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Abstract

Objective: In epidemiological follow-up studies, many key covariates, such
as smoking, use of medication, blood pressure and cholesterol, are time-varying.
Because of practical and financial limitations, time-varying covariates cannot be
measured continuously, but only at certain prespecified time points. We study
how the number of these longitudinal measurements can be chosen cost-efficiently
by evaluating the usefulness of the measurements for risk prediction.

Study Design and Setting: The usefulness is addressed by measuring the
improvement in model discrimination between models using different amounts of
longitudinal information. We use simulated follow-up data and the data from
the Finnish East–West study, a follow-up study, with eight longitudinal covariate
measurements carried out between 1959 and 1999.

Results: In a simulation study, we show how the variability and the hazard ra-
tio of a time-varying covariate are connected to the importance of re-measurements.
In the East–West study, it is seen that for older people, the risk predictions ob-
tained using only every other measurement are almost equivalent to the predictions
obtained using all eight measurements.

Conclusion: Decisions about the study design have significant effects on the

costs. The cost-efficiency can be improved by applying the measures of model

discrimination to data from previous studies and simulations.
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What is new?

• The usefulness of longitudinal measurements can be systematically
summarized by measures of model discrimination.

• The cost-efficiency of the follow-up study design can be improved in
both ongoing and completely new follow-up studies by considering
model discrimination comparisons based on simulations and data
from previous studies.

• The results from the East–West study with over 50 years of follow-
up suggest that carrying out covariate measurements every ten
years may by sufficient for older people when all-cause mortality
is considered as an end point.

1. Introduction

Epidemiological follow-up studies usually include time-varying covariates,
such as smoking, use of medication, blood pressure, cholesterol and body
mass index. Especially in long follow-up studies, these kinds of covariates
may lose their predictive power over time, if only the baseline measurements
are used. This can be seen as one form of the regression dilution problem
(1). An ideal solution would be to measure these covariates continuously,
but this is usually impossible because of practical and financial limitations.
Here we use the term ‘covariate’ to mean both variables of direct interest
and control variables measured on continuous or categorical scale. Longitu-
dinal measurements carried out at prespecified time points are often used,
when the speed of change in the covariates is relatively slow. Planning lon-
gitudinal measurements, however, raises many questions related to the costs
and efficiency of the study. Which individuals should be measured and how
frequently? Often available resources and traditions guide these decisions.

According to our knowledge, the question presented in the title has not
previously been formulated as a statistical problem. In addition to the prac-
tical importance in designing an epidemiological study, the question has also
wider theoretical interest. In the general form, the question is about estima-
tion or approximation of a stochastic continuous-time process on the basis
of a small number of discrete-time observations. In the context of causal
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inference, the problem can be formulated as a question on the relationship
between continuous-time processes and causal directed acyclic graphs (2; 3).
We do not aim to solve the general problem, but to present tools that can be
used to support fact-based decision making on the study design in practical
situations.

Cost-efficiency of a follow-up study can be considered from different view-
points. We assume a follow-up study with time-varying covariates and a
continuously observed survival outcome. Our objective is to study the deter-
mination of the reasonable number of longitudinal measurements needed for
risk prediction. Another aim is to study whether a new measurement is worth
carrying out in an ongoing follow-up study. We approach these questions by
using simulation studies and empirical evidence from previous studies. The
combination of these is also discussed.

Some other aspects of cost-efficiency of follow-up studies have already
been explored. Our previous work (4) considered the optimal selection of a
subset of individuals for a new measurement when we cannot afford to re-
measure the entire cohort. The timing of follow-up visits has been analyzed
in a case where an examination is needed to determine if an event of interest
has occurred (5; 6). Optimal design of follow-up studies has also been in-
vestigated when a subset of individuals is selected for expensive genotyping
(7). In the case of longitudinal response, the optimal number of repeated
measurements has been studied (8) and so called triggered sampling design
has been proposed to improve cost-efficiency (9).

Risk prediction is motivated by the need to assign interventions on the ba-
sis of the individual-level risk profiles. Before carrying out a re-examination
of the covariates in an ongoing follow-up study, researchers may want to
know how valuable this would be for risk prediction. This can be addressed
by simulating the unknown covariate measurements and survival times and
comparing the predictive abilities of a model using new measurements and
a model fitted without new measurements. If the incremental benefit would
be small or negligible, the re-examination could be considered to be con-
ducted later. When we are planning a completely new follow-up study, we
could utilize similar studies conducted earlier to learn about the importance
of longitudinal measurements. By analyzing data from similar studies, we
may understand better the role of re-examinations in the new study.

