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Abstract. We solve analytically the Kadanoff-Baym equations for a noninteracting junction
connected to an arbitrary number of noninteracting wide-band terminals. The initial equilibrium
state is properly described by the addition of an imaginary track to the time contour. From the
solution we obtain the time-dependent electron densities and currents within the junction. The
final results are analytic expressions as a function of time, and therefore no time propagation is
needed — either in transient or in steady-state regimes. We further present and discuss some
applications of the obtained formulae.

1. Introduction

The Landauer—Biittiker formula [1, 2] provides an intuitive physical picture of the steady-state
current flowing in a multi-terminal junction and it is simple to implement. First one calculates
the steady-state current I,g in terminal 3 carried by the scattering states originating from
terminal o # [ and populated according to the electrochemical potential p,. Then one sums
the difference 1,3 — Ig, between the currents flowing in and out terminal 3 over all terminals
a # (3. This gives the steady-state current Ig in terminal 3.

The first microscopic derivation (based on the time-dependent Schrodinger equation) of the
Landauer—Biittiker formula was given by Caroli and co-workers [3, 4]. They considered the
terminals initially uncontacted and in equilibrium at different chemical potentials. Then they
switched on the contacts and derived the Landauer—Biittiker formula as the long-time limit of
the expectation value at time t of the current operator. We will refer to this procedure as the
partitioned approach.

An alternative approach, more akin to the the way the experiments are carried out, was
proposed by Cini about a decade later [5|. He considered the system initially contacted and
in equilibrium at a unique chemical potential and then drove the system out of equilibrium by
applying a bias voltage between the terminals. We will refer to this procedure as the partion-free
approach. In both approaches one recovers the Landauer—Biittiker formula due to the loss of
memory of the initial preparation [6].

Published under licence by IOP Publishing Ltd 1
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The microscopic derivation of the Landauer—Biittiker formula requires the evaluation of the
expectation value Ig(t) = (¥(t)|/5|¥(t)) where |¥(t)) is the many-body state of the system at

time ¢t and I3 is the current operator. Since the electrons are noninteracting this expectation

value can be rewritten as the sum over all occupied one-particle states [¢(t)) = e |yy) of
(1 (t)|150x(t)). Here h is the Hamiltonian of the contacted and biased system whereas |1, are
the eigenstates of the Hamiltonian ho which describes either the non-biased uncontacted system
(in the partitioned approach) or the non-biased contacted system (in the partition-free approach).
For the evaluation of (¢, (t)|15]1x(t)) one could naively insert a complete set of eigenstates |¢;)
of h and evaluate the overlaps (1x|¢,). This procedure is, however, numerically lengthy and
unstable due to the singular d-like contribution to the overlaps. The calculation of Ig(t) is
most easily carried out using nonequilibrium Green’s functions |7, 8]. This mathematical tool
when applied to quantum transport in multi-terminal junctions provides a natural framework to
calculate the current at all times and not only at the steady state.

In fact, there have been several attempts to generalize the Landauer—Biittiker formula to the
time domain. Here we mention the work of Pastawski who derived a formula for I(t) using the
partitioned approach in the linear response and adiabatic regime [9]. An important step forward
in the calculation of Ig(t) was done by Jauho et al. [8]. These authors used the partitioned
approach to write I5(t) as a double integral (over time and energy) of the trace over the junction
degrees of freedom of a calculable combination of Green’s functions in the same region. In the
special case of terminals with a wide band and of junctions with one single level it is possible to
perform the time-integral and obtain a time-dependent version of the Landauer—Biittiker formula.
This formula was then derived in Ref. |6] using the partition-free approach, thus confirming the
loss of memory of the initial preparation.

The derivation of a time-dependent Landauer—Biittiker formula for arbitrary junctions would
be extremely useful to interpret the oscillations and damping times typically observed in the
transient current after the sudden switch on of a bias. A progress in this direction was done in
Ref. [10] where the authors derived a time-dependent Landauer-Biittiker formula for the spin
current of a single-level junction.

In this work we generalize the results of Ref. [10] to junctions of any shape and dimensions
using the wide-band limit approximation (WBLA) for noninteracting electrons (Secs. 2 and
3). Furthermore we also derive a general formula for the time-dependent one-particle density
matrix which can be used to calculate the local density and current density. We will work in
the partition-free approach which is conceptually easier since it does not involve the subtle issue
of different chemical potentials in equilibrium. The final formulae for the current and the one-
particle density matrix have the merit of elucidating the relative importance of the electronic
transitions at a certain time. As an illustration we will use these formulae to calculate the
transient response of a ring-shaped junction (Sec. 4).

