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Finnish summary

Diss.

In this work, we study the phases of image processing chain of microtomographic imag-

ing in order to obtain reliable results while optimizing the time spent on denoising and

segmentation. We consider that the decisions made at the early phases of the processing

chain are most important and the selection made there essentially determine the overall

quality of imaging process. We also compare here various denoising method qualita-

tively, however, we think that the pure noise removal ability is not the only requirement

for noise removal in microtomographic images. By proper denoising we can affect selec-

tion of segmentation methods and, thus, also the quality of the analysis. Additionally, at

the end, we also review the image segmentation and analysis methods commonly used in

microtomographic imaging.

Keywords: 3D image processing, X-ray tomography, denoising, segmentation, image

analysis
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ACRONYMS

2D Two-dimensional

3D Three-dimensional

AD Anisotropic diffusion

BF Bilateral filter

CCD Charge coupled device

CPU Central processing unit

(μ)CT (Micro) Computed tomography

DCT Discrete cosine transform

DT Distance transform

EDT Euclidean distance transform

ESRF European synchrotron radiation facility

EM Expectation maximization

EW Edwards-Wilkinson equation

(F)FT (Fast) Fourier transform

FBP Filtered back projection

GPU Graphics processing unit

GMM Gaussian mixture model

LB Lattice-Boltzmann

MH Mardia and Hainsworth

MIP Mercury intrusion porosimetry

MS Mean shift

MRI Magnetic resonance imaging

PDE Partial differential equation

Pixel A picture element

RAM Random access memory

SDCT Sliding discrete cosine transform

SPH Smoothed particle hydrodynamics

SVD Singular value decomposition

VaWe Variance weighted mean filter

Voxel Volumetric pixel (3D pixel)

XμCT X-ray micro computed tomography



NOTATIONS

∇a Gradient of image a

Δx
[h1,h2]a[v] Finite difference approximation of partial derivative along

x-axis for image a at voxel v. h1 and h2 denote the spacing

for forward and backward steps, respectively.

|| · ||p lp norm

a[i, j, k] Value of image a at pixel index i, j, k. Sometimes the a[v]
-form is used to simplify the notation, v = [i, j, k].

a(x, y, z) Value of an image a at real valued coordinate x, y, z.

Ave(V) Mean value of pixels in voxel set V

a′[v] Discrete derivative of image a

Bout(V)/Bout(V) Inner / outer border of voxel set V. See equation (7) and

equation (8) for more details.

Cn[v] n-connected neighbours of voxel v in 3D; n is usually 6, 18

or 26.

N p
r [v] Voxel neighbourhood of v, r is the radius and p defines the

distance norm. The simplified notionN [v] can also be used

if radius and norm are readily fixed.

T(a, τ) Threshold operation performed for image a with threshold

value τ resulting a binary image.

Tt(a) Translation of image a by vector t

Var(V) Variance of pixels in voxel set V

v,q Notations used of a single voxel. A subscript i, j or k can be

used to indicate pixel indexes and x, y or z for real valued

coordinates

V Notation used of a set of voxels.



LIST OF FIGURES

FIGURE 1 Scientific model. ..................................................................... 17

FIGURE 2 Number of publications on various structural types or analysed prop-

erties analysed by μCT. ............................................................ 20

FIGURE 3 XμCT analysis process flow....................................................... 21

FIGURE 4 Visualisation of base paper and paper coating separated from each

other for further analysis. .......................................................... 22

FIGURE 5 Number of publications on μCT related to certain matter. ................ 23

FIGURE 6 Number of publications on various materials analysed by μCT. ......... 25

FIGURE 7 The principle of collecting XμCT projection images. ...................... 28

FIGURE 8 The principle of an X-ray tube.................................................... 30

FIGURE 9 The output of an X-ray tubes...................................................... 30

FIGURE 10 Spectrum of an X-ray tube......................................................... 32

FIGURE 11 The half shadow effect.............................................................. 33

FIGURE 12 Two attenuation mechanisms of X-ray photon. .............................. 34

FIGURE 13 X-ray attenuation coefficient for silicon. ....................................... 35

FIGURE 14 Scintillator-optics-CCD geometries used in XμCT systems. ............. 35

FIGURE 15 The interior of an XμCT scanner. ............................................... 37

FIGURE 16 A geometry of a typical scanner. ................................................. 38

FIGURE 17 The principles of cone and parallel beam geometries. ...................... 39

FIGURE 18 A schematic image of a X-ray nanoCT system. .............................. 40

FIGURE 19 Original image and its sinogram. ................................................ 41

FIGURE 20 The acquisition of projection images. .......................................... 41

FIGURE 21 The principle of algebraic reconstruction. ..................................... 42

FIGURE 22 The principle of back-projection algorithm. .................................. 43

FIGURE 23 The effect of the number of projections on the final reconstructed

cross-sectional image for unfiltered back projection. ....................... 43

FIGURE 24 The effect of the different filters used in Filtered Back Projection

algorithm............................................................................... 44

FIGURE 25 Ring artefacts on a paper sample................................................. 45

FIGURE 26 Artefacts on bone sample. ......................................................... 46

FIGURE 27 Metal artefacts inside a bentonite sample. ..................................... 47

FIGURE 28 Properly aligned and misaligned reconstruction. ............................ 48

FIGURE 29 Visualization effects demonstrated on volcanic stone sample............. 51

FIGURE 30 Visualization possibilities demonstrated on volcanic stone sample ..... 51

FIGURE 31 Pixel indexing system............................................................... 55

FIGURE 32 Voxel neighbourhoods. ............................................................. 56

FIGURE 33 A binary image of a leaf and its distance transform. ........................ 62

FIGURE 34 A square object and its skeleton. ................................................. 62

FIGURE 35 A 2D example of the geodesic reconstruction. ............................... 64

FIGURE 36 The schematic of linear interpolation. .......................................... 65

FIGURE 37 An example of an iteratively rotated image of 360 degrees with steps

of 1 degree. ............................................................................ 67



FIGURE 38 The requirement triangle of an denoising algorithm. ....................... 70

FIGURE 39 The sample images for the denoising comparison. .......................... 78

FIGURE 40 Comparison of the effect of denoising methods. ............................. 79

FIGURE 41 The analysis areas for the denoising test. ...................................... 80

FIGURE 42 Sigmoid function..................................................................... 81

FIGURE 43 The edge preservation of denoising methods. ................................ 82

FIGURE 44 The processing time of the denoising algorithms as a function of

image size.............................................................................. 83

FIGURE 45 The segmentation process of a XμCT image analysis. ..................... 86

FIGURE 46 An edge spreading on multiphase segmentation of igneous rock. ....... 87

FIGURE 47 Thresholding, histogram, and labelled images................................ 91

FIGURE 48 An example of the Gaussian mixture model for an igneous rock sample. 92

FIGURE 49 The result of few multiphase segmentation algorithms. .................... 97

FIGURE 50 A cross-sectional image of the pencil leads in epoxy. ...................... 98

FIGURE 51 The threshold vs. object volume for the segmentation of the simple

graphite epoxy sample. ............................................................. 99

FIGURE 52 The volume of the sample determined using some automatic thresh-

old selection methods. .............................................................. 100

FIGURE 53 The threshold vs. object volume for segmentation of the graphite

particles epoxy sample. ............................................................ 102

FIGURE 54 The volume determined using some automatic threshold selection

methods. ............................................................................... 103

FIGURE 55 A 2D crop of the segmentation sample image. ............................... 103

FIGURE 56 A 2D crop of the segmentation sample image shown after the gray-

value opening with a radius of 4 pixels. ....................................... 104

FIGURE 57 A cross-sectional image of the denoising result of AD and MS. ......... 105

FIGURE 58 An example of an effect of a start artefact. .................................... 106

FIGURE 59 The volume of particles as a function of particle diameter................. 107

FIGURE 60 Top surface of a coating layer of paper. ........................................ 108

FIGURE 61 Bottom surface of a coating layer of paper. ................................... 108

FIGURE 62 Top and bottom surface topographs of a coating layer of paper. ......... 108

FIGURE 63 Cross-sectional image of a friction-welded wood sample.................. 109

FIGURE 64 Three-dimensional visualization of a binary image of the seam. ........ 109

FIGURE 65 The interface between the air and the cortical bone. ........................ 109

FIGURE 66 Cross-sectional image of segmentation of a nuclear particle. ............. 110

FIGURE 67 Segmented image of a cell nucleolus. .......................................... 110

FIGURE 68 The principle of the local thickness analysis. ................................. 115

FIGURE 69 The effect of the local thickness transform. ................................... 116

FIGURE 70 Cross section of the original image of blood vessels in the brain. ....... 118

FIGURE 71 Orientation analysis of a test pattern. ........................................... 119

FIGURE 72 Discretisation effect on surface area analysis ................................. 119

FIGURE 73 The pore thickness distribution of a volcanic stone sample obtained

using granulometry and the local thickness transform. ..................... 122

FIGURE 74 Z z-profile of labelled paper sample showing the portions of coating,

fibre, and pore space as a function of depth in z-axis. ...................... 123



FIGURE 75 Gray value histogram of a coated paper sample. ............................. 123

FIGURE 76 A distance-density histogram for a porous stone sample................... 124

FIGURE 77 The result of fast marching method to a fibrous sample. ................... 125

FIGURE 78 Result of cluster segmentation. ................................................... 126

FIGURE 79 Cross-sectional images of the fibre segmentation procedure. ............. 130

FIGURE 80 Segmentation of fibres according to their thickness. ........................ 130

FIGURE 81 The visualization of color coded orientation of the sample in section

5.2.1. .................................................................................... 131

FIGURE 82 Visualization of a segmented wool fibre web sample at different

threshold values. ..................................................................... 132

FIGURE 83 Numerically solved permeability coefficients for the wool fibre. ........ 132

FIGURE 84 Visualisation of flow speed field of four hexagonal arrays................. 133

FIGURE 85 Left: Are the center dots the same size? Right: Are the gray bars the

same color?............................................................................ 134

FIGURE 86 The volume of particles as a function of particle diameter................. 162

FIGURE 87 The volume determined using some automatic threshold selection

methods for simple material from section 5.2.1. ............................. 162

FIGURE 88 The volume determined using some automatic threshold selection

methods for grainy material from section 5.2.1............................... 163

FIGURE 89 The volume graphite phase with different denoising methods for the

multiphase sample. .................................................................. 163



LIST OF TABLES

TABLE 1 The average gray value inside a sample when using beam hardening

filtering. ................................................................................ 49

TABLE 2 The effect of scanner parameters to the gray value of the resulting

image. .................................................................................. 50

TABLE 3 Denoising parameters. .............................................................. 78

TABLE 4 The average gray value difference of the denoised results. ................ 80

TABLE 5 The fitting parameters of the sigmoid fitted into the denoised images. . 82

TABLE 6 Summary of denoising results. ................................................... 85

TABLE 7 The similarity percentage of different multiphase segmentation meth-

ods. ...................................................................................... 96

TABLE 8 The percentage of voxels belonging to the contact area. ................... 100

TABLE 9 The volume of different materials in voxels. .................................. 105

TABLE 10 The average thickness of the leads analysed by local thickness trans-

formation............................................................................... 106

TABLE 11 The number of individual graphite particles found using each de-

noising method. ...................................................................... 106

TABLE 12 The number of particles found using a watershed for particle sepa-

ration. ................................................................................... 107

TABLE 13 The time it took to perform 1000000000 rounds of given operations

with different data types............................................................ 160

TABLE 14 The percentage of voxels belonging to the contact area for all de-

noising methods. ..................................................................... 161

TABLE 15 The average thickness of the lead pieces analysed by local thickness

transform for all denoising methods............................................. 161

TABLE 16 The number of individual graphite particles found for all denoising

methods. ............................................................................... 161

TABLE 17 The number of particles found using a watershed for particle sepa-

ration. ................................................................................... 162

TABLE 18 The volume of different materials in voxels, obtained from the la-

belled data and for all denoising methods. .................................... 164



CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

ACRONYMS

LIST OF FIGURES

LIST OF TABLES

CONTENTS

1 INTRODUCTION .............................................................................. 17

1.1 Background ............................................................................... 18

1.2 The Possibilities of XμCT ............................................................ 19

1.3 Literature .................................................................................. 23

1.4 Scientific Focus .......................................................................... 24

1.5 Structure of the work ................................................................... 27

2 ACQUIRING XμCT IMAGES .............................................................. 28

2.1 X-rays ...................................................................................... 29

2.2 X-ray interaction with material ...................................................... 33

2.3 X-ray imaging ............................................................................ 34

2.4 X μCT scanner ........................................................................... 37

2.5 Reconstruction ........................................................................... 40

2.6 Artefacts ................................................................................... 44

2.7 Repeatability.............................................................................. 49

2.8 Visualization.............................................................................. 50

3 ON IMAGE PROCESSING ALGORITHMS............................................ 53

3.1 Algorithmical requirements........................................................... 53

3.2 Definitions ................................................................................ 54

3.2.1 Image ............................................................................ 54

3.2.2 Voxel neighbourhoods....................................................... 56

3.2.3 Discrete derivatives .......................................................... 57

3.3 Standard image processing operations ............................................. 58

3.3.1 Statistical operations ......................................................... 58

3.3.2 Binary image operations .................................................... 60

3.3.3 Direct voxel processing ..................................................... 63

3.3.4 Transformations............................................................... 64

3.4 Image Preprocessing.................................................................... 66

4 DENOISING ..................................................................................... 69

4.1 Denoising of CT images ............................................................... 69

4.1.1 Convolution-based methods ............................................... 71

4.1.2 Median filter ................................................................... 72

4.1.3 Bilateral filter .................................................................. 72

4.1.4 Mean shift ...................................................................... 73



4.1.5 Anisotropic diffusion ........................................................ 74

4.1.6 Variance weighted mean filter ............................................. 75

4.1.7 Sliding discrete cosine transform ......................................... 75

4.2 Denoising results ........................................................................ 77

4.2.1 Denoising quality ............................................................. 77

4.2.2 Processing time ............................................................... 82

4.2.3 Usability ........................................................................ 83

4.3 Results ..................................................................................... 84

5 SEGMENTATION .............................................................................. 86

5.1 Segmentation of XμCT Images ...................................................... 89

5.1.1 Material Segmentation ...................................................... 89

5.1.2 Structural Segmentation .................................................... 93

5.2 Segmentation results.................................................................... 96

5.2.1 Segmentation of matter ..................................................... 96

5.2.2 Segmentation of Structures from Binarised Images.................. 105

5.2.3 Segmentation of Structures from Gray Value Images ............... 107

5.3 Results ..................................................................................... 110

6 IMAGE ANALYSIS............................................................................ 112

6.1 XμCT image characterization methods ............................................ 113

6.1.1 Fast Marching method....................................................... 113

6.1.2 Local Thickness Transform ................................................ 115

6.1.3 Affine region detector ....................................................... 116

6.1.4 Surface Area Estimation .................................................... 118

6.1.5 Image Correlation ............................................................ 120

6.2 General Analysis ........................................................................ 121

6.2.1 Porosity ......................................................................... 121

6.2.2 Analysis of local thickness ................................................. 122

6.2.3 Z-projection .................................................................... 122

6.2.4 Histograms ..................................................................... 122

6.2.5 Distance Through Material................................................. 123

6.2.6 Rigid Shape Transforms .................................................... 124

6.3 Porous and Particle Material.......................................................... 124

6.3.1 Analysis of individual pores / particles.................................. 125

6.3.2 Analysis of Pore Network .................................................. 127

6.3.3 Pore structure analysis ...................................................... 128

6.4 Fibrous Material ......................................................................... 128

6.5 Fluid Flow Simulations ................................................................ 130

6.6 Conclusions ............................................................................... 133

7 CONCLUSION.................................................................................. 134

7.1 Future work ............................................................................... 136

YHTEENVETO (FINNISH SUMMARY) ....................................................... 138



REFERENCES .......................................................................................... 139

APPENDIX 1 COMPUTATIONAL TESTS ................................................... 160

APPENDIX 2 SEGMENTATION RESULTS FOR ALL DENOISING METHODS 161



1 INTRODUCTION

Computerized tomography (CT) is a method for obtaining digitalized, three dimensional

(3D) representation of, virtually, any kind of a sample. The word tomo comes from the

Greek word meaning “cut” or “section,” and graphy comes from the Greek word meaning

“to write.” Tomography can be considered imaging by sectioning. The method produces a

collection of “cross-sectional” images with certain thicknesses through the given sample,

thus, forming a digital 3D representation of the sample. Microtomography (μCT) is a

version of CT in which the detail detectability is in the range of a micron. In μCT, X-rays

are the most common illumination source which is why the method is identified as X-ray

microtomography (XμCT).

FIGURE 1 A schematic image of Scientific model from Encyclopædia Britannica [102].

For scientists, XμCT offers a non-destructive method to study matter and observe

various material related phenomena. figure 1 explains roughly how the scientific pro-

cess works: theories are proven by making observations either on natural phenomena or
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by performing planned experiments. XμCT is an excellent tool for making these obser-

vations. XμCT allows one to obtain an accurate geometrical model of a large range of

materials, exposing not only the shape but also the internal material composition of the

sample in a non-destructive manner. This makes it possible to look inside materials that

are non-reachable due to their value or fragile structure. This tools also makes it possible

to look inside materials that have a tendency to suffer from manipulation with mechanical

tools. This is an exciting possibility for material researchers, opening a whole new field

to explore. The method allows researchers, for example, to match the physical models

with results observed from the 3D geometry of the real sample, to find new structural

characteristics for a material, and to design experiments to validate predictions in the 3D

behaviour of the material.

However, as with any complicated observation method, the XμCT imaging pro-

cess requires quite an amount of work. The device itself needs periodical maintenance as

parts wear out or loose their calibration. The imaging procedure produces a huge amount

of data and the storage systems need to be organized properly. Preparing samples and

mounting them on a sample holder firmly can be a laborious task. Finally, image process-

ing is often the most complicated task. After the image has been obtained, it consists of a

data matrix containing numbers. To transform any structural information into a numerical

form, some sort of a processing need to be done. For example, an image of cheese can

be visualized and seen by the eye, but if information about the amount of holes in the

cheese is required it has to be determined either manually or computationally. It is often

not feasible to complete manual work in a reasonable time and proper image processing

tools need to be developed to cope with the task. In essence, tomography is a tool used by

people interested in properties of material or objects, yet the skills required to comprehen-

sively use the device requires an understanding of computers, mechanics, X-ray physics,

and image processing. Currently, the basic behaviour of X-rays (found in 1896 [197])

is well established knowledge, but computerized image processing is a much newer field

(Charge-coupled device (CCD) invented in 1969 [35]) that is constantly being developed

as computers themselves develop.

1.1 Background

X-rays were discovered by Wilhelm Röntgen in 1896 [197]. William Coolidge designed

the modern X-ray tube in 1913 [48]. The mathematical foundation of reconstructing a 3D

image from a collection of projection images around the sample was developed in 1917

by Johann Radon [189]. In 1963, Allan McLeod Cormack first discussed the use of X-ray

tomography in practice [49], and in the early 1970s, Godfrey Hounsfield developed the

first commercial CT system for medical scanning [108]. Takuso Sato [207] developed

the first laboratory based micro-tomographic system in 1981 with a voxel size of 6.1 μm.

Similarly, high intensity microfocus X-ray sources were developed, achieving smaller

spot sizes and high X-ray flux.

Detecting the X-rays long relayed on photographic plates that were sensitive to X-

rays [232]. The development of the digital semiconductor made it possible to use image
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plates to record digital X-ray shadowgrams. These detectors were large, had pixel sizes of

10 - 100 μm and were mostly used on medical devices [61]. Within XμCT, the imaging

area was much smaller and, thus, image plate detectors were not suitable. By the end of

the 1980s, the development of CCD detectors allowed them to be utilized in tomographic

imaging, enabling low-cost and high efficiency detection of X-rays with small pixel size.

Finally in the beginning of 1990, scientific CT devices for scanning small objects

(2–50 mm) at high resolution (1–10 μm) (i.e., μCT scanners) first became available with

applications to bone [192]. In 1994, with the introduction of the first commercially avail-

able bone μCT scanner [192, 200], this technique became a standard in bone research.

At the end of 1990, a new type of X-ray tomography device was introduced (Skyscan,

today known as Bruker microCT, claims to be the manufacturer of the first commercial

microtomograph, build in 1996 [37]). These new devices, capable of obtaining images

of small samples with resolutions less than 1 μm in all dimensions, marked the era of

XμCT. XμCT made it possible to digitally analyse the original complex 3D structure of

many small samples that were non-reachable in the past. These devices were developed

for material research and introduced new possibilities to researchers. Since the develop-

ment of the first commercial scanners the evolution of technology has concentrated on

improving the resolution (with the best resolution being close to 10 nm at the moment

[93]), finding better X-ray sources, developing energy sensitive scanners, and generating

better algorithms for imaging and image processing, the latter being driven by the rapid

development in computing capabilities.

1.2 The Possibilities of XμCT

Tomographic imaging is primarily based on the reconstruction algorithm. The algorithm

reconstructs the 3D image from a series of transmission images. The images are collected

by illuminating the sample with radiation that partially attenuates the sample while trav-

elling through it. The attenuation is different for the various materials in the sample, and

that makes it possible to distinguish them from each other at the resulting image. Many

types of radiation can be used, including X-rays, gamma rays [85], electrons [162], and

ions [128] to mention a few. In this work, we use X-rays, which is the most conven-

tional approach. The contrast between the materials is roughly obtained due to the X-ray

attenuation caused by density differences in the material.

The spatial resolution of the system is determined by the scanning geometry (spot

size and geometrical magnification) and the detector resolution. In medical X-ray tomog-

raphy, the voxels are non-uniform in size, with spatial resolution around 0.5–1 mm in

x-y -plane. With the XμCT devices, the resolution is typically same in all dimensions,

which makes these images very usable for material research, allowing one to easily anal-

yse the 3D structure of the sample. Moreno-Atanasia [167] identify the following main

limitations of the method:

• Spatial resolution and sample size: Often, the highest resolution is obtained only at

the expense of a small sample size or a small scanned area.
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• Temporal resolution: XμCT requires that the structure of the sample remains un-

changed during the scan (which can last anywhere from a few minutes to many

hours with laboratory devices). This limits XμCT’s ability to look at fast dynamic

behaviour. However, with synchrotron X-ray sources, very quick scans can be com-

pleted.

• Image contrast: XμCT distinguishes components of different materials by the dif-

ference in their absorption coefficient. If a sample contains components of simi-

lar attenuation (absorption) coefficients, XμCT cannot distinguish the components

from one others.

FIGURE 2 Number of publications on various structural types or analysed properties (top 10)

analysed by μCT. Note that the same publication can be in more than one bar. The

information was obtained from Google Scholar by using search phrases microtomog-
raphy and μCT, as well as the keyword. (30.10.2015). The list of the keywords was

obtained from the previous analyses of μCT usage.

XμCT can be utilized in research in many ways. It is often sufficient to to look at the im-

ages and visually explore the internal details. For example, in fault analysis, it is enough

to visually inspect the samples and to use projection to determine the results. On the other

hand, computational image analysis allows for the full potential the material analysis to

be reached. Quantitative microtomography [208] combines XμCT with quantitative 3D

image analysis. The aim of quantitative microtomography is to expand the analysis of

tomographic images beyond simple visualization. This allows for detailed analysis of

particle structures, orientations, true 3D connectivity, etc. figure 2 lists some of popular

material types analysed in XμCT, the figure also shoes on what kind of analyses can be

done within the method.

There are several phases when performing a complete XμCT image analysis for an

arbitrary sample. See figure 3 for schematic view.

To clarify the terms the scheme can be thought of as follows ([271]):

• Image acquisition: Sample in→ image out
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FIGURE 3 XμCT analysis process flow.

• Image processing: Image in→ image out

• Image analysis: Image in→ measurements out

• Image interpretation: Measurements in→ understanding out

The XμCT image analysis continuum starts with image acquisition. Image acquisition

part involves the sample preparation, imaging and reconstruction. The success of image

acquisition has a significant impact on the effort required and the quality of the analysis.

As it will be later shown, an optimal quality image will provide the most reliable results.

The amount of work required depends on the sample; for some materials, it is easy to get

contrast, but in the case that the material components are very similar in their density or

their detail size is close to the spatial resolution, it can require a long imaging time to get

adequate contrast. In some cases, the sample itself can be manipulated to enhance the

contrast.

In the image processing phase, we modify the image into a form suitable for extract-

ing information from it. At the preprocessing part we convert the data into form where it

is most convenient to work with. We reduce the size of the data and remove the noise and

other artefacts if possible. Reduction of the noise and the artefacts are one of the biggest

challenges in the process. The imaging devices often produce some sort of artefacts and

noise to the image. The noise causes the gray value ranges of different materials to over-

lap and thus hinders further processing. By efficient denoising methods the processing

can be eased.