To evaluate the usefulness of longitudinal covariate measurements, we
use measures of model discrimination (10; 11; 12) to compare models us-
ing different amounts of longitudinal information. These measures have al-
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ready been applied to specific cases to show that using longitudinal covariate
measurements improves model performance compared to using only baseline
measurements (13; 14). In this article, we present the concepts on a general
level and, in addition, study a practical example based on data from the
East–West study, the Finnish part of an international follow-up study called
the Seven Countries Study (15; 16). These data suit our purposes well, be-
cause the Finnish cohorts have eight longitudinal measurements carried out
between 1959 and 1999 and the information on mortality is available until
the end of 2011.

2. Risk models and measures of model performance

2.1. Models for risk prediction

The usefulness of longitudinal covariate measurements for risk prediction
depends on the risk prediction model used. Therefore, we have to define
our models of interest and design the study with respect to them. Two
main approaches for modeling survival time with time-varying covariates are
time-dependent Cox model (17) and so called joint modeling (18; 19). In
the time-dependent Cox model covariate values are updated at measurement
times, whereas a joint model includes models for the covariate process and
survival times and allows them to be associated.

Joint modeling is often preferred because time-dependent Cox models
may provide biased estimates of the regression coefficients if the longitudi-
nal process is measured with error or includes random variation that is not
captured by the measurements (20). Bias is a less serious concern in risk pre-
diction because the calibration of the model can be checked and if necessary,
the model can be recalibrated. There are also cases where time-dependent
Cox models are appropriate (21). Further, although some specialized meth-
ods have been proposed for joint modeling with multiple longitudinal covari-
ates, including conditional score estimator (22), latent class approach (23)
and Bayesian methods (24; 25), the computational methods and software for
multivariate joint modeling are not fully developed. For these reasons, the
time-dependent Cox model was used in this work.

The choice of the type of the model has to be study-specific to obtain
reasonable estimates of predicted probabilities. It is also worth noticing that
there are several different ways to use longitudinal measurement information
in risk prediction models. New time-dependent covariates derived from the
original measurements may be, for example, average of the most recent and
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all the previous measurements (26), standard deviation or maximum value
of the measurements (27) or change in the latest two measurements (28).

2.2. Measures of model performance

Several measures of model performance have been developed to give in-
sight into the usefulness of predictors or models (29; 11; 30; 12). These
measures typically fall into one of the two main categories: model calibra-
tion or model discrimination. Calibration quantifies how well the predicted
risk agrees with the actual observed risk. Discrimination is a measure of how
well the model can separate events and non-events.

The area under the receiver operating characteristic curve (AUC) (29) is
a widespread measure of model discrimination. The AUC is the probability
that risk prediction of a randomly selected pair of individuals, one with
the primary outcome of interest and one without, is properly ordered (31).
However, many researchers have observed that the improvement in AUC may
be small even if the addition of the predictor to the model can be otherwise
justified (32; 33). Recently, a decision analytic approach has been proposed
to interpret small changes in AUC (34).

The net reclassification improvement (NRI) and the integrated discrimi-
nation improvement (IDI) indices (11) have gained popularity as alternatives
for the improvement in AUC although these measures have also been crit-
icized (35; 36). The NRI is estimated as the proportion of correct minus
incorrect reclassifications among events, plus the proportion of correct minus
incorrect reclassifications among non-events. A reclassification is considered
to be correct if an event is classified to a higher risk category by the new model
than by the old model or if a non-event is classified to a lower risk category.
In our applications, we do not have any established risk categories, so we use
the continuous (or category-less) version of the NRI (37), where upward and
downward ‘reclassifications’ are defined as any upward or downward change
in predicted probabilities. We denote the continuous NRI simply by NRI.
The IDI is estimated as the average risk of events minus the average risk of
non-events obtained from the new model, minus the average risk of events
minus the average risk of non-events obtained from the old model.

