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INTRODUCTION

Denitrification is the primary mechanism by which
nitrogen is removed from lakes (Saunders & Kalff
2001a). It is an important process in the control of eu-
trophication as it converts fixed nitrogen compounds to
gaseous forms, mostly to N2 (Fig. 1), which are biologi-
cally unavailable for most primary producers (Seitz -
inger 1988). It is an anaerobic process in which faculta-
tively anaerobic microbes use nitrogen oxides as
alternative terminal electron acceptors during the oxi-
dation of organic matter (heterotrophic denitrification)
or inorganic matter (autotrophic denitrification) (Zumft
1997). Usually it takes place within a very narrow
anoxic zone (thickness <10 mm), immediately below
the oxic–anoxic interface in sediment, where the
process is being fed both by nitrate diffusing to the
anoxic zone from the overlying water and by nitrate
produced in the thin oxic surface zone (thickness 0.1 to
5.0 mm) by nitrification (coupled nitrification–denitrifi-
cation) (e.g. Seitzinger 1988, Nielsen 1992) (Fig. 1). An-

other potential N2 gas forming microbial process is the
anaerobic oxidation of ammonium (anammox), which
is estimated to produce half of the gaseous N2 in ma-
rine ecosystems (Dalsgaard et al. 2005). However, in
freshwater ecosystems anammox has so far been de-
tected only in sediments of non-saline parts of estuar-
ies (Dale et al. 2009, Koop-Jakobsen & Giblin 2009)
and in the anoxic water column of Lake Tanganyika
(Schubert et al. 2006) and Lake Rassnitzer (Hamersley
et al. 2009), and its wider importance in lacustrine ni-
trogen cycling remains to be studied.

Sediment denitrification has been studied during
recent decades in a wide variety of different lake
ecosystems (reviewed by Seitzinger 1988, Saunders &
Kalff 2001b, Steingruber et al. 2001). Studies have
 traditionally focused on temperate lakes, leaving
the large number of lakes in the northern boreal
zone almost totally unstudied. However, small lakes
(<50 km2), which are typical of the boreal zone, are
globally very important sinks of nitrogen (Harrison et
al. 2009). For instance, in Finland there are ~190 000

© Inter-Research 2011 · www.int-res.com*Email: risku1978@yahoo.com

Spatial and temporal variation in denitrification
and in the denitrifier community in a boreal lake

Antti Juhani Rissanen1,2,*, Marja Tiirola1, Anne Ojala3

1Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9, 40500 Jyväskylä, Finland 
2Lammi Biological Station, University of Helsinki, Pääjärventie 320, 16900 Lammi, Finland

3Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland 

ABSTRACT: We investigated the spatial and temporal variation in denitrification rates (isotope-
 pairing technique, IPT) and in the denitrifier community (examination of gene nirK by denaturing-
gradient gel electrophoresis [DGGE] of microbial DNA) in the sediments of a boreal, clear-water, eu-
trophic lake using samples collected from shallow littoral, deep littoral and shallow profundal
 sediments during early summer, mid-summer, autumn and winter. The measured denitrification rates
(44 to 613 μmol N m−2 d−1) are among the lowest ever reported from lacustrine sediments. Denitri fi -
cation rates varied both spatially and temporally, being highest in the profundal zone during mid-
 summer and in the littoral zones during winter. Correlation analyses indicated that these variations
were due to variations in the concentrations of nitrate and oxygen in the water overlying the sediment.
The structure of the denitrifier community was temporally extremely stable and differed only slightly
between the sites. Distance-based linear model (DISTLM) analysis indicated that the observed
variation was probably due mainly to variations in the content of organic matter, and in the porosity, of
the sediment. The structure of the denitrifier community and the denitrifying activities were uncoupled.

KEY WORDS:  Denitrification · Lake · Sediment · nirK · Bacterial diversity · Boreal

Resale or republication not permitted without written consent of the publisher

OPENPEN
 ACCESSCCESS



lakes, most of them <50 km2 (Simola & Arvola 2005),
and there have been no previous studies addressing
denitrification rates in these lakes. Therefore, for
future local and global nitrogen modelling, more infor-
mation is needed about the mechanisms of nitrogen
retention, and especially about denitrification, in these
lakes. It will be important to assess both the spatial and
temporal variation in denitrification rates and to recog-
nize the factors, e.g. temperature, O2 concentration
and supply of nitrate and labile organic matter (Chris-
tensen & Sørensen 1986, Seitzinger 1988, Saunders &
Kalff 2001b), affecting this variation.

Besides environmental factors, the structure of the
denitrifier community can affect process rates (e.g.
Rich et al. 2003, Magalhães et al. 2008), but this has
never been assessed in denitrification studies of lake
sediments. Denitrifier communities are studied mostly
by characterization of the diversity of functional genes
coding for different reductase enzymes acting in the
different steps of the nitrate reduction chain (Fig. 1)
(Wallenstein et al. 2006). Reduction of nitrite is the
key step in denitrification as it produces the first
gaseous product (NO), which is not usable by primary
producers. Therefore, the focus in studies of denitrifier
communities has often been on nitrite reductase genes,

nirK and nirS  (Wallenstein et al. 2006). Ap-
proaches to  microbial community finger-
printing, i.e. denaturing-gradient gel elec-
trophoresis (DGGE) (Muyzer et al. 1993,
Throbäck et al. 2004) and terminal restric-
tion fragment length polymorphism (T-
RFLP) (Liu et al. 1997, Rich et al. 2003), pro-
vide cost-effective but sensitive methods
for performing a statistically sufficient
number of replicate analyses of community
structure variations (Prosser 2010). DGGE,
in particular, has been shown to have good
resolution of denitrifier community struc -
ture (Enwall & Hallin 2009); indeed, the ex-
amination of nirK by DGGE has been suc-
cessfully used in studies of denitrifier
communities in different environments, in-
cluding estuarine sediments (Fortunato et
al. 2009), soils (Wertz et al. 2009) and
waste-water treatment plants (Hallin et al.
2006). Overall, the emphasis in molecular
ecological studies has been mostly on deni-
trifier communities in soils (Rich et al. 2003,
Rich & Myrold 2004, Wolsing & Priemé
2004, Enwall et al. 2005, Rösch & Bothe
2005) and in estuarine sediments (Nogales
et al. 2002, Smith et al. 2007, Magalhães et
al. 2008) and marine sediments (Braker et
al. 2001, Liu et al. 2003, Tiquia et al. 2006),
with very little attention paid to freshwater

communities (Perryman et al. 2008), especially those in
lacustrine sediments (Kim et al. 2011).