The properties analysed are often related to certain components in the sample mate-

rial. To be able to analyse those structures digitally we need to differentiate those compo-

nents from each other at the image. Image segmentation refers to a process where the in-

teresting components of the image are separated. It is splitting the image into structurally

meaningful parts that are analysed further at the next step. An example of segmentation

is separation of paper fibres from paper coating as shown in figure 4. The result of a seg-

mentation process is called a labelled image, or if only two components are differentiated

from each other a binary image. In binary/labelled image each voxel of the image is given

an individual label that refers to the component the voxel is assigned to. Binary/labelled
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FIGURE 4 Visualisation of base paper and paper coating separated from each other for further

analysis.

images have certain benefits that we don’t have in gray value images; labelled image ex-

plicitly defines which voxels are inside the material we are interested in and where is the

edge. This makes it possible to determine structural properties like size, volume, shape,

center, orientation and distances for the object.

The challenge in segmentation is noise and artefacts. Wildenschild [260] lists three

ways to handle the noise:

1. Noise reduction before binarisation

2. Morphological noise reduction from binarised image

3. Usage of some noise tolerant segmentation method

Option 1 is preferred over option 2 as the noise reduction of gray value image provides

more possibilities than filtering the binary image [260]. Option 3 is also popular, but can

complicate the segmentation algorithms (but also giving the possibility to use the gray

values more effectively for the segmentation too). In practice, a combination of options 1

and 2 are most often used, as the denoising methods rarely can remove the noise perfectly.

However, at the end, segmentation is a difficult and non-trivial task, and there is no single

segmentation method that works on every image. Instead there is a variety of denoising

and segmentation methods that work within certain image-related assumptions.

This entire process aims to improve understanding the sample properties. This

means that numerical information is extracted from the image, which can then be inter-

preted within the given context. In the image analysis phase, the image data is converted

into numerical results. For example, we can analyse the pore size distribution of a rock

sample or the fibres orientation and connectivity of a paper or cardboard sample.

The last part of the continuum includes understanding the analysis results, and this

is often manual work. The interpretation of analysis results needs to be done by a person

that know the original problem we are observing with the XμCT (see figure 1). For

example, we can consider the effect of the pore size distribution on the liquid transport

property, or the effect of fibre contacts on the strength of a fibrous sample.
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1.3 Literature

The first scientific papers discussing XμCT were published in the beginning of the 1980’,

and since then, the publication speed has steadily increased. The number of publications

related to microtomography and image analysis started to increase as commercial micro-

tomography devices become available. In figure 5, the number of publications related to

tomography and image analysis are shown.

FIGURE 5 Number of publications on μCT obtained from ScienceDirect by searching for arti-

cles containing words microtomography or μCT (21.9.2015).

The articles about XμCT can be roughly divided into two categories: those that

develop the imaging method and those that use imaging device for their applications.

The researchers that develop the method are mostly mathematicians, physicists, or com-

puter scientists, discussing the reconstruction, hardware, and image processing methods,

respectively. figure 6 contains a list of the most frequently occurring materials and the

number of publications related to those materials found in Google Scholar. As the fig-

ure shows, the range of materials suitable for XμCT analysis is wide and the method is

used in many fields of science; biology and physics are the fields in which the method is

most actively used. Some applications for XμCT analysis involve structural analysis of

historical samples, such as insects in amber [131], rock and soil analysis [130], paper and

paper making fabrics [243], bone [151], and fluid flow simulations with realistic compli-

cated sample geometries [242]. For biologists, the method allows for the study of organs

(usually ex vivo) with notably higher resolution than hospital CT devices (although the

sample size is limited).

From a material science point of view, the method allows researchers to obtain 3D

digitalization of most materials while leaving the material itself intact; the material is us-
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able also for further studies. References [206] and [227] provide detailed information on

material research using XμCT. The properties commonly analysed by XμCT are related

to the structural properties of the material. The structure is often parametrized into numer-

ical values (e.g., porosity, thickness, and tortuosity). These numerical values are usually

compared with some measured behaviour of the sample material. The sample can also be

manipulated (e.g., compressed, stretched, frozen, heated). The structural changes result-

ing from this manipulation can then be identified. A common analysis theme for material

researchers is porosity and pore property analysis, as demonstrated in [251]. By inverting

the notion of a pore into solid, we get particle analysis as demonstrated in references [74]

and [247]. The properties commonly analysed from pore/particle samples are volume,

surface area, orientation, connectivity number, shape, etc. Tortuosity and autocorrelation

are often related to pore space measures [54, 187]. For biologists a typical material to

analyse is bone (see [200, 174] for examples), which as dense material is very suitable for

XμCT analysis. In bone research, properties that are typically analysed ([24, 89]) include

tissue volume (TV), bone volume (BV), tissue surface area (TS), bone surface area (BS),

BV/TV, BS/BV, BS/TV, trabecular bone thickness (Tb.Th = 2BV/BS), determined num-

ber per unit length (Tb.N) and preset separation (Tb.Sp = 1/(Tb.N-Tb.Th)). In addition,

shape parameters are used to determine the plate/rod likeness of the trabecular elements

[57]. For fibrous samples, the orientation, length and connectivity of the fibres are anal-

ysed [56]. For rigid samples, the material can be mechanically altered between the scans

allowing for analysis of, e.g., the propagation of a crack [17, 137]. In [153] and [158],

in situ tensile testing is combined with tomography to see how the material is deformed

when subjected to tensile loading. In the food industry, microtomography offers a way to

study end products in their true 3D form; for example, in [71] the structure of Chocolate

of Modica was studied. In addition to structural analysis, microtomographic images are

used as sample geometry for various kinds of simulations. For fluid flow simulation, the

voxel data can be used as a simulation geometry as is or or by converting it into a vector

format, this method has been used for various types of materials [31, 242, 139, 98]. The

geometry can be used as a source data for finite element methods (FEM)/ discrete element

method (DEM) simulations [235, 175]. A less published way of using μCT is analysis

of historical samples; microtomography is a way to obtain a digital 3D representation of

the historical samples without manipulating them using mechanical tools. Tafforeau et al.

[231] have written a descriptive article about imaging historical samples. Solidification

of metal is an example of a process that is very hard to follow with any other means; there

are special XμCT devices capable of capturing a 3D image of a sample in few seconds

making it possible to generate a 3D time series of such a process [97, 138]. Many in-

dustrial companies also make use of XμCT in their quality control and failure analysis

processes.

1.4 Scientific Focus

This thesis will focus on image processing and numerical analysis of tomographic images.

The main focus is on dealing with noise and other artefacts and on selecting the proper
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FIGURE 6 Number of publications on various materials (top 15) analysed by μCT. Note that

the same publication can be in more than one bar. The information was obtained

from Google Scholar by using search phrases microtomography and μCT, as well as

the name of the material. (30.10.2015). The list of the materials was taken from the

previous analyses of μCT usage.

tools for the denoising, segmentation, and analysis phases. In practice and after image

acquisition, denoising and segmentation has been found to be the most critical parts in the

analysis continuum. Due to the range of material and analysis problems, the algorithms

here are quite general. We limit the methods discussed to analysis of porous heteroge-

neous materials according to their structural properties. The analysis methods used in this

work tend to be easily assimilated and efficient to calculate but are still able to target the

given problem efficiently. Most of the methods applied in this research have already been

implemented in 2D image analysis; here we introduce them for 3D image analysis and

provide examples of their potential use. Some of the connecting factors for the algorithms

implemented during the research area as follows:

• Efficient memory consumption: Modern desktop computers can have memory in

tens of gigabytes, which is sufficient for many image processing tasks including

large images. However, the file size of a typical image is usually measured in

gigabytes and certain algorithms require memory that is much greater than the size

of the sample, causing certain limits on memory usage.

• It should be possible to perform the calculation on a modern desktop computer in

a reasonable time. For certain problems, a computer clusters or supercomputer can

be used, but such facilities are not available for everyone on a regular basis.

• The method needs to have a high degree of usability. As the analyses are usually

performed by person who is not an expert on image processing, the method should

be easy to understand and easy to use.

In addition, as with every imaging based system, the image quality is an important factor

that impacts on the difficulty of image processing. To this end, it is important to know the

physical background and the mechanical properties of the system, thus making it possible

to minimize the system based artefacts.
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To reflect the authors contributions for XμCT in figure 3, we present the following

list:

1. Image acquisition: As being not directly working on this field, publications on this

subject have not been submitted. However, author has been actively using Skyscan

1172 device (starting 2005), Xradia MicroXCT-400 and Xradia NanoXCT100 (also

maintenance, starting 2009). Author has also visited ESRF, id19, (several times)

and Swiss light source for synchrotron XμCT imaging.

2. Image processing The author has been collaborating in following articles:

(a) [240], author implemented methods on how to study the coating layer of a

paper in 3D using XμCT, presented in 22nd coating symposium.

(b) [217], (co-author) author implemented the denoising system applied to the

rock analysis, presented in MRS Symposium in 2007

(c) [121], (co-author) the author implemented a method for segmenting paper-

making-fabrics from tomographic images taking into account the thickness of

the yarns of the felt.

(d) [122] (co-author) the author implemented a method for segmenting paper from

tomographic images.

(e) [242] the author implemented a method for denoising and segmenting fibre-

based material from tomographic images. The liquid transport properties were

also simulated in similar method than in [244].

(f) [151] (co-author) the author implemented a method for separating the trabec-

ular and cortical bone.

(g) [129] (co-author) the author implemented a method for determining the sur-

face of porous rock samples.

3. Image analysis The author has been collaborating in following articles:

(a) [99] (co-author) The author implemented a system to obtain information on

pore space that allows us to simulate mercury intrusion porosimetry process

within the sample.

(b) [244] The author further developed a system described in [99].

(c) [119] (co-author) The author developed a method to 3D segment and to obtain

geometrical information from individual pores and pore throats.

(d) [164] (co-author) The author developed a 3D method to separate individual

spherical metal particles from sintered sheet. These individual particles were

further analysed to produce a simulation graph for thermal conductivity sim-

ulations.

(e) [59] (co-author) The author implemented a method for measuring the dis-

tances through a fibrous sample.

(f) [241] The author implemented a developed a method for detecting planar,

tubular and spherical interfaces from discrete 3D images.
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Despite the “sufficient” number of articles we considered monograph to provide a more

complete view of the work done. In addition we consider that this kind of a work, that

rounds-up the current state of the XμCT image processing, would be more useful for the

XμCT community.

The work in this thesis has been carried out by the SoftStat group of the Depart-

ment of Physics in the University of Jyväskylä. This group receives funding from in-

dustrial sources, as well as from academic projects. The group aims to use tomography

in research of porous heterogeneous material. Porous heterogeneous material includes

a large variety of material. The scope of the group is relatively wide in both material

and scientific sense. "The author have been assigned to support the group with all image

processing related problems. For this reason, this work does not concentrate on some

certain subjects or materials, but instead presents various methods that are suitable for

image processing challenges related to XμCT. However, the work is not comprehensive

in terms of algorithm coverage and and many good image processing methods exist that

are not mentioned in this work. We have aimed here to study methods that are essential

for XμCT imaging.

1.5 Structure of the work

The physical backgrounds of the image acquisition, artefacts, reconstruction, and visual-

ization are given in chapter 2. Image processing definitions and a collection of general

purpose algorithms are given in chapter 3. In chapter 4, several commonly used and

new (for XμCT) denoising methods are introduced, and compared in terms of denoising

quality, processing time, and usability. In chapter 5 few commonly used segmentation

algorithms, as well as one new algorithm, are described and studied. The results of the

denoising chapter are also considered together with the segmentation. Chapter 6 describes

a list of analysis methods used to analyse the typical problems with porous heterogeneous

materials. Finally chapter 7 provides the conclusion of the work.



2 ACQUIRING XμCT IMAGES

In this chapter the physical background of XμCT systems is formed and the image ac-

quisition system and its artefact are introduced. CT imaging is based on a computational

reconstruction of the local attenuation coefficients of a sample from a series of 2D trans-

mission images collected by measuring the attenuation of a radiation (e.g. X-rays) trav-

elling through the sample. A rotational series of transmission images (see figure 7), of

the sample is collected using a special device (see section 2.4) and a mathematical re-

construction algorithm (see section 2.5) is used to calculate the 3D attenuation coefficient

map (such that the conditions given by the transmission information are fulfilled). The

series of transmission images is obtained by exposing the sample with radiation from

various angles (typically) around the sample’s z-axis as in figure 7 and measuring the

attenuation map at each position. A 180 or 360 degrees rotation is used with small rota-

tional step. Tomogram, or tomographic scanner, is a device designed for obtaining such a

set of transmission images.

FIGURE 7 The principle of collecting XμCT projection images. The source emits X-rays that

traverse through the sample, and the projected intensity is measured. The process is

repeated for multiple (known) sample rotation angles. These data are computation-

ally reconstructed to a digital representation of the 3D attenuation coefficients.

