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Abstra
t. We solve analyti
ally the Kadano��Baym equations for a nonintera
ting jun
tion


onne
ted to an arbitrary number of nonintera
ting wide-band terminals. The initial equilibrium

state is properly des
ribed by the addition of an imaginary tra
k to the time 
ontour. From the

solution we obtain the time-dependent ele
tron densities and 
urrents within the jun
tion. The

�nal results are analyti
 expressions as a fun
tion of time, and therefore no time propagation is

needed � either in transient or in steady-state regimes. We further present and dis
uss some

appli
ations of the obtained formulae.

1. Introdu
tion

The Landauer�Büttiker formula [1, 2℄ provides an intuitive physi
al pi
ture of the steady-state


urrent �owing in a multi-terminal jun
tion and it is simple to implement. First one 
al
ulates

the steady-state 
urrent Iαβ in terminal β 
arried by the s
attering states originating from

terminal α 6= β and populated a

ording to the ele
tro
hemi
al potential µα. Then one sums

the di�eren
e Iαβ − Iβα between the 
urrents �owing in and out terminal β over all terminals

α 6= β. This gives the steady-state 
urrent Iβ in terminal β.
The �rst mi
ros
opi
 derivation (based on the time-dependent S
hrödinger equation) of the

Landauer�Büttiker formula was given by Caroli and 
o-workers [3, 4℄. They 
onsidered the

terminals initially un
onta
ted and in equilibrium at di�erent 
hemi
al potentials. Then they

swit
hed on the 
onta
ts and derived the Landauer�Büttiker formula as the long-time limit of

the expe
tation value at time t of the 
urrent operator. We will refer to this pro
edure as the

partitioned approa
h.

An alternative approa
h, more akin to the the way the experiments are 
arried out, was

proposed by Cini about a de
ade later [5℄. He 
onsidered the system initially 
onta
ted and

in equilibrium at a unique 
hemi
al potential and then drove the system out of equilibrium by

applying a bias voltage between the terminals. We will refer to this pro
edure as the partion-free

approa
h. In both approa
hes one re
overs the Landauer�Büttiker formula due to the loss of

memory of the initial preparation [6℄.
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The mi
ros
opi
 derivation of the Landauer�Büttiker formula requires the evaluation of the

expe
tation value Iβ(t) = 〈Ψ(t)|Îβ |Ψ(t)〉 where |Ψ(t)〉 is the many-body state of the system at

time t and Îβ is the 
urrent operator. Sin
e the ele
trons are nonintera
ting this expe
tation

value 
an be rewritten as the sum over all o

upied one-parti
le states |ψk(t)〉 = e−iĥt|ψk〉 of

〈ψk(t)|Îβ |ψk(t)〉. Here ĥ is the Hamiltonian of the 
onta
ted and biased system whereas |ψk〉 are

the eigenstates of the Hamiltonian ĥ0 whi
h des
ribes either the non-biased un
onta
ted system

(in the partitioned approa
h) or the non-biased 
onta
ted system (in the partition-free approa
h).

For the evaluation of 〈ψk(t)|Îβ |ψk(t)〉 one 
ould naively insert a 
omplete set of eigenstates |φq〉

of ĥ and evaluate the overlaps 〈ψk|φq〉. This pro
edure is, however, numeri
ally lengthy and

unstable due to the singular δ-like 
ontribution to the overlaps. The 
al
ulation of Iβ(t) is

most easily 
arried out using nonequilibrium Green's fun
tions [7, 8℄. This mathemati
al tool

when applied to quantum transport in multi-terminal jun
tions provides a natural framework to


al
ulate the 
urrent at all times and not only at the steady state.

In fa
t, there have been several attempts to generalize the Landauer�Büttiker formula to the

time domain. Here we mention the work of Pastawski who derived a formula for Iβ(t) using the

partitioned approa
h in the linear response and adiabati
 regime [9℄. An important step forward

in the 
al
ulation of Iβ(t) was done by Jauho et al. [8℄. These authors used the partitioned

approa
h to write Iβ(t) as a double integral (over time and energy) of the tra
e over the jun
tion

degrees of freedom of a 
al
ulable 
ombination of Green's fun
tions in the same region. In the

spe
ial 
ase of terminals with a wide band and of jun
tions with one single level it is possible to

perform the time-integral and obtain a time-dependent version of the Landauer�Büttiker formula.

This formula was then derived in Ref. [6℄ using the partition-free approa
h, thus 
on�rming the

loss of memory of the initial preparation.

The derivation of a time-dependent Landauer�Büttiker formula for arbitrary jun
tions would

be extremely useful to interpret the os
illations and damping times typi
ally observed in the

transient 
urrent after the sudden swit
h on of a bias. A progress in this dire
tion was done in

Ref. [10℄ where the authors derived a time-dependent Landauer�Büttiker formula for the spin


urrent of a single-level jun
tion.

In this work we generalize the results of Ref. [10℄ to jun
tions of any shape and dimensions

using the wide-band limit approximation (WBLA) for nonintera
ting ele
trons (Se
s. 2 and

3). Furthermore we also derive a general formula for the time-dependent one-parti
le density

matrix whi
h 
an be used to 
al
ulate the lo
al density and 
urrent density. We will work in

the partition-free approa
h whi
h is 
on
eptually easier sin
e it does not involve the subtle issue

of di�erent 
hemi
al potentials in equilibrium. The �nal formulae for the 
urrent and the one-

parti
le density matrix have the merit of elu
idating the relative importan
e of the ele
troni


transitions at a 
ertain time. As an illustration we will use these formulae to 
al
ulate the

transient response of a ring-shaped jun
tion (Se
. 4).

2. Assumptions and set-up

We investigate the following quantum transport setup: An arbitrary number of metalli
 leads

(α) a
ting as 
harge-
arrier reservoirs are 
onne
ted to a latti
e network a
ting as a mole
ular

devi
e (C). We assume that the ele
tron transport is ballisti
 and therefore negle
t the ele
tron�

ele
tron intera
tions. We will also assume that the energy eigenvalues of the Hamiltonian of the

mole
ular devi
e are well inside the 
ontinuous energy spe
trum of the leads and use the WBLA.

