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Abstract

In this study, a probabilistic analysis of the critical velocity for an axially

moving cracked elastic and isotropic plate is presented. Axially moving ma-

terials are commonly used in modelling of manufacturing processes, like pa-

per making and plastic forming. In such systems, the most serious threats

to runnability are instability and material fracture, and finding the critical

value of velocity is essential for efficiency. In this paper, a formula for the

critical velocity is derived under constraints for the probabilities of instability

and fracture. The significance of randomness in different model parameters

is investigated for parameter ranges typical of paper material and paper ma-

chines. The results suggest that the most significant factors are variation in

the crack length and tension magnitude.
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1. Introduction

In industry, there are many systems the behaviour of which can be de-

scribed by the mathematical model of an axially moving material. Thus,

during the last few decades, the mechanics of such materials have aroused

much interest among researchers. Traditionally, the studies of axially mov-

ing materials are based on a deterministic approach, although in reality,

the problem parameters are not known deterministically. In industrial pa-

per manufacturing, which is one of the application areas of axially moving

materials, uncertainty factors include, e.g., the strength of the paper web,

variation of tension with respect to space and time in the press system, and

defects, which vary in their geometry and location in the web. These fac-

tors are considerable: according to Uesaka [1], the majority of web breaks in

paper production are caused by tension variations, combined with strength

variations of the paper web. Wathén [2] discusses the effect of flaws of paper

on web breaks and, according to him, even a seemingly flawless paper can fail

at very low tensions due to stress concentrations caused by discontinuities,

e.g. cuts and shives, in structure.

Finding the optimal value of velocity for an axially moving material is

essential, when the efficiency of the corresponding manufacturing process is

considered. The most critical threats to good runnability of such a system are

instability and material fracture, and on these phenomena a change in tension

magnitude has opposite effects. An increase in tension has a stabilizing effect

[3], but high tension may lead to growing or arising of cracks. Web tension

too low or too high may cause a web break, which deteriorates production

efficiency.
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The modelling of vibrations of travelling elastic materials has interested

many researchers. The first paper on the subject dates from 1897, when

Skutch published a paper [4] concerning the axially moving string. The first

papers in English were published in the 1950’s, when Sack [5] and Archibald

and Emslie [6] studied the axially moving string model. Since then, many

researchers have continued the studies of moving elastic material. E.g., Wick-

ert and Mote [7] studied stability of axially moving strings and beams using

modal analysis and Greens function method. The stability of travelling two-

dimensional rectangular membranes and plates has been studied, e.g., by

Lin [8] and Banichuk et al. [3]. A more extensive literature review of the

history of the studies concerning deterministic elastic models can be found

in [3], the results of which we also exploit in this study. In the recent studies

concerning axially moving plates, material properties such as orthotropicity

[9, 10] or viscoelasticity [11, 12] have been taken into consideration and their

effects on the plate behavior have been investigated.

In addition, there are studies considering stationary plates with random

parameters. For example, the free transverse vibrations of elastic rectan-

gular plates with random material properties were considered and statisti-

cal characteristics of the random eigenvalues were determined by Sobczyk

[13]. Wood and Zaman [14] considered a collection of elastic rectangular

plates with random inhomogeneities vibrating freely under simply supported

boundary conditions. Soares [15] considered uncertainty modelling of plates

subjected to compressive loads.

The field of fracture mechanics was developed by Irwin [16], based on

the early papers of Inglis [17], Griffith [18] and Westergaard [19]. Various
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deterministic analysis of vibrations and stability of stationary cracked beams

and plates exist in the literature. For a literature review, we refer to [20].

As far as the authors know, axially moving materials have been studied

in a stochastic setup only in [21, 22]. In these studies, the critical velocity of

an axially moving plate was derived in the case in which there is a random

length crack on the plate, or the tension, to which the plate is subjected,

varies randomly. This research extends these studies by introducing several

other parameters as random variables simultaneously in the model. In this

paper, we also compare the effect of introducing variation between different

problem parameters, in order to decide the randomness of which parameters

is the most significant in terms of the critical velocity. For the analysis,

we have chosen the setup and parameter ranges to be applicable for paper

material and paper making.

