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Abstrat. We solve analytially the Kadano��Baym equations for a noninterating juntion

onneted to an arbitrary number of noninterating wide-band terminals. The initial equilibrium

state is properly desribed by the addition of an imaginary trak to the time ontour. From the

solution we obtain the time-dependent eletron densities and urrents within the juntion. The

�nal results are analyti expressions as a funtion of time, and therefore no time propagation is

needed � either in transient or in steady-state regimes. We further present and disuss some

appliations of the obtained formulae.

1. Introdution

The Landauer�Büttiker formula [1, 2℄ provides an intuitive physial piture of the steady-state

urrent �owing in a multi-terminal juntion and it is simple to implement. First one alulates

the steady-state urrent Iαβ in terminal β arried by the sattering states originating from

terminal α 6= β and populated aording to the eletrohemial potential µα. Then one sums

the di�erene Iαβ − Iβα between the urrents �owing in and out terminal β over all terminals

α 6= β. This gives the steady-state urrent Iβ in terminal β.
The �rst mirosopi derivation (based on the time-dependent Shrödinger equation) of the

Landauer�Büttiker formula was given by Caroli and o-workers [3, 4℄. They onsidered the

terminals initially unontated and in equilibrium at di�erent hemial potentials. Then they

swithed on the ontats and derived the Landauer�Büttiker formula as the long-time limit of

the expetation value at time t of the urrent operator. We will refer to this proedure as the

partitioned approah.

An alternative approah, more akin to the the way the experiments are arried out, was

proposed by Cini about a deade later [5℄. He onsidered the system initially ontated and

in equilibrium at a unique hemial potential and then drove the system out of equilibrium by

applying a bias voltage between the terminals. We will refer to this proedure as the partion-free

approah. In both approahes one reovers the Landauer�Büttiker formula due to the loss of

memory of the initial preparation [6℄.
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The mirosopi derivation of the Landauer�Büttiker formula requires the evaluation of the

expetation value Iβ(t) = 〈Ψ(t)|Îβ |Ψ(t)〉 where |Ψ(t)〉 is the many-body state of the system at

time t and Îβ is the urrent operator. Sine the eletrons are noninterating this expetation

value an be rewritten as the sum over all oupied one-partile states |ψk(t)〉 = e−iĥt|ψk〉 of

〈ψk(t)|Îβ |ψk(t)〉. Here ĥ is the Hamiltonian of the ontated and biased system whereas |ψk〉 are

the eigenstates of the Hamiltonian ĥ0 whih desribes either the non-biased unontated system

(in the partitioned approah) or the non-biased ontated system (in the partition-free approah).

For the evaluation of 〈ψk(t)|Îβ |ψk(t)〉 one ould naively insert a omplete set of eigenstates |φq〉

of ĥ and evaluate the overlaps 〈ψk|φq〉. This proedure is, however, numerially lengthy and

unstable due to the singular δ-like ontribution to the overlaps. The alulation of Iβ(t) is

most easily arried out using nonequilibrium Green's funtions [7, 8℄. This mathematial tool

when applied to quantum transport in multi-terminal juntions provides a natural framework to

alulate the urrent at all times and not only at the steady state.

In fat, there have been several attempts to generalize the Landauer�Büttiker formula to the

time domain. Here we mention the work of Pastawski who derived a formula for Iβ(t) using the

partitioned approah in the linear response and adiabati regime [9℄. An important step forward

in the alulation of Iβ(t) was done by Jauho et al. [8℄. These authors used the partitioned

approah to write Iβ(t) as a double integral (over time and energy) of the trae over the juntion

degrees of freedom of a alulable ombination of Green's funtions in the same region. In the

speial ase of terminals with a wide band and of juntions with one single level it is possible to

perform the time-integral and obtain a time-dependent version of the Landauer�Büttiker formula.

This formula was then derived in Ref. [6℄ using the partition-free approah, thus on�rming the

loss of memory of the initial preparation.

The derivation of a time-dependent Landauer�Büttiker formula for arbitrary juntions would

be extremely useful to interpret the osillations and damping times typially observed in the

transient urrent after the sudden swith on of a bias. A progress in this diretion was done in

Ref. [10℄ where the authors derived a time-dependent Landauer�Büttiker formula for the spin

urrent of a single-level juntion.

In this work we generalize the results of Ref. [10℄ to juntions of any shape and dimensions

using the wide-band limit approximation (WBLA) for noninterating eletrons (Ses. 2 and

3). Furthermore we also derive a general formula for the time-dependent one-partile density

matrix whih an be used to alulate the loal density and urrent density. We will work in

the partition-free approah whih is oneptually easier sine it does not involve the subtle issue

of di�erent hemial potentials in equilibrium. The �nal formulae for the urrent and the one-

partile density matrix have the merit of eluidating the relative importane of the eletroni

transitions at a ertain time. As an illustration we will use these formulae to alulate the

transient response of a ring-shaped juntion (Se. 4).

2. Assumptions and set-up

We investigate the following quantum transport setup: An arbitrary number of metalli leads

(α) ating as harge-arrier reservoirs are onneted to a lattie network ating as a moleular

devie (C). We assume that the eletron transport is ballisti and therefore neglet the eletron�

eletron interations. We will also assume that the energy eigenvalues of the Hamiltonian of the

moleular devie are well inside the ontinuous energy spetrum of the leads and use the WBLA.

The desribed set-up is haraterized by the following Hamiltonian:

Ĥ =
∑

kα,σ

ǫ†kαn̂
†
kα,σ +

∑

mn,σ

T †mnd̂
†
m,σd̂

†
n,σ +

∑

mkα,σ

[

T †mkαd̂
†
m,σd̂

†
kα,σ + T †kαmd̂

†
kα,σd̂

†
m,σ

]

. (1)

The �rst term aounts for the leads with kα indexing the k:th basis funtion of the α = 1, 2, 3, . . .