The des
ribed set-up is 
hara
terized by the following Hamiltonian:

Ĥ =
∑

kα,σ

ǫ†kαn̂
†
kα,σ +

∑

mn,σ

T †mnd̂
†
m,σd̂

†
n,σ +

∑

mkα,σ

[

T †mkαd̂
†
m,σd̂

†
kα,σ + T †kαmd̂

†
kα,σd̂

†
m,σ

]

. (1)

The �rst term a

ounts for the leads with kα indexing the k:th basis fun
tion of the α = 1, 2, 3, . . .
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lead. The single-parti
le spe
trum of the leads is ǫkα and the number operator in the leads is

expressed in terms of the 
reation and annihilation operators as n̂†kα,σ = d̂†kα,σd̂
†
kα,σ, with σ the

spin index. The se
ond term is for the mole
ular devi
e, or 
entral region, (indi
es m and n)

with 
reation and annihilation operators d̂†m,σ and d̂†m,σ and hoppings Tmn between sites m and

n. The last term is for the 
oupling between the 
entral region and the leads with hoppings

Tmkα.

At times t < t0 the system is in thermal equilibrium at inverse temperature β and 
hemi
al

potential µ, the density matrix having the form ρ̂ = 1
Z e−β(Ĥ−µN̂)

where Z is the grand-
anoni
al

partition fun
tion. At t = t0 the lead energy levels are suddenly shifted by some 
onstant value,

ǫkα → ǫkα + Vα, to model the sudden swit
h-on of an external bias voltage in the α:th lead.

This means that the system is driven out of equilibrium and 
harge 
arriers start to �ow through

the 
entral region. To 
al
ulate the time-dependent 
urrent we use the equations of motion for

the one-parti
le Green's fun
tion on the Keldysh 
ontour γ
K

. This quantity is de�ned as the

ensemble average of the 
ontour-ordered produ
t of parti
le 
reation and annihilation operators

in the Heisenberg pi
ture

Grs(z, z
′) = −i〈Tγ

K

[d̂†r,H(z)d̂†s,H(z′)]〉 (2)

where the indi
es r, s 
an be either indi
es in the leads or in the 
entral region and the variables

z, z′ run on the 
ontour

1
. The matrix G with matrix elements Grs satis�es the equations of

motion

[

i
d

dz
− h(z)

]

G(z, z′) = δ(z, z′)1 , (3)

G(z, z′)

[

−i

←
d

dz′
− h(z′)

]

= δ(z, z′)1 , (4)

with Kubo�Martin�S
hwinger (KMS) boundary 
onditions. Here h(z) is the single-parti
le

Hamiltonian. In the basis kα and m the matrix h has the following blo
k stru
ture

h =










h11 0 0 · · · h1C

0 h22 0 · · · h2C

0 0 h33 · · · h3C
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

hC1 hC2 hC3 · · · hCC










, (5)

where (hαα′)kk′ = δαα′δkk′ǫkα 
orresponds to the leads, (hαC)km = Tkαm is the 
oupling part, and

(hCC)mn = Tmn a

ounts for the 
entral region. As the system is initially in thermal equilibrium

we have that for z on the verti
al tra
k of the 
ontour ǫkα(z) = ǫkα − µ, Tkαm(z) = Tkαm

and Tmn(z) = Tmn − µδmn. On the other hand for z on the horizontal bran
hes we have

ǫkα(z) = ǫkα +Vα, Tkαm(z) = Tkαm and Tmn(z) = Tmn. Due to the 
oupling between the 
entral

region and the leads the matrix G has nonvanishing entries everywhere

G =






G11 · · · G1C
.

.

.

.

.

.

.

.

.

GC1 · · · GCC




 . (6)

In the next Se
tion we solve the equations of motion (3) and (4) for the Green's fun
tion GCC

proje
ted in the 
entral region.

1
The 
ontour has a forward and a ba
kward bran
h on the real-time axis, [t0,∞[, and also a verti
al bran
h on

the imaginary axis, [t0, t0 − iβ] with inverse temperature β, see e.g. [11℄.
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3. Derivation of the time-dependent density and 
urrent

3.1. Proje
ting the equation of motion

We proje
t the equation of motion (3) onto regions CC and αC. The equation for GαC 
an

be integrated using the Green's fun
tion gαα(z, z′) of the isolated α:th reservoir. This Green's

fun
tion solves the equation of motion

[
i d
dz − hαα

]
gαα(z, z′) = δ(z, z′) as well as the adjoint

equation with KMS boundary 
onditions. Introdu
ing the embedding self-energy (with indi
es

in region C)

Σ
em

(z, z′) =
∑

α

Σα(z, z′) ; Σα(z, z′) = hCαgαα(z, z′)hαC (7)

we obtain the equation of motion for the Green's fun
tion of the 
entral region (the subs
ripts

CC are omitted from now on)

[

i
d

dz
− h

]

G(z, z′) = δ(z, z′) +

∫

γ
K

dz̄Σ
em

(z, z̄)G(z̄, z′) (8)

The adjoint equation of motion 
an be derived similarly and read [11℄

G(z, z′)

[

−i

←
d

dz′
− h

]

= δ(z, z′) +

∫

γ
K

dz̄G(z, z̄)Σ
em

(z̄, z′) . (9)

The embedded equations of motion for G have the same stru
ture as the Kadano��Baym

equations (KBE), the di�eren
e being that the many-body self-energy is repla
ed by the

embedding self-energy. In the 
ase of intera
ting ele
trons with an intera
tion only in the 
entral

region Eqs. (8) and (9) are modi�ed by the addition of the many-body self-energy Σ to the

embedding self-energy Σ
em

, i.e., Σ
em

→ Σ
em

+Σ . Sin
e Σ = Σ [G] is a fun
tional of the Green's
fun
tion in region C the embedded equations of motion in the intera
ting 
ase 
onstitute a


losed set of integro-di�erential, nonlinear equations for G [11℄. The simpli�
ation brought by

the absen
e of intera
tions is that the KBE (8) and (9) are linear in G sin
e the embedding

self-energy is 
ompletely spe
i�ed by the parameters of the Hamiltonian.

The density and 
urrent density 
an be extra
ted from the lesser 
omponent of the Green's

fun
tion at equal time. We denote by z = t− the 
ontour point on the forward bran
h, z = t+
the 
ontour point on the ba
kward bran
h and z = t0− iτ the 
ontour point on the verti
al tra
k.

