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In singlet two-electron systems, the natural occupation numbers of the one-particle reduced density
matrix are given as squares of the natural amplitudes which are defined as the expansion coefficients
of the two-electron wave function in a natural orbital basis. In this work, we relate the sign of the
natural amplitudes to the nature of the two-body interaction. We show that long-range Coulomb-
type interactions are responsible for the appearance of positive amplitudes and give both analytical
and numerical examples that illustrate how the long-distance structure of the wave function affects
these amplitudes. We further demonstrate that the amplitudes show an avoided crossing behavior as
function of a parameter in the Hamiltonian and use this feature to show that these amplitudes never
become zero, except for special interactions in which infinitely many of them can become zero simul-
taneously when changing the interaction strength. This mechanism of avoided crossings provides an
alternative argument for the non-vanishing of the natural occupation numbers in Coulomb systems.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4820418]

I. INTRODUCTION

Recently, the question if the natural occupation numbers
can become zero has regained interest.1–4 The natural occu-
pation numbers are defined to be the eigenvalues of the one-
body reduced density matrix (1RDM), which is given in sec-
ond quantization as

γ (x, x′) := 〈�|ψ̂†(x′)ψ̂ (x)|�〉 =
∑

k

nkφk(x)φ∗
k (x′),

where x := rσ denotes a combined space and spin coordi-
nate. The corresponding eigenfunctions are called the natural
orbitals (NOs).

The question whether the occupation numbers vanish is
interesting for a number of applications. For the usual ab ini-
tio methods that try to approximate the full many-body wave-
function by assembling linear combinations of Slater deter-
minants constructed out of an orbital basis, the existence of
only a finite number of (fractionally) occupied NOs implies
that only these orbitals need to be included in the orbital ba-
sis to represent the wavefunction exactly.5 Such a situation
would be beneficial for the ab initio methods, since extrap-
olations to the complete basis would not be required any-
more. For the foundations of 1RDM functional theory6 and
the extended Koopmans’ theorem,7, 8 however, the existence
of vanishing occupation numbers poses some problems. In
the case of 1RDM functional theory, the mapping between
the 1RDM and the corresponding non-local potential becomes
less unique, which makes it more difficult to properly define
an inverse of the mapping vnon-loc �→ γ , cf. the invertibility of
the potential-density mapping, vloc �→ ρ, in density functional
theory. The possible lack of invertibility of vnon-loc �→ γ poses

some difficulties in the formal foundations of 1RDM func-
tional theory.9 For the extended Koopmans’ theorem, van-
ishing occupation numbers are probably more problematic.10

The extended Koopmans’ theorem provides a method to cal-
culate the ionization potentials from any approximation to the
exact many-body wavefunction. It guarantees that the exact
ionization potentials are obtained provided the set of (frac-
tionally) occupied NOs is complete, i.e., no NOs exist which
have an occupation number exactly equal to zero. In the case
some of the natural occupations vanish, the ionization poten-
tials from the extended Koopmans’ theorem are not necessar-
ily exact anymore.

The question whether the occupation numbers can be
zero is not only complicated due to the construction of the
solution to the Schrödinger equation, but additionally, many
features of the wavefunction are smoothened by the integra-
tion to obtain the 1RDM. For example, the Coulomb inter-
action requires the wavefunction to have a cusp at the coa-
lescence points of the electrons, �(r12 → 0) ∼ 1 + 1

2 r12,11, 12

so the wavefunction is discontinuous in its first derivative
at these points. The inter-electronic cusp in the wavefunc-
tion also introduces a discontinuity in the 1RDM if the two
arguments are close together, though, since we take effec-
tively the square of the wavefunction and due to the vol-
ume element, the discontinuity is only γ (|r − r′| → 0) ∼ |r
− r′|4.13 In general, smoothening of the cusp increases the
decay rate of the natural occupation numbers according to
Weyl’s theorem.4 To avoid this additional complication all
studies of finite systems have focussed on singlet two-electron
systems, since the NOs and their occupation numbers can di-
rectly be calculated from the wavefunction itself as follows.
Because the spatial part of the wavefunction is symmetric, it

0021-9606/2013/139(10)/104110/9/$30.00 © 2013 AIP Publishing LLC139, 104110-1
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can by diagonalized as

�(r1, r2) =
∑

k

ckφk(r1)φk(r2). (1)

By constructing the 1RDM, one readily finds that the eigen-
functions of the wavefunction φk(x) are also NOs and that
the eigenvalues of the wavefunction are related to the natural
occupation numbers as nk = c2

k . Hence, in the case of sin-
glet two-electron systems, the additional integration to obtain
the 1RDM can be avoided and the behavior of the NOs and
their occupation numbers can directly be related to features
of the wavefunction. Note that the 1RDM contains almost the
same amount of information as the wavefunction, except for
the sign of the coefficients, so the coefficients can vary over a
larger range −1 ≤ ck ≤ 1. The coefficients in the NO expan-
sion of the two-electron wavefunction are also known as the
natural amplitudes.14

Cioslowski and Pernal used this feature to argue that the
occupation numbers in the harmonium atom1 and the hydro-
gen molecule2 can become zero. Both systems have a sys-
tem parameter that allows one to change smoothly from the
weakly correlated regime to the strongly correlated regime.
The Hamiltonian of the harmonium is the identical to the one
for the helium atom, except that the Coulomb potential of the
nucleus has been replaced by a harmonic confinement, 1

