

Tuomas Vase

ADVANTAGES OF DOCKER

JYVÄSKYLÄN YLIOPISTO

TIETOJENKÄSITTELYTIETEIDEN LAITOS

2015

ABSTRACT

Vase, Tuomas
Advantages of Docker
Jyväskylä: University of Jyväskylä, 2015, 24 p.
Information Systems Science, Bachelor’s Thesis
Supervisor: Seppänen, Ville

Docker is an open platform product that can package an application and its de-
pendencies inside a virtual container and this technology is called as container
technology. Those packages can be build, ship and run inside distributed envi-
ronments by developers or system administrators with ease. This technology
offers huge advantages for enterprises with new kind of portability, scalability,
speed, delivery and maintenance.
 This thesis focused on the advantage side of Docker container tech-
nology. Differences between virtualization and container technology were ex-
amined from several levels which included usability, benefits, disadvantages,
risks and performance. The aim of the study was to investigate has Docker all
those advantages it is hyped for and is there negative sides in this technology.
The most important observation of this study is that Docker has many potential
advantages in the fields of usability, performance and security against tradi-
tional virtualization. The research was executed as a literature review with
some own conclusions.

Keywords: docker, virtualization, container, container-technology, performance,
advantages, security

TIIVISTELMÄ

Vase, Tuomas
Advantages of Docker
Jyväskylä: Jyväskylän yliopisto, 2015, 24 s.
Tietojärjestelmätiede, kandidaatintutkielma
Ohjaaja: Seppänen, Ville

Docker on avoimen alustan sovellus, joka pystyy pakkaamaan sovelluksen
kaikkien tarvittavien riippuvuuksien kanssa yhteen virtuaaliseen pakettiin, eli
konttiin, ja tätä teknologiaa kutsutaan konttiteknologiaksi. Näitä kontteja oh-
jelmistokehittäjät ja järjestelmäasiantuntijat voivat rakentaa, lähettää ja ajaa hel-
posti hajauttettujen ympäristöjen sisällä. Tämä teknologia antaa valtavia etuja
yrityksille uudenlaisen siirrettävyyden, skaalautuvuuden, nopeuden jakamisen
ja ylläpidon muodossa.

 Tämä tutkielma keskittyi Docker konttiteknologian etuihin. Nykyi-
sen virtualisoinnin ja konttiteknologian eroja tutkittiin monella tasolla, jotka
sisälsivät käytettävyyden, hyötyjen, haittojen, riskien ja suorituskyvyn näkö-
kulmia. Tutkimuksen tarkoituksena oli selvittää onko Dockerilla kaikki ne hy-
vät ominaisuudet, joista sitä on kehuttu ja mitä huonoja puolia tästä teknologi-
assa löytyy. Tärkein löytö tässä tutkimksessa oli, että Dockerilla on monia po-
tentiaalisia hyötyjä käytettävyyden, tehokkuuden ja turvallisuuden saralla ver-
rattaen tavanomaiseen virtualisointiin. Tutkimus tehtiin kirjallisuuskatsauksena,
jossa on mukana myös omia päätelmiä.

Asiasanat: docker, virtualisointi, kontti, pilvilaskenta, suorituskyky, hyödyt,
turvallisuus

FIGURES

Figure 1 - Traditional virtualization.. 9

Figure 2 - Docker containers .. 10

TABLES

Table 1 - Comparing containers... 12

Table 2 - VM and container comparison .. 17

TABLE OF CONTENTS

ABSTRACT .. 2

TIIVISTELMÄ ... 3

FIGURES .. 4

TABLES .. 4

TABLE OF CONTENTS ... 5

1 INTRODUCTION ... 6

1.1 Research problem and research questions ... 7

1.2 Research method and data acquisition ... 8

1.3 Research structure ... 8

2 CONTAINERS AND VIRTUALIZATION .. 9

2.1 Containerization, Docker and PaaS .. 11

2.2 Other available containers .. 11

2.2.1 Rocket – project rkt... 12

2.2.2 LXC – Linux containers ... 12

2.3 Docker containers .. 12

2.3.1 Docker in practice ... 13

2.3.2 Namespaces and control groups .. 14

3 ADVANTAGES OF DOCKER AS CONTAINER TECHNOLOGY 15

3.1 Dockers usability ... 15

3.2 Performance comparison versus traditional Virtualization 16

3.3 Security advantages of Docker .. 18

4 CONCLUSION .. 21

REFERENCES .. 23

1 Introduction

The use of virtualization technologies has increased drastically over the last few
years, as cloud computing has evolved and the needs of users and enterprises
have exceedingly increased. All of these changes make a huge demand for high-
ly performing and efficient solutions for virtualization, thus new methods of
virtualization have born for the needs of users and enterprises. (Bui, 2014).