The end product of an X-ray CT scan is a 3D data matrix containing the X-ray at-

tenuation coefficients inside the reconstructable volume of the sample (volume of interest,
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VOI). The X-ray attenuation coefficient is dependent on the atomic number of a sample.

The atomic number is roughly equivalent to the density of a sample.

2.1 X-rays

X-rays are electromagnetic waves having a wavelength in range of 10 to 0.01 nanometres.

They are generated by manipulating a beam of high energy charged particles, such as

electrons, so that it bends or collides with a metal target. The energy E of an X-ray is

determined by its wavelength λ, being in range from 120 eV to 120 keV as determined

by the equation:

E =
hc
λ

,

where h is Planck’s constant and c is the speed of light.

There are few terms commonly used in X-ray terminology. Photon flux is the

amount of photons passing through a given area perpendicular to the direction of radi-

ation in a given unit time: φ = N/(A · t), where N is number of photons, A is the

surface area of detector and t is the detection time. Intensity is the sum of energy of the

photons passing through a given area perpendicular to the direction of radiation in a given

unit time: I = ∑N
i=0

hc
λi

/(A · t), where λi is the wavelength of the ith photon. Brilliance
is a term used for measure of the flux and directionality of an X-ray beam, determining

the smallest spot upon which the X-ray beam can be focused: b = φ
α , where α is the

angular divergence of the X-ray beam.

The energy of the X-rays defines what kind and how thick it penetrates, and there-

fore, the characteristics of the X-ray source are an important factor in X-ray imaging.

X-rays in the energy range of 0.12 to 12 keV are considered as soft X-rays, suitable for

imaging light and small objects. Especially so-called water window, 0.28 - 0.53 keV,

gives optimal conditions for imaging biological specimens. Water is transparent for these

X-rays, while objects containing nitrogen and carbon are attenuating well. Hard X-rays

are in the range of about 12 to 120 keV and have good penetrating properties in dense

materials.

X-ray generation

There are two main techniques for generating the X-rays: a anode-cathode type of systems

or synchrotron [48]. Anode-cathode systems are cheap, compact in size and easy to fit

into laboratory scale XμCT devices. Synchrotrons are large-scale facilities producing

highly tunable and high flux X-ray beams allowing better contrast and fast scans.

In anode-cathode systems, the X-rays are produced by heating a filament with an

electric current; see figure 8. The filament emits thermal electrons that are accelerated

to the anode by a voltage potential difference. When electrons hit the anode, X-rays

are generated. Two processes create the X-rays: X-ray fluorescence happens when an

electron knocks out an electron from the inner electron shell of a metal atom. Elec-

trons from higher energy levels fill the vacancy of the lower level and emit X-rays.
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FIGURE 8 The principle of an X-ray tube. The filament is heated to make it emit electrons. A

high voltage accelerates the electrons to the anode that emits X-rays.

The X-rays produced by fluorescence have few discrete energies depending on the tar-

get material and, therefore, generates so-called characteristic peaks to the emission spec-

trum. Bremsstrahlung radiation is produced by scatter of the electrons due to strong

electric fields near atom nuclei. The Bremsstrahlung spectrum is continuous with a sharp

cut-off at low wavelength. The overall resulting spectrum is a sum of the continuous

Bremsstrahlung spectrum and the characteristic peaks caused by the fluorescence of the

anode metal. See figure 9 for a schematic illustration of X-ray output of an X-ray tube.

FIGURE 9 The output of an X-ray tubes is a continuous spectrum with characteristic peaks

defined by the target material.

An X-ray tube is a typical anode-cathode system. An X-ray tube is a vacuum tube

that uses a high voltage to accelerate electrons from a hot cathode to collide with a target
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(anode). The target material can be, e.q, tungsten, rhenium tungsten alloy or copper. The

maximum X-ray energy of an X-ray tube is limited by its acceleration voltage; a tube with

a 100 kV acceleration voltage produces X-rays with maximum energy of 100 keV. The

efficiency of an X-ray tube is low; only about 1 percent of energy is converted into X-rays

[171], as most of the input energy is distributed as heat. X-ray tubes are typically used in

laboratories producing X-rays commonly in the range of 10–200 keV (although systems

capable of producing X-ray in energy of 800keV exists). There are two basic types of

X-ray tubes used in XμCT systems, namely solid anode and metal-jet-anode [88] micro-

focus X-ray tubes. Metal-jet-anode micro focus X-ray tubes are currently the state-of-

the-art X-ray tubes providing the highest intensity (30-60W) with high spot quality (e.q.

stability, shape). The focal spot size (the diameter of the area on the anode surface, which

receives the beam of electrons from the cathode) for microfocus X-ray tubes is typically

in range of 5-20 μm. Also, high intensity microfocus rotating anode X-ray generators

are being used in some nanoCT systems. These provide a very high intensity (1-2 kW)

for laboratory scale devices while the spot size is larger (around 100 μm) [227].

Particle accelerators, such as synchrotron, can also be used to generate radiation.

Synchrotron consists of a particle accelerator and of a (large) electron storage ring. The

electrons are first accelerated to almost the speed of light at the accelerator part. The

electron beam is then injected into the storage ring where bending magnets are used to

turn the electrons into a round trajectory. The ring is actually a polygon and at each corner

bending magnets or wigglers or undulators are used to rotate the electron beam. While the

electrons turn they emit X-rays. Beam-lines are placed at the corners of the synchrotron

to utilize the X-ray radiation in various applications like X-ray imaging. Before the ex-

perimental end station the beam is manipulated using a collection of optical elements

such as slits, attenuators, monochromators and mirrors to shape the physical beam and

its spectrum into the desired shape and energy. Synchrotron radiation is an analogue to

Bremsstrahlung, differing in that the force which accelerates the electron is a macroscopic

(large-scale) magnetic field. The synchrotron radiation has a wide spectrum, high inten-

sity (many orders of magnitude more than with X-ray tubes; see [84] for information of

typical microfocus X-ray tubes), excellent collimation and linear polarization. The high

intensity makes it possible to use a monochromator to select only a narrow wavelength

range yet still have significantly more energy than an X-ray tube. A synchrotron source

like the ESRF has a brilliance that is more than 109 times higher than a laboratory source.

The high intensity of the synchrotron beam allows faster scanning times. The high inten-

sity allows faster scanning times, the fastest less than few seconds. This makes it possible

to have almost real-time imaging. However, the X-rays interact with the material by mov-

ing the electrons inside it and, thus, possibly causing radiation damage [46] if intensity is

very high.

Properties of X-ray tubes

X-ray tubes are common XμCT X-ray sources. They are cheap and easy to obtain, but

have few characteristics that make them more challenging to use than synchrotron radia-

tion.

Figure 10 shows an example of an X-ray spectrum of an X-ray tube with various
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FIGURE 10 Spectrum of an X-ray tube at the function of acceleration voltage. Obtained with

Amptek XR-100T-CdTe spectrometer.

acceleration voltages. At the lower energies, only the main characteristic peak is visible,

and at the high energy smaller peaks appear. Due to the low intensity and high divergence

of an X-ray tube monochromators are usually not applicable. With X-ray tubes, filters

are used to shape the X-ray spectrum [15]. Filters can be made of different materials,

like aluminium, glass, copper and plastic, and at varying thicknesses. The purpose of the

filter is to cut down the low energy photons that have virtually no chance of penetrating

the sample, thus sharpening the spectrum. This reduces certain artefacts from the final

reconstructions.

The size of the spot is the main factor reducing the resolution (detail detectability)

of an X-ray tube system causing blurring of the 2D projection images. A common mi-

crofocus X-ray tube has a spot size of around 5 μm. If we have a sample at a distance of

dSS from the source with focal spot size of hFS and detector at a distance of dSD from the

sample the size of the half shadow hHS is:

hHS = hFS
dSD

dSS
; (1)

see figure 11. The spot size and location is not constant but depends on the both the power

and temperature of the source [225, 72]. In addition, the spot has an intensity profile (see

ref. [22]) due to X-ray tube structure.

The intensity profile of the X-ray spot also varies. The intensity profile might

change shape when the source warms up or when the parameters of the X-ray beam are

changed.

Thus we can see that the factors affecting the final point spread function of the

image are the spot size, the power of the X-ray source and the drifting of the spot. The
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XμCT scanner manufacturers recommend a certain warm-up time for the scanners before

to start the scan in order to stabilize the beam (in addition to the normal warm-up time

recommended by X-ray source manufacturers). Additionally, when the X-ray source is

turned on, it produces a lot of heat that causes the parts of the scanner to expand, and this

expansion should be allowed to stabilize as well.

FIGURE 11 The half shadow effect caused by the limited spot size of an X-ray tube based

source. In addition to geometrical lack of sharpness the spot has a profile that

will blur the final image.

2.2 X-ray interaction with material

X-ray imaging is due to the fact that X-rays attenuate when they travel through a material.

The transmission images record the attenuation into a form of 2D attenuation maps. The

attenuation is caused mainly by photoelectronic absorption and Compton scattering; see

figure 12. For single wavelength X-rays the attenuation can be described by Beer-Lambert

law:

I = I0e−μx, (2)

and for polychromatic beam the equation (2) becomes

I =
∫

I0(E)e−μ(E)xdE, (3)

where I is the transmitted X-ray intensity, I0 is the initial X-ray intensity, μ linear at-

tenuation coefficient and x is the thickness of the material. In equation (3), E describes

the energy and the integral is calculated over the given spectrum. Coefficient μ corre-

lates with the material density and thus the overall transmitted X-ray intensity depends

on material thickness and density. Often the linear attenuation coefficient is normalized
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with the density of the material resulting a mass attenuation coefficient
μ
ρ . The attenua-

tion function becomes I
I0
= e[

−μ
ρ mx]

, where mx is the mass thickness of the material (i.e.

thickness multiplied by density). The mass attenuation coefficient is energy-dependent

and is determined individually for each material. See figure 13 for an example of a linear

attenuation coefficient graph. This coefficient graph can be used to find an optimal beam

energy if the material and thickness is known. Then equation (2) can be written as:

μ

ρ
= − ln I

I0

x
.

Within this equation, the mass attenuation coefficient can be determined for the desired

attenuation factor and the corresponding beam energy can be read from the coefficient

graph.

FIGURE 12 Two attenuation mechanisms of X-ray photon. On the left photoelectronic absorp-

tion (photons are removed from the beam) and on the right Compton scattering (the

direction of the photons is changed).

For mixtures and compounds the mass attenuation coefficient is determined as

μ

ρ
= Σiwi · (μ

ρ
)i,

where, wi is the fraction by weight of the ith atomic constituent and (μ
ρ )i is the corre-

sponding mass attenuation coefficient.

The wave-like behaviour of X-rays cause Rayleigh scattering, resulting a phase

shift to the X-ray waves. When X-rays travel through the material the interaction causes

a phase-shift in the X-ray waves according to the material’s refractive index. This also

means small angular deflection between the interfaces. The probability for the phase shift

to happen is much higher than that for absorption, which makes it much more sensitive to

the sample structure.

2.3 X-ray imaging

In XμCT Charge-Coupled Device (CCD) detectors are used to record the shadowgrams.

CCDs themselves are, in principle, able to detect low energy X-rays, but are sensitive to

radiation and may suffer damage if exposed to direct X-ray beams [232]. Scintillators,
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FIGURE 13 X-ray attenuation coefficient for silicon. Obtained from NIST database

(http://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z14.html).

devices that convert X-rays into visible light, are used when recording the shadowgrams

using normal CCDs. Scintillators also provide protection against radiation damage for the

CCD. The light can be transferred to camera using mirror systems or fibre optic bundles.

The scintillators are plates made of material that is sensitive to X-rays. There are

many types and materials used in scintillators [227] depending on requirements. Most

common scintillator materials in XμCT are, according to ref [227], inorganic crystals

such as NaI(Tl) (sodium iodide doped with thallium), CsI(Tl), CsI(Na) and CsI(pure).

But a wide range of materials can be used depending on needs. The scintillator and CCD

camera are coupled together using some kind of optical system to allow the image to be

scaled to the size of the CCD chip. A few types of geometries used [227] are shown in

figure 14.

FIGURE 14 Scintillator-optics-CCD geometries used in XμCT systems. The system on the right

and on the left is often used in laboratory scale system. In synchrotron laborato-

ries more protection for the CCD chip is required and the system in the center is

common.