2ω2r2.
By varying the strength of the harmonic potential, ω, the sys-
tem can be tuned in and out of the strong correlation regime.
A high value of ω forces the electrons to be close to the nu-
cleus, so this is the weakly correlated regime. For low values
of ω the electrons are not forced to be close to the nucleus any-
more, so they can avoid each other completely and the elec-
trons becomes strongly correlated. For the hydrogen molecule
this system parameter is the distance between the two hydro-
gen atoms. If the atoms are close together, the electrons are
also necessarily close to each other to maximally benefit from
the attractive potential of both nuclei. If the distance between
the atoms is large, this benefit is lost and the electrons try to
avoid each other maximally, so either electron 1 is on nucleus
a and electron 2 on nucleus b or vice versa.

When making the transition from the weakly correlated
regime to the strongly correlated regime, the signs of the most
significant natural amplitudes show similar behavior in both
systems. In the weakly correlated regime, typical numerical
calculations give only one large positive natural amplitude.
All other amplitudes are negative and much smaller in mag-
nitude. In the strongly correlated regime the most significant
natural amplitudes show an alternating pattern. The pattern of
alternating signs has been explained by Cioslowski and Pernal
for the hydrogen molecule by performing a perturbation anal-
ysis using the dissociation limit as the reference state.2, 15–17

They found that the alternating sign pattern can be explained
from stabilizing multipole terms in the perturbation expan-
sion. The connection to the van der Waals forces was read-
ily made by Sheng et al. by analyzing the NO structure of
the 2RDM for dissociating H2.3 The 2RDM clearly exhibits
the characteristic van der Waals multipole structure in the NO
representation and these van der Waals terms only lower the
energy if the NO coefficients have an alternating sign pattern.

The alternating sign pattern can therefore be regarded as a van
der Waals effect.

Cioslowski and Pernal used this observation to argue that
the occupation numbers can vanish in both systems, since the
natural amplitudes need to cross zero to change their sign. A
difficulty in their reasoning is the assumption that the large
amplitudes which differ in sign correspond to the same NO.
Indeed, a more careful inspection of the results for the harmo-
nium atom by Cioslowski and Pernal1, 4 clearly shows that the
natural amplitudes which differ in sign correspond to different
NOs. This observation is in agreement with our recent proof
that the amplitudes in the harmonium atom cannot become
zero.4 In the case of the hydrogen molecule, Cioloslowski
and Pernal used an additional argument by Goedecker and
Umrigar in Ref. 18 where they argued that the helium atom
should have only one positive NO coefficient under the as-
sumption that the NOs are similar to the HF orbitals. Since
there is only one positive natural amplitude in the united (he-
lium) limit compared to dissociation limit, the coefficients of
the NOs need to change sign along the bond stretching
somewhere. They also showed numerical results where the
coefficients of anti-bonding NOs crossing zero (Fig. 1 of
Ref. 2) corroborating their argument. However, there is al-
ways an infinite amount of weakly occupied NOs to take into
account which is hard to cover with a finite basis represen-
tation of only cc-pV5Z quality. A more careful investigation
by Sheng et al. showed that the zero-crossing actually dis-
appears when adding more diffuse functions.3 Further, they
have pointed out that the assumption that the NOs are similar
to the HF orbitals does not hold and they showed numerically
that the helium atom actually does have more than one posi-
tive natural amplitude. Hence, the arguments of Cioslowski
and Pernal that the natural amplitudes need to cross zero
when the hydrogen bond is stretched do not hold and it
is likely that the natural amplitudes actually never become
zero.

There are still a number of open questions we would like
to address in this article. Although it has been demonstrated
that the NO coefficients do not cross zero, a clear explana-
tion how the change in sign pattern is actually achieved by
making the transition from the weakly to the strongly corre-
lated regime, is still lacking. Before we can answer this ques-
tion, we will first explain which features of the wavefunction
cause the existence of positive natural amplitudes. Although
the positive amplitudes have been regarded as a van der Waals
effect, they are also present in the helium atom.3 Hence, the
existence of multiple positive NO coefficients is due to a more
fundamental property of the Coulomb interaction as will be
exposed in Sec. II.

II. WHY POSITIVE NATURAL AMPLITUDES?

In this section, we will address the question why there are
always multiple positive natural amplitudes in Coulomb sys-
tems. A typical feature of Coulomb systems is that the wave-
function is required to have a cusp at the coalescence points
of the electrons. However, if we calculate the NO coefficients
of a simple Hylleraas wavefunction for a model atom in 1D
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of the form

�(x1, x2) = Kα(x1)α(x2)(1 + η|x1 − x2|),
where K is a normalization constant and α(x) = e−Z|x|, we
find that only one amplitude is positive and all the others
negative.4 Hence, it is not the cusp that causes the natural am-
plitudes to be positive.