The formula for the critical velocity of the plate is derived under con-

straints for instability and fracture. Depending on the distributions of the

problem parameters, numerical methods may be needed in solving the critical

velocity. In the paper industrial example, simultaneously introducing several

problem parameters as random leads to the use of numerical methods. Due

to its simplicity and accuracy, we use Monte Carlo simulation to solve the

problem with several random variables.

2. Critical velocity of a travelling plate

We consider a rectangular part of an elastic and isotropic band, which is

moving at a constant velocity V0 between supporting rollers. Denoting the
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part as

D = {(x, y) : 0 < x < � , −b < y < b}, (1)

where � and b are prescribed parameters of length and width, the plate is

assumed to travel in the x direction. The supporting rollers are located at

x = 0 and x = �. (See Figure 1.)

The considered part D is represented as a thin elastic plate having con-

stant thickness h, Poisson ratio ν, Young modulus E, and bending rigidity

D =
Eh3

12 (1 − ν2)
. (2)

The mass of the plate per unit area is denoted by m. It is further assumed

that the plate is subjected to homogeneous tension T acting in the x direction.

We consider the case in which there is a single crack in the plate. The

length of the crack is denoted by ξ. (See also Figure 1.)

2.1. Characterization of instability of the plate

We first briefly present a deterministic stability analysis for a travelling

plate without a crack. Especially, we are interested in critical regimes, where

the plate approaches its maximum stable velocity. Details of the analysis can

be found in [3].

We perform a standard dynamic analysis (see, e.g., [23]). The transverse

displacement of the travelling plate is described by the deflection function w,

which depends on the space coordinates x, y and time t. It is assumed that

the absolute values of the deflection function w and its derivatives are small.

The Kirchhoff plate theory is applied. To study the dynamic behavior of the

plate, the following equation for the travelling plate is used:

∂2w

∂t2
+ 2V0

∂2w

∂x∂t
+

(
V 2

0 − C2
) ∂2w

∂x2
+

D

m
∆2w = 0, (3)
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where

C =

√
T

m
and (4)

∆2w =
∂4w

∂x4
+

∂4w

∂x2∂y2
+

∂4w

∂y4
. (5)

As boundary conditions, the classical simply-supported and free boundary

conditions [24, 25] are used. The simply supported boundary conditions read

as

(w)x=0,� = 0,

(
∂2w

∂x2

)
x=0,�

= 0 , −b ≤ y ≤ b , (6)

and the equations for the boundaries free of tractions can be presented as

follows: (
∂2w

∂y2
+ ν

∂2w

∂x2

)
y=±b

= 0 , 0 ≤ x ≤ � , (7)

(
∂3w

∂y3
+ (2 − ν)

∂3w

∂x2∂y

)
y=±b

= 0, 0 ≤ x ≤ � . (8)

The solution of the dynamic boundary value problem of (3) – (8) can be

represented as

w(x, y, t) = W (x, y)eiω̃t = W (x, y)es̃t , (9)

where ω̃ is the frequency of small transverse vibrations and s̃ = iω̃ is the

complex characteristic parameter; s̃ = Re s̃ + i Im s̃.

If the parameter s̃ is purely imaginary and ω̃ is real, the plate performs

harmonic vibrations of a small amplitude and its motion can be considered

stable. If the real part of s̃ becomes positive, the transverse vibrations grow

exponentially and, consequently, the behaviour is unstable (See Figure 2).

It can be shown by dynamic analysis that the travelling plate undergoes

divergence instability at a sufficiently high speed [8] and thus it is sufficient
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to perform static analysis, i.e., study the case with s̃ = 0. (See also Figure

2.)