Progress in Nonequilibrium Green’s Functions V (PNGF V) IOP Publishing
Journal of Physics: Conference Series 427 (2013) 012014 doi:10.1088/1742-6596/427/1/012014

2



lead. The single-partile spetrum of the leads is ǫkα and the number operator in the leads is

expressed in terms of the reation and annihilation operators as n̂†kα,σ = d̂†kα,σd̂
†
kα,σ, with σ the

spin index. The seond term is for the moleular devie, or entral region, (indies m and n)

with reation and annihilation operators d̂†m,σ and d̂†m,σ and hoppings Tmn between sites m and

n. The last term is for the oupling between the entral region and the leads with hoppings

Tmkα.

At times t < t0 the system is in thermal equilibrium at inverse temperature β and hemial

potential µ, the density matrix having the form ρ̂ = 1
Z e−β(Ĥ−µN̂)

where Z is the grand-anonial

partition funtion. At t = t0 the lead energy levels are suddenly shifted by some onstant value,

ǫkα → ǫkα + Vα, to model the sudden swith-on of an external bias voltage in the α:th lead.

This means that the system is driven out of equilibrium and harge arriers start to �ow through

the entral region. To alulate the time-dependent urrent we use the equations of motion for

the one-partile Green's funtion on the Keldysh ontour γ
K

. This quantity is de�ned as the

ensemble average of the ontour-ordered produt of partile reation and annihilation operators

in the Heisenberg piture

Grs(z, z
′) = −i〈Tγ

K

[d̂†r,H(z)d̂†s,H(z′)]〉 (2)

where the indies r, s an be either indies in the leads or in the entral region and the variables

z, z′ run on the ontour

1
. The matrix G with matrix elements Grs satis�es the equations of

motion

[

i
d

dz
− h(z)

]

G(z, z′) = δ(z, z′)1 , (3)

G(z, z′)

[

−i

←
d

dz′
− h(z′)

]

= δ(z, z′)1 , (4)

with Kubo�Martin�Shwinger (KMS) boundary onditions. Here h(z) is the single-partile

Hamiltonian. In the basis kα and m the matrix h has the following blok struture

h =










h11 0 0 · · · h1C

0 h22 0 · · · h2C

0 0 h33 · · · h3C
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

hC1 hC2 hC3 · · · hCC










, (5)

where (hαα′)kk′ = δαα′δkk′ǫkα orresponds to the leads, (hαC)km = Tkαm is the oupling part, and

(hCC)mn = Tmn aounts for the entral region. As the system is initially in thermal equilibrium

we have that for z on the vertial trak of the ontour ǫkα(z) = ǫkα − µ, Tkαm(z) = Tkαm

and Tmn(z) = Tmn − µδmn. On the other hand for z on the horizontal branhes we have

ǫkα(z) = ǫkα +Vα, Tkαm(z) = Tkαm and Tmn(z) = Tmn. Due to the oupling between the entral

region and the leads the matrix G has nonvanishing entries everywhere

G =






G11 · · · G1C
.

.

.

.

.

.

.

.

.

GC1 · · · GCC




 . (6)

In the next Setion we solve the equations of motion (3) and (4) for the Green's funtion GCC

projeted in the entral region.

1
The ontour has a forward and a bakward branh on the real-time axis, [t0,∞[, and also a vertial branh on

the imaginary axis, [t0, t0 − iβ] with inverse temperature β, see e.g. [11℄.
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3. Derivation of the time-dependent density and urrent

3.1. Projeting the equation of motion

We projet the equation of motion (3) onto regions CC and αC. The equation for GαC an

be integrated using the Green's funtion gαα(z, z′) of the isolated α:th reservoir. This Green's

funtion solves the equation of motion

[
i d
dz − hαα

]
gαα(z, z′) = δ(z, z′) as well as the adjoint

equation with KMS boundary onditions. Introduing the embedding self-energy (with indies

in region C)

Σ
em

(z, z′) =
∑

α

Σα(z, z′) ; Σα(z, z′) = hCαgαα(z, z′)hαC (7)

we obtain the equation of motion for the Green's funtion of the entral region (the subsripts

CC are omitted from now on)

[

i
d

dz
− h

]

G(z, z′) = δ(z, z′) +

∫

γ
K

dz̄Σ
em

(z, z̄)G(z̄, z′) (8)

The adjoint equation of motion an be derived similarly and read [11℄

G(z, z′)

[

−i

←
d

dz′
− h

]

= δ(z, z′) +

∫

γ
K

dz̄G(z, z̄)Σ
em

(z̄, z′) . (9)

The embedded equations of motion for G have the same struture as the Kadano��Baym

equations (KBE), the di�erene being that the many-body self-energy is replaed by the

embedding self-energy. In the ase of interating eletrons with an interation only in the entral

region Eqs. (8) and (9) are modi�ed by the addition of the many-body self-energy Σ to the

embedding self-energy Σ
em

, i.e., Σ
em

→ Σ
em

+Σ . Sine Σ = Σ [G] is a funtional of the Green's
funtion in region C the embedded equations of motion in the interating ase onstitute a

losed set of integro-di�erential, nonlinear equations for G [11℄. The simpli�ation brought by

the absene of interations is that the KBE (8) and (9) are linear in G sine the embedding

self-energy is ompletely spei�ed by the parameters of the Hamiltonian.

The density and urrent density an be extrated from the lesser omponent of the Green's

funtion at equal time. We denote by z = t− the ontour point on the forward branh, z = t+
the ontour point on the bakward branh and z = t0− iτ the ontour point on the vertial trak.