In the harmonium atom and the hydrogen molecule, the
transition to the strongly correlated regime was important to
obtain some significant positive NO coefficients. Our sim-
ple Hylleraas ansatz is not able to describe the strong cor-
relation situation, so first we modify our model wavefunction
such that we have a parameter to make a smooth transition
into the strong correlation regime. By modifying the correla-
tion function to cosh (ηx12), the simple orbital product with
α(x) = e−Z|x| is actually able to describe strong correlation.
The wavefunction now becomes

�cosh(x1, x2) := Kα(x1)α(x2) cosh(ηx12), (2)

where x12 := x1 − x2 and K is a normalization constant which
can be determined explicitly as

K = 2Z(Z2 − η2)√
2(2Z4 − 2Z2η2 + η4)

.

By explicitly writing out the hyperbolic cosine, one readily
finds that this wavefunction can alternatively be written as

�cosh(x1, x2) = K

2
(α+(x1)α−(x2) + α−(x1)α+(x2)),

where α±(x) := e−Z|x|±ηx . Hence, the correlation factor is
strong enough to deform the orbital into a left and a right
shifted orbital (see Fig. 1). We recognize the typical form
of a strongly correlated Heitler–London type wave function19

FIG. 1. The orbital α+(x) which is shifted to the right compared to the origi-
nal orbital α(x) for several values of the correlation factor η and with a nuclear
charge Z = 2. Without correlation (η = 0), we have α+(x) = α(x). The other
orbital α−(x) is similar, though left-shifted.

as, e.g., also appears in the dissociating H2 molecule. Atomic
wave functions of this form with left and right polarized or-
bitals have also been considered to describe correlated elec-
trons in strong laser fields.20, 21 Since only two orbitals are
involved and the system is symmetric, the occupied NOs are
readily constructed by making symmetry adapted combina-
tions of the α±(x) orbitals, φg(x) = Cge−Z|x| cosh(ηx) and
φu(x) = Cue−Z|x| sinh(ηx), with normalization constants

|Cg|2 = 2Z(Z2 − η2)

2Z2 − η2
and |Cu|2 = 2Z(Z2 − η2)

η2
.

The corresponding natural amplitudes are readily obtained by
equating the spectral expansion with the original wavefunc-
tion, which gives

cg = K

C2
g

= 1√
2

2Z2 − η2√
2Z4 − 2Z2η2 + η4

, (3a)

cu = − K

C2
u

= 1√
2

−η2√
2Z4 − 2Z2η2 + η4

. (3b)

In the limit η → Z, the amplitudes become cg = −cu

= 1/
√

2, so this correlation function is indeed able to recover
the strong correlation limit.

Though we have constructed a model wavefunction with
a parameter η that allows for a smooth transition between be-
tween a weakly and strongly correlated regime, we have only
two occupied NOs. To make all the NOs fractionally occu-
pied we add a cusp to the correlation function of the form
ξ sinh (η|x12|), where ξ > 0 is an additional parameter to vary
the strength of the cusp. The full wavefunction now becomes

�cs(x1, x2) = Kα(x1)α(x2)(cosh(ηx12) + ξ sinh(η|x12|)).
(4)

The NOs of this wavefunction can be obtained with similar
methods as the NOs of the 1D Hylleraas function.4 First we
write the eigenvalue equation for the NOs as

K

∫
dx2 (cosh(ηx12) + ξ sinh(η|x12|))

×α(x2)2ϕk(x2) = ck ϕk(x1),

where ϕk(x) := φk(x)/α(x). By taking twice the derivative with
respect to x1, this integral equation can be turned into a differ-
ential equation for ϕk(x)

ϕ′′
k (x) = (λkα

2(x) + η2)ϕk(x), (5)

where λk := 2ηξK/ck. Solving the differential equation is
rather technical and has been deferred to the Appendix includ-
ing its solutions. The most important result is that although
we have a wavefunction which includes strong correlations,
there is still only one positive NO coefficient. Hence, although
multiple positive natural amplitudes have been considered a
strong correlation effect,1, 2 we find from our exactly solvable
model system that the appearance of multiple positive natu-
ral amplitudes is actually not caused by strong correlations.
Strong correlation effects only seem to enhance their magni-
tude, but not to be essential for their existence.

If strong correlation effects are not the cause for the ex-
istence of multiple positive natural amplitudes, what property
is essential for their existence? An important clue comes the
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fact that positive natural amplitudes are important to describe
the van der Waals effects in molecular dissociation.3 The van
der Waals effects are caused by the long-range nature of the
Coulomb interaction, so we expect some relation to the pos-
itivity of the NO coefficients. The 1/r tail of the Coulomb
interaction causes the wavefunction not to decay merely expo-
nentially as one electron is pulled away, but to behave asymp-
totically as rse−√

2I1r , where I1 is the first ionization energy
and s := (Q − N + 1)/

√
2I1 − 1, with Q as the total nuclear

charge and N as the total number of electrons.22 The exponen-
tial decay is caused by the kinetic energy in combination with
the required normalizability of the wavefunction. The addi-
tional factor rs is due to the 1/r tail of the Coulomb potential.
To incorporate this asymptotic behavior, we change the wave-
function to