Virtualization is a term that refers to the abstraction of computer re-
sources. Virtualization’s purpose is to improve resource utilization by provid-
ing a unified and integratable platform for users and applications. (Luo, Lin,
Chen, Yang, & Chen, 2011). New kind of virtualization is called container-
technology which is a tool for delivering software. In other words containers
have a platform-as-a-service (PaaS) or software-as-a-service (SaaS) focus in a
portable way. This provides a greater interoperability while still utilizing oper-
ating system (OS) virtualization principles (Pahl, 2015). Although containers
and virtual machines are both virtualization techniques, they fix different prob-
lems (Pahl, 2015). Although virtualization actually happened as early as the
1960s with virtual machines in IBM System/360 machines, it was not until 2001
when VMWare introduced its x86 virtualization software, which skyrocketed
virtualization of Linux environments. (Fink, 2014).

In this thesis the focus will be in Docker1 containers, as it is the most
common container technology and also most of the published scientific materi-
als are related to it. Docker is an open source project that offers a consistent way
to automate the faster deployment of applications inside portable containers
(Bernstein, 2014). With containers, applications share an operating system and
whenever possible, also binaries and libraries. The result is that these deploy-
ments will be drastically smaller in size than traditional virtualizations de-
ployments, making it possible to store hundreds of containers on a physical
host (Bernstein, 2014).

1 http://www.docker.com

7

The motivation to make this study were that software industry and cloud
providers are rapidly changing to container environments and thus how the
container-based virtualization is even working and what are the benefits of this
kind of virtualization is an interesting subject. Aim of the study was to find an-
swer that has Docker all those advantages that it is hyped for and is it simple to
execute and use. This thesis had some challenges in terms of founding relevant
enough scientific material, as Docker containers is only two years old technolo-
gy and thus thorough examinations of this technology does not exist yet.

This study revealed that Docker has some serious advantages in fields of
performance, usability and security when reviewed against traditional virtual-
ization.

1.1 Research problem and research questions

In the deepest core Docker is a virtualization framework focused around run-
ning applications and not for emulating hardware, which seems simple at first
but underlines the critical difference between operating system level virtualiza-
tion software like Docker and machine level virtualization (Fink, 2014). Howev-
er, using Docker is not yet an easy procedure, as Docker wants to run things in
foreground what necessitates a need for conversion of common programs (Fink,
2014). Docker’s focus on one application per container might also be problemat-
ic, although there are a lot of advantages. As Dua, Raja and Kakadia (2014) state
in their study, that containers have a congenital advantage over virtual ma-
chines because of improvements in performance and reduced startup time.
Docker is a lightweight solution that launch in a sub-second with hypervisor
availability on top of the operating system, which allows quite a lot of scalabil-
ity (Anderson, 2015). Regarding to these statements, this thesis will first aim at
answering the following research question:

 What are the advantages for enterprises in container technology?

Critical infrastructure is controlled more increasingly by software (Bradley,
Fehnker, & Huuck, 2011). Securing the chain of software production is therefore
an increasing concern. All stages of software deployment have chance to be cor-
rupted during the software deployment pipeline and other vulnerabilities may
occur when integrating the software with other infrastructures (Bass, Holz,
Rimba, Tran, & Zhu, 2015). Attackers are increasingly trying to figure out new
ways to exploit any shown weaknesses and other vulnerabilities in software
systems in order to gain financially benefits or only for doing harm (Axelrod,
2014). However, there might be a solution for these security concerns in the
field of software development and container technology. Therefore, second re-
search question is:

 What are the security risks and safety benefits of container technology?

8

1.2 Research method and data acquisition

This research was made in a form of literature review. Literature is mostly ac-
quired from Google Scholar and the Institute of Electrical and Electronics Engi-
neers (IEEE) databases. Relevance of the used references was weighted by the
score of referred amounts and latest articles were considered more valuable
than older articles. Thesis is mostly using articles which are published in the
year 2014 or 2015. References were searched by relevant keywords and combi-
nations of such keywords. These keyword combinations were executed from
the following words: docker, virtualization, container, container-technology,
performance, advantages and security.

1.3 Research structure

This research is divided to four main chapters. First chapter is Introduction,
where main points of virtualization and container technology are briefly
demonstrated, followed by research problem, questions, method, and structure
with data acquisition.

Next chapter, Containers and virtualization, will explain main concepts of
virtualization and how containers belong to it. Definitions of used terminology
and other available containers are also explained in this chapter. Docker con-
tainers architecture and comparison to other containers will follow after men-
tioned definitions.

Third chapter, Advantages of Docker as container technology, is the main
chapter of this thesis. This chapter is divided to three main points, which are
Dockers usability, performance comparison and security advantages. Each
point of view has pros and cons towards Docker.

Last chapter is Conclusion, where main advantage points are repeated and
the core content of this thesis is presented. In addition, future studies in con-
tainer technology are considered.