The stationary equations for W are, substituting (9) into (3) and setting

s̃ = 0,

(mV 2
0 − T )

∂2W

∂x2
+ D

(
∂4W

∂x4
+ 2

∂4W

∂x2∂y2
+

∂4W

∂y4

)
= 0 (10)

with boundary conditions (6) – (8). We rewrite (10) as

− �2

π2

(
∂4W

∂x4
+ 2

∂4W

∂x2∂y2
+

∂4W

∂y4

)
= λ

∂2W

∂x2
, (11)

where

λ = γ2 =
�2

π2D
(mV 2

0 − T ) (12)

is the eigenvalue.

In order to determine the minimal eigenvalue (12) of the problem (6) –

(8), (11), and the corresponding eigenfunction W = W (x, y), the following

representation is applied:

W = W (x, y) = f
(y

b

)
sin

(πx

�

)
, (13)

where f (y/b) is an unknown function. Note that W in (13) satisfies the

boundary condition (6). The solution, a half-sine in the longitudinal direc-

tion, is well-known (see, e.g., [8]). Using the dimensionless formulation

η =
y

b
, κ =

�

πb
, (14)

and the relations (7) – (8) and (10) – (14), the following eigenvalue problem
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for the unknown function f(η) is obtained:

κ4 d4f

dη4
− 2κ2d2f

dη2
+ (1 − λ)f = 0, −1 < η < 1 (15)

κ2d2f

dη2
− νf = 0, η = ±1 (16)

κ2 d3f

dη3
− (2 − ν)

df

dη
= 0, η = ±1. (17)

The problem (15) – (17) is now considered as a spectral boundary value

problem. The symmetric solution of (15) – (17) corresponding to the minimal

eigenvalue λ is

f(η) = A cosh

(√
1 + γ

κ
η

)
+ B cosh

(√
1 − γ

κ
η

)
, (18)

where A and B are arbitrary constants.

In [3] it was shown that the buckling mode is symmetric. When γ ≤ 1,

the symmetric divergence mode is thus

W = f(η) sin

(
πx

�

)
. (19)

To determine the constants A and B in (18), we insert f from equation

(18) into the boundary conditions (16) – (17):

A(1 + γ − ν) cosh

(√
1 + γ

κ

)

+ B(1 − γ − ν) cosh

(√
1 − γ

κ

)
= 0, (20)

A
√

1 + γ(1 − γ − ν) sinh

(√
1 + γ

κ

)

+ B
√

1 − γ(1 + γ − ν) sinh

(√
1 − γ

κ

)
= 0 . (21)
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The condition for a non-trivial solution to exist in the form (18) – (19) is

that the determinant of the system (20) – (21) must vanish. This leads to

the transcendental equation

Φ(γ, κ) − Ψ(γ, ν) = 0 , (22)

which determines the eigenvalues λ = γ2 as an implicit function. In (22),

Φ(γ, κ) = tanh

(√
1 − γ

κ

)
coth

(√
1 + γ

κ

)
(23)

and

Ψ(γ, ν) =

√
1 + γ√
1 − γ

(γ + ν − 1)2

(γ − ν + 1)2
. (24)

Detailed analysis of the properties of Φ and Ψ can be found in [10].

It follows that the critical velocity of instability of the travelling plate is

given by

V *
0 =

√
T

m
+ γ2∗

π2D

ml2
, (25)

where γ∗ is the root of the equation (22). The motion of the plate is stable

when its velocity satisfies

0 ≤ V0 < V *
0 . (26)

As the root γ∗ does not depend on the value of tension T , the limit of

stable velocity (25) is increased when increasing the tension T . However, in

the case of a cracked plate, increasing tension may lead to the growth of the

crack.

2.2. Probabilistic analysis of critical velocity considering instability and frac-

ture

In the following, we include uncertainty in the parameters of the plate

and formulate the problem of finding the critical velocity of the plate un-
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der constraints for the probabilities of instability and fracture. Introducing

a constraint for the probability of failure is a way to formulate statistical

mechanical problems, used by many researchers (see, e.g., [26, 27]).