�(x1, x2) = K α(x1)α(x2)fpow(x12)

with the correlation function

fpow(x12) := (1 + |x12|)s cosh(ηx12), (6)

where we used (1 + |x12|) instead of only x12 to ensure that
the wavefunction does not vanish for x12 → 0. Since the term
(1 + |x12|)s already introduces a cusp for s �= 0, the hyper-
bolic sine is not needed anymore. Unfortunately, we were not
able to find an analytic solution using this correlation func-
tion, even in conjunction with the simple Slater function for
the orbital. However, a diagonal representation of the wave-
function can still be obtained numerically on a grid. Since
the orbital is a simple exponential, we used Gauss–Laguerre
quadrature for the integration. As parameters we used
Z = 2.0, η = 1.0, and s = 1.0. There is no stringent reason
for this particular choice of parameters, except that they sat-
isfy Z > η > 0. The most significant natural amplitudes are
shown in Table I. Indeed we find that due to the additional
term (1 + x12)s in the correlation function, some additional
amplitudes of ungerade NOs are now positive as well. The
effect of the additional xs

12 term in the wavefunction is that
the orbitals become now effectively polarized in the direction
of the interaction. For s = 1, this polarization effect can be

TABLE I. Numerical NO coefficients for a wavefunction �(x1, x2)
= K e−Z|x1|e−Z|x2|fpow(x12) with parameters Z = 2.0, η = 1.0, and
s = 1.0. Only the numerically significant (|ck| > 10−15) positive amplitudes
are shown and the five largest negative NO coefficients in each irreducible
representation.

Gerade Ungerade

9.463 × 10−1 −5.916 × 10−2 1.485 × 10−3 −3.162 × 10−1

1.120 × 10−5 −1.544 × 10−2 1.506 × 10−8 −2.115 × 10−2

2.288 × 10−11 −6.864 × 10−3 3.050 × 10−14 −7.615 × 10−3

−3.992 × 10−3 −4.156 × 10−3

−2.770 × 10−3 −2.787 × 10−3

...
...

readily worked out explicitly for x1 > x2 as

�(x1 > x2) = K

2
[α+(x1)α−(x2) + α−(x1)α+(x2)

+ x1α+(x1)α−(x2) + x1α−(x1)α+(x2)

−α+(x1)x2α−(x2) − α−(x1)x2α+(x2)],

where the orbitals α±(x) have been introduced at the begin-
ning of this section. We clearly see that the effect of the
additional x12 is to mix in polarized orbitals of the form
xα±(x). These additional p-orbitals represent exactly the in-
duced dipole-dipole polarization used in the physical interpre-
tation of the van der Waals interaction.3 The physical picture
is therefore that if we place an electron at a large distance from
the atomic centre this electron polarizes the remaining atom
due to the long-range tail of the Coulomb interaction. The
corresponding large distance structure of the wave function is
responsible for the appearance of positive natural amplitudes.

III. HOW DO THE NOS CHANGE THEIR SIGN?

In the previous section, we have shown that the exis-
tence of multiple positive natural amplitudes is caused by
the long-range behavior of the Coulomb potential and not a
feature of strong correlations. Therefore, positive NO coeffi-
cients should exist in all Coulomb systems and probably there
is an infinite amount of them. Hence, no additional positive
amplitudes need to be created when making the transition to a
strongly correlated state, since they are simply already there,
though very small. We have investigated this transition our-
selves by performing calculations on a one dimensional (1D)
hydrogen molecule with the Hamiltonian

Ĥ = −1

2

∂2

∂x2
1

− 1

2

∂2

∂x2
2

+ vext(x1) + vext(x2) + vsoft(x1 − x2),

where the external potential is defined as

vext(x) = vsoft

(
x − RH–H

2

)
+ vsoft

(
x + RH–H

2

)
.

The advantage of reducing the problem to 1D is that the prob-
lem becomes computationally more tractable while still re-
taining the most important physics which is along the bond
axis. Since the Coulomb potential is too singular in 1D to give
finite energies, we have used soft Coulomb potentials

vsoft(x) := 1√
x2 + 1

instead. For this low dimensional system the Schrödinger
equation can be solved directly on a grid. To reduce the
computational cost, only the unique wedge in the centre-of-
mass frame has been calculated on a 1600 × 1600 grid. The
derivatives have been discretized by using cubic splines23, 24

and for the diagonalization we used the iterative Davidson
algorithm.25 The wavefunction coefficients (1) were obtained
by first transforming the wavefunction back to the normal co-
ordinate frame (x1, x2) and then the wavefunction was diago-
nalized with the LAPACK routines.26

The results for the coefficients corresponding to the
ungerade NOs are shown in Fig. 2. As expected, we clearly
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FIG. 2. The coefficients in the NO expansion of the wavefunction of the
1D H2 system for the odd NOs versus the distance, RH–H, between the two
nuclei. The coefficient of the highest occupied ungerade NO is off the scale,
so it is not visible in the plot.

see that one of the NOs gains a rather large amplitude upon
dissociation. However, this NO does not obtain a positive am-
plitude by crossing zero. Instead a large amount of avoided
crossings occur around RH–H ≈ 4 Bohr to carry over the NO
character to an already existing positive natural amplitude. In
retrospect, this result is not surprising, since we know that
the eigenvalues of a matrix do not become degenerate in gen-
eral if only one parameter is varied. Only under very special
circumstances such a degeneracy can occur as is well known
for conical intersections.27, 28 The argument goes as follows.
Consider two NOs, φk and φl which are almost degenerate.
A perturbation in the Hamiltonian, such as a change in the
bond distance, will give rise to a new ground state � with
new NOs and coefficients. Within the two-dimensional sub-
space spanned by the unperturbed orbitals φk and φl, the new
NO coefficients are readily determined to be

c± = �kk + �ll

2
±

√(
�kk − �ll

2

)2

+ |�kl|2,

where �ij := 〈φi |�̂|φj 〉, where �̂ is the wavefunction re-
graded as an integral operator. The term under the square root
gives the magnitude of the splitting between the natural am-
plitudes. Since the splitting consists of two positive contri-
butions, the amplitudes can only be degenerate if they both
vanish identically