The Keldysh 
omponents lesser (<), greater (>), retarded (R), advan
ed (A), left (⌈), right (⌉)
and Matsubara (M) of a fun
tion k(z, z′) on the 
ontour are de�ned a

ording to [12℄

k<(t, t′) = k(t−, t
′
+) (10)

k>(t, t′) = k(t+, t
′
−) (11)

kR(t, t′) = +θ(t− t′)
[
k>(t, t′) − k<(t, t′)

]
(12)

kA(t, t′) = −θ(t′ − t)
[
k>(t, t′) − k<(t, t′)

]
(13)

k⌈(τ, t′) = k(t0 − iτ, t′) (14)

k⌉(t, τ) = k(t, t0 − iτ) (15)

kM(τ, τ ′) = k(t0 − iτ, t0 − iτ ′) (16)

To generate an equation for G<
we subtra
t Eq. (9) from Eq. (8) and set z = t−, z

′ = t′+. Taking
into a

ount that h(z) = h is independent of z for z on the horizontal bran
hes we get at equal

time

i
d

dt
G<(t, t) −

[
h,G<(t, t)

]
=

[
Σ
R

em

·G< −GR · Σ<
em

+ Σ
<
em

·GA −G< · ΣA

em

]
(t, t)

+
[

Σ
⌉
em

⋆ G⌈ −G⌉ ⋆ Σ
⌈
em

]

(t, t) , (17)
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where we de�ned [f · g] (t, t′) =
∫∞
t0

dt̄f(t, t̄)g(t̄, t′) and [f ⋆ g] (t, t′) = −i
∫ β
0 dτf(t, τ)g(τ, t′).

Equation (17) 
an also be written as

i
d

dt
G<(t, t) −

[
h,G<(t, t)

]
= −

[

GR · Σ<
em

+G< · ΣA

em

+G⌉ ⋆ Σ
⌈
em

]

(t, t) + h.
. (18)

where we used the properties of G and Σ
em

under 
omplex 
onjugation [12℄.

Let us 
omment Eq. (18) brie�y. Setting the right-hand side to zero we see that Eq. (18)

redu
es to the Liouville equation for the one-parti
le density matrix ρ = −iG of the isolated


entral region. Thus the embedding self-energy a

ounts for the openness of region C. The �rst
term inside the square bra
kets is a 
onvolution between the propagator in region C, GR, and
Σ

<
em

. Sin
e Σ
<
em

is proportional to the probability of �nding an ele
tron in the leads this term 
an

be interpreted as a sour
e term, i.e., a term that des
ribes the inje
tion of ele
trons into region

C. The se
ond term has the opposite stru
ture: a propagator in the leads, Σ
A
em

, is 
onvoluted

with G<
whi
h is propotional to the probability of �nding an ele
tron in region C. Thus this

term 
an be interpreted as a drain term and is responsible for damping and equilibration e�e
ts.

The last term inside the square bra
kets a

ounts for the initial preparation of the system. In the

partioned approa
h this term would be zero sin
e the hopping integrals Tkαm = 0 in equilibrium.

However, in the partition-free approa
h this term is nonzero and a

ounts for the initial 
oupling

of the 
entral region to the leads.

More generally 
onvolutions along the verti
al tra
k 
arry information on the initial

preparation of the system. For instan
e for a system of intera
ting ele
trons we 
an either start

with a nonintera
ting system and then swit
h on the intera
tion in real time or we 
an start

with a system already intera
ting. In the latter 
ase the many-body self-energy is nonvanishing

on the verti
al tra
k and the 
onvolution G ⋆ Σ a

ounts for the e�e
ts of initial 
orrelations.

3.2. Self-energy and Green's fun
tion 
al
ulations

The solution of Eq. (18) requires �rst to 
al
ulate the Matsubara 
omponent GM, and then

from GM the right and left 
omponent G⌉ and G⌈. The Matsubara 
omponent GM 
an be

determined from the retarded/advan
ed 
omponents by analyti
 
ontinuation, see below. Sin
e

the equations for GM, G⌉ and G⌈ 
ontain the embedding self-energy the preliminary step is to

obtain an expression for Σ
em

.

Having a time-independent Hamiltonian (on the horizontal bran
hes of the 
ontour) the

retarded/advan
ed 
omponents of the self-energy depend only on the time di�eren
e

Σ
A

α,mn(t, t′) =

∫
dω

2π
e−iω(t−t′)

∑

k

Tmkα g
A
kα(ω)Tkαn (19)

where gkα is the diagonal element of the Green's fun
tion gαα of the isolated α:th lead, see Eq.

(7). The retarded 
omponent of the self-energy is found by 
onjugating Σ
R

α (t, t′) =
[
Σ
A

α (t′, t)
]†
.

A

ording to the WBLA the Fourier transform of Σ
A

α is frequen
y independent

Σ
A

α,mn(ω) =
∑

k

Tmkα g
A
kα(ω)Tkαn =

∑

k

Tmkα
1

ω − ǫkα − Vα − iη
Tkαn =

i

2
Γα,mn (20)

whi
h implies that Σ
A

α is also independent of the external bias voltage Vα. The time-dependent

self-energy of Eq. (19) is therefore

Σ
A

α,mn(t, t′) =

∫
dω

2π
e−iω(t−t′)

Σ
A

α,mn(ω) =
i

2
Γα,mnδ(t− t′) . (21)
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Within the WBLA we 
an easily 
al
ulate the two other self-energy 
omponents in Eq. (18) (see

Appendix A)

Σ
⌈
α,mn(τ, t) = Γα,mn

1

−iβ

∑

q

e−ωqτ

∫
dω

2π

ei(ω+Vα)t

ωq − ω + µ
, (22)

Σ
<
α,mn(t, t′) = iΓα,mn

∫
dω

2π
f(ω − µ)e−i(ω+Vα)(t−t′) , (23)

where the sum over q is a sum over the Matsubara frequen
ies ωq = (2q+1)π
−iβ , and the fun
tion f

is the Fermi fun
tion, f(ω) = 1/[eβω + 1].
Having the expli
it form of the self-energy 
omponents we 
an derive expressions for

the Green's fun
tion. For the following 
al
ulations it is 
onvenient to de�ne the e�e
tive

Hamiltonian h
e�

= h − i
2Γ ⇒ h†

e�

= h + i
2Γ , where Γ =

∑

α Γα. This e�e
tive Hamiltonian

is therefore non-hermitean. The two Green's fun
tion 
omponents in the square bra
kets of

Eq. (18) read (see Appendix B)

G⌉(t, τ) = e−ih
e�

t
[

GM(0, τ) −

∫ t

0
dt′eih

e�

t′
∫ β

0
dτ̄Σ ⌉em(t′, τ̄)GM(τ̄ , τ)

]

, (24)

GR(t, t′) = −iθ(t− t′)e−ih
e�

(t−t′) , (25)

with GM the Matsubara Green's fun
tion. GM 
an be obtained from GR and GA by analyti



ontinuation sin
e GM(ωq) = GR(ωq +µ) if Im[ωq] > 0 and GM(ωq) = GA(ωq +µ) if Im[ωq] < 0,
see Appendix B.