Our purpose was to evaluate the spatial and tempo-
ral variation in denitrification rates, and in the denitri-
fier community, in the sediments of a boreal clear-
water lake. Because previous studies have indicated
that shallow areas in lakes act as ‘hotspots’ of denitrifi-
cation (Ahlgren et al. 1994, Saunders & Kalff 2001b),
the present study focused specifically on littoral and
shallow profundal sites. Denitrification rates were
measured by the isotope-pairing technique (IPT)
(Nielsen 1992), and denitrifying communities were
characterized using DGGE in nirK -based studies of
microbial DNA extracted from sediments.

MATERIALS AND METHODS

Study lake. Lake Ormajärvi is a dimictic, clear-water
and eutrophic lake (area: 6.5 km2; drainage area:
116 km2; maximum depth: 30 m; mean depth: 10 m)
 located in southern Finland (61° 06’ N, 24° 58’ E) (see
Ojala et al. 2011 for a detailed description of the
study lake). The primary production in Lake Orma-
järvi is strongly phosphorus-limited for most of the
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Fig. 1. Schematic representation of the vertical stratification of sediment, lo-
cation of sediment nitrogen transformation processes, and percentages of N2

and N2O of the nitrogenous gas produced in the sediment. The thickness of
the oxic and anoxic nitrate-containing zones is presented as the maximum
values reported in previous studies on lake and river sediments (Risgaard-
Petersen et al. 1994, Revsbech et al. 2005, Maerki et al. 2009, Bryant et al.
2010, Hobbs et al. 2010). The range in reported oxygen and nitrate penetra-
tion depths is indicated in the figure. The percentages of N2 and N2O of the
nitrogenous gas produced in the sediment are indicated as the range of re-
ported values in previous studies on lake and river sediments (Seitzinger 

1988, Svensson 1998, Silvennoinen et al. 2008)



year (Ojala et al. 2011), although positive nitrogen fix-
ation rates measured from mid-summer cyanobacterial
bloom samples (Jäntti 2007) imply occasional nitrogen-
limitation.

Sample collection. The lake sediments were sam-
pled 3 times during the growing season of 2006, and
once in the winter of 2007, from a transect of 3 points
extending from the immediate vicinity of the littoral
Typha latifolia (L.) stands to the shallow profundal
zone (transect length ~500 m) (Table 1). Four sediment
cores (sediment and overlying water) of diameter of
7 cm (3 field replicate cores for the denitrification incu-
bations and 1 for background information) were col-
lected on each occasion from each site, using plexi-
glass tubes connected to a gravity corer. Immediately
after sampling, the tubes were sealed with rubber
stoppers at both ends, covered with black plastic,
placed in a cool box in an upright position, and care-
fully transported to the laboratory for processing,
which took place within 1 h from sampling.

Concurrent with the sediment coring, profiles of oxy-
gen concentrations, oxygen saturation, temperature
and pH were measured from the whole water column
above the sediment using a portable field meter (YSI
556 MPS, Yellow Springs Instruments). These mea-
surements started ~10 cm above the sediment surface.
pH was not recorded at the shallowest littoral point in
early summer. Other background information gath-
ered included concentrations of dissolved inorganic

nutrients ([NO3
− + NO2

−], [NH4
+], [PO4

3−]) in the water
overlying the sediment (2 to 3 cm from the sediment
surface) as well as the organic content and the porosity
of the sediment. Nutrients were determined from
water samples filtered through pre-rinsed filters (Milli-
pore) of pore size 0.2 μm. Inorganic phosphorus (Mur-
phy & Riley 1962) and nitrate–nitrite (Wood et al. 1967)
were determined with flow injection analysis using
standard methods (QuikChem®8000, Zellweger Ana-
lytics). The organic content of the sediment (loss on
ignition, LOI) was determined as the ratio of the loss of
mass of the sediment after combustion at high temper-
ature (450oC for 4 h) to the dry mass of the sediment
(determined by drying at 60oC for 48 h). Sediment
porosity was calculated according to Tuominen et al.
(1998).

Denitrification measurements. Denitrification was
assayed in the laboratory using IPT (Nielsen 1992) and
following the procedures of Tuominen et al. (1998) and
Hietanen (2007) who studied denitrification and anam-
mox in the brackish Gulf of Finland. Three subsamples
were taken using small plastic tubes (length 16 cm, di-
ameter 2.6 cm) from each of the 3 field replicate cores
taken on one occasion. The tubes were pushed into the
sediment so that about 4 to 7 cm of the tube length was
filled with sediment and the rest with overlying water.
Oxygen and nitrate penetration depths were not mea-
sured, but according to the experience in previous
studies (e.g. Revsbech et al. 2005), the sediment height
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Site                           Date                 No. of         Porosity    LOI     [NO3
−]       [NH4

+]       [PO4
3−]         [O2]     O2 sat.   T       pH

(depth)                                        sediment cores                    (%)   (μmol l−1)   (μmol l−1)   (μmol l−1)   (μmol l−1)   (%)   (°C)

Early summer
Lit (1 m)                 6 Jun 06                   3                 0.88       5.32       23.64           1.21           0.10            363        104   10.6     –
Lit (3 m)                13 Jun 06                 3                 0.93      11.22     18.21           1.21           0.23            359        112   14.5   7.85
Pro (8 m)               30 Jun 06                 3                 0.94      11.77     28.07           2.79           0.13            281         82     11.2   6.82