�kk − �ll = �kl = 0. (7)

This condition is rarely met, since we have to satisfy two con-
straints with only one parameter for real wavefunctions,29 so
the crossing is typically avoided as in Fig. 2. This implies that
a NO coefficient can never become zero, because there is an
infinite amount of eigenvalues clustered around zero, hence

there will always be an eigenvalue closer to zero which has to
be crossed. Hence, the only general way an NO can obtain a
coefficient with a different sign is to pass its character over to
an other natural amplitude of opposite sign, via avoided cross-
ings with all eigenvalues near zero, which is exactly what we
observe in Fig. 2.

It is still possible that an NO coefficient can change its
sign by passing through zero if condition (7) is met, though
it has to be satisfied for all the NOs involved, i.e., all the NO
coefficients clustered around zero. Since condition (7) also
implies that the splitting between all these NO coefficients
vanishes, all their coefficients have to collapse collectively to
zero. This is a rather exceptional situation which probably can
never be achieved by varying the external potential in a system
with Coulomb interactions. We will show this collapse in a
system with different interactions by varying the interaction
strength later in this section. Of course, when a finite basis
representation of the Hamiltonian is used, the NO with the
smallest NO amplitude on the positive or negative side does
not have an other NO closer to zero to prevent this coefficient
from crossing zero as has been observed before.2, 3

The harmonium atom uses the same mechanism to
change effectively the sign of its NOs. In the original plots,1, 30

this is not so clear since the occupation numbers are plotted
on a log-log scale instead of the natural amplitudes directly.
To generate the NO coefficients, we have implemented the
numerical solution for the harmonium atom as described in
Refs. 1 and 30. To obtain the NO coefficients, we used a dif-
ferent approach. The harmonium ground state wavefunction
is of the form

�(r1, r2) = Ne− 1
2 ωr2

1 e− 1
2 ωr2

2 f (r12),

where r12 := |r1 − r2| and N is a normalization constant. Due
to the spherical symmetry, the NOs are also eigenfunctions of
the angular momentum operator and can be classified accord-
ingly. The correlation function can be expanded in Legendre
polynomials, Pl(s), as

f (r12) =
∞∑
l=0

fl(x1, x2) Pl(s),

where s := cos θ12, so the NOs are degenerate in each l-
channel and can be calculated per l-channel separately. The
Fourier coefficients of the correlation function can be deter-
mined as

fl(r1, r2) = 2l + 1

2

∫ 1

−1
ds f

(√
r2

1 + r2
2 − 2r1r2s

)
Pl(s)

= 2l + 1

2r1r2

∫ r1+r2

|r1−r2|
dr12 r12f (r12) Pl

(
r2

1 + r2
2 − r2

12

2r1r2

)
.

The last form was used in practice, since the square-root
impaired the accuracy of the numerical integration. Since
the wavefunction is composed of a product of Gaussians,
it is compelling to use Gauss–Hermite quadrature for the
integration in the eigenvalue equation for the NO, so we
have

4πN

2l + 1

∑
j

e− 1
2 ωr2

i fl(ri, rj )r2
j wj · φlk(rj ) = clk φlk(ri),
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FIG. 3. The coefficients in the NO expansion of the ground state of the har-
monium atom in the s-channel as a function of the confinement ω. The first
amplitude is off the scale, so not visible in the plot.

where wi are the weights and ri are the abscissas. The NO
eigenvalue equation has now been discretized on the Gauss–
Hermite abscissas and has been turned into an effective non-
symmetric matrix eigenvalue equation. This eigenvalue equa-
tion is trivially symmetrized by multiplying the equation with
some suitable factors as

4πN

2l + 1

∑
j

ri

√
wi

e
1
4 ωr2

i

fl(ri, rj )
rj

√
wj

e
1
4 ωr2

j

· rj
√

wj

e− 1
4 ωr2

j

φlk(rj )

= clk

ri

√
wi

e− 1
4 ωr2

i

φlk(ri).

Results for the natural amplitudes in the s-channel are shown
in Fig. 3. We have reverted the ω axis, so that the strong corre-
lation regime is on the right, as is also the case for the plot of
the NO coefficients of the odd NOs of 1D hydrogen molecule
(Fig. 2). The behavior is roughly the same as in the H2 case:
when going into the strong correlation regime, one of the pos-
itive coefficients picks up a large amplitude (maximum at ω

≈ 10−3) and decays slowly again when progressing further
into the strongly correlated regime (decreasing ω). It is also
clear that this coefficient was not originally negative, but gains
its large amplitude from an NO that initially had a significant
negative natural amplitude and carries over its character to
this positive NO coefficient by an infinite amount of avoided
crossings with all the natural amplitudes located around zero.
Exactly as in the 1D H2 case, this is the only way how the NOs
(eigenfunctions of the wavefunction) could change their sign,
since their amplitudes cannot become zero due to the infinite
amount of eigenvalues piled up around zero.

