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Abstract: We analyse the combined e�ect of the radiation-pressure and cross-Kerr nonlinearity on the sta-
tionary solution of the dynamics of a nanomechanical resonator interacting with an electromagnetic cavity.
Within this setup, we showhow the optical bistability picture induced by the radiation-pressure force ismod-
i�ed by the presence of the cross-Kerr interaction term. More speci�cally, we show how the optically bistable
region, characterising the pure radiation-pressure case, is reduced by the presence of a cross-Kerr coupling
term. At the same time, the upper unstable branch is extended by the presence of amoderate cross-Kerr term,
while it is reduced for larger values of the cross-Kerr coupling.

PACS: 42.50.Wk, 81.07.Oj, 05.45.-a
MSC: 70k30, 81v80

1 Introduction
In recent years, the exploration of the coupling between electromagnetic andmechanical degrees of freedom
has witnessed unprecedented interest both from the applied and fundamental point of view (for a recent
review see [1]). The physics of the optomechanical couplings has implications in �elds as diverse as the in-
vestigation of gravitational wave physics through, e.g. the VIRGO [2] and LIGO [3] consortia, and the study
of coherent quantum e�ects with a view to the manipulation of quantum mechanical and optical degrees of
freedom down to the level of single quanta. Prominent examples of the achievements connected to the ma-
nipulation of optomechanical degrees of freedom are represented by the ground-state cooling of mechanical
resonators [4], the optical/microwave transduction by mechanical means [5], the demonstration of potential
quantum-limited ampli�cation [6].

From this perspective, in cavity optomechanical systems strong emphasis has lately been put to the so
called single-photon strong coupling regime, for which the dynamics of mechanical and optical degrees of
freedom are strongly coupled, leading e.g. to photon blockade e�ects [7, 8] or the appearance of multiple
sidebands in the optical spectrum of the cavity [8].

Along these lines, it has recently been proposed [9] and experimentally demonstrated [10] that strong-
coupling between single-photons andmechanical quanta ofmotion can be achieved in amicrowave setup. In
this setup, the addition of a strongly nonlinear inductive element (single-Cooper-pair transistor SCPT) allows
for an increase by several orders of magnitude of the single-photon optomechanical coupling g0. Beyond
the pure enhancement of the radiation-pressure (RP) coupling strength, in [9] it has been shown how the
inclusion of a nonlinear circuit QED element determines the appearance of higher-order terms in the e�ec-
tive interaction between optical and mechanical degrees of freedom. In this context, it has therefore become
relevant to discuss how higher-order interaction terms modify the dynamical properties of optomechanical
system (see e.g. [11]), paralleling the analysis performed in di�erent setups, such as membrane in the middle
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geometries [12] and, analogously, in experiments exploiting optomechanical coupling with ultracold gases
[13, 14].

In this paper we discuss the role played by the lowest-order correction to the interaction term beyond
the RP term: the so-called cross-Kerr (CK) interaction term. The CK term can be pictured as a change in the
re�ective index of the cavity depending on the number of phonons in the mechanical resonator, while the
RP term depends on the displacement of the mechanical resonator. In recent years, the cross-Kerr interaction
has been shown to play a crucial role in the �eld of quantum information processing; in particular in the
de�nition of near deterministic CNOT gates [15], for entanglement puri�cation and concentration [16, 18], in
the analysis of hyperentangled Bell states, and in the quantum teleportation of multiple degrees of freedom
of a single photon [17].

We focus here on how the CK coupling a�ects the stability of the system in presence of a strong driving
coherent tone, focusing primarily on the optimally detuned condition on the red sideband. Our main goal
is to show how the CK term plays a nontrivial role in the determination of the stability picture of the system
under consideration, generally extending the parameters window within which the dynamics of the system
is stable.

(a)

(b) (c)

Figure 1: Schematic picture of the system. (a) Lumped element representation of the system in presence of SCPT (from [10]). (b)
Regular optomechanical setup, and (b) membrane-in-the-middle setup.