Mid-summer
Lit (1 m)                 1 Aug 06                  3                 0.85       5.45       3.07           1.21           0.03            300        108   21.3   8.21
Lit (3 m)                 3 Aug 06                  3                 0.94       9.22       3.14           1.07           0.03            288        103   20.8   8.81
Pro (8 m)               10 Aug 06                 3                 0.94      11.56     35.07           7.64           0.03            194         56     10.9   6.59

Autumn
Lit (1 m)             3 & 5 Oct 06              3a               0.87       6.11       3.09           1.60           0.03            319         96     12.6   7.17
Lit (3 m)                 3 Oct 06                   3                 0.92       9.54       8.07           4.71           0.10            275         84     13.0   7.69
Pro (8 m)           11 & 12 Oct 06            3a               0.92       9.82       7.48           2.90           0.06            321         95     12.2   7.62

Winter
Lit (1 m)                 3 Mar 07                  3                 0.86       6.52       34.29           0.71           0.16            453        100     0.5    6.94
Lit (3 m)                 1 Mar 07                  3                 0.93       9.27       36.07           0.93           0.16            413         94     1.4    7.25
Pro (8 m)               27 Feb 07                 3                 0.94      11.46     36.14           0.93           0.29            378         86     1.5    7.18
aCores for the [15NO3

−] concentration series were collected in addition to the actual measurement cores

Table 1. Sampling sites, dates/seasons, number of sediment cores collected for denitrification analyses, sediment characteristics
and physicochemical properties of water overlying the sediment in Lake Ormajärvi. The autumn values of sediment characteris-
tics and physicochemical properties of littoral (1 m) and profundal (8 m) sites sampled on 2 occasions are represented as weighted
averages (weighted by the number of sediment cores taken on each occasion). LOI = loss on ignition, i.e. content of organic matter
in sediment (% of dry mass). [NO3

–], [NH4
+], [PO4

3–], [O2], O2 sat., T and pH = concentrations of nitrate, ammonium, phosphate and 
oxygen; oxygen saturation, temperature and pH of the water overlying the sediment, respectively



in incubations was always adequate to contain the
whole denitrification zone (Fig. 1). The samples were
enriched with K15NO3 (98 atom %; Cambridge Isotope
Laboratories) to a final concentration of 100 μM and in-
cubated, with a magnetic stirrer on the lid of the cores,
at in situ temperature in darkness for 3 h. Microbial ac-
tivity was then terminated by adding 1 ml ZnCl2 (1 g
ml−1); the samples were mixed, and subsamples of the
sediment–water slurry were transferred to gas-tight
glass vials (12 ml; Exetainer®; Labco). The samples
were analysed for their mass ratios of N2 using a mass
spectrometer (Europa Scientific, Roboprep-G-Plus and
Tracermass) at the National Environmental Research
Institute in Silkeborg, Denmark. The concentration of
15NO3

− applied was appropriate considering the as-
sumptions underlying IPT regarding the first-order
 kinetics of the formation of labelled N2 (D15, see
 below) and the independence of the measured denitri-
fication rates of natural 14NO3

− (D14, see below) from
the amount of added [15NO3

−]. We tested these as-
sumptions in October 2006 with sediments from 2 sam-
pling stations by applying 15NO3

− in concentrations
of 50, 100 and 200 μM (Fig. A1 in Appendix 1).

The denitrification rate was calculated from the
ratios of 29N2 (14N15N) and 30N2 (15N15N), which are
formed during the isotopic pairing. These ratios were
calculated by dividing the currents of 29N2 and 30N2,
given by the mass spectrometer, by the current of total
N2 (28N2, 29N2, 30N2 combined). Non-incubated control
samples were analysed concurrently with the incu-
bated samples. The isotopic ratios of non-incubated
control samples were subtracted from those of incu-
bated samples to calculate the excess of 29N2 and 30N2

produced during incubations. The concentration of N2

in the vial was determined from mass spectrometer
signals of concurrently analysed standard samples of
N2. Calculations of D15 (denitrification rate of added
15NO3

−), D14 (denitrification rate of natural 14NO3
−), Dw

(denitrification of the 14NO3
− in the water overlying the

sediment) and Dn (denitrification of the 14NO3
− pro-

duced in the sediment via nitrification) (Nielsen 1992)
were made according to Tuominen et al. (1998). The
[NO3

−] values used in calculations were assumed to be
approximately the same as combined [NO3

−+NO2
−].

The denitrification rates obtained were converted to
μmol N m−2 d−1 by multiplying by the total volume of
the sample (= volume of the water phase + volume of
sediment × porosity) and dividing by the surface area
of the sample and the incubation time.

Data on denitrification rates, hypolimnetic nitrate
concentrations, and the geographical locations of pre-
viously studied lakes were collected to aid in the inter-
pretation of the results of our study. The data were
compiled from various review articles (Table 1 in
Seitzinger 1988, Table 5 in Saunders & Kalff 2001b,

Tables 1 & 2 in Piña-Ochoa & Álvarez-Cobelas 2006)
and single studies (Ahlgren et al. 1994, Mengis et al.
1997, Nõges et al. 1998, Risgaard-Petersen et al. 1999,
Svensson et al. 2001, De Medina et al. 2003, Scher -
newski 2003, Hasegawa & Okino 2004, Müller et al.
2005, McCarthy et al. 2007, Sollie & Verhoeven 2008,
Nizzoli et al. 2010). Hypolimnetic nitrate concentra-
tions of Nizzoli et al. (2010) and Ahlgren et al. (1994)
were kindly provided by D. Nizzoli and I. Ahlgren,
respectively.

Molecular microbiological characterizations. Deni-
trification communities were studied from the total of
36 samples representing each field replicate core col-
lected for the denitrification incubations. Three sedi-
ment subsamples (depth of 0 to 1 cm) of 5 ml each were
taken with a pipette around the incubation tubes and
pooled into small sterile glass vials. From the vials,
200 μl samples were taken into small sterile plastic
tubes and these were immediately stored at −20ºC for
subsequent transport in dry ice to the University of
Jyväskylä, Department of Environmental and Biologi-
cal Sciences, where the samples were stored at −80ºC
before extraction of nucleic acid within 1 to 5 mo.
According to previous studies, the sampled depth
always contained most of the denitrification zone
(Fig. 1). Nucleic acids were extracted from samples
using a modified version of the protocol of Griffiths et
al. (2000) (see Rissanen et al. 2010 for further details).