CCDs used in XμCT are usually 12-16 bit devices capable of recording one channel

(gray-scale) images. CCD chips are sensitive to photons and have almost a linear sensi-

tivity [26]. The CCD chip itself consists of millions of small picture elements, pixels or
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bins, that respond to photons by storing a tiny charge of electricity. This charge in a pixel

is proportional to the number of photons that struct into that pixel during the exposure and

can be read by shifting the charges toward one edge and then occupying an analogue to

digital converter to transform the charge information into a number. Before the voltage is

read it is usually pre-amplified.

CCD Noise

As with all analogue to digital converters, CCDs present noise to signal. Healey [87]

describes the following model for a single pixel recorded using a CCD camera:

a = g(i + ND + NP + NR) + NQ,

where a is the resulting image, i is the true intensity and the noise signals are following

[26, 263]:

1. ND (dark noise) is due to the thermal properties of the CCD. Dark current occurs

on a CCD all the time, generating electrons into pixels. The dark current can be

cleared before the exposure, but it will still generate during the exposure. The rate

of the generation is dependent upon the device temperature and follows Poisson

statistics. Cooling the device reduces the thermal noise. Some of this noise can

be reduced by subtracting a so-called dark frame. The dark frame is an average of

multiple exposures with same exposure time as the image was taken, but with no

light allowed to come to the CCD.

2. NP (photon noise) is due to the statistical variations of arrival rate of the pho-

tons. The photon counting happening in a CCD is fundamentally a Poisson process,

meaning that the standard deviation of the noise is equal to the square root of the

amount of photons collected by a CCD bin.

3. NR (readout noise) is a combination of many technology-related noise sources of

the CCD-chip itself. This noise is independent of exposure time and can not be

removed via calibration. This noise has a Gaussian distribution.

4. NQ (quantization noise) is caused by the complicated electronic system used to

read and process the values from the CCD pixels. The sources are many and they

are often uncorrelated and random. Also periodic noise can occur. In high quality

cameras the off-chip noise is minimized.

In addition, there might exist variance in pixel sensitivity, the optics might cause artefacts

like vignetting, dust particles may block the light for some of the pixels, the illumination

might not be uniform etc. These artefacts could be reduced using flat field images. A flat

field is an average of multiple exposures of the illuminated screen without the sample. An

equation to the corrections is the following [26]:

Ic =
(Io − Ib)m
(I f − Ib)

, (4)
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where Ic is the calibrated image, Io is the original non-calibrated image, Ib is the dark

frame, I f is the flat field image, and m is is the average of pixel values of (I f − Ib) (flat

field corrected with dark frame). Note that the dark frame contains both the dark noise

and read noise (bias frame). The dark frame is an image taken with no light allowed to

the detector. Dark frames are usually taken automatically by the system; flat field images

are taken manually.

To reduce the noise there are commonly two hardware-related options: to increase

the exposure time or to average multiple shorter-exposure frames. In practice, with high

quality CCD-cameras, both methods provide a similar result.

2.4 X μCT scanner

An XμCT scanner is a device for obtaining the transmission images needed for the recon-

struction. The device consists of X-ray source, sample stage, and a detector, with either

rotating sample stage or the X-ray source and the detector rotating around the sample.

FIGURE 15 The interior of an XμCT scanner. On the left there is a X-ray source; on right there

is a camera; in the middle there is a rotating sample stage. Behind the sample stage

is a video camera to follow the progress of the scan.

figure 15 shows a typical construction of an XμCT device. The source is a micro-

focus X-ray tube; the sample stage rotates, and the camera is coupled with a scintillator

and magnifying objectives. The space around the sample stage allows usage of differ-

ent sample manipulation stages, e.g., humidity and compression testing stages. In some

devices there can also be an automatic sample changing system to automatize the image

acquisition in case multiple samples are imaged.

There are three main objects to be adjusted: X-ray tube (voltage and current), ac-

quisition (exposure time, camera binning, rotation step) and geometry (distance of source,
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detector, objectives, etc.). Tube voltage is selected according to the sample material such

that we get the recommended transmission (in practice transmission of 0.14-0.20 is de-

sired [83] to obtain good image quality). The current effects to the X-ray intensity and

should be maximized in order to have shorter exposure times. However, the current also

affects the X-ray energy, causing the spot size to enlarge. The exposure time is chosen

such that we get the photon count recommended by the scanner manufacturer (in range

of 5% to 80% of CCD chip’s maximum count). The rotation step is selected to suit the

desired scanning time, a theoretical value is π
2 · ccd-width, which fulfils the condition that

one rotation step causes worst case of one pixel difference at the edge of the VOI in 3D.

The rotation range is usually a half circle (+cone angle [188]). But sometimes certain

artefacts can be reduced if full rotation is used. The optical magnification of a cone beam

system is determined by the location of the sample in respect to the focal spot and the de-

tector panel. Naturally the parts of the device need to be calibrated such that all the parts

lie on the same optical axis and the rotation axis is exactly perpendicular to the optical

axis as shown in figure 16.

FIGURE 16 A geometry of a typical scanner. The camera and the X-ray source are pointing

each others, and in between them is the optical axis. The reconstruction software

assumes the rotational axis of sample stage to be perpendicular to the optical axis.

Usually there is a x-y table on top of the sample holder allowing to move the sample

such that the VOI is placed on the optical axis.

If less resolution and/or faster scan is needed, so-called camera binning can be used.

Camera binning means that multiple pixels are combined as one: Binning 2 combines

2x2 pixels area as one pixel, binning 4 combines 4x4 pixels and so on. While it reduces

resolution it also shortens the required exposure time and enlarges the rotation step size.

This has significant affect to the scanning time and amount of data the scanner produces.



39

Beam geometries

Currently, there are two main types of beam geometries used in XμCT for X-ray absorp-

tion imaging. With X-ray tubes the beam leaves from a single point and spreads conically;

see figure 17. The sample is placed in a suitable spot in between the detector and the

source, determined by the size of the sample and desired geometrical magnification. In

synchrotron, the beam can travel a long distance before being utilized in the μCT device,

and at that point the beam is nearly parallel; see figure 17. The spatial resolution results

from the optics of the system and effective pixel size of the detector [101]. In addition,

there are some less common geometries like fan beam and pencil beam geometry [108].

FIGURE 17 The principle of cone beam geometry (on the left) and parallel beam geometry (on

the right).

The detail detectability of a typical XμCT system is determined by the geometry,

spot size and the pixel size of the detector. With this kind of a system the best detail

detectability is typically in the range of 500–1000 nm. To achieve a higher detail de-

tectability, advanced X-ray optics are used. These systems use an imaging geometry

relying in X-ray optics to shape the beam into magnifying system [94]. See figure 18 for

a schematic image of the system. This system produces similar images to “naked” beam

geometries. Due to the small field of view a small sample size is required and, thus, a low

energy is needed in order to obtain suitable transmission. The X-ray optics used in the

systems are quite inefficient and require a high intensity X-ray source.

Phase contrast imaging

In case of low attenuation samples, phase contrast imaging can be used. Phase contrast

imaging [233, 185] exploits the Rayleigh scattering and the different refractive indices

of different structures. Phase contrast imaging is sensitive to edges in the sample and is

suited for samples with low X-ray absorption. There are several techniques for phase con-

trast imaging. One way is to measure the deflection angle by moving the detector farther

away from the sample, which is called propagation-based phase contrast. Moving the de-

tector far away from the sample enlarges the spatial deflection and makes it more visible

without the need for high resolution detector. This is possible with even a polychromatic

X-ray tube as shown by Wilkinson et al. [261]. Another method is to use diffraction
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FIGURE 18 A schematic image of a X-ray nanoCT system. The system uses an X-ray condenser

to focus the X-rays into the sample and then the objective zone plate to direct the

X-rays into the imaging plate. Other methods for condensing the X-rays are also

used. An additional benefit of the system is that diffraction imaging is possible by

blocking the absorption information with a phase ring set to the back focal plane.

gratings on the beam line, as in ref [124].

2.5 Reconstruction

Reconstruction is the process whereby a collection of shadowgrams is converted into a

collection of cross-sectional images. The information required to reconstruct one cross-

sectional image is the horizontal lines in the shadowgrams corresponding to the level of

that cross-sectional image. The collection of these lines ordered by their acquisition angle

is called sinogram [108] (see figure 19 for an example). This is equivalent to the result of

Radon transform.

Radon transform [189] is a cross-sectional line integral of a 2D function f (x) =
f (x, y) along straight lines L ∈ R:

R f (L) =
∫

L
f (x) |dx|. (5)

The lines L can be parametrized with the angle of its normal vector (to the x-axis) α

and distance d from the origin such that (x(t), y(t)) = ([t sin α + d cos α], [−t cos α +
d sin α]). Thus equation (5) becomes

R f (α, d) =
∫ ∞

−∞
f ([t sin α + d cos α], [−t cos α + d sin α]) dt. (6)

These parameters α and d form the coordinate system of the output of the radon transform

(sinogram). The radon transform is a mathematical equivalent of taking X-ray transmis-

sion images of some sample over various rotation angles. Figure 19 shows an example of

a radon transform.

Now with a mathematical description of the image acquisition the reconstruction

is simply the inverse of a radon transform. Reconstruction is the method that converts
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FIGURE 19 Original image f (x, y) (on the left) and its sinogram R f (α, f ) (on the right).

FIGURE 20 Micro tomographic scanner obtains the projection images of the sample from vari-

ous angles by rotating the sample.

the measured integral of attenuation coefficients (projection data; see figure 20) into

cross-sectional attenuation coefficients. There are few algorithms available for recon-

struction; filtered back projection [190, 108] being the quickest and most often used, al-

gebraic reconstruction [108] offering more possibilities, but also being more calculation-

demanding. The algorithms can reconstruct the image from any number of projections,

but the quality of the back projection depends on the number of projections taken. The

effect of the number of projections is demonstrated in figure 23. The number of projec-

tions affects to the signal-to-noise ratio of the final image and the detail detectability of

the imaging system. One theoretical number for the required number of projections is

defined as π × N/2 [267] or as
√

2× N [202], where N is the number of pixels in one

horizontal row at the detector. Those provide enough information to reconstruct the 3D

image in a resolution determined by the detector pixel size also at the edges of the image.

The sample does not always fill the full field of view, and those values can be interpreted

as the upper limit.

Here we present the basics of the filtered back projection and algebraic reconstruc-

tion algorithms, but for readers with a mathematical background and deep interest in these

methods Kak & Slaney [108], Natterer [169], and Turbell [239] provide information in

more depth.

Algebraic reconstruction

Algebraic reconstruction was first introduced for image reconstruction in [81]. A cross-

sectional image can be considered as the matrix (sampling grid) of values and the mea-

sured projection values are integrates (sums of pixels) over the cross-sectional image to

a direction of a. Thus we can write ΣN
j=1wij fj = pi, i = 1, 2, 3, ..., M, where pi is the

integrated intensity value along "X-ray" i, f j is the intensity value in pixel j and wij is a
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weight factor for pixel j in beam i. In practice, wij is the cross-sectional area of the beam

i and the cell j (note that w > 0 only for pixels that lay along the beam’s path). N is the

total amount of pixels and M is the number of detector pixels multiplied by the number of

projections. See figure 21 for more details. This formulation allows us to create a series

of equations for the unknown values f j for each rotation step:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w11 f1 + w12 f2 + w13 f3 + · · ·+ w1N fN = p1

w21 f1 + w22 f2 + w23 f3 + · · ·+ w2N fN = p2
...

wM1 f1 + wM2 f2 + wM3 f3 + · · ·+ wMN fN = pM

FIGURE 21 The principle of algebraic reconstruction.

Due to a huge number of equations and noise present in projection data, this can not

be solved by using traditional methods like Gaussian elimination, thus, iterative solvers

are used. Those require an initial guess that is iteratively enhanced. The iterative enhance-

ment is based on function:

Δ f (i)j = f (i)j − f (i−1)
j =

pi − qi

ΣN
k=1w2

ik
wij,

where qi is pi equivalent projection value from the i− 1 solution of the reconstruction.

The benefits of the iterative reconstruction is insensitivity to both reconstruction

artefacts and noise, and the possibility to reconstruct high quality images from incom-

plete data [272, 73]. The downside is that the iterative methods are relatively slow and

computationally demanding.

Filtered back projection

Back projection [108, 169] refers to a method where the projection signal is smeared back

to the image plane perpendicular to the direction of the beam. That is, the transmission

images are projected back into the image space as shown in figure 22.

As seen in figure 23, the result of plain back projection is smoothed at the edges

of the material. The reason for the blurring is that each back projection also adds extra
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FIGURE 22 On the left a schematic image of the forward projection process at two projection

angles. On the right the same projection images back projected into cross-sectional

image plane.