Let (Ω,F , P) be a probability space, where Ω is a sample space, F is its

σ-algebra and P is a probability measure on F . Let ξ, h, m, ν, E, the critical

strain energy release rate, GC, and the solution of the equation (22), γ∗, be

random variables on Ω, the image of each random variable being an interval

of {x ∈ R : x > 0}. The tension applied to the supported edges of the plate

is defined as

T = T0(1 + θ), (27)

where T0 is a positive constant and θ is a random variable on Ω with

−1 < θ(ω) < 1, ω ∈ Ω. (28)

The stress intensity factors Kj, j = I, II, related to the crack modes I

(opening) and II (in-plane shear) have the form

Kj =
αj(ξ) T

√
πξ

h
, j = I, II, (29)

and are random variables. In (29), αj is a weight function, the expression of

which depends on the crack geometry. Formulae for weight functions αj are

presented, e.g., in [28], [29], [30] and [31]. In this study, the weight functions

αj are assumed to be strictly positive, continuous and increasing.

The fracture toughness KC of the material is given by

KC =
√

GCE (30)

and is also a random variable.
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Considering both instability and fracture, the problem of critical velocity

of the plate in the presence of a mode I crack reads as

max
T

V0 such that (31)

P

(
KI ≥ KC

)
≤ pf and (32)

P

(
V0 ≥

√
T

m
+ γ∗

π2D

m�2

)
≤ pi, (33)

where pi, pf denote the upper bounds of the probabilities of instability and

fracture, respectively. In the case of a mixed mode crack, the constraint (32)

is replaced by

P (K2
I + 1.56K2

II ≥ K2
C) ≤ pf. (34)

For the failure criterion (34) of a mixed mode crack, see [32, 33].

Using (29), the constraint (34) is equivalent to

P

(
α(ξ)T

√
πξ

h
≥ KC

)
≤ pf (35)

with

α(ξ) =
√

(αI(ξ))2 + 1.56(αII(ξ))2. (36)

In the case of a mode I crack we denote

α = αI . (37)

The inequalities (32) and (34) are equivalent to

FX(T0) ≤ pf, (38)

where FX is the cumulative distribution function of the random variable X,

X =
KCh

α(ξ)
√

πξ(1 + θ)
. (39)
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The function FX is continuous and strictly increasing, when

T0 ∈
[

inf
Ω

X, sup
Ω

X

]
, (40)

and

FX(inf
Ω

X) = 0, FX(sup
Ω

X) = 1. (41)

Thus the maximal value of T0 that satisfies (32) (or (34)), denoted by T cr
0 , is

found on the interval in (40) by solving the equation

FX(T0) − pf = 0 (42)

and is the pfth order quantile of FX :

T cr
0 = F−1

X (pf). (43)

The inequality (33) is equivalent to

FYT0
(V0) ≤ pi (44)

where

YT0 =

√
T0(1 + θ)

m
+ γ∗

π2D

m�2
. (45)

The cumulative distribution function FYT0
is continuous, increasing with re-

spect to V0 and decreasing with respect to T0. Hence the maximum value of

V0, such that (33) and (32) (or (34)) are satisfied, is found by studying

FY , Y := YT cr
0

. (46)

The solution of the problem (31)–(33) (or the problem (31), (33) and (34)) ,

denoted by V cr
0 , is the pith order quantile of FY :

V cr
0 = F−1

Y (pi). (47)
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Table 1 shows the solutions of the problems in which only the crack length,

the tension variation and the strain energy release rate or one of them is

regarded as a random variable. When the only random valued parameter is

ξ or GC, there are no random variables in the constraint (33). In this case,

the critical velocity is simply given by (25). In Table 1,

Fj, j = ξ, θ, GC,

is the cumulative distribution function of the random variable j.