2. Assumptions and set-up

We investigate the following quantum transport setup: An arbitrary number of metallic leads

(o) acting as charge-carrier reservoirs are connected to a lattice network acting as a molecular

device (C). We assume that the electron transport is ballistic and therefore neglect the electron—

electron interactions. We will also assume that the energy eigenvalues of the Hamiltonian of the

molecular device are well inside the continuous energy spectrum of the leads and use the WBLA.
The described set-up is characterized by the following Hamiltonian:

A=Y cuinst > Tondhodno + > {kaadl,wdkaﬁ + Tl o] - (1)

ka,o mn,o mka,o

The first term accounts for the leads with k£« indexing the k:th basis function of the o = 1,2, 3, ...
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lead. The single-particle spectrum of the leads is €, and the number operator in the leads is

expressed in terms of the creation and annihilation operators as 7, 0o = dmli aﬁdk a0 with o the
spin index. The second term is for the molecular device, or central region, (indices m and n)
with creation and annihilation operators (ﬂm,o and chJ and hoppings T}, between sites m and
n. The last term is for the coupling between the central region and the leads with hoppings
Tinka-

At times ¢ < tp the system is in thermal equilibrium at inverse temperature 8 and chemical
potential p, the density matrix having the form p = %e_ﬁ(H —#N) where Z is the grand-canonical
partition function. At ¢t = ¢y the lead energy levels are suddenly shifted by some constant value,
€ka — €ka + Va, to model the sudden switch-on of an external bias voltage in the a:th lead.
This means that the system is driven out of equilibrium and charge carriers start to flow through
the central region. To calculate the time-dependent current we use the equations of motion for
the one-particle Green’s function on the Keldysh contour yx. This quantity is defined as the
ensemble average of the contour-ordered product of particle creation and annihilation operators
in the Heisenberg picture

Gra(2,2) = —i(Tyy [d, y(2)d] 1 (2)]) 2)

where the indices r, s can be either indices in the leads or in the central region and the variables
z, 2/ run on the contour'. The matrix G' with matrix elements G, satisfies the equations of
motion

[ii—h(z)] G(s2) = 6(z )1, 3)
G(z,7) [—i%—h(z’)] — 5z )1, (4)

with Kubo-Martin—-Schwinger (KMS) boundary conditions. Here h(z) is the single-particle
Hamiltonian. In the basis ka and m the matrix h has the following block structure

hyp 0 0 - e
0 hpe 0 -+ hy

h=1| 0 0 hsg -+ hac| | (5)
hci he2 hesz -+ hee

where (haa/ )ik’ = Oaa’ Okk €ka cOrTesponds to the leads, (hac)km = Tkam i the coupling part, and
(hco)mn = Timn accounts for the central region. As the system is initially in thermal equilibrium
we have that for z on the vertical track of the contour €xo(z) = €xa — iy Tham(2) = Tkam
and Ty, (2) = T — MOmn- On the other hand for z on the horizontal branches we have
€ka(2) = €ka+ Vo, Tham(2) = Tram and Ty (z) = Ty Due to the coupling between the central
region and the leads the matrix G has nonvanishing entries everywhere

Gu - Gic
G=1| : . | (6)
Ge1 -+ Geo

In the next Section we solve the equations of motion (3) and (4) for the Green’s function Gee
projected in the central region.

! The contour has a forward and a backward branch on the real-time axis, [to, 00[, and also a vertical branch on
the imaginary axis, [to,to — i3] with inverse temperature (3, see e.g. [11].
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3. Derivation of the time-dependent density and current

3.1. Projecting the equation of motion

We project the equation of motion (3) onto regions CC and aC'. The equation for G, can
be integrated using the Green’s function guq(z,2’) of the isolated a:th reservoir. This Green’s
function solves the equation of motion [i% — haa) 9aa(2,2') = 6(2,2') as well as the adjoint
equation with KMS boundary conditions. Introducing the embedding self-energy (with indices
in region C)

Eem(za z,) = Z Ea(za z,) ; Ea(z’ Z/) = hCagaa(Z, Z/)haC (7)

we obtain the equation of motion for the Green’s function of the central region (the subscripts
CC are omitted from now on)

[ii - h] G(z,2)=06(z72)+ / dz¥em(z,2)G(z, 2) (8)
dz TK
The adjoint equation of motion can be derived similarly and read [11]
Gle ) |-t _ :&@£)+/d%X%@Em@JU. (9)
2! TK

The embedded equations of motion for G have the same structure as the Kadanoff-Baym
equations (KBE), the difference being that the many-body self-energy is replaced by the
embedding self-energy. In the case of interacting electrons with an interaction only in the central
region Egs. (8) and (9) are modified by the addition of the many-body self-energy X' to the
embedding self-energy Yep, i.€., Yem — Yem + 2. Since X = Y[G] is a functional of the Green’s
function in region C' the embedded equations of motion in the interacting case constitute a
closed set of integro-differential, nonlinear equations for G' [11]. The simplification brought by
the absence of interactions is that the KBE (8) and (9) are linear in G since the embedding
self-energy is completely specified by the parameters of the Hamiltonian.