FIGURE 23 The effect of the number of projections on the final reconstructed cross-sectional

image for unfiltered back projection.

information, “a tail”, along the projection angle. Filtered back projection (FBP) method

avoids the blurring by high pass filtering the projection data such that the blurring effect

at the resulting image is cancelled. Commonly used high pass filters are Ramp, Shepp-

Logan, Cosine, Hamming and Hann. The effect of different filters is demonstrated in

figure 24. The filtering is usually done in Fourier space; when combined with the Fourier

slice theorem we get efficient reconstruction algorithm, allowing the high pass filtering to

be done for the 1-D line projection. The Fourier slice theorem states that the result of the

following two calculations are equal:

1. Take a two-dimensional function, project it onto a (one-dimensional) line and per-

form a 1D Fourier transform (FT) of that projection.

2. Take that same function, do a two-dimensional Fourier transform first and then slice

it through its origin, which is parallel to the projection line.

The reconstruction procedure using the Fourier slice theorem follows:
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FIGURE 24 The effect of the different filters used in Filtered Back Projection algorithm. The

result is often a compromise between noise and sharpness.

1. Calculate the 1D FT of the projection data collected at angle θ and high pass filter

it.

2. Arrange the 1D FT to 2D grid to θ angle.

3. Interpolate the data to the rectangular 2D grid.

4. Perform the inverse transform for the 2D grid.

The main disadvantage of this method is the interpolation step that often requires com-

plicated interpolation processes. However, the FBP is robust and the most efficient re-

construction algorithm. The GPU-based algorithms can reconstruct even large stacks in

minutes.

2.6 Artefacts

The imaging method and reconstruction can cause certain artefacts to the resulting image.

Barrett and Keat [19] have diligently described the artefacts that occur in medical CT

imaging. They divided artefacts into four classes: physics based, object based, scanner

based and reconstruction based. We will here review these artefacts in the viewpoint of

XμCT.

Scanner based artefacts

Ring artefacts are dominant scanner-based artefact that can disturb the segmentation; see

figure 25. Ring artefacts appear as complete or partial circular strikes in the image. They

are caused by a sensitivity difference in the CCD pixels [14, 6]. They appear especially on

planar horizontal interfaces between materials having notably different density. Ring arte-

facts can be reduced by using random movement of the sample or CCD during the scan;
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FIGURE 25 Ring artefacts on a paper sample.

the sample is moved small random distances in x-y direction between the acquisition of

each shadow image. These movements are recorded and reduced before the reconstruc-

tion. This effectively prevents the defective pixels of the detector from causing the rings.

Algorithmical approaches for ring artefact reduction also exist [218, 32, 14].

Lack of sharpness at the edges is another visible artefact of the table-top XμCT

scanners. The scanners use X-ray tubes to produce the radiation and those sources have

a spot size limiting the maximal spatial resolution of these systems. This effectively

requires the system to have a point spread function, causing blurring of the edges on the

resulting image.

Under sampling occurs when the rotation step of the scanner is too large. It can

cause stripe-like structures appearing around the object and along the edges of the objects.

Finally, when scanning, the inaccuracy in mechanics can cause misalignment of

shadowgrams. This misalignment has to be taken into account in the reconstruction. If

this is done improperly the edges of the images have discontinuation at certain angle, see

figure 28.

Physics based artefacts

Beam hardening is a property of an X-ray tube that it is not possible to completely re-

move. This is because low energy X-rays absorb more rapidly than high energy ones

when travelling through material, causing the beam to “harden”. It means that the aver-

age beam energy (intensity in final images) increases when the X-rays pass through the

object. Beam hardening causes two kinds of artefacts:

1. A cupping effect, where the edges of an object appear brighter than the center. See

figure 26.

2. Streaks and dark bands that appear in between dense objects. This happens when

X-rays pass through dense objects that are oriented in the direction of the beam. The
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beam is hardened more when it passes through the two objects than when passing

only one. See figure 26.

FIGURE 26 On the left: The effect of beam hardening on bone sample. The edges of the bone

appear brighter than the inner material. On the right: Streaks and shadows in a bone

sample.

Beam hardening can be reduced by cutting unnecessary energies from the spectrum using

a filter at the X-ray beam line. Furthermore, methods have been implemented for recon-

struction software to correct the beam hardening computationally [248, 127]. The beam

hardening compensation algorithms are different depending on number of material phases

the sample contains [270].

Photon starvation is due to a reason similar than beam hardening; it happens when

some parts or some positions of an object are absorbing X-rays such that an insufficient

amount of X-rays reach the detector for these parts / positions. The effect of photon

starvation is very visible streaking. For example, small pieces of high density material,

like metal, inside an object can cause strong streaking artefacts; see figure 27. The density

of metal is usually notably higher than surrounding material, causing photon starvation.

This is best avoided by choosing suitable samples or removing the metallic parts. There

are also some algorithms to correct these artefacts [104, 143].

Object-based artefacts

One of the most common object based artefacts is the movement of the object during

the scanning. It can happen if the object is not planted properly, or if the object itself

is not stable (sloppy objects, statically charged particles, etc.). The movement can cause

blurring, soft edges, stripes, etc. In XμCT, object can usually be mounted tightly to

the sample holder, but elastic objects or objects containing liquids can move during the

scanning. On most cases there are no algorithmical remedies for these effects, instead one

needs to consider different sample holders. In cases of systematic movement caused by
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FIGURE 27 Metal artefacts inside a bentonite sample.

thermal expansion of the mechanics, few algorithms have been done to avoid the problem

[205]. If the movement is rigid translation, an image correlation can be used to align the

shadowgrams.

An other sometimes unavoidable artefact is caused by scanning a sample that is

larger than the volume of interest. It causes blurring of details and shadows into the

reconstruction. This is especially noticeable if the parts that do not fit into the volume of

interest are significantly denser. However, in some cases it is necessary to scan only some

area inside the sample; to reduce the artefacts it is recommended to increase the number

of shadowgrams taken

Partial volume effect is a common artefact when analysing porous materials. It

happens when a sample contains details that are smaller than the voxel size. If one voxel

contains a mixture of material phases the overall absorption value might not reflect any

of the materials inside the voxel. In the case of porous material, the pores that fill a voxel

only partially will decrease the intensity of the voxel.

Reconstruction based artefacts

The most commonly used reconstruction algorithm in cone-beam geometries, filtered

back-projection, is a non-exact algorithm [210]. Due to the non-exactness, an approx-

imation of data is used on areas that are not at the mid-slice, causing artefacts to appear

[245, 239]. The artefacts causes blurring of details and it is more prominent further we

move from the mid-slice.

Noise

Noise is an unwanted random signal alteration in image, providing no additional infor-

mation over the original signal. It is generally considered as pollution caused by analo-

gous components of the imaging machine (see section 2.3 for more details). On XμCT
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FIGURE 28 Properly aligned (on left) and misaligned reconstruction (on right) of igneous rock.

scanners the most noise comes A/D conversation when X-ray intensity information is

converted into a image within CCD-chip and from Poisson-type process of X-rays.

To reduce the noise in the image averaging multiple images or having longer ex-

posure time will help. However, it is impossible to remove the noise fully and therefore

computational denoising algorithms are needed.

Sample preparation

Depending on sample, the sample preparation can be easy of hard. Large blocks of solid

materials are easy to plant on top of capillary tube by glue. However, XμCT is suitable for

imaging virtually any kind of samples and not all of the behave well; fragile materials, thin

materials, fibres, particles, humidity sensitive materials, and so on, can require a specific

tools for cutting them and also specific sample holder to support them firmly. Preparing

those samples can require imagination and practicality.

Tools used for preparing the samples include, e.g., cutting devices, various types

of sample holders, glues, microscopes, and micro-manipulators. For cutting, a precision

diamond blade saw is suitable for hard materials like metals, stone, bone, and glass. The

device uses water to reduce the friction. For more sensitive samples a diamond wire

saw causes less mechanical damage to the surface. Razor blade, scalpel and scissors are

good for various softer materials, like paper, composites, wood and wools, but only if the

sample size is rather large, 2-20 mm. Otherwise the internal structure may break.

For non mechanical cutting devices there are few options. Laser micro machining

can be used various sample materials when the sample size is in the range of 50μm to

1–2 mm. Laser is able to cut hard and soft material with little damage to the outside

of the cutting zone. The cutting ability is dependent on the power and wavelength of

the laser. For light organic material, 355 nm is good. For harder materials 532 nm or

1064 nm is sufficient. The method does heat up the material close to the cutting area,

but it is usually in very short range. Focused ion beam (FIB) is suitable for very small

samples, sizes ranging in 1-20μm. FIB is able to cut through any material, and it is based

on bombarding material with heavy ions that will break the atomic structure of the target

material. The samples, however, need to be coated with some electrically conductive

material, and the process is done in a vacuum. The method does heat up the material and

may also cause FIB artefacts [7] where lighter atoms are removed more efficiently than
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TABLE 1 The average gray value inside a sample when using beam hardening filtering (both

hardware and software) and no beam hardening correction.

Sample No BHC BHC

2x4 mm 34582 44531

1x4 mm 37409 44770

2x2 mm 40118 45559

heavier ones.

For porous materials, a low viscous glue can absorb into the material. A more

viscous glue or a post-it paper (glued on top of a sample holder) is more suitable. For

fragile and soft samples, a cup like sample holder will support it better than plain sample

holder tube. A plastic is easy to process and has low absorption coefficient. Usually the

cup can be segmented out from the final images. Powdery samples can be put into a straw.

During the scanning the movement might shake the samples causing them to compress.

To avoid this the sample should be pre-shaked. Also some kind of a support material, like

plastic, can be used but it might reduce the contrast.

2.7 Repeatability

A common problem in analysis of XμCT images is comparison of results of multiple

scans. Especially the are the gray values comparable. A easy solution to this problem is

to fit all the samples into a single scan, but this is not always possible.

Naturally, to ensure that the images are comparable together, the same scanning

and reconstruction parameters need to be used. However, there are also other factors

(artefacts) affecting the final gray value of the material. Especially partial volume effect

caused by different porosity of the materials, and the intensity variation due to beam

hardening if the sample size is not the same.

To this end we analysed three aluminium blocks of varying size using Xradia

MicroXCT-400. The sample were first imaged without any X-ray filtering or software

beam hardening correction (No BHC) and then with both X-ray filter and software beam

hardening correction (BHC), with the same parameters for all scans. The results are

shown in table 1. Obviously, if the beam hardening is not taken into control the sample

shape does affect the gray values of the sample even though the parameters were otherwise

the same. With X-ray filtering and software beam hardening correction the results were

comparable.

In table 2 the effect of various scanner parameters are tested. The change of rotation

angle had a major effect on the gray value (for unknown reason). The distance between

sample and source or detector affects slightly, probably because X-rays absorb into the

air. The exposure time change also had a small effect. These naturally might be scanner-

(or reconstruction software-) dependent.

We can conclude that if the scanner parameters are kept the same, especially the

rotation angle and the internal distances, the sample size is approximately the same, and

the beam hardening is taken into account the samples imaged with separated scans are
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TABLE 2 The effect of scanner parameters to the gray value of the resulting image.

Description Average intensity

Normal conditions 45559

0.5 times smaller rotation angle 53646

1.5 times exposure time 43345

Source sample distance 0.25 times longer 43964

comparable. An another aspect are the environmental factors affecting to the sample.

Temperature and humidity changes can alter the sample structure or the sample holder.

Often the sample imaged with an XμCT system is a small piece of a larger sample.

If the size of the sample is very small (because the interesting structural properties are

small) the sample itself might not be representative for the whole material. Term rep-

resentative elementary volume (REV) [23] is used of the smallest possible sample that

represents the material in such a way that the analysed parameters are independent of

the size of the sample. Often REV is found by studying convergence properties of the

analysis parameter or some other closely related parameter [3]. In tomography REV can

be found by analysing the parameter (for example, porosity) as a function of volume of

interest and multiple scans.

2.8 Visualization

3D visualization is a tool that can be used to show the tomographic reconstructions in

3D form. In XμCT imaging, the voxels are usually uniform in size (they have the same

dimensions to all directions) and, thus, the visualization is straightforward. For 3D voxel

data there are two main visualization methods: volumetric visualization and iso-surface

visualization.

In volumetric visualization each voxel in the image is coupled with color and opac-

ity information using transfer functions. The opacity transfer function can be used to give

each gray value an opacity value. In CT images the color represents the density of the

sample and thus the transparency function can be used to remove materials according to

their density; see figure 29 for examples of using the opacity transfer function. Colour

transfer function are used to map each gray value with a color; see example in figure 29.