2 The model
In our analysis, the dynamics of the system is generated by the following Hamiltonian

H = H0 + Hrp + Hck, (1)

where (hereafter ~ = 1)
H0 = ωca†a + ωmb†b (2)

is the Hamiltonian for the non-interacting electromagnetic cavity/mechanical resonator system, where ωc
and ωm denote the resonance frequencies of the cavity and the mechanics, and a (a†) and b (b†) are the
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20 | Roope Sarala and Francesco Massel

boson annihilation (creation) operators for the cavity and the mechanics respectively. As it is usually the
case in the analysis of optomechancial systems, we focus our attention on one cavity and one mechanical
resonator modes. The RP coupling term Hrp is given by

Hrp = g0a†a
(
b† + b

)
. (3)

The term Hrp can be understood as a shift of the cavity resonant frequency as a function of the displacement
of the mechanical resonator x ∝ (b† + b). Depending on whether a Fabry-Pérot cavity or a lumped element
circuit picture is adopted, according to the standard cavity optomechanics description, the shift in the reso-
nant frequency can be modeled either as a change in the physical length of the cavity or as a change in the
capacitance induced by the displacement of the mechanical resonator (see Fig. 1). From both perspectives,
the coupling constant g0 can thus be expressed as

g0 = xzpf
∂ωc(x)
∂x (4)

where xzpf is the zero-point potion associated with the displacement of the mechancal resonator. In the
lumped element description, the resonant frequency given by ωc = 1/

√
LC(x), where, as mentioned above,

we have allowed for the possibility of a mechanical-position dependence of the overall circuit capacitance,
leading thus to the following expression

g0 = −xzpf
ωc
2C

∂C(x)
∂x (5)

In [10], it has been proposed and experimentally veri�ed that the introduction of a strongly nonlinear cir-
cuit element (the SCPT) will boost the optomechanical coupling by several orders of magnitude. Essentially
the RP coupling between cavity and mechanics, in presence of the Josephson junction qubit, is mediated by
the strong nonlinear inductance determined by the presence of the qubit. Furthermore, in [9] it was shown
that the qubit-mediated coupling introduces higher-order terms in the coupling between optics andmechan-
ics. In this paper we focus on the lowest-order coupling term relevant in the pump/probe setup, ubiquitous
in the analysis of optomechanical systems: from [9], invoking the rotating-wave approximation, this term is
given by

Hck = gcka†ab†b, (6)

where
gck = x2zpf

∂2ωc
∂x2 (7)

As previously mentioned, this term can be interpreted as an electromagnetic �eld phase shift induced by
the number of mechanical phonons, as opposed to the RP term, which represents a phase shift of the �eld,
depending on the displacement of the mechanical resonator from the equilibrium position.

In our analysis, we describe the coupling between the optomechanical system and the environment in
terms of input-output formalism [19].Within this framework, the equations ofmotion generated by theHamil-
tonian (1) for a and b can be written as

ȧ = −i
[
ωc + g0

(
b† + b

)
+ gckb†b

]
a − κ2a +

√
κain (8)

ḃ = −i
(
ωm + gcka†a

)
b − g0a†a −

γ

2b +
√
γbin, (9)

where κ and γ describe the coupling to the environment of the cavity and themechanical degrees of freedom,
respectively.

Adopting a standard approach, with a view to considering a situation in which the cavity is strongly
driven by a coherent signal αin exp [−iωpt] and in absence of a direct driving of the mechanical motion, we
decompose the�eld operators a, b, ain and bin so that a = α+δa, b = β+δb, ain = αin+δain and bin = βin+δbin.
Assuming that the amplitude of the �uctuations to be small with respect to the coherent signals, in a frame
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co-rotating with the input coherent drive at frequency ωp, we can write the zeroth-order approximation to
Eqs. (8) and (9) as

α =
√
καin

κ
2 − i

[
∆0 − g0

(
β* + β

)
− gck|β|2

] (10)

β = − g0|α|2
γ
2 + i

(
ωm + gck|α|2

) , (11)

where we have introduced the detuning ∆0 = ωp−ωc andwe have assumed βin = 0. The solutions of Eqs. (10)
and (11), as a function of the input �eld amplitude αin, represent the equilibrium solutions for the cavity �eld
amplitude α and for the amplitude of the mechanical oscillator β, in a frame rotating at ωp. For gck = 0, Eqs.
(10) and (11) reproduce the steady-state solution obtained for a regular optomechanical system in presence of
RP coupling [1, 20]. In that case, if the input �eld is detuned so that |∆| = ωm allowing for the optimal exchange
of energy between cavity and the mechanical modes, in particular ∆0 = −ωm represents the optimal cooling
condition (see [4, 21]), while ∆0 = ωm allows for optimal ampli�cation of an incoming signal around the cavity
resonant frequency [6]. It has recently been shown [22] that, in presence of CK coupling and for moderate
driving, such as to allow for the use of pure RP steady-state solutions, the optical damping of the mechanics
is a non-monotonous function of the optical drive, thus potentially hindering the cooling of the mechanical
motion by optical means for a red-detuned pump, and on the other, limiting the parametric instability for a
blue sideband drive.