Now we have all ingredients to 
al
ulate the 
onvolutions in Eq. (18). We report here the

�nal results and refer to Appendix C for details. The three terms read

[
GR · Σ<

em

]
(t, t) = i

∑

α

∫
dω

2π
f(ω − µ)

[

1 − ei(ω+Vα−h
e�

)
]

GR(ω + Vα)Γα , (26)

[
G< · ΣA

em

]
(t, t) =

i

2
G<(t, t)Γ , (27)

[

G⌉ ⋆ Σ
⌈
em

]

(t, t) = i

∫
dω

2π
f(ω − µ)

∑

α

ei(ω+Vα−h
e�

)tGR(ω)Γα . (28)

3.3. Solving Eq. (18) for G<(t, t)
We insert Eqs. (26), (27) and (28) into Eq. (18) and get

i
d

dt
G<(t, t) −

[
h,G<(t, t)

]

= −

{

i
∑

α

∫
dω

2π
f(ω − µ)

[

1 − ei(ω+Vα−h
e�

)t
]

GR(ω + Vα)Γα +
i

2
ΓG<(t, t)

+ i

∫
dω

2π
f(ω − µ)

∑

α

ei(ω+Vα−h
e�

)tGR(ω)Γα

}

+ h.
. (29)
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This is a nonhomogeneous, linear, �rst-order di�erential equation for G<(t, t) and, therefore, 
an
be solved expli
itly. The solution is worked out in Appendix D and reads

−iG<(t, t) =

∫
dω

2π
f(ω − µ)

∑

α

{

Aα(ω + Vα)

+ Vα

[

ei(ω+Vα−h
e�

)tGR(ω)Aα(ω + Vα) + h.
.

]

+ V 2
α e−ih

e�

tGR(ω)Aα(ω + Vα)GA(ω)eih†
e�

t
}

, (30)

where we introdu
ed the partial spe
tral fun
tion as

Aα(ω) = GR(ω)ΓαG
A(ω) . (31)

The full nonequilibrium spe
tral fun
tion is A(ω) =
∑

αAα(ω).
Given the original 
omplexity of the problem the �nal result is surprisingly 
ompa
t. Equation

(30) is an expli
it 
losed formula for the equal-time G<
or, equivalently, for the redu
ed one-

parti
le density matrix. All the quantities inside the integral 
an be 
al
ulated separately, and

no time-propagation nor self-
onsisten
y algorithms are needed. Also, we may extra
t several

physi
al properties:

(i) With no external bias, Vα = 0, only the �rst row 
ontributes. This term 
orre
tly gives

the equilibrium value of the equal-time G<
sin
e at zero bias

∑

αAα(ω) is the equilibrium
spe
tral fun
tion.

(ii) Both the se
ond and the third row vanish exponentially in the long-time limit, and the

equal-time G<
approa
hes a unique steady-state value.

(iii) The transient dynami
s is given by the se
ond and the third row. By inserting a 
omplete

set of eigenstates of the e�e
tive Hamiltonian h
e�

we noti
e that:

(a) The se
ond row gives rise to os
illations with frequen
y ωj = |µ+ Vα − ǫe�j | where ǫe�j
is the real part of the j:th 
omplex eigenvalue of h

e�

. These os
illations 
orrespond to

transitions between the biased Fermi level of the leads and the resonant levels of the


entral mole
ule.

(b) The third term a

ounts for intramole
ular transitions and leads to os
illations with

frequen
y ωjk = |ǫe�j −ǫe�k |. These os
illations are visible only if the e�e
tive Hamiltonian

h
e�

does not 
ommute with Γα. In the 
ase that [h
e�

,Γα] = 0 the time dependen
e of

the third term is of the form e−ih
e�

t+ih†
e�

t = e−Γ t
.

3.4. Current 
al
ulation

The time-dependent 
urrent through the interfa
e between the 
entral region and the α:th
reservoir is 
al
ulated from the following equation [11℄

Iα(t) = 4qRe
{

Tr
[

Σ
<
α ·GA + Σ

R

α ·G< + Σ
⌉
α ⋆ G

⌈
]

(t, t)
}

. (32)

For the terms inside Eq. (32) we pro
eed in the same manner as we did previously to obtain the

results in Eqs. (26), (27) and (28):

[
Σ

<
α ·GA

]
(t, t) = i

∫
dω

2π
f(ω − µ)ΓαG

A(ω + Vα)
[

1 − e−i(ω+Vα−h†
e�

)t
]

, (33)

[
Σ
R

α ·G<
]
(t, t) = −

i

2
ΓαG

<(t, t) , (34)

[

Σ
⌉
α ⋆ G

⌈
]

(t, t) = i

∫
dω

2π
f(ω − µ)ΓαG

A(ω)e−i(ω+Vα−h†
e�

)t . (35)
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1

2 3

4

56

Figure 1: Six-site ring 
oupled symmetri
ally to one-dimensional TB leads.

Figure 2: S
hemati
 of the transport setup through the energy levels of the mole
ule.

Inserting these results into Eq. (32) and taking into a

ount the expli
it expression for G<(t, t)
in Eq. (30) we get

Iα(t) = −2

∫
dω

2π
f(ω − µ)

∑

β

Tr
{

ΓαG
R(ω + Vβ)Γ βG

A(ω + Vβ) − ΓαG
R(ω + Vα)Γ βG

A(ω + Vα)

+ Vβ

[

Γαei(ω+Vβ−h
e�

)tGR(ω)
(
−iδαβG

R(ω + Vβ) +Aβ(ω + Vβ)
)

+ h.
.