2.3. Numerical approximation of the quantiles

If the distributions of the random valued problem parameters do not

enable an analytical expression for the quantile function F−1 appearing in

the formula of the critical tension or velocity, its approximative values can

be obtained by Monte Carlo simulation. When approximating F−1(p) with

a given p, the sampling from F needs to be done only once. Indeed, let

S1, . . . , Sn be a random sample from the distribution F , where n is the sample

size. The order statistics of the sample are

S
(n)
1 ≤ S

(n)
2 ≤ · · · ≤ S(n)

n , (48)

and the pth quantile F−1(p) can be approximated as

F−1(p) ≈ S
(n)
�np�, (49)

where �np� is the first integer ≥ np. In [34] it is shown that S
(n)
�np� is a weakly

consistent quantile estimator.

With the sample S1, . . . , Sn from the distribution F , the strongly consis-

tent estimator of F (T0) is

F̂n(T0) =

∑n
k=1 χ{Sk≤T0}

n
, (50)
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where χA is the indicator of the event A, and its standard error is

s.e.
(
F̂n(T0)

)
=

√
F̂n(T0)

(
1 − F̂n(T0)

)
n

. (51)

The estimator (50) and its standard error (51) are used for evaluating the

sufficient sample size in quantile estimation. By setting

s.e.(F̂n(T0))

F̂n(T0)
≤ r, (52)

where r ∈ (0, 1), a lower bound for the sample size n in estimating the pth

order quantile F−1(p) is obtained:

n ≥ 1 − p

pr2
. (53)

The values of the quantiles F−1
θ and F−1

GC
, with normally distributed θ

and GC, can be obtained by a subroutine of a standard program library (e.g.

SciPy). For a Weibull distributed ξ, an analytical expression for F−1
ξ exists.

3. Numerical results and discussion

In this section, the solutions obtained in Sections 2.2 and 2.3 are illus-

trated in a paper industrial context.

The random variables ξ, h, ν, E, GC and θ were assumed to be indepen-

dent. The random variables h, ν, E, GC, θ, were assumed to obey the normal

distribution with the means µj, j = h, ν, E, GC, θ, in Table 2. The mean

values were chosen to correspond to the properties of printing paper. The

mass of the plate m was assumed to be dependent of h:

m(ω) =
µm

µh

h(ω), ω ∈ Ω. (54)
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The effect of variation in the parameter values on the solution was studied

by introducing the coefficient of variation, CVj , for the random variable j as

a relation of its standard deviation, σj , and mean, µj:

CVj =
σj

µj

. (55)

The crack length was assumed to be distributed according to the Weibull

distribution with a shape parameter s ∈ (0, 1]. The cumulative distribution

function of the Weibull distributed crack length is

Fξ(x) =

∫ x

0

s

c

(
t

c

)s−1

e−(t/c)s

dt = 1 − e−(x/c)s

, (56)

where x ≥ 0 and the scale parameter c > 0. The expected value and variance

of the crack length are

E[ξ] = cΓ

(
1 +

1

s

)
, Var[ξ] = c2

(
Γ

(
1 +

2

s

)
−

(
Γ

(
1 +

1

s

))2)
, (57)

where Γ is the gamma function,

Γ(x) =

∫ ∞

0

tx−1e−tdt. (58)

When the shape parameter s ∈ (0, 1], the probability density function is

strictly decreasing. For s ∈ (0, 1), the probability density function tends to

infinity when x tends to zero. For s = 1, the probability density function

tends to 1/c when x tends to zero, the distribution corresponding to the

exponential distribution with intensity 1/c. Figure 3 shows the effect of

changing the value of c on the probability density function. It shows that

when c is decreased, the probability mass becomes more concentrated near

15



the origin, corresponding to the small values of the crack length. When

c is decreased, both the expected value and variance of the crack length

decrease. The shape parameter s has the opposite effect on the probability

density function, as is seen in Figure 3.