9

2 Containers and virtualization

The popularity of Cloud computing due increasing amount of customers has
led providers to use resource-sharing solutions to meet the needs of infrastruc-
tures resources (Xavier et al., 2015). Virtual machines have been the backbone
for cloud computing at the infrastructure layer, as virtual machines are provid-
ing virtualized operating systems. Containers are a similar, but lighter solution
for virtualization, as containers use a far less resources and time as traditional
virtualization (Figure 1) technologies (Pahl, 2015).

Figure 1 - Traditional virtualization2

In traditional virtualization, hypervisor is controlling host machines resources.
Hypervisor-based virtualization can share, for example, memory resources
across memory limits, as most processes (or virtual machines in this case) do

2 https://www.docker.com/what-docker

10

not consume all of their allocated memory. Therefore, users can have more
computing resources than is physically available in cloud based environments.
Operation level virtualization, like container-based virtualization, can even do
better, as it has improved resource sharing. Container technology grants multi-
ple isolated instances with wanted properties for user and eases the managing
and generating processes. Thus, container-based virtualization is ahead of tradi-
tional virtualization in terms of usability, but it also extends the resource utili-
zation and therefore reduces the overhead of creating new virtualization pro-
cesses. (Adufu, Jieun, & Yoonhee, 2015.)

Almost every virtualization technology can be placed in two main catego-
ries of virtualization: hypervisor-based virtualization and container-based vir-
tualization. Containers provide operating system level virtualization, as Hyper-
visor-based virtualization is in the hardware level. In other words, container-
based virtualization (Figure 2) is running multiple virtual environments on top
of host kernel, whereas hypervisor is simulating computers resources as a
whole. (Bui, 2014). Mostly each of these virtualization environments, which are
running in container-based virtualization, is referred to containers. Containers
are isolated from each other and other processes and they are also sharing only
those resources, which are dictated to them. (Boettiger, 2015).

Figure 2 - Docker containers3

Operating system (OS) containers run multiple processes, whereas application
containers run a single service that is packaged. As Linux Containers (LXC) is a
pure OS container technology, Docker and Rocket4 (rkt) are examples of appli-
cation level containerization. However, application level containers also need

3 https://www.docker.com/what-docker
4 https://github.com/coreos/rkt

11

OS level container under it. Although all of them share kernel and same kind of
resources, they are delicately different. In application container approach con-
tainers are created for each of the components of designed application and this
approach suite extremely well with multi-component systems, which are dis-
tributed. (Karle, 2015.)

2.1 Containerization, Docker and PaaS

DotCloud, which is a platform-as-a-service vendor, firstly created an open
source application containerization project that we nowadays know as Docker.
Containerization project has reached enormous popularity, as many cloud
computing giants, like Amazon Web Services (AWS), have announced that they
are using and supporting applications, which are containerized by Docker. (Lin-
thicum, 2014).

Containerization term is obtained from shipping containers as it has same
kind of principle: to ship or store all kinds of “cargo”. This kind of containeriza-
tion provides a generic way to isolate processes from each other and rest of the
system. (Dua et al., 2014)

Developer productivity has drastically increased with PaaS approach, as
deployment of services can be done rapidly and easily. Use of containers with
PaaS is nowadays popular as major cloud providers are already using contain-
ers to provide their services. (Dua et al., 2014). However, there are still few is-
sues that need to be solved before full utilization of PaaS platforms in container-
ization. According to Dua et al. (2014), the following features are still needed:

 Standardization: There is not a standard container file format and for full
interoperability this is a necessity to have.

 Security: From perspective of isolation in networking and memory, con-
tainers need to secure both.

 Independence of OS: Working feature of abstraction is needed, as con-
tainers should not be tied to userspace or specific kernel.

2.2 Other available containers

There are many container technologies available, but in this thesis the two al-
ternatives introduced are Rkt (or Rocket) and LXC. Rkt is predicted to be one of
the toughest rivals for Docker in the future and LXC is the predecessor of Dock-
er.

12

2.2.1 Rocket – project rkt

Project “rkt” was launched after Docker changed their plans about standard-
ized containers and focused on building tools for full platform products. Docker
even removed the container manifesto that they published in 2013 and this led
the team of CoreOS to develop their own standardized container system. (Polvi,
2014). CoreOS is nowadays a big Docker container platform, which has contain-
er hosting services in the cloud. CoreOS is trying to develop a simplified con-
tainer solution with built-in security from the start and support for socket acti-
vation, as these changes would provide standardized solution without the flaws
of Docker. (Janmyr, 2015). Rkt also have severe production and security re-
quirements with compatibility with other available containers. However, while
rkt is progressing rapidly and is promising, it is not near a stable solution, as it
is still in alpha phase. (Polvi, 2014). In December 2015 the latest version was
v.0.13.0.