That the natural amplitude cannot vanish due to the infi-
nite clustering around zero, is also a very strong argument in
favor of the statement that there are no zero occupation num-
bers in Coulomb systems, since the same argument applies to

the occupation numbers of the 1RDM. Because there is an in-
finite amount of occupation numbers close to zero, there will
always be an occupation number closer to zero which prevents
occupation numbers to become zero by making a perturbation
to the system, i.e., changing the external potential. The only
possibility is that an occupation number is already zero, but
the same argument implies that this occupation number can
never become nonzero, since there is always an occupation
number smaller than the value we want to give this occupation
number. Since we will need a complete set of NOs to expand
the non-analytic behavior of the 1RDM, it would be strange
if some of them can be left out irrespective of any perturba-
tion of the system. Therefore, all occupation numbers should
always be non-zero in systems with a Coulomb interaction.

As mentioned before, only under very special circum-
stances the eigenvalues of a matrix can become degenerate
under the variation of one parameter. Since there are an in-
finite amount of occupation numbers close to zero, we will
need to make all these eigenvalues zero to facilitate a true
sign change of an expansion coefficient. Such a massive de-
generacy can only be created by modifying the interaction in
a very particular way. As an example consider the system with
inverse harmonic interactions with the Hamiltonian

Ĥ = −1

2
∇2

r1
− 1

2
∇2

r2
+ 1

2
ω2

(
r2

1 + r2
2

) + λ

r2
12

.

This system has been considered before by Morrison et al. to
study the existence of unoccupied NOs.31 The ground state
of this Hamiltonian has the following surprisingly simple
form:29, 31

�(r1, r2) =
√

ω3+α

21+απ5/2�
(

3
2 + α

)e− 1
2 ω(r2

1 +r2
2 )rα

12,

where α = (
√

1 + 4λ − 1)/2.32 This ground state wavefunc-
tion has the special property that for even α it becomes sepa-
rable, i.e., the wavefunction can be exactly expanded in a fi-
nite number of orbitals. In Ref. 4, we have shown that such
an expansion is only possible for even α and proved that
for all other α, all of the occupation numbers are non-zero.
Therefore, if we vary the interaction strength, so effectively
α, the spectrum of almost all NO coefficients should collapse
to zero at even α. In Fig. 4, we show the NO coefficients in the
s-channel and indeed at even α almost all the amplitudes col-
lapse to zero and a true sign change of the natural amplitudes
is possible at these points. As expected, after each crossing
an additional NO remains non-zero at the next crossing, since
at each next crossing an additional NO is required for the ex-
pansion of rα

12. The natural amplitudes in the higher l-channels
show similar features, except that their first finite occupancy
is only required from α = 2l onwards.

This massive degeneracy at zero could only be achieved
by replacing the Coulomb interaction by a 1/r2 interaction and
making variations in the interaction, so not by variations in the
external potential. It is therefore expected, that such a massive
degeneracy can never be achieved in a system with Coulomb
interactions.
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FIG. 4. The coefficients in the NO expansion of the ground state of the sys-
tem with inverse harmonic interactions in the s-channel as a function of α.
The strength of the external potential has been set to ω = 1. The first NO
coefficient is off the scale, so not visible in the plot.

IV. CONCLUSION

We have shown that there are always an infinite amount
of positive NO coefficients present in systems with a Coulomb
interaction. The presence of these positive coefficients is
caused by fractional power in the decay of the wavefunction,
rse−√

2I1r , due to the long-range behavior of the Coulomb po-
tential. In the weakly correlated regime only one of the pos-
itive NO coefficients makes a significant contribution. The
other positive NO coefficients only play a noteworthy role
when the long-range character of the Coulomb interaction
become important, i.e., in the strong correlation regime. The
foremost example is the van der Waals interactions in a disso-
ciating hydrogen molecule.

Earlier studies by Cioslowski and Pernal1, 2 assumed that
only one positive natural amplitude exists in the weakly cor-
related regime, so they needed the amplitudes to cross zero
to explain the transition to the alternating sign pattern of the
NO coefficients in the strong correlation limit. Due to our ob-
servation that there are actually always an infinite amount
of positive natural amplitudes, even in the weakly corre-
lated regime, this argument does not hold anymore. Actu-
ally, the natural amplitudes themselves never change sign, but
the character of the NOs is carries over to different ampli-
tudes with opposite sign when making the transition to the
strongly correlated regime. This explanation for the appar-
ent sign change of the NOs has been confirmed by numeri-
cal calculations on the harmonium atom and the 1D hydrogen
molecule.