Decision-analytic measures quantify the clinical usefulness of models by
incorporating relative consequences of false positives and negatives. A risk
threshold T is defined as a risk of the outcome at which one is indifferent
about whether to classify an individual to the high or low risk category.
The odds of T is then the ratio of harm to benefit. Net benefit (38) is a
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decision-analytic measure, which is given as follows:

NB =
TP

N
− wFP

N
,

where TP is the number of true positives, FP the number of false positives,
N is the size of the data set and w = T/(1−T ). When net benefit is used in
comparing two models, the difference in NB is interpreted as the difference
in the proportion of true positives at the same level of false positives.

It is not always clear whether model calibration or discrimination should
be preferred and recently there has been some controversy over the perfor-
mance and use of risk prediction models (39; 40). Discrimination could be
preferred, because recalibration is always possible, but poor discrimination
cannot be corrected afterwards (10). On the other hand, calibration should
not be overlooked, when the goal is to stratify individuals accurately into risk
categories (41). In addition, it has been noted that using the NRI, IDI and
net benefit requires calibrated models (42; 43). In this paper, we restrict our
considerations into model discrimination, but if the particular aim of a study
was to construct risk assessment algorithms, measures of calibration, e.g the
Hosmer-Lemeshow statistic (44), calibration-in-the-large (45) and calibration
slope (45), should also be applied when planning a study design.

3. Study design based on simulations

A reasonable simulation study to investigate the incremental benefit of
new measurements provides the distributions of covariates and survival times
and their relations. Particularly, understanding of the covariate processes and
their effects on survival is needed. This information can be obtained from the
data already collected in an ongoing study or from similar studies conducted
earlier.

In general, the simulation of proportional hazards models (46; 47) requires
several distributions and parameters to be determined. In the context of
this paper, these include the sample size, the distributions of covariates, the
correlations between longitudinal measurements, the distribution of survival
times, the effect of the covariates on survival and the length of the follow-
up. It is worth considering the sensitivity of these choices by trying different
distributions and parameter values.
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3.1. Description of the simulation study

Simulation examples are presented in different settings to demonstrate
how the variability of a time-varying covariate and the hazard ratio of this
covariate affect the usefulness of the new measurements. A ten-year follow-
up study with 10 000 individuals of age 60 years at baseline, is considered.
The baseline measurement is carried out for the entire cohort. It is evalu-
ated, whether a new measurement five years after the baseline significantly
improves the predictions.

The baseline measurement x0i, for individual i, of a time-varying piece-
wise constant covariate is generated from the normal distribution with mean
µ0 = 0 and variance σ2 = 1. Second measurement value x1i five years af-
ter baseline is simulated from the normal distribution conditioned on the
baseline measurement with mean µ1i = γx0i and variance σ2

ε = σ2 − γ2σ2

resulting in the same variance for the baseline and the second measurements,
when −1 ≤ γ ≤ 1. As a matter of fact, the parameter γ represents also
the correlation between x0 and x1, because these variables have the same
variance. Values 0, 0.2, 0.4, 0.6 and 0.8 are used separately for γ to see the
effect of correlation between longitudinal measurements on the importance
of re-measurement. We denote the covariate shortly by x(t), which takes the
baseline value x0 in the time interval (t0, t1] and x1 in the interval (t1, t2],
where t0, t1 and t2 are times of the baseline measurement, the second mea-
surement and the end of the follow-up, respectively.

Survival times are drawn from the Weibull distribution conditioned on
the time-varying covariate through the proportional hazards model

λ(t|x(t)) = λ0(t)e
βx(t). (1)

In the Weibull distribution, using parameterization where the baseline hazard
function is expressed as

λ0(t) =
a

b

(
t

b

)a−1

,

we use the shape parameter a = 6.1 and scale (in days) parameter b =
28 000, which roughly equal those estimated from the real data used in
Section 4. The regression parameter is set separately to β = 0.1 and β = 0.2
to illustrate how the hazard ratio of the covariate affects the importance of
using the second measurements in the risk prediction. When the regression
coefficient in the Weibull proportional hazards model is β = 0.1 or β = 0.2,
the hazard ratio is eβ = 1.11 or eβ = 1.22 per an increase of the size of the

7



standard deviation, respectively. The survival time is censored at the end of
the follow-up t2, if the event has not occurred before that time.