The density and current density can be extracted from the lesser component of the Green’s
function at equal time. We denote by z = t_ the contour point on the forward branch, z = ¢,
the contour point on the backward branch and z = ¢y —ir the contour point on the vertical track.
The Keldysh components lesser (<), greater (>), retarded (R), advanced (A), left ([), right (])
and Matsubara (M) of a function k(z, z’) on the contour are defined according to [12]

k<(t,t) = k(t_,t) (10)
k= (t,t) = k(ty,t) (11)
Rt t) = 40t —t) [k (1) — k<t t)] (12)
At Y)Y = =0t —t) [k () — k<t t)] (13)
kit = Kty —irt) (14)
El(t,7) = k(t to—ir) (15)
k‘M(T, ™) = k(to—ir,to—ir) (16)

To generate an equation for G< we subtract Eq. (9) from Eq. (8) and set z = t_, 2/ = t/_. Taking
into account that h(z) = h is independent of z for z on the horizontal branches we get at equal
time

i%G< tt)— [hG<(tt)] = [ZR, -GZ-GM - Z5, + 25, G*—G< -5 ] (1)

+ pg*@_auz;yu% (17)
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where we defined [f -g| (t,t') = ftzo def(t,t)g(t,t') and [f *g] (¢t,t') = —ifoﬁde(t,T)g(T,t,).
Equation (17) can also be written as

i%G<(t,t) G 0)] =~ [ Z5,+ 0% Bh + A 2l () +he. (18)

where we used the properties of G and Xy, under complex conjugation [12].

Let us comment Eq. (18) briefly. Setting the right-hand side to zero we see that Eq. (18)
reduces to the Liouville equation for the one-particle density matrix p = —iG of the isolated
central region. Thus the embedding self-energy accounts for the openness of region C. The first
term inside the square brackets is a convolution between the propagator in region C, G}, and
Yo Since X5, is proportional to the probability of finding an electron in the leads this term can
be interpreted as a source term, i.e., a term that describes the injection of electrons into region
C. The second term has the opposite structure: a propagator in the leads, Zﬁm, is convoluted
with G< which is propotional to the probability of finding an electron in region C. Thus this
term can be interpreted as a drain term and is responsible for damping and equilibration effects.
The last term inside the square brackets accounts for the initial preparation of the system. In the
partioned approach this term would be zero since the hopping integrals Ty, = 0 in equilibrium.
However, in the partition-free approach this term is nonzero and accounts for the initial coupling
of the central region to the leads.

More generally convolutions along the vertical track carry information on the initial
preparation of the system. For instance for a system of interacting electrons we can either start
with a noninteracting system and then switch on the interaction in real time or we can start
with a system already interacting. In the latter case the many-body self-energy is nonvanishing
on the vertical track and the convolution G x X' accounts for the effects of initial correlations.

3.2. Self-energy and Green’s function calculations
The solution of Eq. (18) requires first to calculate the Matsubara component GM, and then
from GM the right and left component G! and GI. The Matsubara component GM can be
determined from the retarded /advanced components by analytic continuation, see below. Since
the equations for GM, G| and Gl contain the embedding self-energy the preliminary step is to
obtain an expression for Y.

Having a time-independent Hamiltonian (on the horizontal branches of the contour) the
retarded /advanced components of the self-energy depend only on the time difference

dw s o A
E (bt = [ e 3 Tk 00 Thc (19)
where g, is the diagonal element of the Green’s function g.o of the isolated a:th lead, see Eq.
(7). The retarded component of the self-energy is found by conjugating X2 (¢,¢') = [Zé(t’, t)]T.
According to the WBLA the Fourier transform of X2 is frequency independent

1 i

Zém"m(w) = Z kaa gﬁa(w) Tkan = Z kaaw p — V. — inTkan - gra,mn (20)
L & a «a

which implies that Y Q is also independent of the external bias voltage V. The time-dependent
self-energy of Eq. (19) is therefore

a,mn a,mn

A () = / (21—:e—iw@—t’>2A (w):%FQ,mna(t—t’). (21)
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Within the WBLA we can easily calculate the two other self-energy components in Eq. (18) (see
Appendix A)

dw ellwtValt
[ — e WaT 22
Zoc,mn(T?t) amn BZ /27‘(‘ wg — W+N ( )
Zamn(t) = il amn dwf(w pe (AR (23)

where the sum over ¢ is a sum over the Matsubara frequencies w, = (2‘”:;) and the function f

is the Fermi function, f(w) = 1/[e® + 1].

Having the explicit form of the self-energy components we can derive expressions for
the Green’s function. For the following calculations it is convenient to define the effective
Hamiltonian heg = h — —F = hlff = h+ 51", where I' = ) I'y. This effective Hamiltonian
is therefore non- hermltean The two Green s function components in the square brackets of

Eq. (18) read (see Appendix B)

Gl r) = —lheﬁt[GM (0,7) / dt’ellent’ / arxl (', 7)GM(7, T)] , (24)
GR(t,t,) _ _19( _ )e iheg(t— t)’ (25)

with GM the Matsubara Green’s function. GM can be obtained from G® and G* by analytic
continuation since GM(w,) = G (w, + p) if Im[w,] > 0 and GM(w,) = GA(w, + p) if Im[w,] < 0,
see Appendix B.