For DGGE analysis, PCR amplification of 472 bp
fragments of nirK was carried out from DNA extrac-
tions using the following primer pairs suggested by
Throbäck et al. (2004): F1aCu (5’-ATC ATG GT[C/G]
CTG CCG CG-3’)/R3Cu (5’-GCC TCG ATC AG[A/G]
TTG TGG TT-3’) (Hallin & Lindgren 1999) with a GC-
clamp (GGC GGC GCG CCG CCC GCC CCG CCC
CCG TCG CCC) attached to the 5’ end of R3Cu. In the
PCR reaction, 1 μl of nucleic acid extract was used as a
template in a 25 μl PCR mixture containing 0.2 mM of
dNTPs, 0.3 μM of each primer, 1× Biotools reaction
buffer, 1 mg ml−1 bovine serum albumin (BSA) and
0.25 U Biotools polymerase. PCR amplification was
performed in a GeneAmp PCR system 9600 (Perkin
Elmer) with an initial denaturation step at 95ºC for
5 min and 35 cycles of amplification (94ºC for 30 s, 53ºC
for 1 min, 72ºC for 3 min).

DGGE was carried out in an Ingeny Phor elec-
trophoresis unit (Ingeny) at 100 V for 18 h in 6%
 polyacrylamide gels (acrylamide/bisacrylamide) sub-
merged in 0.5 M TAE-buffer (40 mM Tris-HCl pH 7.4,
20 mM sodium acetate, 1 mM Na2EDTA) at 60ºC. The
linear gradient of denaturating conditions (urea and
formamide) determined from a preliminary analysis
using a wide denaturant gradient (20 to 80%) was 40 to
70% (100% denaturant was defined as 7 M urea and
40% formamide) (Muyzer et. al. 1993). After elec-
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trophoresis the gel was stained with ethidium bromide
(0.5 mg l−1), illuminated in UV light and photographed.
Image analysis was done using the Quantity One soft-
ware package (BioRad). DNA density curves for each
lane were created after a rolling disc backround sub-
traction, and bands were recognized semi-automati-
cally. Bands with the same migratory distances in each
lane were regarded as representing the same opera-
tional taxonomic unit (OTU). The relative abundance
of each OTU of all the OTUs in each lane were quanti-
fied as a ratio of the total peak area for all peaks in a
lane and converted into percentages by multiplying by
100. To confirm that DGGE bands represented real
nirK sequences, samples of 3 of the dominant OTUs
were taken from the gel, eluted in water, reamplified,
and sequenced (BigDye Terminator v3.1 Cycle Se -
quencing Kit and ABI3100 capillary sequencing instru-
ment; Applied Biosystems). DNA sequences were
edited using the Contig Express program (Invitrogen),
translated to protein sequences, and compared to pro-
tein databases using BLASTX software (http://blast.
ncbi.nlm.nih.gov/ Blast.cgi) (Altschul et al. 1997).

The sequence data have been deposited in the EMBL
database (European Bioinformatics Institute, www.ebi.
ac.uk/embl/) under accession numbers FN811666 to
FN811668.

Statistical analyses. The average of D14, Dw, Dn,
Dw% and Dn% of the 3 incubation tubes taken from
each field replicate core were treated as replicates in
statistical analyses (i.e. n = 3 for each Season/Site com-
bination). Analysis of variation in D14 was based on a
factorial design, with both Season and Site as fixed fac-
tors (α = 0.05) in analysis of variance (ANOVA). Be -
cause of a significant interaction between factors (see
‘Results’) we analysed simple effects of spatial differ-
ences separately at each level of Season, and temporal
differences separately at each level of Site (Quinn &
Keough 2002). Simple effects were studied using
F-tests followed by pair-wise comparisons using the
least significant difference (LSD) technique with
Hochberg– Bonferroni (Hochberg 1988) corrected α-
values in each partial test. Correlations among differ-
ent environmental factors and D14, Dw, Dn, Dw% and
Dn% were studied using Spearman correlation analy-
sis. Statistical analyses were conducted using SPSS
14.0 (SPSS).

Multivariate analyses of data from the DGGE exam-
ination of nirK were based on Bray–Curtis dissimilari-
ties calculated among samples using square-root-
transformed data of relative percentage abundances
of OTUs. Analogous to the analysis of denitrification
rates, the spatial and temporal variations in the struc-
ture of the nirK-carrying communities were analysed
using permutational multivariate analysis of variance
(PERMANOVA, 9999 permutations) (Anderson 2001,

McArdle & Anderson 2001) by applying a factorial
design with both Season and Site as fixed factors.
Because of the limited number of replicates, the PER-
MANOVA p-values of pair-wise tests were estimated
using Monte Carlo random draws from the asymptotic
permutation distribution. Data from the nirK-contain-
ing community were further assessed graphically
using non-metric multidimensional scaling (NMDS).
The NMDS was constrained to 2 ordination axes. To
minimize the Kruskall’s stress and to avoid local mini-
mum solutions, NMDS was performed with 100 runs
with the real data, a random starting configuration in
each run, and an instability criterion of 0.0001. Monte
Carlo tests of the real data versus randomized data
(200 runs with randomized data) were used to assess
the significance of the solution. A final solution with
minimum stress (13.2%) was achieved with 82 itera-
tions. The relationship between environmental factors
and the structure of the nirK-containing community
was analysed at both community and single-OTU lev-
els using a distance-based linear model (DISTLM)
procedure (Anderson 2001, McArdle & Anderson
2001) and Spearman correlation analysis, respec-
tively. Environmental variables were analysed sepa-
rately for their relationships with DGGE data. Because
pH was not measured at the shallow littoral site in
early summer, these samples were excluded when
analyzing the relationship between pH and DGGE
data. The possible effect of community structure on
the D14 rates was studied at the community level
using Mantel’s test by comparing the relationships of
distance matrices generated from the community
structure data (Bray–Curtis) and process measure-
ment data (Euclidean distance), and at the single-
OTU level using Spearman correlation analysis.
NMDS and Mantel’s test were performed using PC-
ORD version 4.01 (B. McCune and M. J. Mefford, PC-
ORD for Windows: multivariate analysis of ecological
data, 4.01 ed, MjM Software, Gleneden Beach, Oreg-
gon, USA, 1999), PERMANOVA and DISTLM using
respective programs freely available from the web-
site: www.stat.auckland.ac.nz/~mja/ Programs.htm.