In these simulations, we first fit a Weibull proportional hazards model
to survival information from the interval (t0, t1] using the baseline measure-
ments. Then, this model is used to calculate predicted event probabilities
for the interval (t1, t2] in two ways: using the baseline measurement or using
both the baseline and the second measurement. The discrimination ability
of these predictions is compared using 1000 simulation runs in each setting.

3.2. Simulation results

Figure 1 shows the estimates of (continuous) NRI, IDI and incremental
AUC (iAUC) for the added predictive ability of using new covariate mea-
surements instead of the baseline measurements. As expected, the use of the
new measurements becomes more important when the hazard ratio increases.
However, the figure reveals that IDI reacts more strongly to the difference in
the hazard ratio than NRI and iAUC.
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Figure 1: Estimates of NRI, IDI and incremental AUC using 1000 simulations in each
setting. The horizontal dashed line is at the level of zero.

The results also illustrate to what extent the correlation of longitudinal
measurements affects the usefulness of the second measurement. Naturally,
the greater the correlation is, the lesser is the additional information obtained
by carrying out a re-examination. If the correlation was one, the models to
be compared would be exactly the same. These kinds of simulations do not
give a direct answer to the question whether the re-measurement should be
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carried out, but they help researchers in making fact-based decision about
the study design.

4. Analysis of historical data

Planning of completely new follow-up studies should be based on expe-
riences from similar studies conducted earlier, if such are available. In this
section we propose an approach for evaluating the usefulness of longitudinal
covariate measurements in the risk prediction using data from a completed
follow-up study. This guides researchers in understanding the role of re-
examinations and in allocating the study resources efficiently.

4.1. The East–West study

We use data from the East–West study, the Finnish part of the Seven
Countries Study, which is one of the first international follow-up studies in the
field of cardiovascular epidemiology. The Seven Countries Study was initiated
in the late 1950s to study cardiovascular disease and their risk factors in
different countries (16). The Finnish data consist of one cohort from Eastern
and one from South-Western Finland, from which comes the name the East–
West study. All the men born between 1900 and 1919 and living in these
geographically defined areas were included in the cohorts (N = 1711). The
baseline measurements were carried out in 1959 and re-examinations in 1964,
1969, 1974, 1984, 1989, 1994 and 1999. The cohorts were followed up for
mortality until the end of 2011.

Some characteristics of the data are presented in Table 1. Smoking is a
binary variable describing the current smoking status. Systolic blood pres-
sure (SBP), total cholesterol, body mass index (BMI) and resting heart rate
(HR) are continuous variables. Table 1 presents only those variables from the
East–West study, which were used in our analyses. All-cause mortality was
used as the response variable. Correlations between longitudinal covariate
measurements are shown to enable the reflection on the effect of the vari-
ability of the covariates over time to the importance of the re-measurements.
Our analysis of these data did not include all the relevant covariates known
nowadays as the baseline measurement of the East–West study was carried
out in 1959.

4.2. Model comparisons

To learn about the importance of the longitudinal measurements in the
East–West study, we compared four different ways of using the data:
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Table 1: Characteristics of the East–West data by the examination years.
Year

1959 1964 1969 1974 1984 1989 1994 1999
Number of individuals alive 1711 1594 1428 1225 766 525 317 189
Participation rate (%) 98 97 96 96 92 86 87 68
Average age of individuals alive 49.8 54.7 59.4 64.0 73.0 76.9 80.9 84.1
SBP: corr. with the previous meas. 0.70 0.66 0.55 0.56 0.48 0.26 0.25
Chol.: corr. with the previous meas. 0.70 0.73 0.63 0.54 0.69 0.67 0.66
BMI: corr. with the previous meas. 0.90 0.91 0.88 0.81 0.87 0.83 0.78
HR: corr. with the previous meas. 0.54 0.50 0.53 0.37 0.45 0.26 0.29
Smoking: corr. with the previous meas. 0.71 0.72 0.65 0.63 0.81 0.81 0.56

Participation rate was calculated as the proportion of individuals with SBP, Chol, BMI,
HR or Smoking measured among all individuals alive.
Spearman correlation is used for smoking, Pearson correlation for other variables.
Abbreviations: SBP = systolic blood pressure, Chol. = total cholesterol, BMI = body
mass index, HR = resting heart rate

(a) The null model, which does not use covariate data at all, so the predic-
tions are based only on the information about individuals’ ages.