Now we have all ingredients to calculate the convolutions in Eq. (18). We report here the
final results and refer to Appendix C for details. The three terms read

h ezl = 1Y ‘21—: flo— ) [1 - e o] QR Vo)l L (26)
[G< ’ ZeAm] (tvt) = %G< (t7t)F ) (27)
[cﬂ * x‘gm} (t,t) = i g—: Flw—p)) eWtVa—hetGR(G)I, . (28)

3.3. Solving Eq. (18) for G<(t, t)
We insert Eqs. (26), (27) and (28) into Eq. (18) and get

d o <
IEG (t,t) — [h, G=(t,t)]

_{j%:/;i_:f(w—u) ellwtVa— ):|GR(UJ+V) +%FG<(t7t)

d .
+ l/ﬁf(w . :u) Z el(w-i—Va—heff)tGR(w)Fa} +h.c. (29)
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This is a nonhomogeneous, linear, first-order differential equation for G<(¢,t) and, therefore, can
be solved explicitly. The solution is worked out in Appendix D and reads

—iG<(t,t) = (21—:]“((4;—#)2{ Ag(w+ V)

e

+ v, [ei<w+va—heff>tGR(w)Aa(w V) + h.c.}
+ V2ethert GR(L) A (w + Va)GA(w)eihth } 7 (30)
where we introduced the partial spectral function as
Ag(w) = GR(W) oG (W) . (31)

The full nonequilibrium spectral function is A(w) =" Aq(w).

Given the original complexity of the problem the final result is surprisingly compact. Equation
(30) is an explicit closed formula for the equal-time G< or, equivalently, for the reduced one-
particle density matrix. All the quantities inside the integral can be calculated separately, and
no time-propagation nor self-consistency algorithms are needed. Also, we may extract several
physical properties:

(i) With no external bias, V,, = 0, only the first row contributes. This term correctly gives
the equilibrium value of the equal-time G< since at zero bias ), A, (w) is the equilibrium
spectral function.

(ii) Both the second and the third row vanish exponentially in the long-time limit, and the
equal-time G< approaches a unique steady-state value.

(iii) The transient dynamics is given by the second and the third row. By inserting a complete
set of eigenstates of the effective Hamiltonian heg we notice that:

(a) The second row gives rise to oscillations with frequency w; = |u + Vo — egﬂ] where e;'fff
is the real part of the j:th complex eigenvalue of heg. These oscillations correspond to
transitions between the biased Fermi level of the leads and the resonant levels of the
central molecule.

(b) The third term accounts for intramolecular transitions and leads to oscillations with
frequency wjj, = ]e}’fﬂ—eiﬂ . These oscillations are visible only if the effective Hamiltonian
hegr does not commute with I'y,. In the case that [heg, I'o] = 0 the time dependence of

. : - iy
the third term is of the form e iremt+ifigt — o=t

3.4. Current calculation
The time-dependent current through the interface between the central region and the a:th
reservoir is calculated from the following equation [11]

Ia(t) = 4¢Re {Tr [2; GA 4 IR .G 4 5] « G(] (t,t)} . (32)

For the terms inside Eq. (32) we proceed in the same manner as we did previously to obtain the
results in Eqgs. (26), (27) and (28):

[(55-GM (1) = i / ‘21—: Fw— ) aG M w + Vy) [1 - e—i<w+Va—hlff>t} , (33)
[(ZR.G] (t,t) = —%FQG<(t,t) : (34)

[Zl«cT] e = i/ %f@—mraGA<w>e-i<w+Va—hlﬂ>f. (35)
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Figure 1: Six-site ring coupled symmetrically to one-dimensional TB leads.
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Figure 2: Schematic of the transport setup through the energy levels of the molecule.

Inserting these results into Eq. (32) and taking into account the explicit expression for G<(t,t)
in Eq. (30) we get

L) = 2 5w —m Y]
B

FoGMw + V3) TG (w + Vi) — ToGR(w + Vo) 3G w + V)
+ Vs [Faei(‘*’*‘/ﬂ_heff)tGR(w) (—i00sG™(w + Vi) + Ag(w + Vi) + h.c.}

+ VT Mt GR(w) Ag(w + Vi) G (w)eltent } . (36)

The physical interpretation of the terms in Eq. (36) is similar to the one after Eq. (30). We have
a steady-state part given by the first row, and a time-dependent part given by the second and
the third rows. The time-dependent part vanishes exponentially in the long-time limit and the
oscillations in the current have the same structure as in the reduced one-particle density matrix.

