.7)

∫
d2k⊥

kµ
⊥

kη
⊥

D(k2
⊥

)
=

1
2

(
−gµη +

pµnη + pηnµ

p · n
− p2 nµnη

(p · n)2

) ∫
d2k⊥

k2
⊥

D(k2
⊥

)
, (B.8)

where the denominator functionD only depends on the square of the transverse
momentum and not on the individual components separately.

Proof of Eq. (B.7): In the following vector integral

Iµk⊥ ≡
∫

d2k⊥
kµ
⊥

D(k2
⊥

)
,

the only non-scalar objects the result can depend on are the vectors p and n
parametrizing the left-over momentum space. Thus, by the Lorentz symmetry,
the vector integral can be decomposed as

Iµk⊥ = Apµ + Bnµ.
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Contracting with pµ, nµ and reguiring n2 = 0 we find

A =
1

p · n
nµIµk⊥ = 0,

B =
1

p · n
pµIµk⊥ −

p2

p · n
A = 0.

Hence
Iµk⊥ = 0.

Proof of Eq. (B.8): Following the same reasoning as above, the rank-2 tensor
integral

Iµηk⊥
≡

∫
d2k⊥

kµ
⊥

kη
⊥

D(k2
⊥

)

can be decomposed as

Iµηk⊥
= Agµη + Bpµpη + C(pµnη + pηnµ) + Dnµnη.

Assuming n2 = 0, the contraction with pµ, nµ yields a set of equations, which
can be solved for

B = 0, C = −
A

p · n
, D = p2 A

(p · n)2 .

Then, finally, from the contraction with gµη, we find

A = −
1
2

∫
d2k⊥

k2
⊥

D(k2
⊥

)
,

and thus

Iµηk⊥
=

1
2

(
−gµη +

pµnη + pηnµ

p · n
− p2 nµnη

(p · n)2

) ∫
d2k⊥

k2
⊥

D(k2
⊥

)
.
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