In cases where the problem parameters m, h, ν, E and GC were regarded

as constants, their values were set to the mean values in Table 2. If the

crack length was regarded as a constant, its value was set to be equal to the

expected crack length of the stochastic model to which it is compared. In

all computations, the geometrical constants of the plate were given constant

values � = 0.1 (m) and b = 5 (m).

The problem was studied with an edge crack parallel to the y direction.

The weight function α was approximated with the constant function

α ≡ 1.12. (59)

In [22] critical velocities with different crack geometries were compared.

When the weight functions are approximated with constant functions, the

perpendicular edge crack model gives lower critical velocity than the central

crack model, if the distributions of the cracks are the same. This is, naturally,

due to the higher value of the weight function of the edge crack.

In approximating the quantiles (43) and (47), the sample size n = 2 · 106

was used in Monte Carlo simulation for all pi, pf of interest. This sample size

leads the relative error of the cumulative distribution function estimator,

expressed in (52), to be less than 2.5 % for pf, pi = 0.001.

The model in which m, h, ν, E, GC, ξ and θ are regarded as random

variables was compared with the model in which only the parameters GC, ξ
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and θ are random. The difference of the models was studied with

CVh, CVE ∈ ]0, 0.05], CVν ∈ {0.01, 0.05}. (60)

The parameters of the common random variables of the models were set as

CVθ = 0.1, CVGC
= 0.01, c = 0.005 and s = 0.5, and the probabilities of

fracture and instability were pf = pi = 0.001, 0.1. The critical velocities

obtained with the first mentioned model were somewhat lower than the ones

obtained by the other model but the difference may not be regarded as signif-

icant (2 % lower at maximum). Thus the results suggest that at least small

variation in the thickness and mass of the plate or in the elastic coefficients

is not a significant factor, when the critical velocity of the cracked thin plate

is studied.

In Figure 5 the critical velocities given by the model with random GC, θ

and ξ and the models with a single random parameter are compared to the

critical velocity given by the corresponding fully deterministic model. The

critical velocities were thus divided by the coefficient Ṽ0,

Ṽ0 =

√
1

µm

(
T̃0 + γ̃∗

π2D̃

�2

)
, (61)

where

T̃0 =
µhK̃C

α(E[ξ])
√

πE[ξ]
, (62)

γ̃∗ is the solution of the equation (22) with ν = µν and κ = �/πµb,

D̃ =
µEµ3

h

12(1 − µ2
ν)

and K̃C =
√

µGC
µE . (63)

The crack length distribution parameters were set as s = 0.5 and c = 0.005.

The coefficient Ṽ0 is the critical velocity of the fully deterministic model with
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a crack of the length E[ξ] = 0.01 (m). The relative critical velocity of the

fully deterministic model becomes equal to unity.

Figure 5 shows that, with a fixed reliability level, among the models

with a single random valued parameter, the model with random crack length

produces the lowest critical velocity. The model with random strain energy

release rate provides critical values that are the closest to the critical values

by the deterministic model. It is seen that, with low CVGC
, variation in strain

energy release rate may not be significant, the size of the effect depending on

the probability pf. The effect of variation in tension is more significant than

the impact of variation in strain energy release rate.

The lowest critical velocity in Figure 5 is given by the model with random

strain energy release rate, tension and crack length. The effect of CVθ and

CVGC
on the relative critical velocity was studied in the range CVθ, CVGC

∈
[0, 0.2], with fixed crack length distribution (s = 0.5, c = 0.005). A change

in CVGC
had no effect on the relative critical velocity but increasing CVθ

decreases the critical velocity, although this effect may not be significant

with low CVθ.