The actual volumetric visualization is performed usually using the GPU texture mapping

allowing real time interaction with the sample. The user can rotate and cut the sample in

any way. There are also other visualization methods for volumetric data that allow usage

of lightning and shadows.

In iso-surface rendering the surfaces of the image are detected and only the surfaces

are visualized rendering them as meshes. The standard way to detect the surfaces is the

marching cubes algorithm [145]. The iso-surface rendering is especially useful when

some structure inside another structure is visualized. The shape of the structure can be

visualized as an iso-surface with reduced opacity while the inner structure can be volume

visualized with full opacity.
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FIGURE 29 Visualization effects demonstrated on volcanic stone sample. On top left, normal

visualization; on top right, only the more dense parts (sample holder and some spots

inside the sample) are visible. On bottom left, part of the sample is cut away; and

on bottom right, a color map is applied to emphasize the different minerals.

FIGURE 30 On the top left a cross-sectional image as a part of the whole image. At top right,

the outline of the sample is produced as partially transparent surface rendering with

pores at blue inside. On the bottom right, the original image with a part of it cut

away and pores included into that space. On the bottom left, orthonormal slices of

the sample and some pores in blue as volume rendering.
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The ways of visualization

Visualization of XμCT images is a combination of art and science with an aim to show

interesting structure or to emphasize certain property of the sample. Sometimes it is only

necessary to get a visually pleasant image of the sample. The means for getting good

visualization include the following: opacity transfer function, color transfer function, pose

of the sample, shadows and lightning, surface material (for example specularity can be

used to give a plastic look), cuts (see figure 30 ), cross-sectional images (see figure 30),

combining multiple images with different opacity/color, etc. properties (see figure 30)

Many of the visualization programs allow you to create a videos. Some programs

allow only simple rotation of the sample, but more sophisticated ones allow one to adjust

all imaging parameters during the video and edit the camera route around or inside the

sample.



3 ON IMAGE PROCESSING ALGORITHMS

The image processing phase of the XμCT continuum (figure 3) aims at extraction of

numerical data from the image. There is no specific routine that works on any data,

instead, given the image and problem, manual work is required to build up an appropriate

processing scheme from collection of image processing methods. The selections made to

build the scheme affect on how repeatable and automatic the process is. This is important

as often many similar kind of images are analysed and it is beneficial if the scheme can

be automatically repeated for another image.

In practice there exists a huge number of image processing algorithms. Even for a

simple task there are various implementations and improvements. Thus, it is impossible

to cover the image processing field even close to extensively. Instead the aim of this

chapter is to provide an overview of general methods and definitions related especially on

XμCT image analysis, concentrating on algorithms that are simple, fast and do not require

an excessive amount of memory. Noise reduction, segmentation and image analysis are

discussed in their own chapters.

3.1 Algorithmical requirements

There are certain requirements when considering the algorithms used for processing of

the XμCT images. These requirements come from the end-users and the type of the data

the XμCT devices produce.

Basically there are two distinct roles involved in image processing: method user

and method developer [16, 86]. Their primary domains of interest can be described as

problem domain (images) and solution domain (algorithms). The challenge for those who

develop methods is to keep the imaging process continuum (i.e. transform from problems

to solutions and back) smooth and approachable for the user. The amount of data, the

quality of the result and the fact that the end users are not experts in image processing

emphasize certain criteria that need to be taken into account in the method development.

An algorithm should handle data in a reasonable time; if there are bottlenecks in the

image processing continuum the overall process will be disturbed. The algorithm should
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have high usability. There are different studies of usability of a system, like Nielsen [172]

and Shackel [214]. These studies can also be partially applied to algorithms and as users

are not experts on algorithm details, the high usability is desired. In the case of algorithms

the user interaction is done with the parameters. The parameter set of an algorithm can

be analysed in a sense of learnability, efficiency, flexibility, memorability, etc. [172]. An

optimal algorithm would be a black box that immediately outputs the perfect result for

any input image without any user interaction. In other words high learnability, flexibility,

efficiency to use, and ease of memorizing. Usually, however, some interaction is needed

in a form of parameters. There are few aspects that affect the learnability of parameters:

• How explicitly can the effect of a parameter be explained?

• How exactly can the value of the parameter be determined?

• How well is the domain of definition of the parameter given?

The effect of a parameter is best described in terms from the problem domain. This

increases the learnability and memorability of the parameter. It will also make them

more understandable for the end users who are experts in the problem domain but not in

algorithmical details. In addition it can save time as the end user does not need any extra

burden to test alternative parameters. The domain of definition of parameters is important

with algorithms that have multiple parameters. Each parameter should affect a certain

property of the result, but not a property that is to be controlled by some other parameter.

Non-overlapping domains of parameter effect increase the flexibility of an algorithm by

excluding intrinsic dependencies on the parameter set. Despite the simplicity and speed,

the algorithms should also be efficient. For example, a denoising algorithm should remove

the undesirable effects but leave relevant features untouched.

Memory consumption problems arise easily when implementing the algorithms for

large images. There are various factors affecting the memory consumption. Some algo-

rithms need several copies of the original data (or equivalent amount of “work space”),

considering the data type, the size difference between byte (256 gray values) and double

(±1.7±308 gray values) is big and selection of the data type used in processing can signif-

icantly affect to the memory consumption. And it is also important to realize that in some

programming languages boolean type (1-bit) data is often stored in other variables having

a size larger than 1 bit, the smallest possibility often 8-bit images [258]. It should also be

noted that not all the calculation operations performed on different data types are as fast.

Some more details on these issues can be found in Appendix 1.

3.2 Definitions

Here we define the mathematical notation used in the rest of the thesis.

3.2.1 Image

Digital image is a discrete approximation (both in spatial and intensity range) of a con-

tinuous 2D/3D intensity signal. A digital image is an array of picture elements, that each
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cover a certain area of the original continuous space and has a value relative to the inten-

sity in that space. The picture elements are discrete points called pixels in 2D and voxels
in 3D. Pixels have a surface area while voxels have a volume.

FIGURE 31 The pixel indexing in Z (in black) and R -axes (in blue) of a imaging system in 2D.

The values inside parentheses are pixel indexes and the black dots are the centres

of pixels.

We define a 3D image as function a : Ω → Y, where Ω is a coordinate system in

the image and Y defines the gray value intensity at those coordinates, hence dom(a) = Ω
and ran(a) = Y. The coordinate system of a digital image typically refers to pixels/voxels

using indexes that are integers. Real value coordinate systems can also be used; real

value coordinates refer to a (exact) point in the image. In this work, we use the coordinate

system shown in figure 31; the origo of real value coordinates is at the center of pixel with

index (0,0) (There is no common rule for the location of the pixel center; instead various

schemes exist, for example, in directX [161]). When referring to the voxel indexes a

notation a[v] = a[i, j, k], i, j, k ∈ N is used. When referring to a point in a continuous

coordinate system a notation a(v) = a(x, y, z), x, y, z ∈ R is used.

For spherical coordinates in R3 the Cartesian x, y and z are transformed into r, φ, θ

coordinates. Here r is the distance from the origo, φ is the angle between the positive x-

axis and the line from the origin to the (x,y,z)-point projected onto the xy-plane and θ is the

angle between the positive z-axis and the line formed between the origin and point (x,y,z).

The cylindrical coordinate transform is realized by transforming x and y coordinates to

the polar coordinate system and leaving the z coordinate to its original meaning. In the

polar coordinate system the Cartesian x and y coordinates are transformed into an angle

θ and distance r system:

The type of codomain Y depends on the bit-depth of the image, that is the number

of distinct gray levels in the image. Usually the bit-depth is, due to technical reasons, a

power of 2. Some of the typical bit depths are as follows:

• 8-bit (a byte) unsigned images: Y ⊂ Z, Y = [0, 255]
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• 16-bit unsigned images: Y ⊂ Z, Y = [0, 65536]

• 32-bit float images: Y ⊂ R, Y = [−3.4× 1038, 3.4× 1038]

• 8-bit (a byte) signed images: Y ⊂ Z, Y = [−128, 127]

• 16-bit signed images: Y ⊂ Z, Y = [−32768, 32767]

Basic arithmetic operations (subtraction, addition, multiplication, division) between two

images are performed voxelwise. Translation Tt(a) of image a by vector t creates a new

image b with dom(b) = dom(a) + t.
A binary image is an image containing only values 1 and 0 often called foreground

and background respectively. We define few boolean operations for binary images. Let a
and b be binary images and v a voxel in the image:

â Inverse image: â[v] = ¬a[v]
a ∪ b Union of images: (a ∪ b)[v] = a[v] ∨ b[v]
a ∩ b Intersection of images: (a ∩ b)[v] = a[v] ∧ b[v]

In addition we define a masking operation between a gray value image a and binary image

b as following: a ∪ b = a[v] ∗ b[v]. As b has values 0 and 1 masking operation will zero

all values of a outside the solid phase of b. In practice it means that the operations are

only performed at the mask area.

3.2.2 Voxel neighbourhoods

Let v = [i, j, k] be a voxel index. We define a voxel connectivity operator Cn[v] as a

group of voxels containing n voxels connected to v. In 3D there exist three commonly

used voxel connectivities: 6-, 18-, and 26-connected. In 6-connectivity the voxels are face

connected: [i ± 1, j, k], [i, j ± 1, k], [i, j, k ± 1] to voxel [i, j, k]. In 18-connectivity the

voxels are face and edge connected: [i± 1, j± 1, k], [i± 1, j, k± 1], or [i, j± 1, k± 1] to

voxel [i, j, k]). In 26-connectivity face, edge and corner are connected: [i± 1, j± 1, k± 1]
to the voxel [i, j, k]. See figure 32 for visualization. The selection of n can affect to the

results and should be chosen according to the algorithm or left for the user to select.

FIGURE 32 Voxel neighbourhoods: on the left 6-connected, at center 18-connected, and on the

right 26-connected.

A voxel neighbourhood is a collection of voxels surrounding v but not necessarily

directly touching it. The shape of the neighbourhood is typically square or round, but can

be basically of any shape. We define the neighbourhood as:
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N p
r [v] = {q : ||v− q||p < r},

where r is the radius and p is the distance norm that determines the shape of the neighbour-

hood. For the square neighbourhood l1-norm is used, and for the spherical neighbourhood

the l2-norm. In case the norm and radius are not essential for expressional ability of the

equation, the notation can be shortened to N [v]. We use Ave(N [v]) for mean value and

Var(N [v]) for variance of the neighbourhood N [v].
For set V of voxels, we can define two borders: inner border Bin(V), and outer

border Bout(V). For V ⊂ dom(a) the inner border reads as

Bin(V) = {v ∈ V|∃q ∈ Cn[v] such that q /∈ V}. (7)

and similarly, the outer border is defined as

Bout(V) = {v /∈ V|∃q ∈ Cn[v] such that q ∈ V}. (8)

3.2.3 Discrete derivatives

The derivatives are approximated using so-called finite difference methods (explained in

more detail for example in [220]). The general equation for a discrete derivative in 1-D is

as follows:

f ′[i] ≈ f [i + h1]− f [i− h2]

h1 + h2
, (9)

Usually h1 and h2 are 0 or 1. If h2 = 0 and h1 > 0 the system is called forward difference,

h2 > 0 and h1 = 0 backward difference and h1 = h2 central difference. For digital image

a we, thus, mark the general finite difference approximations of partial derivatives as

ax[i, j, k] = Δx
[h1,h2]a[i, j, k] =

∂a
∂x
≈ a[i + h1, j, k]− a[i− h2, j, k]

h1 + h2
, (10)

ay[i, j, k] = Δy
[h1,h2]a[i, j, k] =

∂a
∂y
≈ a[i, j + h1, k]− a[i, j− h2, k]

h1 + h2
, (11)

az[i, j, k] = Δz
[h1,h2]a[i, j, k] =

∂a
∂z
≈ a[i, j, k + h1]− a[i, j, k− h2]

h1 + h2
. (12)

The second order (central) derivative can be similarly calculated using

f ′′[i] = f ′[ f ′[i]] ≈ f [i + h]− 2 f [i] + f [i− h]
h2 , (13)

and Laplacian is

∇2a = axx + ayy + azz. (14)
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The mixed derivatives can be approximated using the following equation:

∂2a
∂x∂y

=
∂a
∂x

(
∂a
∂y

)
. (15)

In 3D the gradient for image a is defined as:

∇a =

[
∂a
∂x

,
∂a
∂y

,
∂a
∂z

]
.

3.3 Standard image processing operations

Certain operations are more general in image processing and are often used as a building

block for larger image processing methods. In this section we describe some basic image

processing operations that are often used as a part of a more complicated method. The

operations can typically be classified into three categories:

• Point: The output of the operation at pixel index [i, j, k] depends only on the input

at the same coordinate.