In the present work we discuss a di�erent aspect of the problem, by considering the stability properties
of the solutions of Eqs. (10) and (11). The determination of the stability of the system is performed through the
standard stability analysis of linear autonomous systems of di�erential equations, allowing us to identify the
stability character of the equilibrium solutions of Eqs. (10) and (11) as a function of the di�erent parameters
characterising the system, with particular focus on gck.

3 Steady-state solutions
From Eqs. (10) and (11), it is clear how the CK interaction canmodify the optical bistability picture associated
with the RP only setup (Fig. 2): due to the presence of higher-order terms both in α and β, in principle, a more
complex stability diagram as a function of the external drive should be expected, more speci�cally a larger
number of (stable or unstable) equilibrium points should appear. However, while some important qualitative
and quantitative di�erences do arise because of the presence of the CK term, no extra physical equlibrium
solutions are actually present. More speci�cally, combining Eqs. (10) and (11), we obtain a quintic equation
for |α|2, which represents the mean-�eld cavity occupation – we note here that, for pure RP (gck = 0), the
equation would be cubic. Moreover, both for the pure RP case and in presence of CK coupling, |α|2 can have
either one or three positive and real solutions, meaning that in the quintic equation associated with the CK
case, two of the solutions violate the condition |α|2 ≥ 0 for all values of the parameters, and thus have to be
discarded.

For positive detunings ∆0 > 0, all values of |α|2 corresponding to the solutions of Eqs. (10) and (11) would
be complex or negative, therefore implying that the optical bistability can only be found for negative detun-
ings (red sideband, see also [20]). The values of αB and αC, along with the corresponding input-�eld values
αBin and αCin points de�ne the branch B − C in Fig. 2 (a). As previously mentioned, in this case, the presence
of the nonzero CK term, due to considerations concerning the unphysical nature of some of the solutions to
eqs. (10) and (11), does not introduce further equilibrium points in the dynamical system analysis. However,
as it is possible to see from Fig. 2, the presence of a CK coupling term shifts the relative position of points B
and C, reducing the range of pump amplitude αIN for which the branch B − C is present. In order to discuss
the stability character of the steady-state solutions, we investigate the stability properties of the following
dynamical system

δȧ = i∆δa − κ2 δa + iG(δb + δb
†) +
√
κδain
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22 | Roope Sarala and Francesco Massel

δḃ = −iωemδb −
γ

2 δb + i(G
*δa + Gδa†) +√γδbin (12)

which represent the �rst-order expansion of Eqs. (8) and (9) around the equilibrium points de�ned by Eqs.
(10) and (11), and are formally analogous to the �rst-order equations obtained for the pure RP case (see e.g.
[1]). The essential di�erence between the RP and the CK case, is that the linearised coupling G, the e�ective
detuning ∆ and the e�ective mechanical frequency ωem are given by the following expressions

G = g0α
(
1 + gck|α|2

ωm + gck|α|2

)
∆ = ∆0 + 2

g20
ωm
|α|2

[
1 + gck|α|2(

ωm + gck|α|2
)2
]

ωem = ωm + gck |α|2 (13)

4 Stability analysis - lower branch
In this section we study the stability character of the solutions of the cavity optomechanical system, within
the usual framework of stability analysis for autonomous linear systems. More explicitly, the nonlinear di�er-
ential equations system given by (8) and (9) can be solved perturbatively order-by-order. The solution of the
zeroth-order equation corresponds to the steady state solution given by Eqs. (10) and (11), while the �rst-order
equation of the �uctuations around the stationary solutions, given by Eqs. (12), can be written as

δv̇ = Av + δvIN (14)

where δv =
[
δa, δa†, δb, δb†

]T
, δvIN =

[
δaIN, δa†IN, δbIN, δb†IN

]T
, and A is given by

A =


i∆ − κ

2 0 iG iG
0 −i∆ − κ

2 −iG* −iG*

iG iG* −iωm − γ
2 0

−iG* −iG 0 iωm − γ
2

 (15)