]

+ V 2
β Γαe−ih

e�

tGR(ω)Aβ(ω + Vβ)GA(ω)eih†
e�

t
}

. (36)

The physi
al interpretation of the terms in Eq. (36) is similar to the one after Eq. (30). We have

a steady-state part given by the �rst row, and a time-dependent part given by the se
ond and

the third rows. The time-dependent part vanishes exponentially in the long-time limit and the

os
illations in the 
urrent have the same stru
ture as in the redu
ed one-parti
le density matrix.

4. Results

Let us 
onsider a six-site tight-binding ring 
onne
ted to two tight-binding, semi-in�nite, one-

dimensional leads as shown s
hemati
ally in Figs. 1 and 2. The parameters a

ording to the

notation in the �gures are tC = −2.0 (hopping in the mole
ule), 
hemi
al potential µ = 0 and

zero temperature (β → ∞). We 
hoose the hopping tL = tR in the left/right lead to be mu
h

larger than any other energy s
ale. Then ΣA
α (ω ∼ µ) = i t2αC/tα + O(1/t2α) where tαC is the

hopping between the mole
ule and the leads. For this situation the WBLA with Γα = 2t2αC/tα
is a very good approximation. We study the weak 
oupling 
ase ΓL,R = 0.1 and drive the system

out of equilibrium by the sudden swit
h-on of a bias VL = V = −VR. We analyze the 
ontribution

of di�erent terms in the 
harge 
urrent 
orresponding to di�erent physi
al features as dis
ussed

below Eq. (30). In Eq. (36) the �rst row is 'steady state', the se
ond row 
onsists of '1st term,

a' and '1st term, b' and the third row is '2nd term'. The se
ond row is divided into two parts

[∼ GR(ω)GR(ω + Vβ) and ∼ GR(ω)Aβ(ω + Vβ)℄ sin
e they give rise to di�erent features.

In Figs. 3 and 4 we plot the 
urrent through the right interfa
e and see that weakly biased

leads, V = 0.5, give a negligible steady-state 
urrent. Transitions between the biased leads and

the mole
ule are 
aptured by the '1st term, a'. This is 
on�rmed by the peak in the Fourier

spe
trum at ωj = ǫe�j ± V . Transitions between the mole
ular levels are a

ounted for by the
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'2nd term', as it 
an be seen in the Fourier transform with a peak at ω = 6. In addition to our

previous observations: (1) the '1st term, b' also gives rise to intramole
ular transitions and (2)

there seems to be no intramole
ular transitions at ω = 2 or ω = 4. By expanding Eq. (36) in the

eigenbasis of the e�e
tive Hamiltonian and manipulating the terms further one 
an show that

the the '1st term, b' 
ontains a term of the form e−i(ǫe�j −ǫe�
k

)t
whi
h explains the �rst �nding.

The se
ond �nding suggests that there is some underlying sele
tion rule for some of the energy

levels and hen
e that some levels do not parti
ipate to the transport pro
ess.

0 2 4 6 8 10

tΓ

-2

-1

0

1

2

I r
ig
h
t
(t
)/
Γ

VL = −VR = |tC |/4
Contact: L1 ↔ 1, 4 ↔ R1

1st term, a
1st term, b
2nd term
Full result

Figure 3: Di�erent terms of the time-

dependent 
urrent in units of Γ through the

right interfa
e with symmetri
 
oupling and

weak bias.

0 2 4 6 8 10
ω

10−2

10−1

100

101

|F
{
I r

ig
h
t
(t
)}
(ω

)|
/
Γ

VL = −VR = |tC |/4
Contact: L1 ↔ 1, 4 ↔ R1 1st term, a

1st term, b
2nd term
Full result

Figure 4: Absolute value of the Fourier

transform of the terms of the 
urrent in

units of Γ.

If we in
rease the bias window to 
over the �rst mole
ular levels, V = 2.5, then we see in

Fig. 5 that the 
urrent has a non-zero steady-state value. Similar �ndings, as with weaker bias,

for the possible transitions are seen in Fig. 6. We also see that there is a small bump at ω = 4 in

'1st term, b' and '2nd term'. Given that the setup is 
ompletely identi
al to the previous 
ase,

this fa
t is due to a se
ond (or higher) order response sin
e the same symmetry arguments apply.

0 2 4 6 8 10

tΓ

-2

-1

0

1

2

I r
ig
h
t
(t
)/
Γ

VL = −VR = 5|tC |/4
Contact: L1 ↔ 1, 4 ↔ R1

1st term, a
1st term, b
2nd term
Full result

Figure 5: Di�erent terms of the time-

dependent 
urrent in units of Γ through the

right interfa
e with symmetri
 
oupling and

strong bias.

0 2 4 6 8 10
ω

10−2

10−1

100

101

|F
{
I r

ig
h
t
(t
)}
(ω

)|
/
Γ

VL = −VR = 5|tC |/4
Contact: L1 ↔ 1, 4 ↔ R1 1st term, a

1st term, b
2nd term
Full result

Figure 6: Absolute value of the Fourier

transform of the terms of the 
urrent in

units of Γ.

If we, however, distort the symmetry of the jun
tion then also the intramole
ular transitions

with lower energies be
ome visible. This is 
learly seen in Figs. 7 and 8 where we 
onne
t the

mole
ule asymmetri
ally to the leads (1st site to the left and 3rd site to the right, see Fig. 1). We


an also break the symmetry by deforming the mole
ule with, for instan
e, one hopping (between
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0 2 4 6 8 10

tΓ

-2

-1

0

1

2

I r
ig
h
t
(t
)/
Γ

VL = −VR = |tC |/4
Contact: L1 ↔ 1, 3 ↔ R1

1st term, a
1st term, b
2nd term
Full result

Figure 7: Di�erent terms of the time-

dependent 
urrent in units of Γ through the

right interfa
e with asymmetri
 
oupling

and weak bias.

0 2 4 6 8 10
ω

10−2

10−1

100

101

|F
{
I r

ig
h
t
(t
)}
(ω

)|
/
Γ

VL = −VR = |tC |/4
Contact: L1 ↔ 1, 3 ↔ R1 1st term, a

1st term, b
2nd term
Full result

Figure 8: Absolute value of the Fourier

transform of the terms of the 
urrent in

units of Γ.

sites 1 and 6) being 2tC . This splits the degenerate levels in Fig. 2 and also the 
orresponding

intramole
ular transitions 
an be seen in Figs. 9 and 10.