The mechanism of avoided crossings also prevents the
NO coefficients from becoming zero by making variations
in the external potential, e.g., nuclear configuration of a
molecule. Since there is an infinite amount of natural ampli-

tudes clustered around zero, there will always be an amplitude
closer to zero than the amplitude we would like to make zero
by varying the external potential. Because there can only be
an avoided crossing, the natural amplitudes can never cross
each other to reach zero. So effectively the infinite amount of
natural amplitudes close to zero act as a wall preventing other
amplitudes from becoming zero when the external potential
is varied. The only way a NO coefficient can become zero
is by making special variations in the interaction itself, such
that the crossing will not be avoided anymore. In such a situa-
tion all the NO coefficients near zero will collapse collectively
to zero as has been demonstrated in a system with scalable
inverse harmonic interactions, λ/r2

12. However, this situation
can never be achieved in Coulomb systems by merely varying
the external one-body potential. The remaining alternative for
the existence of vanishing amplitudes seems to be an NO am-
plitude which is always zero irrespective of any external per-
turbation. However, the existence of such a robust unoccupied
NO does not seem to be very likely.

The same line of reasoning immediately carries over to
the natural occupation numbers, so we have a very strong
argument that the occupation numbers in systems with a
Coulomb interaction never vanish. Note that this argument
only applies to an infinite Hilbert space, so is not applicable
to the model Hamiltonians due to the finite basis representa-
tion on our computers. In a finite Hilbert space there will be a
smallest occupation number which can vanish, since there is
no lower occupied NO anymore that can prevent this, via an
avoided crossing.
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APPENDIX: NOs OF THE cosh-sinh CORRELATED
WAVEFUNCTION

The steps to calculate the NOs of the wavefunction (4)
are analogue to the procedure to calculate the NOs and coef-
ficients exposed in Appendix A of Ref. 4. First we will deter-
mine the boundary conditions that the solutions ϕ(x) need to
satisfy. First we rewrite the integral equation as

ck

K
ϕk(x) = 1 + ξ

2
eηx

∫ x

−∞
dy e−ηyα2(y)ϕk(y)

+ 1 − ξ

2
e−ηx

∫ x

−∞
dy eηyα2(y)ϕk(y)

+ 1 + ξ

2
e−ηx

∫ ∞

x

dy eηyα2(y)ϕk(y)

+ 1 − ξ

2
eηx

∫ ∞

x

dy e−ηyα2(y)ϕk(y).

In the limit x → ∞, the last two integrals do not contribute,
since the orbital α(x) = e−Z|x| decays fast enough for large x,
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and we find for the large x behavior

ck

K
ϕk(x) =1 + ξ

2
eηx

∫ ∞

−∞
dy e−ηyw(y)ϕk(y)

+ 1 − ξ

2
e−ηx

∫ ∞

−∞
dy eηyw(y)ϕk(y).

Since the problem is symmetric, the solutions can be sepa-
rated in the even and odd solutions. For the even solutions,
the integrals give the same value, so we find that the gerade
solutions should behave asymptotically as

ϕg(x → ∞) ∼ eηx + 1 − ξ

1 + ξ
e−ηx.

In the case of the odd solutions, the integrals are minus each
other, so we find that the odd solutions must behave asymp-
totically as

ϕu(x → ∞) ∼ eηx − 1 − ξ

1 + ξ
e−ηx.

This asymptotic analysis only assumes that α2(x) is symmet-
ric and decays sufficiently fast.

Since we are looking for symmetry adapted solutions, we
only need to solve the problem for x ≥ 0. If we introduce the
following new variable:

s(x) =
√|λ|
Z

e−Zx, (A1)

then for a function ϕ(x) = f (s(x)), we have

dϕ

dx
= df

ds

ds

dx
= −

√
|λ|e−Zxf ′(s) = −Zsf ′(s)

d2ϕ

dx2
= f ′′(s)

(
ds

dx

)2

+ f ′(s)
d2s

dx2

= Z2(s2f ′′(s) + sf ′(s)),

so the differential equation in terms of f(s) becomes

s2 d2f

ds2
+ s

df

ds
−

(
sgn(λ)s2 + η2

Z2

)
f = 0.

For λ < 0, the solutions are J±ν(s) with ν = |η/Z|. These solu-
tions are only independent for ν /∈ N. However, this only oc-
curs for η = 0, in which case we reduce to the non-interacting
solution. Note that situations like η = Z cannot occur, since
in those cases the wavefunction is not normalizable any-
more, i.e., an unbound state. Imposing the boundary condi-
tions at the origin, we find for the odd and even solutions,
respectively,

ϕu(x) = C[J−ν(λ̃) Jν(s(x)) − Jν(λ̃) J−ν(s(x))],

ϕg(x) = C[J′
−ν(λ̃) Jν(s(x)) − J′

ν(λ̃) J−ν(s(x))],

where λ̃ := √|λ|/Z and ν := η/Z. Imposing the boundary
conditions at the other end (x → ∞), we will obtain the
quantization of λ̃. From the asymptotic behavior of the Bessel
functions for small s, we find that for x → ∞

J±ν(λ̃e−Zx) ∼ 1

�(1 ± ν)

(
λ̃

2

)±ν

e∓|η|x, (A2)

where we assumed η > 0 without loss of generality. Hence,
we find that for the odd solutions to have the correct asymp-
totic behavior, λ̃ needs to satisfy

J−ν(λ̃−
u )

Jν(λ̃−
u )

(
λ̃−

u

2

)2ν

= Rν,ξ , (A3)

where we introduced

Rν,ξ := 1 − ξ

1 + ξ
· �(1 + ν)

�(1 − ν)
.