2.2.2 LXC – Linux containers

LXC or Linux containers are the predecessor of Docker. LXC uses the
namespaces and control groups (cgroups) in the same way as Docker do to
guarantee isolation of containers. LXC containers used the process identification
(PID) and network namespacing for the first time. LXC also developed the
method of resource sharing and management via cgroups. (Xavier, Neves, &
Rose, 2014). The below table shows how identical Docker and LXC are, as Dua
et al. (2014) have compared these two:

Table 1 - Comparing containers (Dua et al., 2014)

Parameter LXC Docker

Process Isolation Uses pid namespace Uses pid namespace

Resource Isolation Uses cgroups Uses cgroups

Network Isolation Uses net namespace Uses net namespace

Filesystem Isolation Using chroot Using chroot

Container Lifecycle Tools: lxc-create, lxc-
stop, lxc-start to create,
start, stop a container

Uses Docker daemon
and a client to manage
the containers

2.3 Docker containers

Docker is an open source product that has many capabilities from previous
technologies such as LXC containers, Git type of version control and operation
system virtualization. (Boettiger, 2015) With containers, applications share an
operating system and whenever possible, also binaries and libraries. The result
is that these deployments will be drastically smaller in size than hypervisor de-

13

ployments, making it possible to store hundreds of containers on a single phys-
ical host (Bernstein, 2014).

2.3.1 Docker in practice

Basically, Docker extends LXC with a kernel- and application-level API that
both run processes in isolation (Bernstein, 2014). Docker relies heavily on two
pieces of Linux kernel technology which are namespaces and control groups
(Anderson, 2015). Docker uses namespaces to completely segregate an applica-
tion’s view of the underlying operating environment, including networking,
user IDs, file systems and all other processes (Bernstein, 2014). Control groups
are designed for managing available resources to a container. These resources
can be restrictions of access to other processes or bare resources of given hard-
ware (Anderson, 2015).

Docker containers are created using base images. A Docker image can
have just the minimum requirements of the operating systems, or it can consist
of a sophisticated prebuilt application stack ready for launch. (Bernstein, 2014)
Docker can cache things as it will not install or change environments if it is not
really a must (Anderson, 2015). When building images with Docker, each action
taken, for example “apt-get install”, forms a new layer on top of the previous
one. These commands can be used manually or executed automatically by us-
ing Dockerfiles (Bernstein, 2014).

Docker images share Linux kernel with host machine which is the largest
difference between other virtualization technologies and Docker images
(Boettiger, 2015). This technology allows that Docker is not as heavy to run as
other virtual machines. This feature, that there can be hundreds of containers in
one machine with higher performance, has made Docker really attractive for
industry and is also the reason for its enormous popularity (Boettiger, 2015).
Docker hub is the place for central repository for private and public Docker im-
ages. In the Docker hub users can search and share their images and download
them with the Docker client. (Bui, 2014)

Dockerfiles automate the process of building images (Anderson, 2015).
Dockerfiles have a straightforward script which has same kind of syntax as
Makefile. These files have exact commands how to build current image with
wanted values (Boettiger, 2015). Those whom write Dockerfiles need a bit famil-
iarity of Linux control commands, such as “apt-get install”, before executing
written scripts (Boettiger, 2015). At the moment Dockerfile has 13 commands
available. (Janmyr, 2015) Another example is that any “RUN” commands in
Dockerfile will create a new layer for the container and from these layers Dock-
er combines in the build process a container, which does not have duplicates
and can re-use wanted processes. (Karle, 2015)

Docker containers have many already described features, but one of the
core ones is Docker engine, which builds and runs Docker containers. Docker
containers run on Docker engine, which controls all containers. Docker client
provides the user interface (UI) for user and also the interaction to containers.

14

Therefore the Docker daemon communicates with client and thus sends com-
mands to run, ship or build containers. (Bui, 2014)

2.3.2 Namespaces and control groups

As mentioned before, namespaces and control groups are the core isolation of
container technology. Namespaces provide the certainty that container can only
see its own environment and thus it will not affect other containers. It will give
restricted access to file systems as change root (chroot) and does not give any
rights above containers own level of access. Namespaces also give own network
devices to containers, so each container will have unique hostname and IP ad-
dress for independency. (Joy, 2015)

Almost all containers use control groups for securing the resource sharing.
Control groups ensure that each and every container has enough resources to
work properly, but even importantly they prevent over exhaustion of those re-
sources. (Dua et al., 2014).

15

3 Advantages of Docker as container technology

Docker has many capabilities and implementations for user friendliness, per-
formance and security. These crucial components for success are LXC based OS
virtualization, re-use of components, portable container deployments, version-
ing of images, using of image archives and sharing those images (Boettiger,
2015). At the moment Docker still needs Linux-compatible software under it.
However, Docker is also included in Windows Server 2016 edition, which is a
huge accomplishment.