(b) Only the baseline measurements are used.

(c) Every other measurement is used, that is, the measurements from the
years 1959, 1969, 1984 and 1994 are used.

(d) All the measurements carried out in the study are used.

We can imagine that these represent four different scenarios of carrying out
the measurements and we refer to the models based on them as Models
(a)–(d). Cox proportional hazards models of the type of formula (1), with
all-cause mortality as the end-point and age as the time-scale, were employed
in each case. Models (a) and (b) were time-fixed and Models (c) and (d) were
time-dependent models. All the variables presented in Table 1 were used as
covariates in Models (b)–(d).

An attempt was made to take full advantage of the measurements avail-
able for each model. Smoothing splines (48) were applied to take into account
the nonlinear effects of the covariates. Models (c) and (d) use covariate data
as time-dependent averages and latest changes. The proportional hazards
assumption of the models was checked using Schoenfeld residuals (48). The
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model equations and selection of degrees of freedom for the splines are pre-
sented in Appendix. As seen in Table 1, the participation rate was high in the
East–West study, so missing data was not a substantial problem here. The
missing longitudinal measurements were imputed simply by carrying forward
the last observation. This imputation method is similar in treating covari-
ates, and has also the same drawbacks, as the time-dependent Cox model
(21). We point out that the purpose of these analyses is to illustrate the con-
cepts of this article rather than being a thorough investigation of all-cause
mortality.

Figure 2 shows AUC estimates calculated from five-year predictions. These
estimates, as well as NRIs, IDIs and net benefits in this section, are calcu-
lated for a binary outcome (death/survival during the appropriate five-year
period). The Cox models are fitted to the entire follow-up period and the pre-
dictions are computed using these models and the covariate data collected at
the beginning of a prediction interval and before that. Although the follow-
up started from the year 1959, the first AUC for the model using all the
measurements is for the prediction interval of 1964–1969 (from autumn 1964
to autumn 1969), because two longitudinal measurements are needed to cal-
culate the changes in the risk factors. Respectively, the first AUC for the
model, which uses every other measurement, is for 1969–1974.

It has been stated that the improvement in AUC may not be a very good
tool for comparing predictiveness of models (32; 33), but plotting the AUCs
in this way illustrates how the predictive ability of each model changes over
time, which could not be seen by using NRI or IDI. For example, Figure 2
shows that the AUC of the model using only the baseline measurement ap-
proaches the AUC of the null model as time goes on. As we can see, the order
of the AUCs between the models indicates that predictions obtained using
every other measurements are virtually as good as those obtained using all
the measurements. However, the predictions are improved by carrying out
longitudinal measurements after the baseline measurement, except for the
latter part of the follow-up, where age is still predictive but the risk factors
start to lose their predictive power. This may be due to an increasing role
of frailty as a predictor in elderly (49; 50). As seen in Table 1, the average
age of individuals alive is already over 80 in the last two measurement times.
The exceptionally high AUCs in the prediction interval of 1984–1989 are in-
dependent of the risk factors, because this spike is observed also for the null
model. For some reason, individuals’ age is correlated with the survival sta-
tus more strongly in this interval than in other five-year intervals considered.
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Figure 2: AUC estimates for the five-year predictions from the models using different
amounts of longitudinal measurements in the East–West study. The estimates are plotted
on the horizontal axis at the starting point of the prediction intervals.

In general, the increase in the predictive ability of the null model over time
can be explained by the usual shape of a survival curve: when the cohort
grows older, the difference in the survival rates between younger and older
individuals becomes larger.

To evaluate whether increasing the number of longitudinal measurements
improves the predictive ability significantly, we may compare the models
using NRI and IDI indices. Pairwise model comparisons of the five-year pre-
dictions using NRI are presented in Figure 3. In most of the time intervals,
the predictions are significantly improved by adding measurements. Every
other measurement seems to be enough compared to carrying out all the
measurements. However, it is clear that the predictions can be improved
by carrying out some longitudinal measurements after the baseline measure-
ment. In the last time interval, the covariate measurements do not seem to
be very useful in predicting. Reasons for this may be the decreasing cohort
size or a possibility of the diminishing predictive power of risk factors in el-
derly. It is also possible that the same prediction model does not fit at the
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oldest ages.
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Figure 3: NRI estimates with 95% confidence intervals for pairwise comparisons of the
five-year predictions from models using different amounts of longitudinal measurements
in the East–West study. The estimates are plotted on the horizontal axis at the starting
point of the prediction intervals. A positive value of an estimate means that the model
named above the figure is better than the model named on the left-hand side of the figure.