Using the solutions λ̃−
u,k , we can readily construct the unger-

ade NOs with negative coefficients as

φ−
u,k(x) = C−

u,k sgn(x)e−Z|x|

×
[
�(1 + ν)

1 + ξ

(
λ̃−

u,k

2

)ν

Jν(λ̃−
u,ke−Z|x|)

− �(1 − ν)

1 − ξ

(
λ̃−

u,k

2

)ν

J−ν(λ̃−
u,ke−Z|x|)

]
,

where C−
u,k is a normalization constant. Similarly, for the even

solutions we find the quantization condition

J′
−ν(λ̃−

g )

J′
ν(λ̃−

g )

(
λ̃−

g

2

)2ν

= −Rν,ξ . (A4)

The corresponding NOs are readily constructed as

φ−
g,k(x) = C−

g,k e−Z|x|
[
�(1 + ν)

1 + ξ

(
λ̃−

g,k

2

)ν

Jν(λ̃−
g,ke−Z|x|)

+ �(1 − ν)

1 − ξ

(
λ̃−

g,k

2

)ν

J−ν(λ̃−
g,ke−Z|x|)

]
,

where C−
g,k is a normalization constant.

For the positive amplitudes (λ > 0), solutions are mod-
ified Bessel functions which can combined into odd an even
combinations

ϕu(x) = C[I−ν(λ̃) Iν(s(x)) − Iν(λ̃) I−ν(s(x))],

ϕg(x) = C[I′−ν(λ̃) Iν(s(x)) − I′ν(λ̃) I−ν(s(x))].

The modified Bessel functions of the first kind have the same
small s behavior as the “normal” Bessel functions of the first
kind, so we immediately find

I−ν(λ̃)

Iν(λ̃)

(
λ̃

2

)2ν

= Rν,ξ

as a quantization condition for the odd solutions. The odd so-
lution can be discarded; however, since 0 < η < 1, we have

I−ν(λ̃)

Iν(λ̃)

(
λ̃

2

)2ν

> 1 > Rν,ξ ,

on 0 < ν < 1 and ξ > 0, so odd positive solutions do not exist.
For the even solutions, λ̃ needs to satisfy

I′−ν(λ̃+
g )

I′ν(λ̃+
g )

(
λ̃+

g

2

)ν

= −Rν,ξ .
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The left-hand side of the quantization condition at λ̃ = 0
equals �(ν)/�( − ν) > Rν, ξ with the inequality valid on 0 < ν

< 1 and ξ > 0. Further, the left-hand side is a monotonically
increasing function of λ̃, so for the physically relevant param-
eter range, 0 < ν < 1 and ξ > 0, there is exactly one positive
solution. The corresponding gerade NO is readily constructed
as

φ+
g (x) = C+

g e−Z|x|
[
�(1 + ν)

1 + ξ

(
λ̃+

g

2

)−ν

Iν(λ̃+
g e−Z|x|)

+ �(1 − ν)

1 − ξ

(
λ̃+

g

2

)ν

I−ν(λ̃+
g e−Z|x|)

]
.

As a check we consider the limit ξ → 0 for which we
should obtain only two occupied NOs as at the beginning of
Sec. II. First note that the NO coefficients are obtained as ck

= 2ηξK/λk, so the only non-vanishing amplitudes can come
from λk → 0 and all the other λk solutions give ck = 0. To find
these solutions, we make expansions of the quantization con-
ditions around λ̃. Let us first start with the quantization con-
dition for the negative odd solutions (A3). For the left-hand
side, we have

J−ν(λ̃)

Jν(λ̃)

(
λ̃

2

)2ν

= �(1 + ν)

�(1 − ν)

(
1 − ν

2(1 − ν2)
λ̃2 + O(λ̃4)

)
.

Since we now have only a linear equation in λ̃2, the small λ

solutions is readily found as

λ = −Z2λ̃2 = − 4ξ

1 + ξ

1 − ν2

ν
Z2 < 0,

for 0 < ν < 1. Calculating the corresponding amplitude and
taking the limit ξ → 0, we obtain indeed exactly the value of
cu given in (3b). Similarly, for the gerade quantization condi-
tion, we find for small λ̃

J′
−ν(λ̃)

J′
ν(λ̃)

(
λ̃

2

)2ν

=−�(1 + ν)

�(1 − ν)

(
1 + 2 − ν2

2ν(1 − ν2)
λ̃2 + O(λ̃4)

)
.

Now trying to solve the quantization condition (A4) for small
λ̃ gives

λ = −Z2λ̃2 = 4ξ

1 + ξ

ν(1 − ν2)

2 − ν2
Z2 > 0, (A5)

for 0 < ν < 1. Since this solution corresponds to a positive
λ, we find that no finite negative NO coefficient exists for the
gerade NOs.

Now we will investigate positive solutions. Since the
modified Bessel functions are simply Bessel functions with an

imaginary argument, only the sign in front of the λ̃2 changes
in the small λ̃ expansions. Because also the sign of λ changes
(λ = Z2λ̃2), the previously found small λ solutions are also
valid for positive λ. Since only the gerade solution has λ > 0,
there remains one gerade NO with a positive coefficient and
working out the corresponding natural amplitude with (A5),
we correctly recover (3a). Further, using (A2) for the small λ̃

behavior of the Bessel functions in the NOs, the two NOs in
the ξ → 0 limit are recovered as well.
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