3.1 Dockers usability

Containers outperform traditional virtualization in many ways, but intensely in
performance and scalability. Most of the cloud based systems need an eased
scalability option, where Docker containers play a great solution. Instead of
running multiple virtual machines, which consume precious resources with
Guest OS instances, Docker can launch very rapidly a lot more container in-
stances without any overhead. (Joy, 2015.) Another key issue in software de-
velopment is “dependency hell”, which can also be solved with Docker, as
Docker containers have all dependencies needed inside the container and if the
release version of container is not broken, it will work in every instance of
Docker elsewhere (Boettiger, 2015). Docker also has tools against code-rot with
image versioning. Any changes in the deployment pipeline, for example as new
features or dependency changes can cause serious breaking in otherwise work-
ing code (Boettiger, 2015). These problems can be drastically reduced with
Docker, as software environment is dictated to specific operation system and its
dependencies with ease and this also provides increased software security
(Boettiger, 2015).

According to Joy (2015), Docker’s advantages come from five key values in
terms of usability:

16

 Portable deployments
Applications built inside containers are exceedingly portable, as
these kinds of bundles are moved around as a single unit and this
movement does not affect performance or the container at all.

 Rapid delivery
Because of Dockers standardized container format, software teams
do not need to worry about each other’s tasks, as developers are
only taking care of applications inside the container and adminis-
trators are only taking care of the server deployments with contain-
ers. As containers or packets are tested and have all the needed de-
pendencies, they will work in every instance.

 Scalability
Docker containers can run in every Linux system as it can also be
deployed to various cloud environments, datacenters and physical
servers etc. User can easily move container from cloud to desktop
and back to cloud in rapid pace. Scaling up and down is also a walk
in the park, as user can adjust the scale from one to thousands and
back to one if it is not needed.

 Faster build times
Containers are really small and thus build times are rapid. This al-
lows reduced times in testing, development and deployment. After
container has been built, it can be pushed to test environments and
from there to production environment.

 Higher density with better performance
As Docker containers do not use hypervisor, available resources
can be used more efficiently. This means that there can be more
containers in single machine than there can be virtual machines and
with that higher density and lack of wasted resources to overhead,
Docker containers can have higher performance as well.

Docker is also one kind of “contract” between Developers and Operations.
Many software teams have confronted problems with choosing the used tech-
nology, as developers want to use the newest technologies and operators want
to use technologies that really work or have been used before. In this kind of
common situation Docker is very useful, as developers can use all new technol-
ogies and built them inside to container and operations can deploy these con-
tainers with ease. (Janmyr, 2015.)

3.2 Performance comparison versus traditional Virtualization

Virtualization is not going anywhere soon. All public cloud giants, such as Am-
azon EC2, Google Compute Engine and Microsoft Azure, are relying to virtual-
ization technologies to keep their systems powerful and scalable. However, tra-

17

ditional virtualization has its own expenses as mentioned before, so for the tre-
mendous needs of computing power, cloud companies are already moving to-
wards better resource utilization and faster deployments. (Joy, 2015). Google,
IBM and Joyent are all successful public cloud providers, which have been us-
ing containers instead of virtual machines. (Bernstein, 2014).

Below Dua et al. (2014) have compared virtual machines against contain-
ers. As we can see, containers are very different than virtual machines.

Table 2 - VM and container comparison (Dua et al., 2014)

Parameter Virtual Machines Containers

Guest OS Each VM runs on virtual
hardware and kernel is
loaded into in its own
memory region.

All the guests share same OS
and Kernel. Kernel image is
loaded into the physical
memory.

Communication Will be through Ethernet
Devices.

Standard IPC mechanism like
signals, pipes, sockets etc.

Security Depends on the implemen-
tation of Hypervisor

Mandatory access control can
be leveraged.

Performance Virtual Machines suffer
from a small overhead as
the Machine instructions
are translated from Guest
to Host OS.

Containers provide near native
performance as compared to the
underlying Host OS.

Isolation Sharing libraries, files, etc.
between guests and be-
tween guests hosts not
possible.

Subdirectories can be transpar-
ently mounted and can be
shared.

Startup time VMs take a few minutes to
boot up.

Containers can be booted up in
a few seconds as compared to
VMs.

Storage VMs take much more stor-
age as the whole OS kernel
and its associated pro-
grams have to be installed
and run.

Containers take lower amount
of storage as the base OS is
shared.

Docker is also shining in higher data volumes. High Throughput Computing
(HTC) and Many Task Computing (MTC) both have billions of tasks, which are
intensive in aspect of computing power or data management. These experi-
ments require reliable and fast access to memory and also management of high
data volumes. In recent study container-based systems as Docker were signifi-
cantly more efficient in execution times and also in memory management than
hypervisor-based virtualization systems. (Adufu et al., 2015).