RESULTS

Environmental factors

The sampled sites differed from each other, with sed-
iment at the shallow littoral site (1 m) having consider-
ably lower porosity and LOI (i.e. organic matter con-
tent) than sediment at the other 2 sites. In general, the
deeper littoral site (3 m) was more similar to the pro-
fundal site (8 m) than to the shallow littoral site
(Table 1). There was some seasonal variation in the
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organic content of sediment, with LOI increasing
steadily in the shallow littoral (1 m) and being consid-
erably higher during early summer than during the
rest of the year in the deep littoral zone (3 m). LOI in
the profundal zone was considerably lower in autumn
than during the rest of the year. In the deep littoral
there were visible clumps of algae on the sediment sur-
face during all seasons, except for winter, whereas at
the other sites algae were not observed.

The physicochemical characteristics of the water
reflected the general seasonality of boreal lakes
(Table 1). In mid-summer, both of the littoral sites were
epilimnetic, and, based on measurements of vertical
temperature profiles at the deepest area of the lake at
1 to 2 wk before our sampling (26 July) (Jäntti 2007),
the profundal site was located at the thermocline. In
mid-summer there was over-saturation of oxygen in
the littoral zone. Also, pH and oxygen concentrations
were higher, and inorganic nitrogen concentration
lower, in the littoral sites than in the profundal zone
(Table 1), which probably reflects vigorous primary
production. In autumn, the chemical differences
among sites diminished; in the profundal zone oxygen
was replenished, pH and temperature raised, and inor-
ganic nitrogen concentrations lowered; in the littoral
sites, pH and temperature were lower; and in the deep
littoral site concentrations of inorganic nitrogen had
increased. At all sites, winter was characterized by
very low temperatures, high concentrations of oxygen
and nitrate, and very low concentrations of ammonium.

Denitrification rates

D14, Dw, and Dn rates in single incuba-
tion tubes varied from 44 to 613, from 18 to
429 and from 0.8 to 346 μmol N m−2 d−1,
respectively. For the field replicates, i.e.
the sample cores, the range was from 52 to
577, 22 to 414, and 18 to 264 μmol N m−2

d−1 with average values of 220, 108 and
112 μmol N m−2 d−1, respectively. There
was a significant interaction be tween Site
and Season in D14 (F = 17.6, p < 0.001)
indicating that the temporal variation was
different at different sites (Fig. 2). Analysis
of simple effects revealed that both site
and season affected D14 (effect of Season:
shallow littoral, F = 8.7, p < 0.001; deep lit-
toral, F = 3.0, p < 0.05; profundal, F = 41.4,
p < 0.001; effect of Site: early summer, F =
4.6, p < 0.05; mid-summer, F = 62.0, p <
0.001; winter, F = 4.5, p < 0.05). D14 rates
were highest in the shallow littoral and
profundal zones during early summer and

in the profundal zone during mid-summer. In autumn,
there were no significant spatial differences in D14 (F
= 2.9, p > 0.05). In winter, the highest rates were
observed in the shallow and deep littoral zones. In the
shallow littoral zone, D14 was highest during early
summer and winter, with significant differences
between early summer and autumn and between win-
ter and mid-summer and winter and autumn. In the
deep littoral zone there were no significant temporal
differences after the stringent Hochberg–Bonferroni
correction of α-values. In the profundal zone, D14
peaked during mid-summer but was very stable during
the other seasons. On most occasions, D14 was domi-
nated by Dn (Fig. 2). The change in D14 from early
summer to mid-summer was due to an increase in Dn

and a decrease in Dw in the littoral zones, whereas Dw

increased in the profundal zone. In autumn, the
decrease in D14 was due to a decrease in Dn in the lit-
toral zones and an increase in Dw in the deep littoral
zone, whereas Dw decreased in the profundal zone. In
winter, the increase in D14 in the littoral zone was due
mainly to the considerable increase in Dn.

D14 increased when the concentration of nitrate in
the water increased and the temperature and pH
decreased (Table 2). Dw increased when the concentra-
tion of ammonium in the water increased and the pH
decreased. There was also a slight but statistically not
significant tendency of Dw to increase when the con-
centration of nitrate increased and oxygen saturation
and temperature decreased. Dn did not correlate sig-
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Fig. 2. Spatial and seasonal variations of mean (±SD) sediment D14
 (deni trification of the natural 14NO3

−) (μmol N m−2 d−1) divided into Dw (deni-
trification of the 14NO3

− in the water overlying the sediment) and Dn (deni -
trification of the 14NO3

− produced in the sediment via nitrification) in Lake
Ormajärvi in the period 2006 to 2007
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nificantly with any of the variables measured. There
was, however, a slight tendency towards an increase in
Dn when the concentration of nitrate increased and the
pH and temperature decreased. Dw% increased, and
Dn% decreased, when the concentration of ammonium
increased. A slight tendency towards an increase in
Dw% and a decrease in Dn% was also detected when
the concentration of oxygen decreased. Nitrate con-
centrations correlated positively with sediment poros-
ity, LOI and concentrations of phosphate and oxygen,
and negatively with pH, temperature and oxygen satu-
ration (Table 2). Ammonium concentrations correlated
positively with temperature and LOI and negatively
with oxygen saturation and concentrations of phos-
phate and oxygen.

Denitrifier community

DGGE analysis of the nirK-carrying community
revealed 27 nirK bands, here referred to as OTUs
(Fig. 3A). The DGGE profiles were very similar from
different sites and seasons, with more variation among
sites than among seasons. Most of the OTUs, 21 of 27,
were shared between the sites during all seasons. Vari-
ations in the presence/absence of only 6 OTUs sepa-
rated the community structure among sites (Fig. 3A).
Three OTUs were unique to the shallow littoral site.
Two OTUs were unique to both the deep littoral
and profundal sites, and one OTU was unique to the
profundal site.