The above results suggest that, when the effect of variation in the problem

parameters is considered, the most significant factor is the random crack

length. Including also variation of tension in the model may lower the critical

velocity notably, at least if the variation is remarkable. The results agree with

the study by Uesaka [1] to some extent. According to [1], the majority of

web breaks in paper production are caused by tension variations, combined

with strength variations of the paper web. The results of the present study

suggest that variation in tension is significant, but variation in strain energy
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release rate, which causes variation in paper fracture toughness, is not.

Figure 3 shows that a change in the scale parameter c does not affect the

relative critical velocity, when the critical velocity obtained with the model of

random crack length is compared to the critical velocity of the corresponding

deterministic model. The effect of c was studied on the interval ]0, 0.01],

and it is seen in the figure that the relative critical velocity remains almost

constant when c is changed. Figure 3, in turn, shows that a change in the

shape parameter s has an effect on the relative critical velocity. The figures

also show the expected value and standard deviation of the crack length ξ

with respect to the distribution parameters. In Figure 3 it is seen that as

the expected value and standard deviation of the crack length increase, the

relative critical velocity decreases.

Figure 8 shows the relative critical velocity by the random crack length

model with respect to pf for some values of s. When s decreases, the value of

pf at which the critical velocity given by the stochastic model coincides with

the critical velocity by the deterministic model also decreases. However, when

s decreases, the mean and standard deviation of the crack length increase.

With small mean crack length and by demanding the probability of fracture

to be low, the stochastic model produces considerably lower critical velocity

than the deterministic model.

Some of the critical values of tension and velocity given by the model

with random crack length and the model with both random crack length and

tension are gathered in Table 3. The obtained critical velocities are higher

than the running speeds of the current paper machines. However, it should be

noted that the surrounding air is excluded from the model. The presence of
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surrounding air is known to influence the critical velocity [35, 36]. According

to [35], the critical velocity obtained with the vacuum model may be even

four times the critical value by the model that includes the surrounding air.

The parameter values were chosen to correspond to those of a dry paper

web. If wet paper is modelled, also material properties such as viscoelasticity

should be included in the model. However, the effect of viscoelasticity on the

critical stable velocity is found small (see [11, 12]). Another excluded material

property, independent of the moisture of paper, is orthotropicity. As with

viscoelasticity, the effect of orthotropicity on the critical stable velocity is

found small (see [3, 10, 37]). From the viewpoint of the application, another

notable simplification considers the tension profile. In this study, the profile

of tension was assumed to be homogeneous, although in paper machines, the

measured tension varies in the cross direction [38].

4. Conclusions

In this study, stochastic analysis of the critical velocity of an axially

moving elastic and isotropic plate in the presence of a crack was presented.

The critical velocity was derived under constraints for the probabilities of

instability and fracture, which are the most critical threats to runnability of

axially moving materials.

The solution was illustrated with a paper industrial example. The crack

length was assumed to obey the Weibull distribution while the other random

valued problem parameters were assumed to obey the normal distribution.

Altering the set of random parameters in the model, the effect of varia-

tion in problem parameters on the critical velocity was studied. The critical
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velocity obtained by the model where the random parameters included the

mass and thickness of the plate, the elastic coefficients, the strain energy re-

lease rate, the tension to which the plate is subjected, and the crack length,

was compared with the model with only random strain energy release rate,

tension and crack length. The results showed no significant effect of intro-

ducing variation in the values of the mass and thickness of the plate or in

the elastic coefficients.

When the models in which only the strain energy release rate, tension

or crack length is regarded as a random variable were compared, the lowest

critical velocity was produced by the random crack length model. The effect

of variation in strain energy release rate was not found significant, at least, if

the dispersion is not remarkable. Compared with a fully deterministic model,

the model with random crack length produced significantly lower critical

values, the size of the effect depending on the values of the constraining

probabilities and distribution parameters. Introducing variation of tension

in the random crack length model decreased the critical velocity, and the

impact of tension variation was significant with high dispersion.