We observe mostly the same patterns in the model comparisons, when
IDI is used instead of NRI to measure the difference in predictive abilities
(Figure 4). Increasing the number of measurements improves the predictions,
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but carrying out all the measurements may bring negligible improvement
compared to carrying out every other measurement.
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Figure 4: IDI estimates with 95% confidence intervals for pairwise comparisons of the
five-year predictions from models using different amounts of longitudinal measurements
in the East–West study. The estimates are plotted on the horizontal axis at the starting
point of the prediction intervals. A positive value of an estimate means that the model
named above the figure is better than the model named on the left-hand side of the figure.

NRI and IDI do not measure clinical consequences of using different mod-
els. In order to develop models to assist clinical decisions, the follow-up study
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can be designed using decision-analytic measures. Here, we demonstrate the
use of net benefit, where relative misclassification costs are given by a risk
threshold. Figure 5 shows the differences in net benefit when other mod-
els are compared to Model (a). If we assume that further examinations are
conducted for individuals with high risk but want to save costs by avoiding
unnecessary examinations, a risk threshold of 10% could be used to assume
that one true positive is worth nine false positives.

Comparisons of net benefit are presented for two different time intervals
in Figure 5: years 1969–1974 and 1989–1994. For the latter interval, 10%
risk threshold does not discriminate individuals well because increased age
has increased also the risk of death. Hence, a higher threshold could be used
for an older cohort. For instance, a 25% threshold would mean that one true
positive is worth three false positives. The figure also shows that conclusions
based on comparisons with respect to a single risk threshold may be very
sensitive to the choice of the threshold.

To summarize our findings on the East–West study, we can say that mea-
suring the covariates in ten-year intervals might be sufficient. By contrasting
these results with correlations between longitudinal measurements (Table 1),
we do not find similar relation as in the results of the simulation study of
Section 3.2. Correlations mainly decrease over time, so one could expect
that re-measurements would become more important. On the other hand,
smoking status, which is a very strong predictor of all-cause mortality, has
high correlations in the latter part of the follow-up.

5. Combining simulations and real data

The concepts of Sections 3 and 4 would perhaps be the most advantageous
in a situation where the extension of a follow-up study having already at least
two measurement times is to be planned. In this case we have some infor-
mation on the correlations of the covariate measurements, which describes
the variability of the covariates in time. We also have learned about the
effects of the covariates on survival and at least two measurements allow us
to investigate how the changes in the covariates affect survival, for instance.
If we have earlier measured some expensive potential risk factor, which does
not seem to have predictive power, this could be omitted from the upcoming
examinations.

An ongoing follow-up study with at least two measurement times offers
the information required for a reliable simulation. First, the next covariate
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Figure 5: Smoothed curves showing the differences in net benefit compared to the model
without any measurement information (Model (a)) for different risk thresholds on the
horizontal axis. Vertical lines indicate the risk thresholds of 10% and 25%.

values are generated so that they correlate appropriately with the previous
measurements. Then, forthcoming survival times are simulated conditioned
on the new covariate values. Of course, the simulation of survival times can
also be conditioned, for example, on the average of new simulated covariate
values and previous observed values. After this, the predictions are calcu-
lated for the desired time interval with and without new simulated covariate
values and finally these predictions are compared using measures of model
performance. The procedure is replicated in the same simulation setting.
The sensitivity of the choices made can be addressed by trying different sim-
ulation parameters and risk prediction models.

One way to obtain more accurate information about the covariate pro-
cesses, is to carry out re-examinations for a small subcohort more frequently
than for the entire cohort. This increases our knowledge about correlations
between measurements in different time intervals and thus improves the sim-
ulations. Moreover, the subset of individuals can be selected optimally for
longitudinal measurements to result in more precise estimates of the regres-
sion parameters than a simple random sample (4).
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6. Discussion

Conducting a follow-up study requires large financial resources. To allo-
cate the resources efficiently, the study has to be designed well. We consid-
ered methods to evaluate the number of longitudinal covariate measurements
needed for the risk prediction. Simulations and data from a previous study
was used to evaluate the importance of longitudinal measurements. Mea-
sures of model discrimination, namely AUC, NRI, IDI and net benefit, were
used to compare models using different amounts of longitudinal information.
It should be noted, however, that the application of the concepts presented
in this paper does not require the use of these specific measures, but other
metrics could be used as well.