4. Results

Let us consider a six-site tight-binding ring connected to two tight-binding, semi-infinite, one-
dimensional leads as shown schematically in Figs. 1 and 2. The parameters according to the
notation in the figures are t¢ = —2.0 (hopping in the molecule), chemical potential ¢ = 0 and
zero temperature (3 — o0o). We choose the hopping ¢, = tr in the left /right lead to be much
larger than any other energy scale. Then Y4 (w ~ p) = it2,/ta + O(1/t2) where toc is the
hopping between the molecule and the leads. For this situation the WBLA with I', = 2t2/t,
is a very good approximation. We study the weak coupling case I', g = 0.1 and drive the system
out of equilibrium by the sudden switch-on of a bias Vi, = V' = —Vg. We analyze the contribution
of different terms in the charge current corresponding to different physical features as discussed
below Eq. (30). In Eq. (36) the first row is ’steady state’, the second row consists of '1st term,
a’ and ’'1st term, b’ and the third row is ’2nd term’. The second row is divided into two parts
[~ GR(w)GR(w + Vj) and ~ GR*(w)Ag(w + Vj)] since they give rise to different features.

In Figs. 3 and 4 we plot the current through the right interface and see that weakly biased
leads, V = 0.5, give a negligible steady-state current. Transitions between the biased leads and
the molecule are captured by the ’1st term, a’. This is confirmed by the peak in the Fourier
spectrum at w; = e?ﬁ £ V. Transitions between the molecular levels are accounted for by the
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2nd term’; as it can be seen in the Fourier transform with a peak at w = 6. In addition to our
previous observations: (1) the ’Ist term, b’ also gives rise to intramolecular transitions and (2)
there seems to be no intramolecular transitions at w = 2 or w = 4. By expanding Eq. (36) in the

eigenbasis of the effective Hamiltonian and manipulating the terms further one can show that
s(ceff _ _eff
the the ’'lst term, b’ contains a term of the form e (5 ~%)* which explains the first finding.

The second finding suggests that there is some underlying selection rule for some of the energy
levels and hence that some levels do not participate to the transport process.

T T T T T T T T T T T T T T
Contact: L1 <+ 1,4 <+ R1 Contact L1 <> 1, 4 ¢ R1 1
2n Ve R N Vo v leeia = stterm,a]
L Vi =-Vg =|tcl/4 ] 5 L r=ltcl/ 1stterm, b |]
N B = 2nd term
S 3w Full result
= o~ —— =
B L T | = r T e —— ]
B L - - -— 1stterm, a 1 El . ]
- —- lstterm, b =
P 1 K
, e == 2ndterm 1 —
o . .o ‘_‘ Fx:u"‘ re?‘UI} i 1072 L L *"'NMMWO»M,W“.&
0 2 4 6 8 10 0 2 4 6 8 10
tI w
Figure 3: Different terms of the time- Figure 4: Absolute value of the Fourier
dependent current in units of I' through the transform of the terms of the current in
right interface with symmetric coupling and units of I'.
weak bias.

If we increase the bias window to cover the first molecular levels, V = 2.5, then we see in
Fig. 5 that the current has a non-zero steady-state value. Similar findings, as with weaker bias,
for the possible transitions are seen in Fig. 6. We also see that there is a small bump at w =4 in
"Ist term, b’ and "2nd term’. Given that the setup is completely identical to the previous case,
this fact is due to a second (or higher) order response since the same symmetry arguments apply.

T T T T T —T T 1T T T T T T T
Contact: L1 <» 1,4 <> R1 i Contact: L1 < i 4 +» R1 _ 1
2 M. Vi =—Vg=5tc|/4 10 B V. = Vg = 5ltol/4 1stterm, a 1
N 1 L i —- lstterm, b 3
1l Ve B = ) —-— 2ndterm
= ff" ~—____ 3 3w Tt — Full result
E oofl, m e DT s e = t g 3
5l PR ] = ‘mhhﬂl *W*"’""“‘WM
G P = Istterm,a]| 2o i) ym L N
! - —-  lstterm, b S hﬂlﬂlﬂl mmmlﬂ
L - | K ]
ol == 2ndterm 1 - ]
— Full result 10-2 .
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Figure 5: Different terms of the time- Figure 6: Absolute value of the Fourier
dependent current in units of I' through the transform of the terms of the current in
right interface with symmetric coupling and units of I'.

strong bias.