0 2 4 6 8 10

tΓ

-2

-1

0

1

2

I r
ig
h
t
(t
)/
Γ

VL = −VR = |tC |/4
Contact: L1 ↔ 1, 4 ↔ R1, deformed

1st term, a
1st term, b
2nd term
Full result

Figure 9: Di�erent 
omponents of the time-

dependent 
urrent in units of Γ through the

right interfa
e of a deformed mole
ule with

symmetri
 
oupling and weak bias.

0 2 4 6 8 10
ω

10−2

10−1

100

101

|F
{
I r

ig
h
t
(t
)}
(ω

)|
/
Γ

VL = −VR = |tC |/4
Contact: L1 ↔ 1, 4 ↔ R1 1st term, a

1st term, b
2nd term
Full result

Figure 10: Absolute value of the Fourier

transform of the terms of the 
urrent in

units of Γ.

As the 
ontributions from di�erent terms sum up to the total 
urrent we 
an plot the full

results for, e.g., the right 
urrent of the symmetri
ally 
oupled mole
ule against, e.g., the bias

or the 
oupling strength. In Figs. 11, 12, 13 and 14 we display the full results. The transient

dynami
s is visualized better but distinguishing between the di�erent 
ontributions is more


ompli
ated. In Fig. 13 and 14 the axes are not s
aled due to varying Γ. It is 
lear that by

in
reasing the bias window more levels open up for transport and therefore the steady-state


urrent grows. The os
illation frequen
ies 
orresponding to transitions between mole
ular levels

remain un
hanged while the os
illation frequen
ies 
orresponding to transitions between the

mole
ule and the leads vary (peak shift). By in
reasing Γ, and hen
e by widening the resonan
es,
ele
trons 
an �ow even with intermediate bias voltages. Correspondingly, the steady-state value

of the 
urrent in
reases, the relaxation time de
reases whereas the os
illation frequen
ies remain

invariant.
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I r
ig
h
t
(t
)/
Γ

VL = 1|tC |/4 = −VR

VL = 5|tC |/4 = −VR

VL = 9|tC |/4 = −VR

Figure 11: Time-dependent 
urrent in

units of Γ through the right interfa
e with

symmetri
 
oupling (Γ = 0.1) and varying

bias. (Dotted lines refer to steady-state

values.)
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ig
h
t
(t
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(ω

)|
/
Γ

VL = 1|tC |/4 = −VR

VL = 5|tC |/4 = −VR

VL = 9|tC |/4 = −VR

Figure 12: Absolute value of the Fourier

transformed right 
urrent in units of Γ.
white ba
kground text to level the �gures.

have some more white text. have some more

white text.
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Figure 13: Time-dependent 
urrent

through the right interfa
e with symmet-

ri
 
oupling (varying strength) and bias

VL = −VR = 2.5. (Dotted lines refer to

steady-state values.)
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Figure 14: Absolute value of the Fourier

transformed right 
urrent. white ba
k-

ground text to level the �gures. have some

more white text. have some more white

text.

5. Con
lusions

In 
on
lusion we solved the Kadano��Baym equations for the Green's fun
tion of an open

nonintera
ting system by properly taking into a

ount the initial 
onta
ts between the system

and the reservoirs. We used the analyti
 solution for the time-dependent density matrix to

derive a time-dependent version of the Landauer�Büttiker formula. As an appli
ation we


onsidered a tight-binding benzene-shaped jun
tion and 
al
ulated the time-dependent 
urrent

�owing through it. The advantages of having an expli
it solution are that the numeri
al e�ort is

drasti
ally redu
ed and that the transient behavior 
an easily be interpreted in terms of virtual

transitions and de
ay rates. Our time-dependent Landauer�Büttiker formula holds promise for

studying the transient behavior of large jun
tions like, e.g., wide nanoribbons or large-diameter

nanotubes, as well as disordered jun
tions where a large number of simulations is required to

perform the average over di�erent 
on�gurations.
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Appendix A. Self-energy 
al
ulations

The Matsubara self-energy is an antiperiodi
 fun
tion (we are studying fermions) with period

given by the inverse temperature β. For the 
al
ulation of the Fourier 
oe�
ients we 
an use the

relation: Σ
M

α (ω ± iη) = Σ
R/A
α (ω + µ). Therefore the Matsubara self-energy is simply given by

Σ
M

α,mn(τ, τ ′) =
1

−iβ

∑

q

e−ωq(τ−τ ′)
Σ
M

α,mn(ωq) (A.1)

where

Σ
M

α,mn(ωq) =







− i
2Γα Im[ωq] > 0

+ i
2Γα Im[ωq] < 0

(A.2)

and ωq = (2q + 1)π/(−iβ) are the Matsubara frequen
ies. For the isolated Green's fun
tion of

the biased α:th reservoir we have

gRkα(t, t0) = −iθ(t− t0)e
−i(ǫkα+Vα)(t−t0) , (A.3)

gMkα(τ, τ ′) =
1

−iβ

∑

q

e−ωq(τ−τ ′)

ωq − ǫkα + µ
. (A.4)

Without loss of generality we take the time t0 at whi
h the bias is swit
hed on to be zero. Then

we 
an write

g
⌉
kα(t, τ) = igRkα(t, 0)gMkα(0, τ) = e−i(ǫkα+Vα)tgMkα(0, τ) , (A.5)

g
⌈
kα(τ, t) = −igMkα(τ, 0)gAkα(0, t) = ei(ǫkα+Vα)tgMkα(τ, 0) . (A.6)

By using Eqs. (A.5) and (A.6) we 
an 
al
ulate the right and left embedding self-energies

Σ
⌉
α,mn(t, τ) =

1

−iβ

∑

q

eωqτ
∑

k

Tm,kα
e−i(ǫkα+Vα)t

ωq − ǫkα + µ
Tkα,n

= Γα,mn
1

−iβ

∑

q

eωqτ

∫
dω

2π

e−i(ω+Vα)t

ωq − ω + µ
, (A.7)