In terms of application deployment, those who want to use the least of in-
frastructure will use the simple container-based approach. This is the core rea-

18

son for cloud vendors to have improved performance in container-based sys-
tems, as many people tend to use these simplified and cheaper solutions. A re-
cent study in apples-to-apples benchmark test with “fast data” had five times
better performance in container-based IBM Softlayer system than compared
against hypervisor-based Amazon AWS. (Bernstein, 2014). Kernel-based Virtual
Machines (KVM) is a mature technology, which is widely used. When KVM
and Docker were both tuned to highest performance settings, Docker exceeded
or equaled KVM in all of the test cases. (Felter, Ferreira, Rajamony, & Rubio,
2015). These tests cases give an impression of Docker containers superiority in
every case compared against traditional virtualization. However, a hypervisor-
based virtualization is still useful when applications require different operating
systems with various versions on the same cloud (Bernstein, 2014).

3.3 Security advantages of Docker

Security is a major challenge when used services are located in virtual environ-
ments. It has been said that hypervisor virtualization is more secure than con-
tainer-based virtualization, as container-technology can communicate directly
to host kernel whereas hypervisor prevents it. Docker is a container-based vir-
tualization, thus it raises security concerns against it. (Bui, 2014) However, there
are many ways to provide reliable security in Docker, when new innovations
and old architecture, as namespaces and control groups, are properly used. As
Docker Inc. mentions in their Website that the key focus for Docker in software
security is to make the highest level of security possible without sacrificing any
usability (Diogo, 2015).

When following question was asked from audience in IT seminar: “What
is your greatest concern?” the response was “someone subverting our deploy-
ment pipeline” (Bass et al., 2015). Software is the heart of many missions and
critical operations and the deportment is always relevant. However, software
development is advancing more rapidly than cautious development and securi-
ty verification can handle. Thus, cyber security needs to be included in every
level of software development process in every way possible (Bradley et al.,
2011). Introduction of standardized image format has rocketed the interest of
using Docker containers in enterprises. These containers facilitate software dis-
tribution and allow greater use of resources. Docker containers are currently
sharing the same host kernel, thus it is possible to gain access over the system
via container if developers are not aware enough. This leads us to conclusion:
Docker’s security is mostly about limiting and monitoring the possible attack
surface (Mouat, 2015).

Namespaces are providing the first form of security with isolation. Those
processes, which are running inside a container, cannot see or affect any other
process in another container. Control groups are the second most valuable form
of first line security, as it is sharing and limiting resources. For example, control
groups ensure that each process has enough CPU power or memory, but it is

19

also ensuring that a Distributed Denial-of-Service (DDoS) attack inside a con-
tainer cannot exhaust other resources. (Petazzoni, 2013)

As Bui (2014) stated in his research, while Docker is fairly secure even
with default configurations, there still was a minor security issues regarding to
default network model, as the virtual Ethernet Bridge was vulnerable to ARP
spoofing and MAC flooding attacks. However, these security problems can be
solved easily, if the network administrator is aware of these issues and adds
correct filtering. There are also new security features published after Bui’s (2014)
article, as in autumn 2015 Docker introduced next-level security in version 1.8
with Docker Content Trust (DCT). This feature provides a public key infrastruc-
ture (PKI) for Docker. PKI approach has two different keys, which are root key
(which is offline) and a tagging (per-repository) key, which is generated and
stored when Docker image has been published for the first time. DCT adds digi-
tal signature to each data sent or received and therefore verifies safe Docker
images from remote registries. Each of these repositories has their own unique
keys, thus other containers security won’t be breached when one key is re-
vealed (Vaughan-Nichols, 2015). Docker Content Trust is built-in feature in 1.8
and later versions, thus it is recommended to use for stronger security.

According to Mouat (2015) there are a few possible exploits in Docker:

 Kernel exploit
In container-technology the kernel is shared with all of the contain-
ers, which vastly increases the importance of secure kernel. With a
kernel exploit a single container could crash the whole host.

 Denial-of-service attacks
Kernel resources are shared to all Docker containers. If control
groups have been configured poorly, one noxious container can
starve other containers in the host

 Escapes from Container
Attacker shouldn’t be able to gain access to another containers or
the host itself.

 Poisoned images
Without a trusted Docker image provider it is almost impossible to
know is the shared image safe to use or what it has inside of it.

 Secret compromises
For example when Docker container is using a database it will most
likely require a secret inside of it, such as a password.

Reading above exploits or articles regarding to Docker security can make an
impression of insecurity, which however is not the case. While using container-
technologies there is a certain need to be aware of potential security issues, but
if used properly, Docker containers can imply more efficient and better security
than using virtual machines or bare metal servers alone (Mouat, 2015). Fur-
thermore, even though containers have larger attack surface than virtual ma-
chines, it is possible to maintain performance and higher density without sacri-

20

ficing security. This can be done with correct configuration and awareness or
just installing the container service inside a virtual machine. However, running
Docker inside a Hypervisor virtualization system isn’t the right medicine for
some security issues, as it adds only an even more complex system. (Hemphill,
2015)

According to Hemphill (2015), the most important thing in software secu-
rity is to understand the fact that security breaches happen. In these cases it is
vital to figure how the breach occurred and fix it in such a way that it cannot
happen again and with Docker software deployment these security patches can
be applied very precise and quickly. Docker also adds availability of monitor-
ing and auditing, thus potential attacks can be detected early on. (Mouat, 2015)

21

4 Conclusion

In this study, the container technology called Docker was examined for its ad-
vantages. The study was executed as review of literature from the most recent
and reliable sources. The most important observation of this study is that Dock-
er has many potential advantages in the fields of usability, performance and
security. These observations were discovered during the progress of this thesis.