If we, however, distort the symmetry of the junction then also the intramolecular transitions
with lower energies become visible. This is clearly seen in Figs. 7 and 8 where we connect the
molecule asymmetrically to the leads (1st site to the left and 3rd site to the right, see Fig. 1). We
can also break the symmetry by deforming the molecule with, for instance, one hopping (between
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Figure 7: Different terms of the time- Figure 8: Absolute value of the Fourier

transform of the terms of the current in
units of T'.

dependent current in units of I' through the
right interface with asymmetric coupling
and weak bias.

sites 1 and 6) being 2tc. This splits the degenerate levels in Fig. 2 and also the corresponding
intramolecular transitions can be seen in Figs. 9 and 10.
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to

—— —— A — "
| Contact: L1 ¢ 1,4 < R1, deformed i i Contact L1 14 R1 1st term, a
o Ve =—Vr=ltcl/4 W0 ER -V ==Vg = tcl/4 N
3 "\\ ‘, 2N 1stterm, b |3
. Fs 1
o ey 4 = [N 2nd term
& TN 3 ~ Full resul
S ST ~— ull result 4
E P i = TN A ]
e .- 1 = —— ]
E e - 1stterm, a Ej
j s - —  1stterm, b " E.H
e —— 2ndterm —=
- H
— Full result |
n ! Twed /. N,/
4 6 8 10
w

Figure 9: Different components of the time-
dependent current in units of I' through the
right interface of a deformed molecule with
symmetric coupling and weak bias.

Figure 10: Absolute value of the Fourier
transform of the terms of the current in
units of T'.

As the contributions from different terms sum up to the total current we can plot the full
results for, e.g., the right current of the symmetrically coupled molecule against, e.g., the bias
or the coupling strength. In Figs. 11, 12, 13 and 14 we display the full results. The transient
dynamics is visualized better but distinguishing between the different contributions is more
complicated. In Fig. 13 and 14 the axes are not scaled due to varying I'. It is clear that by
increasing the bias window more levels open up for transport and therefore the steady-state
current grows. The oscillation frequencies corresponding to transitions between molecular levels
remain unchanged while the oscillation frequencies corresponding to transitions between the
molecule and the leads vary (peak shift). By increasing I', and hence by widening the resonances,
electrons can flow even with intermediate bias voltages. Correspondingly, the steady-state value
of the current increases, the relaxation time decreases whereas the oscillation frequencies remain
invariant.



Progress in Nonequilibrium Green’s Functions V (PNGF V) IOP Publishing

Journal of Physics: Conference Series 427 (2013) 012014 doi:10.1088/1742-6596/427/1/012014
' ' = \;in\tc|l/4:;vR 1015' N VVlevlitcvl/ilzvaV;zé
-= Vi =bltc|/4=-Vr|] =~ -= Vi =5ltc]/4=-VRr|]
& — Vi =9tc|/4=-Vr E 100 | o —_ VL=9‘tC‘/4:—VR?
jﬂ e e — jED 1071
N ]
0 o S i e S i i e o e = e =] 1072
0 1 2 3 4 5
tI"
Figure 11: Time-dependent current in Figure 12: Absolute value of the Fourier
units of I' through the right interface with transformed right current in units of T
symmetric coupling (I' = 0.1) and varying
bias. (Dotted lines refer to steady-state
values.)
= TF
0 i 11(} 111 20
t w
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ric coupling (varying strength) and bias
Vi = —Vr = 2.5. (Dotted lines refer to
steady-state values.)

5. Conclusions

In conclusion we solved the Kadanoff-Baym equations for the Green’s function of an open
noninteracting system by properly taking into account the initial contacts between the system
and the reservoirs. We used the analytic solution for the time-dependent density matrix to
derive a time-dependent version of the Landauer—Biittiker formula. As an application we
considered a tight-binding benzene-shaped junction and calculated the time-dependent current
flowing through it. The advantages of having an explicit solution are that the numerical effort is
drastically reduced and that the transient behavior can easily be interpreted in terms of virtual
transitions and decay rates. Our time-dependent Landauer-Biittiker formula holds promise for
studying the transient behavior of large junctions like, e.g., wide nanoribbons or large-diameter
nanotubes, as well as disordered junctions where a large number of simulations is required to
perform the average over different configurations.
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Appendix A. Self-energy calculations
The Matsubara self-energy is an antiperiodic function (we are studying fermions) with period
given by the inverse temperature 3. For the calculation of the Fourier coefficients we can use the

relation: IM(w +in) = SR/ A(w + ). Therefore the Matsubara self-energy is simply given by
Zg/lmn( / - —lﬁ Z e_wq — a mn(wq) (Al)

where i
N —50 Imw,] >0
Ea mn( q) = X (AQ)
+500 Imfwy] <0

and wy = (2¢ + 1)7/(—if) are the Matsubara frequencies. For the isolated Green’s function of
the biased a:th reservoir we have

gl (t,tg) = —i@(t—to) —i(eratVa)(t—to) (A.3)
—wgq(T—7")

M N A4

Ira (T, T') _lﬁ E wq—ekaw (A4)

Without loss of generality we take the time tg at which the bias is switched on to be zero. Then
we can write

Gha(t:7) = igfa(t.0)gla (0,7) = ¢TGN (0.7) (A5)
o) = gm0l 0,0 = 7). (A.6)
By using Eqgs. (A.5) and (A.6) we can calculate the right and left embedding self-energies

l(eka+va)