The stability character of the steady-state solution is then provided by the sign of the solutions of the
characteristic equation associated with A, pA(λ) = 0. It is possible to show how, from the Routh-Hurwitz
criterion, the stability of the system is characterised by the two following conditions,

γ2∆2
4 + γ2κ2

16 + 4g2∆ωem + ∆2ωem
2 + κ

2ωem2

4 > 0 (16)[
(γ + κ)Γ1 − Γ2

]
Γ2 − (γ + κ)2Γ3 > 0 (17)

with

Γ1 =
γ2

4 + ∆2 + γκ + k
2

4 + ωem
2

Γ2 =
γ2κ
4 + γ∆2 + γκ2

4 + κωem
2

Γ3 =
γ2∆2
4 + γ2κ2

16 + ∆2ωem
2 + 4∆|G|2ωem + κ

2ωem2

4
which correspond to the conditions a0 > 0 and a3a2a1 − (a21 + a23a0) > 0, for the characteristic polynomial
pA(λ) = λ4+a3λ3+a2λ2+a1λ+a0, the other conditions for the stability of the systembeing identically satis�ed
for the system under consideration. The violation of the condition a0 > 0 corresponds to the branch B − C .
As outlined in [20], in the pure RP case, up to linear order in γ/ωm, the critical values for |α|2, corresponding
to the points B and C (see Fig. 2) are given by

∣∣αB,C∣∣2 = − ∆0
3ωm

[
1 ± 12

√
1 − 3κ2

4∆20

]
, (18)
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B

C

B

C

(a)

Figure 2: Optical bistability in the RP only case. The unstable branch B − C corresponds to the lower branch, associated with
the optical bistability picture (condition (16)). The unstable branch D − E corresponds to the violation of condition (17). Plot
parameters: ∆0 = −ωm, g0 = 10−5ωm, κ = 0.6ωm, γ = 0.12ωm

indexes B and C correspond to the lower and upper sign respectively. In presence of CK coupling, the stability
picture is modi�ed. For small values of gck, the presence of a CK coupling increases the range of values of |α|2

for which the branch B − C is unstable. In the resolved-sideband regime (κ � ωm = |∆0|) the CK result is
obtained as a (�rst-order) expansion in gck from the pure RP solution

|αckB |2 = −
∆0
6ωm

− κ2
16∆0ωm

− gck∆0
4ω4

m

(
∆20 +

3κ2
4

)
(19)

|αckC |2 = −
∆0
2ωm

+ κ2
16∆0ωm

− gck∆0
4ω4

m

(
∆20 −

κ2
4

)
. (20)

However, increasing gck further, leads to a reduction and, eventually, the disappearance of the unstable
branch B − C (see Figs. 3 and 4). In the regime for which gck|α|2 � 1, the critical value gcck for which the
unstable branch B − C disappears can be approximated by

gc1ck =
8ω2

m
κ

√
16 − γ2

4ω2
m

(21)
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10

(a)

Figure 3: E�ect of gck on the stability diagram as a function of the input drive, weak gck. (a) The presence of the CK term re-
duces the input drive range for the branch B − C (increasing gck for the di�erent curves from left to right). (b) The CK term �rst
induces a broadening of the upper unstable region, which, upon further increase, is reduced (increasing gck for the di�erent
curves from bottom to top). Plots parameters, gck/g20 = 0, 0.2, 0.4; other parameters same as in Fig. 2

5 Stability analysis - upper branch
The condition given by Eq. (16), derived from the condition a3a2a1 − (a21 + a23a0) > 0, corresponds to the
unstable branch D − E. For the pure RP case, the endpoints of the D − E branch are (up to linear order in γ/κ
and ∆0 = −ωm)

|αD|2 = g−20
(
1
2 + ϵ8

)
(22)

|αE|2 = g−20

(√
1
2ϵ +

3
4 + 19

32
√
2ϵ − ϵ

16

)
. (23)

(where ϵ = γ/κ) Analogously to the approach employed to evaluate the e�ect of the CK term on the B − C
branch in the small gck limit, we consider the perturbative correction to the RP result induced by gck. Up to
linear order, the boundaries of the unstable regionD−E, for small values of gck ( again for γ/k � 1) are given
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(a)