Containers have better usability, performance and scalability than tradi-
tional virtualization, as containers utilize resources far better for not having un-
necessary overhead and containers also provide higher density. However, there
are still use cases that fit better for virtual machines. (Bui, 2014; Joy, 2015). Con-
tainers have natural advantage over virtual machines, as containers even have
reduced startup time, which is dictating better performance. By having addi-
tional layers on top of LXC based approach in containerization, Docker is per-
haps the most relevant container technology for PaaS authors. (Dua et al., 2014).

Docker containers help the renewing software industry in terms of porta-
bility, delivery, scalability, speed and density. Each of these gives more usabil-
ity and eases the work of developers and system operators, as containers re-
move many common problems or decreases the time used in each task. (Joy,
2015) One of the biggest problems removed is the “dependency hell” as con-
tainers contain all the needed dependencies and therefore properly executed
and built containers are guaranteed to work in every other Docker instance
(Boettiger, 2015). Another indicator of interest towards container technology
and Docker is those promising results from test cases, where containers over
performed or equaled traditional virtualization in every case. (Adufu et al.,
2015; Bernstein, 2014; Felter et al., 2015)

As this study revealed, that for safe use of Docker, users and developers
need to be aware of potential security issues and the most relevant tools and
techniques of securing containers (Mouat, 2015). Containers are mostly positive
effect in terms of security, as it provides extra level of isolation and better con-
trol. A system, which is using containers properly, will be more secure than an
identical system without container-technology (Mouat, 2015). However, there
are several things to keep in mind when using Docker, as it needs fierce config-

22

uration. Another great principle is to follow defense-in-depth and least privi-
lege, as then a compromise of one component won’t affect the full system. Sev-
eral levels of security maximize systems safety and one penetration won’t do
any serious harm (Mouat, 2015). Docker isn’t as insecure as it is generally
thought and thus fully configured Docker development pipeline eases the actu-
al software development process but even better, it increases the overall safety
of the system: from scratch to release (Hemphill, 2015).

Overall Docker is really promising technology, which should be consid-
ered as replacement for traditional virtualization. Docker containers perform
well with default configurations, but for better performance and security, heavy
configuration is needed. Docker has fine features, which guarantee simplified
usability and scalability. However, for the needs of cloud giants better cluster-
ing system is needed, where for example Docker Swarm5 can fit. In this thesis
the focus was only in Docker containers, so other features and other technolo-
gies were omitted. In future studies other container technologies and other con-
tainer technology features should be evaluated in depth analysis with empirical
research, as field of virtualization is revolutionizing. One thing is certain: Virtu-
alization is not going anywhere soon and Docker is here to stay. (Janmyr, 2015;
Joy, 2015).

5 https://docs.docker.com/swarm/

23

REFERENCES

Adufu, T., Jieun, C., & Yoonhee, K. (2015). Is container-based technology a win-
ner for high performance scientific applications? Network Operations and
Management Symposium (APNOMS), 2015 17th Asia-Pacific, 507-510.
doi:10.1109/APNOMS.2015.7275379

Anderson, C. (2015). Docker [software engineering]. IEEE Software, (3), 102-c3.
Axelrod, C. W. (2014). Reducing software assurance risks for security-critical

and safety-critical systems. Systems, Applications and Technology Conference
(LISAT), 2014 IEEE Long Island, 1-6. doi:10.1109/LISAT.2014.6845212

Bass, L., Holz, R., Rimba, P., Tran, A. B., & Zhu, L. (2015). Securing a deploy-
ment pipeline. Release Engineering (RELENG), 2015 IEEE/ACM 3rd Interna-
tional Workshop On, 4-7. doi:10.1109/RELENG.2015.11

Bernstein, D. (2014). Containers and cloud: From LXC to docker to kubernetes.
Cloud Computing, IEEE, 1(3), 81-84. doi:10.1109/MCC.2014.51

Boettiger, C. (2015). An introduction to docker for reproducible research. ACM
SIGOPS Operating Systems Review, 49(1), 71-79.