EL,mn (t7 T) = —lﬁ Z e¥a” Z Tm ka S IuTkoc,n
dw e ilwtVa)t
_ war TR AT
—ig Z 2 wg—w+p’ (A7)
’_ _ 1 (ekat+Va)t
Ea,mn (7_7 t) = Z waT Z Tm ka S MTkam
dw ellwtValt
— —WqT A8
Laymn —ig Z /27r Wy —w+p’ (A8)

where we used I'qmn = 27 Y ) Tinkad(w — €ka — Vo) Than- It only remains to calculate the lesser
component. We have

glja(t t/) = if(eka - N)e_i(eka+va)(t_t/) (Ag)

and therefore

Z; mn( /) = Z Tm,kaif(eka - M)e_i(eka"'va)(t_t/)Tka,n

= WL [ S 70— et (A.10)
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Appendix B. Green’s function calculations
The Fourier coefficient of the Matsubara Green’s function reads

S S
GM(w ) = 1 _ wq—h+%[’+“ Im[wq] 0
q wq—h—ngn(wq)+M m Imfw,] <0
ﬁleﬁ_hu Imwg] >0
T Y —L— Imlw] <0 (B.1)
wWqg— hTﬁ‘J’_M q ?

where we defined heg = h — %F . The right component of the Green’s function can be derived
from the equation of motion

[1(13 —h} Gl(t,7) / atxR (t, DG (T, 7) / drxl (t,7)GM (7, 7) . (B.2)
The insertion of the retarded self-energy from Eq. (20) leads to
. L
Gl(t.7) = e [GM(0,7) - / et / ar ), (7M7) (B.3)
0 0

where we noticed that GM(0,7) = G1(0, 7).
Finally the retarded Green’s function in Fourier space reads

1 1
w—h— 5% (W) _w—h—l—%F

GRw) = (B.4)

and Fourier transforming back in the time domain we recover Eq. (25).

Appendix C. The three terms in Eq. (18)
For the first term we use Egs. (25) and (A.10) to obtain

(Gh- 55 (6t) = / T A GR (D) IS (E 1)
0
= iz /(21—:f(w — 1) [1 - ei(“’+VQ_heH)] GRrw+ V)T, . (C.1)

Also the second term is readily calculated by using Eq. (21)

(G=- 28] (t,t) = /OOO dEG=(t, D) ZA (t,t) = %G<(t,t)F . (C.2)

The third term involves somewhat more trickery because of the rather complicated form of the
right Green’s function. Inserting the expressions from Eqs. (B.3) and (A.8) we get

B
615l 0 = i [ ardlensl, o
0

— o ihest { [GM*E( ] (0,1) / d¢’ eihest’ [ lm*GM*Ee[m} (t’,t)}.
(C.3)
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By using foﬁ dre@a=wg)T = Bdq4q for the Matsubara frequencies we may manipulate Eq. (C.3)
further. Inserting Eqs. (A.7), (A.8) and (B.1) we obtain for the double convolution

] Moyl ! - ’ N 1T (. A\CM(7 [
LGV XX () = —i dT( i) dTﬂcm(t,T)G (7, 1) X (T,t)

—i(w+Va)t’ N ol ”
= G — Iy .
/ / —~ 1ﬂzwq—w+,u (wq)wq—w,"i‘,u “

The integration with respect to w can be done by closing the contour in lower-half plane (LHP)
because of the exponential convergence factor, whereas the integration with respect to w’ can be
done by closing the contour in the upper-half plane (UHP). However, the corresponding poles
are located on different half planes, and this makes the double integral to vanish for every w.
Hence

[Pl x Gzl @0 =0, (C.5)
and in Eq. (C.3) we are left with
B
GMasl] 00 = i [ areo.n sl
0
dw 1 GM(w,)em
— _ Fa i(w+Va)t )
/Zw—iﬁzwq—w—l—uz © (C.6)

where on the last line a convergence factor e™¢ was added to account for correct limiting
behaviour when ¢ — 0. The sum over Matsubara frequencies can be performed using the
Luttinger—Ward trick [13] and yields

nw, / , M/,
el & e
—1ﬁ wq—w+u y 2T w—w+u

/°° d—w/f(w’) GM(w' —1i6) B GM(W' +i6)
oo 2m Ww-—w+p—1i W —w+p+id

| e

By inserting Eq. (C.7) into Eq. (C.6) we get

MW —i6)  GM(w +16) |
Myl / / W) _ [ ei@tVa)t |
[G * } (0,%) w’—w+,u—i5 W —w+p+1id EO; ¢

(C.8)
Now the integral over w can be done by closing the contour in the UHP. The first term in square
brackets integrates to zero because of the pole in the LHP. The pole of the second term occurs
at w = w' + p + 19, and therefore