The Keldysh omponents lesser (<), greater (>), retarded (R), advaned (A), left (⌈), right (⌉)
and Matsubara (M) of a funtion k(z, z′) on the ontour are de�ned aording to [12℄

k<(t, t′) = k(t−, t
′
+) (10)

k>(t, t′) = k(t+, t
′
−) (11)

kR(t, t′) = +θ(t− t′)
[
k>(t, t′) − k<(t, t′)

]
(12)

kA(t, t′) = −θ(t′ − t)
[
k>(t, t′) − k<(t, t′)

]
(13)

k⌈(τ, t′) = k(t0 − iτ, t′) (14)

k⌉(t, τ) = k(t, t0 − iτ) (15)

kM(τ, τ ′) = k(t0 − iτ, t0 − iτ ′) (16)

To generate an equation for G<
we subtrat Eq. (9) from Eq. (8) and set z = t−, z

′ = t′+. Taking
into aount that h(z) = h is independent of z for z on the horizontal branhes we get at equal

time

i
d

dt
G<(t, t) −

[
h,G<(t, t)

]
=

[
Σ
R

em

·G< −GR · Σ<
em

+ Σ
<
em

·GA −G< · ΣA

em

]
(t, t)

+
[

Σ
⌉
em

⋆ G⌈ −G⌉ ⋆ Σ
⌈
em

]

(t, t) , (17)
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where we de�ned [f · g] (t, t′) =
∫∞
t0

dt̄f(t, t̄)g(t̄, t′) and [f ⋆ g] (t, t′) = −i
∫ β
0 dτf(t, τ)g(τ, t′).

Equation (17) an also be written as

i
d

dt
G<(t, t) −

[
h,G<(t, t)

]
= −

[

GR · Σ<
em

+G< · ΣA

em

+G⌉ ⋆ Σ
⌈
em

]

(t, t) + h.. (18)

where we used the properties of G and Σ
em

under omplex onjugation [12℄.

Let us omment Eq. (18) brie�y. Setting the right-hand side to zero we see that Eq. (18)

redues to the Liouville equation for the one-partile density matrix ρ = −iG of the isolated

entral region. Thus the embedding self-energy aounts for the openness of region C. The �rst
term inside the square brakets is a onvolution between the propagator in region C, GR, and
Σ

<
em

. Sine Σ
<
em

is proportional to the probability of �nding an eletron in the leads this term an

be interpreted as a soure term, i.e., a term that desribes the injetion of eletrons into region

C. The seond term has the opposite struture: a propagator in the leads, Σ
A
em

, is onvoluted

with G<
whih is propotional to the probability of �nding an eletron in region C. Thus this

term an be interpreted as a drain term and is responsible for damping and equilibration e�ets.

The last term inside the square brakets aounts for the initial preparation of the system. In the

partioned approah this term would be zero sine the hopping integrals Tkαm = 0 in equilibrium.

However, in the partition-free approah this term is nonzero and aounts for the initial oupling

of the entral region to the leads.

More generally onvolutions along the vertial trak arry information on the initial

preparation of the system. For instane for a system of interating eletrons we an either start

with a noninterating system and then swith on the interation in real time or we an start

with a system already interating. In the latter ase the many-body self-energy is nonvanishing

on the vertial trak and the onvolution G ⋆ Σ aounts for the e�ets of initial orrelations.

3.2. Self-energy and Green's funtion alulations

The solution of Eq. (18) requires �rst to alulate the Matsubara omponent GM, and then

from GM the right and left omponent G⌉ and G⌈. The Matsubara omponent GM an be

determined from the retarded/advaned omponents by analyti ontinuation, see below. Sine

the equations for GM, G⌉ and G⌈ ontain the embedding self-energy the preliminary step is to

obtain an expression for Σ
em

.

Having a time-independent Hamiltonian (on the horizontal branhes of the ontour) the

retarded/advaned omponents of the self-energy depend only on the time di�erene

Σ
A

α,mn(t, t′) =

∫
dω

2π
e−iω(t−t′)

∑

k

Tmkα g
A
kα(ω)Tkαn (19)

where gkα is the diagonal element of the Green's funtion gαα of the isolated α:th lead, see Eq.

(7). The retarded omponent of the self-energy is found by onjugating Σ
R

α (t, t′) =
[
Σ
A

α (t′, t)
]†
.

Aording to the WBLA the Fourier transform of Σ
A

α is frequeny independent

Σ
A

α,mn(ω) =
∑

k

Tmkα g
A
kα(ω)Tkαn =

∑

k

Tmkα
1

ω − ǫkα − Vα − iη
Tkαn =

i

2
Γα,mn (20)

whih implies that Σ
A

α is also independent of the external bias voltage Vα. The time-dependent

self-energy of Eq. (19) is therefore

Σ
A

α,mn(t, t′) =

∫
dω

2π
e−iω(t−t′)

Σ
A

α,mn(ω) =
i

2
Γα,mnδ(t− t′) . (21)
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Within the WBLA we an easily alulate the two other self-energy omponents in Eq. (18) (see

Appendix A)

Σ
⌈
α,mn(τ, t) = Γα,mn

1

−iβ

∑

q

e−ωqτ

∫
dω

2π

ei(ω+Vα)t

ωq − ω + µ
, (22)

Σ
<
α,mn(t, t′) = iΓα,mn

∫
dω

2π
f(ω − µ)e−i(ω+Vα)(t−t′) , (23)

where the sum over q is a sum over the Matsubara frequenies ωq = (2q+1)π
−iβ , and the funtion f

is the Fermi funtion, f(ω) = 1/[eβω + 1].
Having the expliit form of the self-energy omponents we an derive expressions for

the Green's funtion. For the following alulations it is onvenient to de�ne the e�etive

Hamiltonian h
e�

= h − i
2Γ ⇒ h†

e�

= h + i
2Γ , where Γ =

∑

α Γα. This e�etive Hamiltonian

is therefore non-hermitean. The two Green's funtion omponents in the square brakets of

Eq. (18) read (see Appendix B)

G⌉(t, τ) = e−ih
e�

t
[

GM(0, τ) −

∫ t

0
dt′eih

e�

t′
∫ β

0
dτ̄Σ ⌉em(t′, τ̄)GM(τ̄ , τ)

]

, (24)

GR(t, t′) = −iθ(t− t′)e−ih
e�

(t−t′) , (25)

with GM the Matsubara Green's funtion. GM an be obtained from GR and GA by analyti

ontinuation sine GM(ωq) = GR(ωq +µ) if Im[ωq] > 0 and GM(ωq) = GA(ωq +µ) if Im[ωq] < 0,
see Appendix B.