There was a slight but statistically significant inter-
action between Site and Season in the structure of
the nirK-containing community (PERMANOVA, F =
1.84, p < 0.01), but with each site analysed separately

the community did not differ among seasons (p > 0.05).
However, the nirK-containing community differed
among sites (PERMANOVA, F = 9.27, p < 0.001; pair-
wise comparisons, p < 0.05). Visualization of the com-
munity structure by NMDS confirmed the results of
PERMANOVA analyses; the different sites were well
separated in the direction of increasing depth, with
more overlap between deep littoral and profundal sites
than between shallow and deep littoral sites, and the
temporal variations were very minor (Fig. 3B).

The variation in the structure of the nirK-containing
community was clearly most dependent on variation in
sediment porosity and LOI (Table 3 & Table A1 in
Appendix 1); these variables were also highly inter-
correlated (Table 2). Much less variation in community
structure was explained by variations in water vari-
ables, i.e. oxygen saturation, pH and the concentra-
tions of  inorganic nitrogen and phosphorus (Tables 3 &
A1). However, these variables were also correlated
with sediment characteristics (Table 2) and therefore
this can also be explained by co-variation. We detected
no indication of an effect of the composition of the
nirK-containing community on D14; the abundance of
only 1 nirK OTU correlated slightly with D14 at the
 single-OTU level (Table A1), and there was no correla-
tion between community composition and D14 at the
community level (Mantel’s test: r = 0.03, p > 0.05).

The translated protein sequences of bands extracted
from the DGGE gel, representing OTUs 3, 11 and 12
(Fig. 3A), shared 93, 99 and 100% identities to the clos-
est matched environmental NirK  sequences but only
86, 85 and 66% identities to the closest matching NirK
sequences of cultivated organisms affiliated to Sili-
cibacter sp. TrichCH4B, Silicibacter sp. TrichCH4B,
and Sinorhizobium medicae WSM419, respectively.
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                          D14          Dw         Dn         Dw%       Dn%      [NO3
−]     [NH4

+]     [PO4
3−]       [O2]    O2 sat. (%)     pH           LOI

Dw                     0.42
Dn                     0.79            –
Dw%                   –             0.68     −0.71
Dn%                    –          −0.68       0.71     −1.00
[NO3

−]               0.45         0.32       0.32         –             –
[NH4

+]                 –             0.38         –            0.51     −0.51          –
[PO4

3−]                 –               –           –             –             –            0.68       −0.47
[O2]                     −              –            –          −0.30        0.30         0.39       −0.82         0.63
O2 sat. (%)          –          −0.31         –             –             –           −0.47       −0.41           –             0.43
pH                     −0.53     −0.51       −0.32         –             –           −0.65           –               –               –             0.69
T                       −0.52     −0.31      −0.32         –             –           −0.85         0.39       −0.54        −0.59         0.38         0.78
LOI                     –              –            –             –             –             0.49         0.38         0.34        −0.36       −0.65       −0.48
Porosity               –              –            –             –             –             0.36           –              –           −0.34       −0.41           –            0.71

Table 2. Correlations (Spearman’s rho) of different denitrification parameters and environmental factors (see Table 1 for
 defi nitions). D14 = denitrification rate of natural 14NO3

−; Dw = denitrification of the 14NO3
− of the water overlying the sediment;

Dw% = proportion of Dw of D14; Dn = denitrification of the 14NO3
− produced in the sediment via nitrification; Dn% = proportion

of Dn of D14. Correlation coefficients with p < 0.05 and 0.05 < p < 0.10 are written in bold and normal text, respectively. n = 36,
except for analyses of pH, where n = 33
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DISCUSSION

Denitrification rates are, on average, higher in fresh-
water ecosystems than in estuaries, coastal ecosystems
and oceans (Piña-Ochoa & Álvarez-Cobelas 2006), and
rates reported from lacustrine sediments range from 0
to 15 000 μmol N m−2 d−1 (Fig. 4A). Although denitrifi-
cation rates are usually higher in eutrophic lakes than
in oligotrophic lakes (Seitzinger 1988, Saunders & Kalff

2001b), the rates we measured in Lake Ormajärvi (D14
varied between 44 and 613 μmol N m−2 d−1) are among
the lowest ever reported from lacustrine sediments
(e.g. Seitzinger 1988, Saunders & Kalff 2001b). The
result cannot be explained by differing methods (cf.
Groffman et al. 2006), as the same holds true when
comparing our rates specifically with those of other
lacustrine IPT studies (~ 0 to 4300 μmol N m−2 d−1)
(Fig. 4B). However, previous studies have usually been
conducted in lakes at lower latitudes, between 40°N
and 58°N, and our study is among the few carried out
in the boreal zone (Fig. 4A). Indeed, our rates do com-
pare well with those from IPT studies in Lakes Nor-
rviken and Vallentuna (0 to ~ 600 μmol N m−2 d−1) in
central Sweden (Ahlgren et al. 1994). Our rates also
agree with those measured for sediments from the
open sea areas of the northern Baltic Sea (Tuominen et
al. 1998) and from a coastal station in the Gulf of Fin-
land (Hietanen & Kuparinen 2008), and they are only
slightly lower than in the river estuaries of the northern
Baltic Sea (Silvennoinen et al. 2007). The nitrate con-
centration of water overlying the sediment has been
shown to affect denitrification rates positively (Ris-
gaard-Petersen et al. 1999, Hasegawa & Okino 2004,
Piña-Ochoa & Álvarez-Cobelas 2006), and the lower
process rates in lakes of the northern boreal zone com-
pared to those in the temperate zone can be explained

34

Variable F p Prop.