Figure 4: E�ect of gck on the stability diagram as a function of the input drive, strong gck. (a) The presence of the CK term re-
duces the input drive range for the branch B − C (increasing gck for the di�erent curves from left to right). (b) The CK term �rst
induces a broadening of the upper unstable region, which, upon further increase, is reduced (increasing gck for the di�erent
curves from bottom to top). Plots parameters, gck/g20 = 0, 0.95, 1 other parameters same as in Fig. 2

by ∣∣∣αckD ∣∣∣2 = (1 + ηD)2
2g20(1 + 3ηD + η2D)

(24)

∣∣∣αckE ∣∣∣2 = 3(1 + ηE)2
32g20ΛE(1 + 2ηE)2

(√
3κ
γΛE

+ 3
)

(25)

with

ΛD,E =
3(1 + ηD,E)(1 + 2ηD,E) − η2D,E

8(1 + ηD,E)(1 + 2ηD,E)2

ηD,E =
gck
g20
|αD,E|2.
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26 | Roope Sarala and Francesco Massel

Within the validity limit of the perturbative approximation, the unstable region D − E is extended by the
presence of the CK nonlinearity. Our numerical analysis shows that the regionD−E increases with increasing
gck until a critical value g*ck, for which E→ ∞, implying that, for gck = g*ck, the upper branch is unstable for
every |α| > |αD|. The value of g*ck can be evaluated considering, in the limit |α|2 � 1, the condition given by
Eq. (17) is expressed by a fourth-order polynomial in |α|2, Q(|α|2). Furthermore, the asymptotic behaviour of
Q(|α|2) can be deduced from the sign of the highest-power coe�cients c∞3 and c∞4 . In this limit, we have

c∞3 = − 32ωm

[
γκ∆0
ω2
m

+ gck
g20

{
gckγκ∆0
4g20

+ (γ + κ)
}]

(26)

c∞4 = γκ
(
g2ck
g40
− 4
ω2
m

)2

(27)

If we assume 2∆0 > gck, it is possible to see how c∞3 < 0 for every value of the cavity �eld, while c∞4 > 0,
except when gck = 2g20/ωm. In this case |αE|2 → ∞, and the system remains unstable for every value of the
cavity �eld above |αD|. If gck is further increased above g*ck = 2g0/ωm the region D − E becomes �nite again
and eventually disappears for gc2ck . In the limit γ/κ � 1,

gc2ck ' −
2(γ + κ)2
γκ∆0

g20 ' 2g*ck +
2κg20
ωmγ

∣∣∣∣
∆0=−ωm

. (28)

(a)

Figure 5: Same as in Fig. 3, for the puer RP case (gck = 0), and for gck = 0.2. The vertical dashed lines correspond to the input
drive values for which the ∆0-dependence is depicted in Figs. 6-8.
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(a)

Figure 6: ∆0 dependence of the cavity population in (a) the pure RP case and (b) in the CK (gck = 0.2) case. Increasing αIN =
0.2, 0.28, 0.35 in units of ωm/g0 for increasing peak height. The presence of the CK term leads to a larger parameter range for
which stability is observed.

6 Conclusion
In this paper, we have shown how the addition of an additional cross-Kerr coupling term to the usual
radiation-pressure coupling term in the description of the dynamics of optomechanical systems substan-
tially modi�es the stability properties of the corresponding semiclassical equations of motion. In particular,
we have shown how the inclusion of a CK term leads to an alteration and, eventually, to the disappearance of
the unstable branch B − C, for gck > gc1ck . Analogously, the unstable branch D − E is a�ected by the presence
of a CK coupling term: for values of gck ∈

]
0, g*ck

]
the branchD−E is extended (E→∞, for gck = g*ck ), while,

upon further increase of gck, the branch D − E shrinks and, eventually, disappears for gck = gc2ck cross-Kerr
coupling constant gck is increased.

Acknowledgement: This work was supported by the Academy of Finland (project “Quantum properties of
optomechanical systems”).
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Figure 7: ∆0 dependence of the cavity population in the pure RP case. Increasing αIN = 2, 4, 10 in units of ω/g0 for increasing
peak height (see inset). The case αIN = 10ω/g0 outlines the mechanism thorough which the result for ∆0 = −ω is stable at
large drives (vertical dashed line).
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Figure 8: ∆0 dependence of the cavity population in the CK (gck = 0.2) case. Increasing αIN = (2, 4, 10ω/g0) for increasing peak
height. It is possible to see how, for large values of the input �eld, the system is stable for every value of detuning ∆0. The case
αIN = 2ω/g0 outlines the peculiar (“reentrant”) peak shape for intermediate input drive.
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