Now we have all ingredients to alulate the onvolutions in Eq. (18). We report here the

�nal results and refer to Appendix C for details. The three terms read

[
GR · Σ<

em

]
(t, t) = i

∑

α

∫
dω

2π
f(ω − µ)

[

1 − ei(ω+Vα−h
e�

)
]

GR(ω + Vα)Γα , (26)

[
G< · ΣA

em

]
(t, t) =

i

2
G<(t, t)Γ , (27)

[

G⌉ ⋆ Σ
⌈
em

]

(t, t) = i

∫
dω

2π
f(ω − µ)

∑

α

ei(ω+Vα−h
e�

)tGR(ω)Γα . (28)

3.3. Solving Eq. (18) for G<(t, t)
We insert Eqs. (26), (27) and (28) into Eq. (18) and get

i
d

dt
G<(t, t) −

[
h,G<(t, t)

]

= −

{

i
∑

α

∫
dω

2π
f(ω − µ)

[

1 − ei(ω+Vα−h
e�

)t
]

GR(ω + Vα)Γα +
i

2
ΓG<(t, t)

+ i

∫
dω

2π
f(ω − µ)

∑

α

ei(ω+Vα−h
e�

)tGR(ω)Γα

}

+ h.. (29)
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This is a nonhomogeneous, linear, �rst-order di�erential equation for G<(t, t) and, therefore, an
be solved expliitly. The solution is worked out in Appendix D and reads

−iG<(t, t) =

∫
dω

2π
f(ω − µ)

∑

α

{

Aα(ω + Vα)

+ Vα

[

ei(ω+Vα−h
e�

)tGR(ω)Aα(ω + Vα) + h..

]

+ V 2
α e−ih

e�

tGR(ω)Aα(ω + Vα)GA(ω)eih†
e�

t
}

, (30)

where we introdued the partial spetral funtion as

Aα(ω) = GR(ω)ΓαG
A(ω) . (31)

The full nonequilibrium spetral funtion is A(ω) =
∑

αAα(ω).
Given the original omplexity of the problem the �nal result is surprisingly ompat. Equation

(30) is an expliit losed formula for the equal-time G<
or, equivalently, for the redued one-

partile density matrix. All the quantities inside the integral an be alulated separately, and

no time-propagation nor self-onsisteny algorithms are needed. Also, we may extrat several

physial properties:

(i) With no external bias, Vα = 0, only the �rst row ontributes. This term orretly gives

the equilibrium value of the equal-time G<
sine at zero bias

∑

αAα(ω) is the equilibrium
spetral funtion.

(ii) Both the seond and the third row vanish exponentially in the long-time limit, and the

equal-time G<
approahes a unique steady-state value.

(iii) The transient dynamis is given by the seond and the third row. By inserting a omplete

set of eigenstates of the e�etive Hamiltonian h
e�

we notie that:

(a) The seond row gives rise to osillations with frequeny ωj = |µ+ Vα − ǫe�j | where ǫe�j
is the real part of the j:th omplex eigenvalue of h

e�

. These osillations orrespond to

transitions between the biased Fermi level of the leads and the resonant levels of the

entral moleule.

(b) The third term aounts for intramoleular transitions and leads to osillations with

frequeny ωjk = |ǫe�j −ǫe�k |. These osillations are visible only if the e�etive Hamiltonian

h
e�

does not ommute with Γα. In the ase that [h
e�

,Γα] = 0 the time dependene of

the third term is of the form e−ih
e�

t+ih†
e�

t = e−Γ t
.

3.4. Current alulation

The time-dependent urrent through the interfae between the entral region and the α:th
reservoir is alulated from the following equation [11℄

Iα(t) = 4qRe
{

Tr
[

Σ
<
α ·GA + Σ

R

α ·G< + Σ
⌉
α ⋆ G

⌈
]

(t, t)
}

. (32)

For the terms inside Eq. (32) we proeed in the same manner as we did previously to obtain the

results in Eqs. (26), (27) and (28):

[
Σ

<
α ·GA

]
(t, t) = i

∫
dω

2π
f(ω − µ)ΓαG

A(ω + Vα)
[

1 − e−i(ω+Vα−h†
e�

)t
]

, (33)

[
Σ
R

α ·G<
]
(t, t) = −

i

2
ΓαG

<(t, t) , (34)

[

Σ
⌉
α ⋆ G

⌈
]

(t, t) = i

∫
dω

2π
f(ω − µ)ΓαG

A(ω)e−i(ω+Vα−h†
e�

)t . (35)
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1

2 3

4

56

Figure 1: Six-site ring oupled symmetrially to one-dimensional TB leads.

Figure 2: Shemati of the transport setup through the energy levels of the moleule.

Inserting these results into Eq. (32) and taking into aount the expliit expression for G<(t, t)
in Eq. (30) we get

Iα(t) = −2

∫
dω

2π
f(ω − µ)

∑

β

Tr
{

ΓαG
R(ω + Vβ)Γ βG

A(ω + Vβ) − ΓαG
R(ω + Vα)Γ βG

A(ω + Vα)

+ Vβ

[

Γαei(ω+Vβ−h
e�

)tGR(ω)
(
−iδαβG

R(ω + Vβ) +Aβ(ω + Vβ)
)

+ h..

]

+ V 2
β Γαe−ih

e�

tGR(ω)Aβ(ω + Vβ)GA(ω)eih†
e�

t
}

. (36)

The physial interpretation of the terms in Eq. (36) is similar to the one after Eq. (30). We have

a steady-state part given by the �rst row, and a time-dependent part given by the seond and

the third rows. The time-dependent part vanishes exponentially in the long-time limit and the

osillations in the urrent have the same struture as in the redued one-partile density matrix.