LOI 25.6 0.0001 0.44
Porosity 24.6 0.0001 0.43
O2 saturation (%) 6.0 0.0005 0.15
[NH4

+] 3.5 0.0093 0.10
[NO3

−] 3.0 0.0253 0.08
pH 2.8 0.0299 0.08
[PO4

3−] 2.5 0.0483 0.07
[O2] 2.0 0.0863 0.06
T 1.1 0.3082 0.03

Table 3. Results of distance-based linear model (DISTLM)
analyses on relationships between the structure of the nirK-
containing community and individual environmental factors
(see Table 1 for definitions). Prop. = the  proportion of variance
in the community structure explained by the environmental 

factor. n = 35, except for analyses of pH, where n = 32
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Fig. 3. (A) Some of the results from the examination of nirK by denaturing-gradient gel electrophoresis (DGGE), and (B) non-
 metric multidimensional scaling (NMDS) results from data obtained from the examination of nirK by DGGE. In (A), the arrows
point to the 27 operational taxonomic units (OTUs) (bands) detected. OTUs marked with a grey arrow were detected from every
sample at each site in all seasons. OTUs marked with a black arrow were detected at particular sites only; in samples from either
a littoral (1 m) site in all seasons (OTUs 15, 25 and 26), or only from littoral (3 m) and profundal (8 m) sites in all seasons (OTU 13), 

a profundal (8 m) site in all seasons (OTUs 4 and 5) or a littoral (3 m) site in early summer and winter (OTU 5)



by co-varying nitrate concentrations (Fig. 4B). This is
most likely caused by larger anthropogenic nitrogen
loads to watersheds in temperate areas compared to
those of the boreal zone (Fig. 4A).

The observation that denitrification rates were
higher in the profundal zone than in the littoral zone
during mid-summer was unexpected because the few
previous studies on spatial variation in lacustrine de -
nitrification rates indicate the opposite, i.e. that rates
are higher in the warmer littoral zone (Lake Nor-
rviken in Ahlgren et al. 1994, Mengis et al. 1997,
Saunders & Kalff 2001b). These contrasting results
suggest that spatial variation in denitrification rates
differs in different types of lake. In our study, the
hotspot of denitrification was the shallow profundal
zone in mid-summer, and in the light of these results
we acknowledge that the spatial coverage in our
study should have been extended to deeper profundal
sites. The seasonal variation in denitrification in the
profundal zone of Lake Ormajärvi, with high rates in
mid-summer, is consistent with previous studies
(Christensen & Sørensen 1986, Ahlgren et al. 1994,
Piña-Ochoa & Álvarez-Cobelas 2006), but contrasting
seasonalities, with high rates in winter, as measured
from the shallow littoral zone of our study lake, have
also been recorded (Risgaard-Petersen et al. 1999,
Hasegawa & Okino 2004). Thus, temporal variation
also differs between different lakes, but it can also dif-
fer between different sites within lakes. Our results
definitely highlight the importance of adequately cov-
ering both spatial and temporal variation in denitrifi-
cation rates, when assessing the natural nitrogen

removal capabilities of lake ecosystems. This qualifi-
cation has not been met in most of the previous stud-
ies on lake denitrification, probably because of the
highly laborious and expensive measurement tech-
niques involved.

Variations in process rates usually stem from varia-
tions in environmental factors. None of the environ-
mental factors we recorded had very high correlation
with the denitrification rates in our study. Besides
explaining between-lake variation, the nitrate con-
centration of the water overlying the sediment was
also of the greatest importance in explaining within-
lake variation in denitrification rates in this study. The
oxygen concentration of the water overlying the sedi-
ment controls the relative importance of Dn and Dw by
controlling the thickness of the oxic sediment surface
(e.g. Rysgaard et al. 1994). Low levels of oxygen can
favour Dw over Dn via a decrease in nitrification and
reduction of the diffusional distance of nitrate from
the water column to the denitrification zone, and vice
versa (e.g. Rysgaard et al. 1994). The variation in the
relative importance of Dw and Dn components, and the
slight negative relationship between oxygen satura-
tion and Dw and O2 concentration and Dw%, indicates
that oxygen concentrations also affected the denitrifi-
cation rates. We suggest that the inverse relationship
between denitrification rates and temperature, which
is in contrast with most studies on the effect of tem-
perature on de nitrification rates (Ahlgren et al. 1994,
Saunders & Kalff 2001b, Piña-Ochoa & Álvarez-
Cobelas 2006), is due to concurrent variations in the
availability of nitrate and oxygen concentrations
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Fig. 4. Denitrification rates (μmol N m−2 d−1) in lakes at different latitudes measured using (A) various techniques, and (B) the iso-
tope-pairing technique (IPT); these data include rates measured in Ormajärvi (61° N; 44 to 613 μmol N m−2 d−1; indicated by ar-
rows). Anthropogenic nitrogen inputs into watersheds (μmol N m−2 d−1) at different latitudes, and concurrently measured hy-
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and hypolimnetic nitrate concentrations have been compiled from various review articles and single studies (see ‘Materials and
methods’), and values for anthropogenic nitrogen inputs are adopted from Seitzinger et al. (2002). Denitrification rates are 

presented as the minimum and maximum values from each study, if available, or only as the reported mean
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affecting the denitrification rates. We further suggest
that the low rates in the littoral zone in mid-summer
during the time of highest temperatures were due to
photosynthetically active free-living and periphytic
algae, which competed with nitrifiers and denitrifiers
for inorganic nitrogen (Rysgaard et al. 1995). Nitrogen
fixation, indicating nitrogen limitation, was observed
in the epilimnion of Lake Ormajärvi 2 wk before our
sampling and confirms our suggestions (Jäntti 2007).
The coincident high rates in the profundal zone can
be explained by high levels of nitrate and low levels
of oxygen increasing Dw. Low levels of oxygen proba-
bly also increased the flux of ammonium from sedi-
ment to the overlying water (e.g. Cowan et al. 1996),
which would explain the concurrent high concentra-
tions of ammonium and the negative dependency
between ammonium and oxygen concentrations. In
addition, the high concentration of oxygen during
winter probably positively affected nitrification rates,
which led to a high share of Dn and a high concentra-
tion of nitrate and a low concentration of ammonium
in the water overlying the sediment. Spatial differ-
ences in denitrification rates can also be due to het-
erogeneity in the content of organic matter in the sed-
iment (Saunders & Kalff 2001b), but we did not
observe that. Variations in the quality of organic mat-
ter can also result in variation in denitrification rates
(Hietanen & Kuparinen 2008), i.e. the high rates in the
shallow littoral zone in early summer and winter, and
in the deep littoral zone in winter, may have been due
to easily degradable Typha latifolia and periphyton
litter.