/
(@l = {/éimeGM@/+n»§jQW%ww+wﬁ
2T

§— 0t dw M i(w—ptp+Va)t
;o - = w—p) G w—p I e\ rrhTVa
iy o fw=p) 2;
=GR (w)
= f w — 1)GR(w Zfael (WtVa) (C.9)
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This can be inserted into Eq. (C.3) to obtain

G2l ) = i/ g_:f(w — )y etVerheigR )T, . (C.10)

Appendix D. Derivation of Eq. (30)
We first state some useful identities for the retarded/advanced Green’s function to be used later:

G A (w4 V) = G¥A (W) — V,GRA (WG A (w + V) (D.1)
which can be checked directly by using Eq. (B.4) and its adjoint. From Eq. (D.1) it follows that
VIGR(W)GH (w)GR (W + Vo) GMw + V,) = [GR(w) — GR(w + V)] [GH(w) — G (w + Va)] -

(D.2)
Taking into account Eq. (D.1) in Eq. (29) we get

i%G<(t, t) — hegG=(t,t) + G=(t,t)hl

= [ D et G )GR w4 Vo) + G+ Vo) } T
i/g_:f(w ML {GA @+ Va) M) Vae W 1 GAw + Vo) | . (D3)

It is convenient to rewrite the Green’s function as G<(t,t) = e hestG< (t,t)eihlfft. In this way
the left-hand side of Eq. (D.3) becomes

dr .o - L
i& |:e—lhefftG< (t t)elheﬂt] N heﬂe—lheﬂtG< (t,t)elhefft + e—lhefftG< (t t)e eﬂthlﬂ
= e thentj G< (t, t)elMiat . (D.4)

Then the right-hand side of Eq. (D.3) can be multiplied from left by e'ef* and from right by

—ihlgt g give

d ~ d .
Gt = % flw— )Y et [GR(w + Vo) T — TaGMNw + V)] et
d_wf(w — 1) Z 7 [GR(w)GR(w YV olwHVa—hlg)t
2w ~ o a)l o

i HVazhemt p A (4 VQ)GA(w)] . (D.5)
Now we are ready to integrate both sides over ¢ to obtain
G<(t,t) — G<(0,07) = fw ) /dt
N—
=G<(0,0t)=GM(0,01)
% {eihefftl [GR(W + Va)Fa _ FQGA(UJ + Voc)] e_ihlfftl
v, [GR(w)GR(w + Va)Faei(w—i-Va—hZH)y

—ei@tVahe)t P GA () 4 VQ)GA(w)] } . (D.6)
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The integration over ¢’ for the second term in Eq (D.6) can easily be done. For the first term we
need the following result: Given two arbitrary matrices A and B

t At 1 1 SATH A4 1 1 SATH
dt/ 1At B—-B —1ATt — _; 1At B —1ATt D.7
/0 ¢ r—A z—AT|° AT ATt ’ (D-7)

which can directly be verified by differentiating the right-hand side with respect to ¢'. Applying
this result to Eq. (D.6) we obtain

G<(t,t) = i/g—:f(w — 1) Z {GR(w)FaGA(w) + et GR(w + V) TGN w + Va)e_ihlﬂt

—G®™w 4 Vo) ToG (w + Vo)

VG (W) OR (w + Vo) o GA (W) G (w + Vel @t Va—hlpt
VoG W) G (w + Vo) T GA (W) G w + V)

VoG (w + V) @HVehenll P GA (w 4+ V, ) GA (w)

VoG (w + Vo) ToGMw + V)G (W)} (D.8)

Then the definition for G can be inserted into the left-hand side, and multiply accordingly with

e~iherit from left and with et from right. Combining terms according to Egs. (D.1) and (D.2)
we find Eq. (30).

References
1| Landauer R 1957 IBM J. Res. Dev. 1 233

|
[2] Biittiker M 1986 Phys. Rev. Lett. 57 1761
[3] Caroli C, Combescot R, Noziéres P and Saint-James D 1971 J. Phys. C' 4 916
[4] Caroli C, Combescot R, Lederer D, Noziéres P and Saint-James D 1971 J. Phys. C' 4 2598
[5] Cini M 1980 Phys. Rev. B 22 5887
[6] Stefanucci G and Almbladh C O 2004 Phys. Rev. B 69 195318
[7] Mier Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
[8] Jauho A P, Wingreen N S and Mier Y 1994 Phys. Rev. B. 50 5528
[9] Pastawski H M 1992 Phys. Rev. B. 46 4053
[10] Perfetto E, Stefanucci G and Cini M 2008 Phys. Rev. B 78 155301
[11] Myo6héanen P, Stan A, Stefanucci G and van Leeuwen R 2009 Phys. Rev. B 80 115107

[12] Stefanucci G and van Leeuwen R 2013 Nonequilibrium Many-Body Theory of Quantum
systems: A Modern Introduction (Cambridge University Press)

[13| Luttinger J M and Ward J C 1960 Phys. Rev. 118 1417