4. Results

Let us onsider a six-site tight-binding ring onneted to two tight-binding, semi-in�nite, one-

dimensional leads as shown shematially in Figs. 1 and 2. The parameters aording to the

notation in the �gures are tC = −2.0 (hopping in the moleule), hemial potential µ = 0 and

zero temperature (β → ∞). We hoose the hopping tL = tR in the left/right lead to be muh

larger than any other energy sale. Then ΣA
α (ω ∼ µ) = i t2αC/tα + O(1/t2α) where tαC is the

hopping between the moleule and the leads. For this situation the WBLA with Γα = 2t2αC/tα
is a very good approximation. We study the weak oupling ase ΓL,R = 0.1 and drive the system

out of equilibrium by the sudden swith-on of a bias VL = V = −VR. We analyze the ontribution

of di�erent terms in the harge urrent orresponding to di�erent physial features as disussed

below Eq. (30). In Eq. (36) the �rst row is 'steady state', the seond row onsists of '1st term,

a' and '1st term, b' and the third row is '2nd term'. The seond row is divided into two parts

[∼ GR(ω)GR(ω + Vβ) and ∼ GR(ω)Aβ(ω + Vβ)℄ sine they give rise to di�erent features.

In Figs. 3 and 4 we plot the urrent through the right interfae and see that weakly biased

leads, V = 0.5, give a negligible steady-state urrent. Transitions between the biased leads and

the moleule are aptured by the '1st term, a'. This is on�rmed by the peak in the Fourier

spetrum at ωj = ǫe�j ± V . Transitions between the moleular levels are aounted for by the
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'2nd term', as it an be seen in the Fourier transform with a peak at ω = 6. In addition to our

previous observations: (1) the '1st term, b' also gives rise to intramoleular transitions and (2)

there seems to be no intramoleular transitions at ω = 2 or ω = 4. By expanding Eq. (36) in the

eigenbasis of the e�etive Hamiltonian and manipulating the terms further one an show that

the the '1st term, b' ontains a term of the form e−i(ǫe�j −ǫe�
k

)t
whih explains the �rst �nding.

The seond �nding suggests that there is some underlying seletion rule for some of the energy

levels and hene that some levels do not partiipate to the transport proess.

0 2 4 6 8 10

tΓ

-2

-1

0

1

2

I r
ig
h
t
(t
)/
Γ

VL = −VR = |tC |/4
Contact: L1 ↔ 1, 4 ↔ R1

1st term, a
1st term, b
2nd term
Full result

Figure 3: Di�erent terms of the time-

dependent urrent in units of Γ through the

right interfae with symmetri oupling and

weak bias.

0 2 4 6 8 10
ω

10−2

10−1

100

101

|F
{
I r

ig
h
t
(t
)}
(ω

)|
/
Γ

VL = −VR = |tC |/4
Contact: L1 ↔ 1, 4 ↔ R1 1st term, a

1st term, b
2nd term
Full result

Figure 4: Absolute value of the Fourier

transform of the terms of the urrent in

units of Γ.

If we inrease the bias window to over the �rst moleular levels, V = 2.5, then we see in

Fig. 5 that the urrent has a non-zero steady-state value. Similar �ndings, as with weaker bias,

for the possible transitions are seen in Fig. 6. We also see that there is a small bump at ω = 4 in

'1st term, b' and '2nd term'. Given that the setup is ompletely idential to the previous ase,

this fat is due to a seond (or higher) order response sine the same symmetry arguments apply.

0 2 4 6 8 10

tΓ

-2

-1

0

1

2

I r
ig
h
t
(t
)/
Γ

VL = −VR = 5|tC |/4
Contact: L1 ↔ 1, 4 ↔ R1

1st term, a
1st term, b
2nd term
Full result

Figure 5: Di�erent terms of the time-

dependent urrent in units of Γ through the

right interfae with symmetri oupling and

strong bias.

0 2 4 6 8 10
ω

10−2

10−1

100

101

|F
{
I r

ig
h
t
(t
)}
(ω

)|
/
Γ

VL = −VR = 5|tC |/4
Contact: L1 ↔ 1, 4 ↔ R1 1st term, a

1st term, b
2nd term
Full result

Figure 6: Absolute value of the Fourier

transform of the terms of the urrent in

units of Γ.

If we, however, distort the symmetry of the juntion then also the intramoleular transitions

with lower energies beome visible. This is learly seen in Figs. 7 and 8 where we onnet the

moleule asymmetrially to the leads (1st site to the left and 3rd site to the right, see Fig. 1). We

an also break the symmetry by deforming the moleule with, for instane, one hopping (between
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0 2 4 6 8 10
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I r
ig
h
t
(t
)/
Γ

VL = −VR = |tC |/4
Contact: L1 ↔ 1, 3 ↔ R1

1st term, a
1st term, b
2nd term
Full result

Figure 7: Di�erent terms of the time-

dependent urrent in units of Γ through the

right interfae with asymmetri oupling

and weak bias.

0 2 4 6 8 10
ω

10−2

10−1

100

101

|F
{
I r

ig
h
t
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/
Γ
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Contact: L1 ↔ 1, 3 ↔ R1 1st term, a

1st term, b
2nd term
Full result

Figure 8: Absolute value of the Fourier

transform of the terms of the urrent in

units of Γ.

sites 1 and 6) being 2tC . This splits the degenerate levels in Fig. 2 and also the orresponding

intramoleular transitions an be seen in Figs. 9 and 10.

0 2 4 6 8 10

tΓ

-2

-1

0

1

2

I r
ig
h
t
(t
)/
Γ

VL = −VR = |tC |/4
Contact: L1 ↔ 1, 4 ↔ R1, deformed

1st term, a
1st term, b
2nd term
Full result

Figure 9: Di�erent omponents of the time-

dependent urrent in units of Γ through the

right interfae of a deformed moleule with

symmetri oupling and weak bias.
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10−1

100

101
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I r

ig
h
t
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(ω
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/
Γ

VL = −VR = |tC |/4
Contact: L1 ↔ 1, 4 ↔ R1 1st term, a

1st term, b
2nd term
Full result

Figure 10: Absolute value of the Fourier

transform of the terms of the urrent in

units of Γ.