Σ
⌈
α,mn(τ, t) =

1

−iβ

∑

q

e−ωqτ
∑

k

Tm,kα
ei(ǫkα+Vα)t

ωq − ǫkα + µ
Tkα,n

= Γα,mn
1

−iβ

∑

q

e−ωqτ

∫
dω

2π

ei(ω+Vα)t

ωq − ω + µ
, (A.8)

where we used Γα,mn = 2π
∑

k Tmkαδ(ω − ǫkα − Vα)Tkαn. It only remains to 
al
ulate the lesser


omponent. We have

g<
kα(t, t′) = if(ǫkα − µ)e−i(ǫkα+Vα)(t−t′)

(A.9)

and therefore

Σ
<
α,mn(t, t′) =

∑

k

Tm,kαif(ǫkα − µ)e−i(ǫkα+Vα)(t−t′)Tkα,n

= iΓα,mn

∫
dω

2π
f(ω − µ)e−i(ω+Vα)(t−t′) . (A.10)
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Appendix B. Green's fun
tion 
al
ulations

The Fourier 
oe�
ient of the Matsubara Green's fun
tion reads

GM(ωq) =
1

ωq − h− Σ
M

em(ωq) + µ
=







1
ωq−h+ i

2
Γ+µ

Im[ωq] > 0

1
ωq−h− i

2
Γ+µ

Im[ωq] < 0

=







1
ωq−h

e�

+µ Im[ωq] > 0
1

ωq−h†
e�

+µ
Im[ωq] < 0 ,

(B.1)

where we de�ned h
e�

= h − i
2Γ . The right 
omponent of the Green's fun
tion 
an be derived

from the equation of motion

[

i
d

dt
− h

]

G⌉(t, τ) =

∫ ∞

0
dt̄ΣR

em(t, t̄)G⌉(t̄, τ) − i

∫ β

0
dτ̄Σ ⌉em(t, τ̄ )GM(τ̄ , τ) . (B.2)

The insertion of the retarded self-energy from Eq. (20) leads to

G⌉(t, τ) = e−ih
e�

t
[

GM(0, τ) −

∫ t

0
dt′eih

e�

t′
∫ β

0
dτ̄Σ ⌉em(t′, τ̄)GM(τ̄ , τ)

]

, (B.3)

where we noti
ed that GM(0, τ) = G⌉(0, τ).
Finally the retarded Green's fun
tion in Fourier spa
e reads

GR(ω) =
1

ω − h− Σ
R

em(ω)
=

1

ω − h+ i
2Γ

(B.4)

and Fourier transforming ba
k in the time domain we re
over Eq. (25).

Appendix C. The three terms in Eq. (18)

For the �rst term we use Eqs. (25) and (A.10) to obtain

[
GR · Σ<

em

]
(t, t) =

∫ ∞

0
dt̄ GR(t, t̄)Σ<

em(t̄, t)

= i
∑

α

∫
dω

2π
f(ω − µ)

[

1 − ei(ω+Vα−h
e�

)
]

GR(ω + Vα)Γα . (C.1)

Also the se
ond term is readily 
al
ulated by using Eq. (21)

[
G< · ΣA

em

]
(t, t) =

∫ ∞

0
dt̄ G<(t, t̄)ΣA

em(t̄, t) =
i

2
G<(t, t)Γ . (C.2)

The third term involves somewhat more tri
kery be
ause of the rather 
ompli
ated form of the

right Green's fun
tion. Inserting the expressions from Eqs. (B.3) and (A.8) we get

[

G⌉ ⋆ Σ
⌈
em

]

(t, t) = −i

∫ β

0
dτ G⌉(t, τ)Σ ⌈em(τ, t)

= e−ih
e�

t

{[

GM ⋆ Σ
⌈
em

]

(0, t) − i

∫ t

0
dt′eih

e�

t′
[

Σ
⌉
em ⋆ GM ⋆ Σ

⌈
em

]

(t′, t)

}

.

(C.3)
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By using

∫ β
0 dτe(ωq−ωq′)τ = βδqq′ for the Matsubara frequen
ies we may manipulate Eq. (C.3)

further. Inserting Eqs. (A.7), (A.8) and (B.1) we obtain for the double 
onvolution

[

Σ
⌉
em ⋆ GM ⋆ Σ

⌈
em

]

(t′, t) = −i

∫ β

0
dτ(−i)

∫ β

0
dτ̄Σ ⌉em(t′, τ̄)GM(τ̄ , τ)Σ ⌈em(τ, t)

=

∫
dω

2π

∫
dω′

2π

∑

α,α′

Γα
1

−iβ

∑

q

e−i(ω+Vα)t′

ωq − ω + µ
GM(ωq)

ei(ω′+Vα′ )t

ωq − ω′ + µ
Γα′ .

(C.4)

The integration with respe
t to ω 
an be done by 
losing the 
ontour in lower-half plane (LHP)

be
ause of the exponential 
onvergen
e fa
tor, whereas the integration with respe
t to ω′ 
an be

done by 
losing the 
ontour in the upper-half plane (UHP). However, the 
orresponding poles

are lo
ated on di�erent half planes, and this makes the double integral to vanish for every ωq.

Hen
e [

Σ
⌉
em

⋆ GM ⋆ Σ
⌈
em

]

(t′, t) = 0 , (C.5)

and in Eq. (C.3) we are left with

[

GM ⋆ Σ
⌈
em

]

(0, t) = −i

∫ β

0
dτGM(0, τ)Σ ⌈

em

(τ, t)

=

∫
dω

2π

1

−iβ

∑

q

GM(ωq)e
ηωq

ωq − ω + µ

∑

α

Γαei(ω+Vα)t , (C.6)

where on the last line a 
onvergen
e fa
tor eηωq
was added to a

ount for 
orre
t limiting

behaviour when t → 0. The sum over Matsubara frequen
ies 
an be performed using the

Luttinger�Ward tri
k [13℄ and yields

1

−iβ

∑

q

GM(ωq)e
ηωq

ωq − ω + µ
=

∫

γ

dω′

2π
f(ω′)eηω′ GM(ω′)

ω′ − ω + µ

=

∫ ∞

−∞

dω′

2π
f(ω′)

[
GM(ω′ − iδ)

ω′ − ω + µ− iδ
−

GM(ω′ + iδ)

ω′ − ω + µ+ iδ

]

. (C.7)

By inserting Eq. (C.7) into Eq. (C.6) we get

[

GM ⋆ Σ
⌈
em

]

(0, t) =

∫
dω

2π

∫
dω′

2π
f(ω′)

[
GM(ω′ − iδ)

ω′ − ω + µ− iδ
−

GM(ω′ + iδ)

ω′ − ω + µ+ iδ

]
∑

α

Γαei(ω+Vα)t .