Bradley, M., Fehnker, A., & Huuck, R. (2011). Cyber security at software devel-
opment time. Defense Science Research Conference and Expo (DSR), 2011, 1-4.
doi:10.1109/DSR.2011.6026847

Bui, T. (2014). Analysis of docker security.Aalto University School of Science(Aalto
University T-110.5291 Seminar on Network Security)

Diogo, M. (2015, August 12, 2015). Introducing docker content trust. Retrieved
26.11.2015 from http://blog.docker.com/2015/08/content-trust-docker-1-
8/

Dua, R., Raja, A. R., & Kakadia, D. (2014). Virtualization vs containerization to
support PaaS. Cloud Engineering (IC2E), 2014 IEEE International Conference
On, 610-614. doi:10.1109/IC2E.2014.41

Felter, W., Ferreira, A., Rajamony, R., & Rubio, J. (2015). An updated perfor-
mance comparison of virtual machines and linux containers. Performance
Analysis of Systems and Software (ISPASS), 2015 IEEE International Symposium
On, 171-172. doi:10.1109/ISPASS.2015.7095802

Fink, J. (2014). Docker: A software as a service, operating system-level virtual-
ization framework. Code4Lib Journal, 25

Hemphill, B. (2015, October 22, 2015). Docker, docker, docker, security, docker.
Retrieved 26.11.2015 from
http://containerjournal.com/2015/10/22/docker-docker-docker-security-
docker/

Janmyr, A. (2015). A not very short introduction to docker. Retrieved 4.12.2015
from http://www.jayway.com/2015/03/21/a-not-very-short-
introduction-to-docker/

http://blog.docker.com/2015/08/content-trust-docker-1-8/
http://blog.docker.com/2015/08/content-trust-docker-1-8/
http://containerjournal.com/2015/10/22/docker-docker-docker-security-docker/
http://containerjournal.com/2015/10/22/docker-docker-docker-security-docker/
http://www.jayway.com/2015/03/21/a-not-very-short-introduction-to-docker/
http://www.jayway.com/2015/03/21/a-not-very-short-introduction-to-docker/

24

Joy, A. M. (2015). Performance comparison between linux containers and virtual
machines. Computer Engineering and Applications (ICACEA), 2015 Interna-
tional Conference on Advances In, 342-346. doi:10.1109/ICACEA.2015.7164727

Karle, A. (2015). Operating system containers vs. application containers. Re-
trieved 4.12.2015 from https://blog.risingstack.com/operating-system-
containers-vs-application-containers/

Linthicum, D. (2014). Cloud app containerization all the rage -- but is it any-
thing new? Retrieved 4.12.2015 from
http://searchcloudcomputing.techtarget.com/podcast/Cloud-app-
containerization-all-the-rage-but-is-it-anything-new

Luo, S., Lin, Z., Chen, X., Yang, Z., & Chen, J. (2011). Virtualization security for
cloud computing service. Cloud and Service Computing (CSC), 2011 Interna-
tional Conference On, 174-179. doi:10.1109/CSC.2011.6138516

Mouat, A. (2015). In Anderson B. (Ed.), Docker security: Using containers safely in
production (First Edition ed.) Published by O’Reilly Media, Inc., 1005
Gravenstein Highway North, Sebastopol, CA 95472.

Pahl, C. (2015). Containerization and the PaaS cloud. Cloud Computing, IEEE,
2(3), 24-31. doi:10.1109/MCC.2015.51

Petazzoni, J. (2013, August 21, 2013). Containers and docker: How secure are
they? Retrieved 26.11.2015 from
http://blog.docker.com/2013/08/containers-docker-how-secure-are-they/

Polvi, A. (2014). CoreOS is building a container runtime, rkt. Retrieved
4.12.2015 from https://coreos.com/blog/rocket/

Vaughan-Nichols, S. (2015, August 13, 2015). Docker 1.8 adds serious container
security. Retrieved 26.11.2015 from
http://www.zdnet.com/article/docker-1-8-adds-serious-container-
security/

Xavier, M. G., Neves, M., & Rose, C. (2014). A performance comparison of con-
tainer-based virtualization systems for MapReduce clusters. Parallel, Dis-
tributed and Network-Based Processing (PDP), 2014 22nd Euromicro Interna-
tional Conference On, 299-306. doi:10.1109/PDP.2014.78

Xavier, M. G., De Oliveira, I. C., Rossi, F. D., Dos Passos, R. D., Matteussi, K. J.,
& De Rose, C. A. F. (2015). A performance isolation analysis of disk-
intensive workloads on container-based clouds. Parallel, Distributed and
Network-Based Processing (PDP), 2015 23rd Euromicro International Conference
On, 253-260. doi:10.1109/PDP.2015.67

https://blog.risingstack.com/operating-system-containers-vs-application-containers/
https://blog.risingstack.com/operating-system-containers-vs-application-containers/
http://searchcloudcomputing.techtarget.com/podcast/Cloud-app-containerization-all-the-rage-but-is-it-anything-new
http://searchcloudcomputing.techtarget.com/podcast/Cloud-app-containerization-all-the-rage-but-is-it-anything-new
http://blog.docker.com/2013/08/containers-docker-how-secure-are-they/
https://coreos.com/blog/rocket/
http://www.zdnet.com/article/docker-1-8-adds-serious-container-security/
http://www.zdnet.com/article/docker-1-8-adds-serious-container-security/