As an example of using historical data, we evaluated the usefulness of
longitudinal measurements in a long follow-up study, the East–West study.
These data were suitable for our purposes, because the study contains eight
longitudinal measurements and a follow-up period of more than 50 years. To
our knowledge, these kinds of evaluations have not been presented before. By
performing analyses considering the usefulness of longitudinal measurements,
we can say to what extent we could decrease the number of the measurements
without significantly losing the precision of the predictions.

The tools presented here seem to be helpful in designing follow-up stud-
ies, although they alone may not give exact answers to questions about the
number of measurements needed. Because the decisions about study de-
sign have significant effects on costs, researchers should have some insight
into the usefulness of longitudinal measurements and, particularly, effects
of not carrying out longitudinal measurements should be understood. The
collected data may be used for several purposes, and the usefulness of longi-
tudinal measurements could be evaluated using several different models and
variables to obtain a comprehensive understanding of the phenomenon to be
studied.

Although the presented methodology is developed for follow-up studies in
general, certain limitations should be noted. The tools may not be useful for
completely new research questions for which no previous data or prior knowl-
edge exists. As always in statistical modeling, the conclusions may depend
on the modeling assumptions. With East–West data, splines were used to
allow more flexible modeling but, for instance, interactions of the covariates
were not present in the models and time-dependent Cox models cannot fully
take into account the true variability of the covariates. The discussion on the
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merits and demerits of different measures of model performance is expected
to continue. Therefore, we do not provide recommendations of the measures
to be preferred. In the East-West example the main conclusions were similar
with all the measures considered.

The role of missing data was not studied in this article, although miss-
ingness of survival and especially longitudinal data is a common problem in
follow-up studies. An individual may be lost during the follow-up, refuse to
continue participation or miss a visit for some reason and then return to the
study. Even if the missingness would be non-informative, it might reduce the
power of the study, and more seriously, if the missingness would be informa-
tive, the estimates might also be considerably biased. The topic of missing
longitudinal data is treated in more detail by, for example, Engels and Diehr
(51) and Twisk (52).

This paper considered only one aspect of cost-efficiency in follow-up stud-
ies. More work is needed to combine the different viewpoints of cost-efficient
follow-up designs. Future research will consider the optimal selection of in-
dividuals for longitudinal measurements (4) together with the determination
of the reasonable number of measurements.
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Appendix

The model equations of Section 4.2 are as follows:

(a) λ(ti) = λ0(ti)

(b) λ(ti|x(t0)) = λ0(ti) exp[spline(SBP (t0), df = 4)+spline(CHOL(t0), df =
2) + spline(BMI(t0), df = 3) + β1HR(t0) + β2Smoking(t0)]

(c) λ(ti|x(t)) = λ0(ti) exp[β1SBPmean(t) + spline(CHOLmean(t), df = 2) +
spline(BMImean(t), df = 5) + β2HRmean(t) + β3Smokingmean(t) +
spline(SBPchange(t), df = 2) + spline(CHOLchange(t), df = 3) +
spline(BMIchange(t), df = 3) + spline(HRchange(t), df = 5)]
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(d) λ(ti|x(t)) = λ0(ti) exp[spline(SBPmean(t), df = 2)+spline(CHOLmean(t), df =
2) + spline(BMImean(t), df = 5) + β1HRmean(t) + β2Smokingmean(t) +
spline(SBPchange(t), df = 5) + spline(CHOLchange(t), df = 4) +
spline(BMIchange(t), df = 2) + β3HRchange(t)]

where t0 refers to the time of the baseline measurements and i to an individ-
ual. The time-dependent mean and change variables in Models (c) and (d)
are calculated using the measurements available, i.e. every other in Model
(c) and all the measurements in Model (d). The function ‘spline()’ means a
smoothing spline (48). The degrees of freedom (df) controlling the amount
of smoothing are selected from integers between 1 and 5, where df = 1 means
a linear effect, using Akaike information criterion.
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