The composition of some previously studied denitri-
fier communities correlated with denitrification activ-
ity, i.e. the nirK-containing community in agricultural
soil (Wertz et al. 2009) and the nosZ-containing com-
munity in estuarine sediment (Magalhães et al. 2008),
while that of others did not (Rich & Myrold 2004,
Enwall et al. 2005, Boyle et al. 2006, Cao et al. 2008).
This indicates that denitrification activity may, in some
cases, be affected by denitrifier community composi-
tion, but in other cases environmental factors are the
dominant determinants (Wallenstein et al. 2006). The
uncoupling of the nirK-containing community struc-
ture and denitrification activity suggests that the deni-
trification in Lake Ormajärvi is controlled more by
environmental factors than by the structure of the nirK-
containing community. Changes in environmental
 conditions may more immediately modify the denitrifi-
cation rate, but may influence the community composi-
tion of denitrifiers in the longer term (Wallenstein et al.
2006). The seasonal variations in the environmental
factors were large in Lake Ormajärvi, but the seasonal
variations in the nirK-containing community were
insignificant; this contrasts with previous studies of

nirK-containing communities in aquatic sediments
(Fortunato et al. 2009) and agricultural land (Wolsing &
Priemé 2004, Wertz et al. 2009), and of nosZ-containing
communities in sediments (Scala & Kerkhof 2000,
Magalhães et al. 2008) that showed marked seasonal
variations, but agrees with a study showing seasonal
stability of an nirK-containing community in a hyper-
saline microbial mat (Desnues et al. 2007). This indi-
cates that the response of denitrifier communities to
variations in environmental factors may differ between
different environments. The results imply that the
structure of the nirK-containing community in our
study lake does not respond to seasonal variations in
environmental factors and is regulated mainly by fac-
tors acting in a spatial scale, i.e. spatial variations in the
sediment’s content of organic matter, and structure
(porosity), which have also previously been shown to
affect the composition of microbial communities (e.g.
Wallenstein et al. 2006, Wu et al. 2008). It is also possi-
ble that the response to environmental factors may
vary between different denitrifier groups, i.e. between
nirK and nirS communities (Desnues et al. 2007, Junier
et al. 2008, Kim et al. 2011). In addition, besides com-
munity structure, as assessed by microbial community
fingerprinting, the abundance of nirK-containing deni-
trifiers may also vary spatially and temporally (Dandie
et al. 2008) and has also been noticed to correlate with
denitrification activity in stream sediments (O’Connor
et al. 2006). Therefore, we acknowledge that a more
complete picture of variations in the denitrifier com-
munity would have been acquired by concurrent
analyses of nirS-containing communities and the total
abundance of denitrification genes.

In conclusion, the denitrification rates we measured
from the boreal Lake Ormajärvi are among the lowest
ever reported from lacustrine sediments. Denitrifica-
tion rates varied spatially as well as seasonally, being
highest during mid-summer in the profundal zone, and
during winter in the littoral zones. These variations
were explained by the availability of nitrate and the
concentration of oxygen and, possibly, by the amount
of labile organic matter. The structure of the nirK-
 containing community was temporally very stable, but
differed slightly between study sites. This spatial vari-
ation is presumably a result of variations in the content
of organic matter in the sediment and the porosity of
the sediment. The structure of the nirK-containing
community did not affect denitrification rates. This
study has been one of the most thorough efforts to
reveal the temporal and spatial variations and their
controlling factors in lacustrine denitrification, and in
the denitrifier communities. Showing the variability in
the rate measurements, it calls for more efficient and
integrative methods for the analysis of denitrification
in lakes.
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Appendix 1.
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Fig. A1. D14 (denitrification of the natural 14NO3
−) and D15 (denitrification of the added 15NO3

−) of 15NO3
− concentration tests 

in October 2006. Data are mean ± SD. n = 3, unless otherwise indicated

LOI Porosity O2 [NH4
+] [NO3

−] pH [PO4
−] [O2] T D14

sat. (%)

OTU1 – –0.36 – – – – – – – –
OTU2 – – – 0.45 – – – –0.37 – –
OTU3 – – – – – 0.38 – – – –
OTU4 0.77 0.57 –0.65 0.42 0.39 –0.62 – – – –
OTU5 0.88 0.67 –0.45 – 0.52 –0.54 0.34 – – –
OTU7 – –0.40 – – – – – – – –
OTU8 – – –0.46 – – – – – – –
OTU9 – –0.34 – – – – – – – –
OTU10 0.65 0.73 –0.50 – 0.42 –0.37 – – – 0.46
OTU11 – 0.39 – –0.50 – – – – – –
OTU12 –0.47 –0.35 0.42 – –0.38 0.46 – – 0.35 –
OTU13 0.63 0.69 – – – – 0.37 – – –
OTU15 –0.80 –0.81 0.49 – –0.36 – –0.34 – – –
OTU16 0.53 – –0.70 0.38 – –0.45 – –0.39 – –
OTU17 0.42 0.48 – – – – – – – –
OTU18 0.34 – –0.67 – 0.36 –0.51 – – –0.37 –
OTU19 –0.37 –0.40 – –0.36 – – – – – –
OTU22 – – – – –0.38 – –0.37 – 0.35 –
OTU24 –0.50 –0.39 0.34 –0.41 –0.39 0.53 – – – –
OTU25 –0.79 –0.80 0.45 – – – – – – –
OTU26 –0.78 –0.84 0.48 – –0.36 – – – – –

Table A1. Correlations (Spearman’s rho) (p < 0.05) of square-root-transformed relative percentage
abundances of different nirK operational taxonomic units (OTUs) with environmental factors
(see Table 1) and with the denitrification rate of natural 14NO3

− (D14). n = 35, except for analyses 
of pH, where n = 32
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