The results suggest that when the critical velocity of the cracked plate is

studied, it is essential to include variation in crack length, and possibly also

variation in tension magnitude, in the model. Randomness of other problem

parameters is not significant, and the model can be simplified such that the

random parameters include only the crack length and tension.
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chanics of moving materials; vol. 207 of Solid mechanics and its appli-

cations. Springer; 2014. ISBN: 978-3-319-01744-0 (print), 978-3-319-

01745-7 (electronic).

24



[22] Tirronen M, Tuovinen T, Jeronen J, Saksa T. Stochastic analysis of the

critical stable velocity of a moving paper web in the presence of a crack.

In: I’ Anson SJ, editor. Advances in Pulp and Paper Research, Cam-

bridge 2013; vol. 1. The Pulp & Paper Fundamental Research Society;

2013, p. 301–19. ISBN: 978-0-9926163-0-4.

[23] Bolotin VV. Nonconservative Problems of the Theory of Elastic Stabil-

ity. New York: Pergamon Press; 1963.

[24] Timoshenko SP, Woinowsky-Krieger S. Theory of plates and shells. New

York : Tokyo : McGraw-Hill; 2nd ed.; 1959. ISBN 0-07-085820-9.

[25] Leissa AW. The free vibration of rectangular plates.

Journal of Sound and Vibration 1973;31(3):257–93. URL

http://dx.doi.org/10.1016/S0022-460X(73)80371-2.
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Figure 1: A travelling elastic plate with a crack.

Figure 2: Behavior of the stability index s̃. Divergence, corresponding to the critical

velocity, can be found at the origin.
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Random T cr
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0

variables

ξ, θ, GC F−1
X (pf)

√
1
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(
(F−1

θ (pi) + 1)T cr
0 + γ∗

π2D
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)

θ
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θ (1 − pf) + 1)

√
1
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(
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θ (pi) + 1)T cr
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π2D
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ξ
hKC

α(F−1
ξ (1 − pf))

√
πF−1

ξ (1 − pf)
V ∗

0 (T cr
0 )

GC
h

α(ξ)

√
F−1

GC
(pf)E

πξ
V ∗

0 (T cr
0 )

Table 1: Critical tensions and velocities for the problems in which only ξ, θ and GC or

one of them is a random variable.

Parameter µ

m 0.08 (kg/m2)

h 10−4 (m)

ν 0.3

E 109 (Pa)

GC 8000 (J/m2)

Table 2: Mean values of the parameters.
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Figure 3: Weibull distribution. The effect of changing the value of the distribution pa-

rameter c on the probability density function, s = 0.5.

29



Figure 4: Weibull distribution. The effect of changing the value of the distribution pa-

rameter s on the probability density function, c = 0.005.
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Figure 5: The relative critical velocities of the models in which crack length, tension

variation and strain energy release rate or one of them is random, s = 0.5, c = 0.005.
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Figure 6: Random crack length. The relative critical velocity (the critical velocity of

the model with random crack length divided by the critical velocity of the deterministic

model) and the expected value and standard deviation of the crack length with respect to

the distribution parameter c, s = 0.5, pf = 0.001.
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Figure 7: Random crack length. The relative critical velocity (the critical velocity of

the model with random crack length divided by the critical velocity of the deterministic

model) and the expected value and standard deviation of the crack length with respect to

the distribution parameter s, c = 0.005, pf = 0.001.
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Figure 8: Random crack length. The relative critical velocity (the critical velocity of

the model with random crack length divided by the critical velocity of the deterministic

model) with respect to the probabilities pf and pi, c = 0.005.
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CVθ \ pf, pi 0.001 0.01 0.1

0 60.4 74.0 106.8

291.7 437.5 912.9

0.1 49.5 64.4 100.0

283.6 431.8 911.6

0.2 35.7 52.8 92.5

267.2 416.2 907.2

Table 3: The critical velocity (upper value, m/s) and the corresponding critical tension

(lower value, N/m) with s = 0.5 and c = 0.005 with respect to pf, pi.
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