As the ontributions from di�erent terms sum up to the total urrent we an plot the full

results for, e.g., the right urrent of the symmetrially oupled moleule against, e.g., the bias

or the oupling strength. In Figs. 11, 12, 13 and 14 we display the full results. The transient

dynamis is visualized better but distinguishing between the di�erent ontributions is more

ompliated. In Fig. 13 and 14 the axes are not saled due to varying Γ. It is lear that by

inreasing the bias window more levels open up for transport and therefore the steady-state

urrent grows. The osillation frequenies orresponding to transitions between moleular levels

remain unhanged while the osillation frequenies orresponding to transitions between the

moleule and the leads vary (peak shift). By inreasing Γ, and hene by widening the resonanes,
eletrons an �ow even with intermediate bias voltages. Correspondingly, the steady-state value

of the urrent inreases, the relaxation time dereases whereas the osillation frequenies remain

invariant.
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Figure 11: Time-dependent urrent in

units of Γ through the right interfae with

symmetri oupling (Γ = 0.1) and varying

bias. (Dotted lines refer to steady-state

values.)
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Figure 12: Absolute value of the Fourier

transformed right urrent in units of Γ.
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Figure 13: Time-dependent urrent

through the right interfae with symmet-

ri oupling (varying strength) and bias

VL = −VR = 2.5. (Dotted lines refer to

steady-state values.)
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Figure 14: Absolute value of the Fourier
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5. Conlusions

In onlusion we solved the Kadano��Baym equations for the Green's funtion of an open

noninterating system by properly taking into aount the initial ontats between the system

and the reservoirs. We used the analyti solution for the time-dependent density matrix to

derive a time-dependent version of the Landauer�Büttiker formula. As an appliation we

onsidered a tight-binding benzene-shaped juntion and alulated the time-dependent urrent

�owing through it. The advantages of having an expliit solution are that the numerial e�ort is

drastially redued and that the transient behavior an easily be interpreted in terms of virtual

transitions and deay rates. Our time-dependent Landauer�Büttiker formula holds promise for

studying the transient behavior of large juntions like, e.g., wide nanoribbons or large-diameter

nanotubes, as well as disordered juntions where a large number of simulations is required to

perform the average over di�erent on�gurations.
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Appendix A. Self-energy alulations

The Matsubara self-energy is an antiperiodi funtion (we are studying fermions) with period

given by the inverse temperature β. For the alulation of the Fourier oe�ients we an use the

relation: Σ
M

α (ω ± iη) = Σ
R/A
α (ω + µ). Therefore the Matsubara self-energy is simply given by

Σ
M

α,mn(τ, τ ′) =
1

−iβ

∑

q

e−ωq(τ−τ ′)
Σ
M

α,mn(ωq) (A.1)

where

Σ
M

α,mn(ωq) =







− i
2Γα Im[ωq] > 0

+ i
2Γα Im[ωq] < 0

(A.2)

and ωq = (2q + 1)π/(−iβ) are the Matsubara frequenies. For the isolated Green's funtion of

the biased α:th reservoir we have

gRkα(t, t0) = −iθ(t− t0)e
−i(ǫkα+Vα)(t−t0) , (A.3)

gMkα(τ, τ ′) =
1

−iβ

∑

q

e−ωq(τ−τ ′)

ωq − ǫkα + µ
. (A.4)

Without loss of generality we take the time t0 at whih the bias is swithed on to be zero. Then

we an write

g
⌉
kα(t, τ) = igRkα(t, 0)gMkα(0, τ) = e−i(ǫkα+Vα)tgMkα(0, τ) , (A.5)

g
⌈
kα(τ, t) = −igMkα(τ, 0)gAkα(0, t) = ei(ǫkα+Vα)tgMkα(τ, 0) . (A.6)

By using Eqs. (A.5) and (A.6) we an alulate the right and left embedding self-energies

Σ
⌉
α,mn(t, τ) =

1

−iβ

∑

q

eωqτ
∑

k

Tm,kα
e−i(ǫkα+Vα)t

ωq − ǫkα + µ
Tkα,n

= Γα,mn
1

−iβ

∑

q

eωqτ

∫
dω

2π

e−i(ω+Vα)t

ωq − ω + µ
, (A.7)

Σ
⌈
α,mn(τ, t) =

1

−iβ

∑

q

e−ωqτ
∑

k

Tm,kα
ei(ǫkα+Vα)t

ωq − ǫkα + µ
Tkα,n

= Γα,mn
1

−iβ

∑

q

e−ωqτ

∫
dω

2π

ei(ω+Vα)t

ωq − ω + µ
, (A.8)

where we used Γα,mn = 2π
∑

k Tmkαδ(ω − ǫkα − Vα)Tkαn. It only remains to alulate the lesser

omponent. We have

g<
kα(t, t′) = if(ǫkα − µ)e−i(ǫkα+Vα)(t−t′)

(A.9)

and therefore

Σ
<
α,mn(t, t′) =

∑

k

Tm,kαif(ǫkα − µ)e−i(ǫkα+Vα)(t−t′)Tkα,n

= iΓα,mn

∫
dω

2π
f(ω − µ)e−i(ω+Vα)(t−t′) . (A.10)
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Appendix B. Green's funtion alulations

The Fourier oe�ient of the Matsubara Green's funtion reads

GM(ωq) =
1

ωq − h− Σ
M

em(ωq) + µ
=







1
ωq−h+ i

2
Γ+µ

Im[ωq] > 0

1
ωq−h− i

2
Γ+µ

Im[ωq] < 0

=







1
ωq−h

e�

+µ Im[ωq] > 0
1

ωq−h†
e�

+µ
Im[ωq] < 0 ,

(B.1)

where we de�ned h
e�

= h − i
2Γ . The right omponent of the Green's funtion an be derived

from the equation of motion

[

i
d

dt
− h

]

G⌉(t, τ) =

∫ ∞

0
dt̄ΣR

em(t, t̄)G⌉(t̄, τ) − i

∫ β

0
dτ̄Σ ⌉em(t, τ̄ )GM(τ̄ , τ) . (B.2)

The insertion of the retarded self-energy from Eq. (20) leads to

G⌉(t, τ) = e−ih
e�

t
[

GM(0, τ) −

∫ t

0
dt′eih

e�

t′
∫ β

0
dτ̄Σ ⌉em(t′, τ̄)GM(τ̄ , τ)

]

, (B.3)

where we notied that GM(0, τ) = G⌉(0, τ).
Finally the retarded Green's funtion in Fourier spae reads

GR(ω) =
1

ω − h− Σ
R

em(ω)
=

1

ω − h+ i
2Γ

(B.4)

and Fourier transforming bak in the time domain we reover Eq. (25).