(C.8)

Now the integral over ω 
an be done by 
losing the 
ontour in the UHP. The �rst term in square

bra
kets integrates to zero be
ause of the pole in the LHP. The pole of the se
ond term o

urs

at ω = ω′ + µ+ iδ, and therefore

[

GM ⋆ Σ
⌈
em

]

(0, t) = i

∫
dω′

2π
f(ω′)GM(ω′ + iδ)

∑

α

ei(ω′+µ+iδ+Vα)t

δ → 0+

ω′ = ω − µ

}

→ = i

∫
dω

2π
f(ω − µ)GM(ω − µ)

︸ ︷︷ ︸

=GR(ω)

∑

α

Γαei(ω−µ+µ+Vα)t

= i

∫
dω

2π
f(ω − µ)GR(ω)

∑

α

Γαei(ω+Vα) . (C.9)

Progress in Nonequilibrium Green’s Functions V (PNGF V) IOP Publishing
Journal of Physics: Conference Series 427 (2013) 012014 doi:10.1088/1742-6596/427/1/012014

14



This 
an be inserted into Eq. (C.3) to obtain

[

G⌉ ⋆ Σ
⌈
em

]

(t, t) = i

∫
dω

2π
f(ω − µ)

∑

α

ei(ω+Vα−h
e�

)tGR(ω)Γα . (C.10)

Appendix D. Derivation of Eq. (30)

We �rst state some useful identities for the retarded/advan
ed Green's fun
tion to be used later:

GR/A(ω + Vα) = GR/A(ω) − VαG
R/A(ω)GR/A(ω + Vα) , (D.1)

whi
h 
an be 
he
ked dire
tly by using Eq. (B.4) and its adjoint. From Eq. (D.1) it follows that

V 2
αG

R(ω)GA(ω)GR(ω + Vα)GA(ω + Vα) =
[
GR(ω) −GR(ω + Vα)

] [
GA(ω) −GA(ω + Vα)

]
.

(D.2)

Taking into a

ount Eq. (D.1) in Eq. (29) we get

i
d

dt
G<(t, t) − h

e�

G<(t, t) +G<(t, t)h†
e�

= −i

∫
dω

2π
f(ω − µ)

∑

α

{

ei(ω+Vα−h
e�

)tVαG
R(ω)GR(ω + Vα) +GR(ω + Vα)

}

Γα

+ i

∫
dω

2π
f(ω − µ)

∑

α

Γα

{

GA(ω + Vα)GA(ω)Vαe−i(ω+Vα−h†
e�

)t +GA(ω + Vα)
}

. (D.3)

It is 
onvenient to rewrite the Green's fun
tion as G<(t, t) = e−ih
e�

tG̃<(t, t)eih†
e�

t
. In this way

the left-hand side of Eq. (D.3) be
omes

i
d

dt

[

e−ih
e�

tG̃<(t, t)eih†
e�

t
]

− h
e�

e−ih
e�

tG̃<(t, t)eih†
e�

t + e−ih
e�

tG̃<(t, t)eih†
e�

th†
e�

= e−ih
e�

ti
d

dt
G̃<(t, t)eih†

e�

t . (D.4)

Then the right-hand side of Eq. (D.3) 
an be multiplied from left by eih
e�

t
and from right by

e−ih†
e�

t
to give

i
d

dt
G̃<(t, t) = −i

∫
dω

2π
f(ω − µ)

∑

α

eih
e�

t
[
GR(ω + Vα)Γα − ΓαG

A(ω + Vα)
]
eih†

e�

t

−i

∫
dω

2π
f(ω − µ)

∑

α

Vα

[

GR(ω)GR(ω + Vα)Γαei(ω+Vα−h†
e�

)t

−e−i(ω+Vα−h
e�

)t
ΓαG

A(ω + Vα)GA(ω)
]

. (D.5)

Now we are ready to integrate both sides over t to obtain

G̃<(t, t) − G̃<(0, 0+)
︸ ︷︷ ︸

=G<(0,0+)=GM(0,0+)

= −

∫
dω

2π
f(ω − µ)

∑

α

∫ t

0
dt′

×
{

eih
e�

t′
[
GR(ω + Vα)Γα − ΓαG

A(ω + Vα)
]
e−ih†

e�

t′

−Vα

[

GR(ω)GR(ω + Vα)Γαei(ω+Vα−h†
e�

)t′

−e−i(ω+Vα−h
e�

)t′
ΓαG

A(ω + Vα)GA(ω)
]}

. (D.6)
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The integration over t′ for the se
ond term in Eq (D.6) 
an easily be done. For the �rst term we

need the following result: Given two arbitrary matri
es A and B

∫ t

0
dt′eiAt′

[
1

x−A
B −B

1

x−A†

]

e−iA†t′ = −ieiAt′ 1

x−A
B

1

x−A†
e−iA†t′ , (D.7)

whi
h 
an dire
tly be veri�ed by di�erentiating the right-hand side with respe
t to t′. Applying
this result to Eq. (D.6) we obtain

G̃<(t, t) = i

∫
dω

2π
f(ω − µ)

∑

α

{

GR(ω)ΓαG
A(ω) + eih

e�

tGR(ω + Vα)ΓαG
A(ω + Vα)e−ih†

e�

t

−GR(ω + Vα)ΓαG
A(ω + Vα)

+VαG
R(ω)GR(ω + Vα)ΓαG

A(ω)GA(ω + Vα)ei(ω+Vα−h†
e�

)t

−VαG
R(ω)GR(ω + Vα)ΓαG

A(ω)GA(ω + Vα)

+VαG
R(ω + Vα)e−i(ω+Vα−h

e�

)t
ΓαG

A(ω + Vα)GA(ω)

−VαG
R(ω + Vα)ΓαG

A(ω + Vα)GA(ω)
}
. (D.8)

Then the de�nition for G̃ 
an be inserted into the left-hand side, and multiply a

ordingly with

e−ih
e�

t
from left and with eih†

e�

t
from right. Combining terms a

ording to Eqs. (D.1) and (D.2)

we �nd Eq. (30).
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