Appendix C. The three terms in Eq. (18)

For the �rst term we use Eqs. (25) and (A.10) to obtain

[
GR · Σ<

em

]
(t, t) =

∫ ∞

0
dt̄ GR(t, t̄)Σ<

em(t̄, t)

= i
∑

α

∫
dω

2π
f(ω − µ)

[

1 − ei(ω+Vα−h
e�

)
]

GR(ω + Vα)Γα . (C.1)

Also the seond term is readily alulated by using Eq. (21)

[
G< · ΣA

em

]
(t, t) =

∫ ∞

0
dt̄ G<(t, t̄)ΣA

em(t̄, t) =
i

2
G<(t, t)Γ . (C.2)

The third term involves somewhat more trikery beause of the rather ompliated form of the

right Green's funtion. Inserting the expressions from Eqs. (B.3) and (A.8) we get

[

G⌉ ⋆ Σ
⌈
em

]

(t, t) = −i

∫ β

0
dτ G⌉(t, τ)Σ ⌈em(τ, t)

= e−ih
e�

t

{[

GM ⋆ Σ
⌈
em

]

(0, t) − i

∫ t

0
dt′eih

e�

t′
[

Σ
⌉
em ⋆ GM ⋆ Σ

⌈
em

]

(t′, t)

}

.

(C.3)
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By using

∫ β
0 dτe(ωq−ωq′)τ = βδqq′ for the Matsubara frequenies we may manipulate Eq. (C.3)

further. Inserting Eqs. (A.7), (A.8) and (B.1) we obtain for the double onvolution

[

Σ
⌉
em ⋆ GM ⋆ Σ

⌈
em

]

(t′, t) = −i

∫ β

0
dτ(−i)

∫ β

0
dτ̄Σ ⌉em(t′, τ̄)GM(τ̄ , τ)Σ ⌈em(τ, t)

=

∫
dω

2π

∫
dω′

2π

∑

α,α′

Γα
1

−iβ

∑

q

e−i(ω+Vα)t′

ωq − ω + µ
GM(ωq)

ei(ω′+Vα′ )t

ωq − ω′ + µ
Γα′ .

(C.4)

The integration with respet to ω an be done by losing the ontour in lower-half plane (LHP)

beause of the exponential onvergene fator, whereas the integration with respet to ω′ an be

done by losing the ontour in the upper-half plane (UHP). However, the orresponding poles

are loated on di�erent half planes, and this makes the double integral to vanish for every ωq.

Hene [

Σ
⌉
em

⋆ GM ⋆ Σ
⌈
em

]

(t′, t) = 0 , (C.5)

and in Eq. (C.3) we are left with

[

GM ⋆ Σ
⌈
em

]

(0, t) = −i

∫ β

0
dτGM(0, τ)Σ ⌈

em

(τ, t)

=

∫
dω

2π

1

−iβ

∑

q

GM(ωq)e
ηωq

ωq − ω + µ

∑

α

Γαei(ω+Vα)t , (C.6)

where on the last line a onvergene fator eηωq
was added to aount for orret limiting

behaviour when t → 0. The sum over Matsubara frequenies an be performed using the

Luttinger�Ward trik [13℄ and yields

1

−iβ

∑

q

GM(ωq)e
ηωq

ωq − ω + µ
=

∫

γ

dω′

2π
f(ω′)eηω′ GM(ω′)

ω′ − ω + µ

=

∫ ∞

−∞

dω′

2π
f(ω′)

[
GM(ω′ − iδ)

ω′ − ω + µ− iδ
−

GM(ω′ + iδ)

ω′ − ω + µ+ iδ

]

. (C.7)

By inserting Eq. (C.7) into Eq. (C.6) we get

[

GM ⋆ Σ
⌈
em

]

(0, t) =

∫
dω

2π

∫
dω′

2π
f(ω′)

[
GM(ω′ − iδ)

ω′ − ω + µ− iδ
−

GM(ω′ + iδ)

ω′ − ω + µ+ iδ

]
∑

α

Γαei(ω+Vα)t .

(C.8)

Now the integral over ω an be done by losing the ontour in the UHP. The �rst term in square

brakets integrates to zero beause of the pole in the LHP. The pole of the seond term ours

at ω = ω′ + µ+ iδ, and therefore

[

GM ⋆ Σ
⌈
em

]

(0, t) = i

∫
dω′

2π
f(ω′)GM(ω′ + iδ)

∑

α

ei(ω′+µ+iδ+Vα)t

δ → 0+

ω′ = ω − µ

}

→ = i

∫
dω

2π
f(ω − µ)GM(ω − µ)

︸ ︷︷ ︸

=GR(ω)

∑

α

Γαei(ω−µ+µ+Vα)t

= i

∫
dω

2π
f(ω − µ)GR(ω)

∑

α

Γαei(ω+Vα) . (C.9)
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This an be inserted into Eq. (C.3) to obtain

[

G⌉ ⋆ Σ
⌈
em

]

(t, t) = i

∫
dω

2π
f(ω − µ)

∑

α

ei(ω+Vα−h
e�

)tGR(ω)Γα . (C.10)

Appendix D. Derivation of Eq. (30)

We �rst state some useful identities for the retarded/advaned Green's funtion to be used later:

GR/A(ω + Vα) = GR/A(ω) − VαG
R/A(ω)GR/A(ω + Vα) , (D.1)

whih an be heked diretly by using Eq. (B.4) and its adjoint. From Eq. (D.1) it follows that

V 2
αG

R(ω)GA(ω)GR(ω + Vα)GA(ω + Vα) =
[
GR(ω) −GR(ω + Vα)

] [
GA(ω) −GA(ω + Vα)

]
.

(D.2)

Taking into aount Eq. (D.1) in Eq. (29) we get

i
d

dt
G<(t, t) − h

e�

G<(t, t) +G<(t, t)h†
e�

= −i

∫
dω

2π
f(ω − µ)

∑

α

{

ei(ω+Vα−h
e�

)tVαG
R(ω)GR(ω + Vα) +GR(ω + Vα)

}

Γα

+ i

∫
dω

2π
f(ω − µ)

∑

α

Γα

{

GA(ω + Vα)GA(ω)Vαe−i(ω+Vα−h†
e�

)t +GA(ω + Vα)
}

. (D.3)

It is onvenient to rewrite the Green's funtion as G<(t, t) = e−ih
e�

tG̃<(t, t)eih†
e�

t
. In this way

the left-hand side of Eq. (D.3) beomes

i
d

dt

[

e−ih
e�

tG̃<(t, t)eih†
e�

t
]

− h
e�

e−ih
e�

tG̃<(t, t)eih†
e�

t + e−ih
e�

tG̃<(t, t)eih†
e�

th†
e�

= e−ih
e�

ti
d

dt
G̃<(t, t)eih†

e�

t . (D.4)

Then the right-hand side of Eq. (D.3) an be multiplied from left by eih
e�

t
and from right by

e−ih†
e�

t
to give

i
d

dt
G̃<(t, t) = −i

∫
dω

2π
f(ω − µ)

∑

α

eih
e�

t
[
GR(ω + Vα)Γα − ΓαG

A(ω + Vα)
]
eih†

e�

t

−i

∫
dω

2π
f(ω − µ)

∑

α

Vα

[

GR(ω)GR(ω + Vα)Γαei(ω+Vα−h†
e�

)t

−e−i(ω+Vα−h
e�

)t
ΓαG

A(ω + Vα)GA(ω)
]

. (D.5)

Now we are ready to integrate both sides over t to obtain

G̃<(t, t) − G̃<(0, 0+)
︸ ︷︷ ︸

=G<(0,0+)=GM(0,0+)

= −

∫
dω

2π
f(ω − µ)

∑

α

∫ t

0
dt′

×
{

eih
e�

t′
[
GR(ω + Vα)Γα − ΓαG

A(ω + Vα)
]
e−ih†

e�

t′

−Vα

[

GR(ω)GR(ω + Vα)Γαei(ω+Vα−h†
e�

)t′

−e−i(ω+Vα−h
e�

)t′
ΓαG

A(ω + Vα)GA(ω)
]}

. (D.6)
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The integration over t′ for the seond term in Eq (D.6) an easily be done. For the �rst term we

need the following result: Given two arbitrary matries A and B

∫ t

0
dt′eiAt′

[
1

x−A
B −B

1

x−A†

]

e−iA†t′ = −ieiAt′ 1

x−A
B

1

x−A†
e−iA†t′ , (D.7)

whih an diretly be veri�ed by di�erentiating the right-hand side with respet to t′. Applying
this result to Eq. (D.6) we obtain

G̃<(t, t) = i

∫
dω

2π
f(ω − µ)

∑

α

{

GR(ω)ΓαG
A(ω) + eih

e�

tGR(ω + Vα)ΓαG
A(ω + Vα)e−ih†

e�

t

−GR(ω + Vα)ΓαG
A(ω + Vα)

+VαG
R(ω)GR(ω + Vα)ΓαG

A(ω)GA(ω + Vα)ei(ω+Vα−h†
e�

)t

−VαG
R(ω)GR(ω + Vα)ΓαG

A(ω)GA(ω + Vα)

+VαG
R(ω + Vα)e−i(ω+Vα−h

e�

)t
ΓαG

A(ω + Vα)GA(ω)

−VαG
R(ω + Vα)ΓαG

A(ω + Vα)GA(ω)
}
. (D.8)

Then the de�nition for G̃ an be inserted into the left-hand side, and multiply aordingly with

e−ih
e�

t
from left and with eih†

e�

t
from right. Combining terms aording to Eqs. (D.1) and (D.2)

we �nd Eq. (30).

Referenes

[1℄ Landauer R 1957 IBM J. Res. Dev. 1 233

[2℄ Büttiker M 1986 Phys. Rev. Lett. 57 1761

[3℄ Caroli C, Combesot R, Nozières P and Saint-James D 1971 J. Phys. C 4 916

[4℄ Caroli C, Combesot R, Lederer D, Nozières P and Saint-James D 1971 J. Phys. C 4 2598

[5℄ Cini M 1980 Phys. Rev. B 22 5887

[6℄ Stefanui G and Almbladh C O 2004 Phys. Rev. B 69 195318

[7℄ Mier Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512

[8℄ Jauho A P, Wingreen N S and Mier Y 1994 Phys. Rev. B. 50 5528

[9℄ Pastawski H M 1992 Phys. Rev. B. 46 4053

[10℄ Perfetto E, Stefanui G and Cini M 2008 Phys. Rev. B 78 155301

[11℄ Myöhänen P, Stan A, Stefanui G and van Leeuwen R 2009 Phys. Rev. B 80 115107

[12℄ Stefanui G and van Leeuwen R 2013 Nonequilibrium Many-Body Theory of Quantum

systems: A Modern Introdution (Cambridge University Press)

[13℄ Luttinger J M and Ward J C 1960 Phys. Rev. 118 1417

Progress in Nonequilibrium Green’s Functions V (PNGF V) IOP Publishing
Journal of Physics: Conference Series 427 (2013) 012014 doi:10.1088/1742-6596/427/1/012014

16