• Local: The output of the operation at pixel index [i, j, k] depends only on the input

values of the neighbouring voxels.

• Global: The output of the operation at pixel index [i, j, k] depends on all values in

the image.

3.3.1 Statistical operations

Statistical operations are some simple operations based on statistical processing of the

image data.

Histogram

Histogram is a graphical representation of any data in a form of a discrete distribution,

introduced first by Pearson [180], who called them frequency curves. Usually the x-axis

represents the studied variable and the y-axis represents the frequency of that particular

variable. The x-axis is represented in discrete intervals called bins.

A typical histogram in image processing is the gray value histogram of the image

where the x-axis represents the gray value and the y-axis represents the amount of voxels

having that gray value. If our image is a : Ω → Y ∈ Z+ having intensity values

Y ∈ [y0, yn], histogram is a discrete function:

H[T] = ∑
[v]∈Ω

I[v], (16)

where
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{
I[v] = 1 if a[v] = T,
I[v] = 0 else.

Where the bin size is 1 and intensity values are assumed to be integer valued. Value

T ∈ [y0, yn] represents the bin label. With real valued images, the bins are considered as

intervals.

H[T] = ∑
[v]∈Ω

I[v], (17)

where {
I[v] = 1 if a[v] ∈ [T − 1

2 w, T + 1
2 w[,

I[v] = 0 else.

where the bin labelling is done at w intervals: a =
{

y0 +
1
2 w, y0 + 11

2 w, y0 + 21
2 w...
}

.

A cumulative histogram is a function that counts the cumulative representation of samples

up to the specified bin Hc[T] = ∑T
j=y0

H[j].

Image moments

Image moment [80] is an intensity-weighted average of the voxel coordinates of the whole

image or a certain area (i.e. a particle) in the image. In continuous form for three dimen-

sional function f , the moment of order (p + q + r) is:

Mpqr =
∫ ∞

∞

∫ ∞

∞

∫ ∞

∞
xpyqzr f (x, y, z)dxdydz. (18)

For a discrete image its moment can be used to calculate shape-related features like vol-

ume, center of mass and orientation information. Let a be an image; the discrete image

moments of order of (α, β, γ) are defined as:

Mαβγ(a) = ∑
i

∑
j

∑
k

xαyβzγa[i, j, k]). (19)

Zero order moment M000 is the volume, mass, or intensity sum of the area. The center of

mass [xc, yc, zc] is:

xc = M100/M000, yc = M010/M000, zc = M001/M000. (20)

The orientation of the object can be approximated using the second order image moments.

The method will give three orientation vectors that are perpendicular to each other. The

longest one is the main orientation. To calculate the orientation we need to use translation

invariant central moments, which are defined as

μαβγ(a) = ∑
i

∑
j

∑
k
(i− xc)

α(j− yc)
β(k− zc)

γa[i, j, k].

From these moments a covariance matrix is constructed:
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cov(p) =

⎡
⎣ μ′200 μ′110 μ′101

μ′110 μ′020 μ′011
μ′101 μ′011 μ′002

⎤
⎦ , (21)

where μ′ijk =
μijk
μ000

. The eigenvectors of cov(p) are the orientation vectors. The corre-

sponding eigenvalues define the strength of the orientation; the largest value is associated

with the main orientation. The eigenvalue can also be used to approximate the shape of

an object:

• If all eigenvalues are close to each others the shape is spherical.

• If one eigenvalue is large and two other are close to each other, the shape is tubular.

• If one eigenvalue is small compared to the other two, the shape is sheet-like.

3.3.2 Binary image operations

Morphology is a technique for the analysis and processing of geometric structures. It

is based on a few basic operations. We present the morphological operations in general

form that work for binary and gray value images. Let a be an image and b a binary image

called a structuring element. For the sake of simplicity we assume the origo of b to be at

the center of the it (and not in the corner as shown in figure 31). a ∪ b denotes the mask

operation (see section 3.2.1). The dilation and erosion are performed for every pixel in

the image; the operations are expressed as:

• Dilation of a with b: a⊕ b every voxel [i, j, k] is replaced with maximum value of

the voxels of a ∪ Tt(b) where translation vector t = [i, j, k].

• Erosion: a� b every voxel [i, j, k] is replaced with the minimum value of the voxels

of a ∪ Tt(b) where translation vector t = [i, j, k].

• Opening: a ◦ b = (a� b)⊕ b. Opening is an erosion followed by dilation.

• Closing: a • b = (a⊕ b)� b. Closing is a dilation followed by erosion.

The dilation/erosion is the maximum/minimum value of a[i, j, k] in a region coincident

with the b when the origo of the b is at [i, j, k]; this is applicable to both binary and gray

value images. In addition to standard operations, we define a top-hat transform:

• White top-hat: a− (a ◦ b)

• Black top-hat: (a • b)− a

The white top-hat transform produces an image containing those areas of a that are

"smaller" than b and brighter than its surroundings. The black top-hat transform pro-

duces an image containing those areas of a that are "smaller" than b and darker than its

surroundings.

The effect of erosion is to shrink the object by one layer defined by the structuring

element and the effect of dilation is to enlarge the object. If an object in the image is
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smaller or same size than structuring element it will disappear when eroded. Dilation is

associative and commutative while erosion is not. The size of the structuring element or

the number of times the operation is performed in succession affect the operation. An

example of using the morphological operations would be extraction of borders of the

image Bin(a) = a− (a� b).

Distance transform

Distance transform (DT) is a binary image operation that determines the distance for all

the solid voxels to the closest void voxel, and replaces the voxel value with the distance;

see figure 33 for an example. The end result is called distance map. To perform distance

transform the voxels in image a are divided into two classes: object O and background B.

Consider two 3D points v and q. Each object voxel is labelled with the distance between

the voxel and the nearest background pixel:

a[v] =
{

0 if v ∈ {B},
min(q ∈ {B}||v− q||p) if v ∈ {O},

where distance norm can be selected as:

• Euclidean l2-norm.

• City block, or Manhattan metric uses l1-norm norm; the distance is the sum of axis-

oriented pixels between the points. This over-estimates the distance as the diagonal

distances are calculated as sums of steps.

• Chessboard metric is defined as ||[i, j, k] − [i2, j2, k2]||∞ = max(|i − i2|, |j −
j2|, |k − k2|). This metric underestimates the diagonal steps as they are approxi-

mated as 1.

• Many other metrics exist, as one example a hybrid meter aims to combine the city

block and chessboard by averaging them: ||v− q||hybrid = 1
2(||v− q||1 + ||v−

q||∞).

• A weighted distance transform [20, 230] uses a weight window, called a Chamfer

mask, to propagate the approximate of distances to cover the whole object.

There are various fast algorithms for distance transform. Some of them are approxima-

tions and some of them are exact euclidean distances. Two pass algorithm [33] walks

through the voxels two times and along its way propagates the distance information from

the previously calculated known distances to the new voxels by weighting the distances

according to their direction. The result is an approximation of the euclidean distance,

and it works in linear time. Vector propagation algorithm [51] propagates distances, start-

ing from the edge, until the whole object space is covered. The result is euclidean dis-

tance map but might contain some miscalculations in certain voxel configurations; method

works in linear time.

For exact euclidean distance transform (EDT), the vector propagation method is

efficient for large 3D data sets [51]. The vector propagation algorithm is presented in

Algorithm 1.
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FIGURE 33 A binary image of a leaf (on the left) and its distance transform (on the right). The

darker colors depict longer distances.

Algorithm 1 Vector propagation distance transform

1: Initialization: Set the void space to have infinitum distance to solid. Find border

voxels V = Bout(B).
2: For each v ∈ V find the neighbouring void voxels VN = {q ∈ Cn[v] | q ∈ B} and

associate these voxels with the information of the closest border voxel.

3: while VN is not empty do
4: Take v ∈ VN, for each {q ∈ Cn[v] | q ∈ B}
5: Calculate the distance between neighbouring voxel q and the border voxel asso-

ciated with v.

6: If the distance is smaller than the already existing value in q, replace the value

with the smaller one and add q to VN.

7: end while

Skeleton

The skeleton is a one-pixel-thick representation of a shape that follows the center line of

the shape (that is equidistant at the borders of the shape). The skeleton can be made for

binary / labelled image. For 2D objects the skeleton is a one dimensional line. For 3D

objects the skeleton is either a surface (surface skeleton) or a single line (a curve skeleton

is also in some cases called medial axis). They tend to preserve the geometrical and

topological (connectivity, length, direction) properties of the shape.

FIGURE 34 A square object (on left) and its skeleton (dark line) with few maximum balls

shown.

The aim of the skeletonisation is to provide a simpler presentation of the object in

the image, which still contains the geometry and topology of the original object.

The most common procedure for creating a skeleton is thinning, which is erosion,

layer by layer, until only the skeleton is left. A simple point is a point whose deletion does

not change the topology of the object [123]. There are various strategies for performing

the thinning. In sequential thinning one (simple) point is removed at each iteration. In

parallel thinning several points can be deleted in one iteration. More details for example
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in [266].

Skeletons are sensitive to noise and often have a lot of unnecessary branches. The

method for removing the unwanted branches is called pruning.

Granulometry

Granulometry is a morphology-based method for determining size distribution of objects

in a binary image. It is based on subsequent series of opening operations with enlarg-

ing structuring element s and calculation of the image integral (volume) in between the

operations. The enlarging structuring element is defined as:

st = s⊕ . . .⊕ s︸ ︷︷ ︸
t times

.

Now if a is the binary image to be analysed the series of opening operations is

γt(a) = a ◦ bt.

The granulometry function that defines the volumetric change in between the consecutive

opening operations is defined as:

Gt(a) = M000(γt(a)).

M000 is calculated as in equation (19). The size distribution of b is now given by:

PSt(a) = Gt(a)− Gt+1(a),

where t refers to the size of the object. The result is statistical approximation of the size

distribution.

3.3.3 Direct voxel processing

Flood fill is an algorithm to determine similar areas or volumes in an image. The area

needs to be connected by some similarity rule, commonly gray value. The principle of

the algorithm is the following: 1) algorithm is initialized by adding manually or by some

heuristic seed voxels to set V, 2) while Bout(V) contains voxels that fulfil the similarity

rule they are added to group V. We may choose the similarity to be exactly one gray value

or a range of gray values.

The flood fill is a simple algorithm where only the voxel neighbourhood and the im-

plementation of the algorithm affects the end result and effectiveness [135] [77]. However,

with large images the efficiency and memory consumption differs between the implemen-

tations. So-called scanline method [65] is more optimized for its memory consumption

and speed, by filling the space by lines storing only the start points of the lines instead of

each individual pixel, thus consuming less memory.

The flood fill algorithm can be utilized to find local maxima of an image. The simple

algorithm to find local maxima is to use flood fill to find localities in an image that are not

bordered by any voxels with gray values larger than the value in locality, i.e, derivative

of the area is zero of negative. That is, we have a set of voxels V defined by the flood
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fill in image a, if ∀v1 ∈ V and q ∈ Bout(V) : a[v1] > a[q] area V is a local maximum.

Every voxel need to be accessed only once. However, a problem with the natural images

is that they contain noise. The simple algorithm finds all the local maxima. For noisy

images, the noise will cause a large number of non-real maxima. An efficient solution to

this problem is geodesic reconstruction introduced by Vincent Luc 1993 [253]. The idea

is to flatten the top of a local maxima by using geodesic dilations (see Algorithm 2).

Algorithm 2 Geodesic reconstruction

1: Let’s consider we have an image a, we define ah = F − h (we subtract voxel-wise

the value h from the gray values of a).

2: while The resulting image does not change do
3: The geodesic reconstruction step: ρ

(n)
G (F) = σG ◦ σG ◦ . . . ◦ σG(F), where σI(G)

is an elementary geodesic dilation of G “limited” by I: σI(G) = (G ⊕ b)(x)
∧

I,

where b is the structuring element (see gray scale dilation),
∧

is a point wise mini-

mum.

4: end while

As a result we get an image where each local maximum is flattened by the parameter h,

now the local maxima can be found using the original simple algorithm on the flattened

image, or by subtracting the flattened image from the original one and threshold this; see

figure 35.

FIGURE 35 A 2D example of the geodesic reconstruction. On the left the black line represents

the original image, and the gray area is the G. In the middle the algorithm 2 has

been applied to G; the lighter gray areas are filled by the reconstruction. And on

the right is the difference between the original and reconstructed G.

3.3.4 Transformations

Transformations are used to rotate or scale the data into a position required by the analysis

or to crop the image into a more convenient size for analysis.

Interpolation

Interpolation refers to a method for defining an intensity value for any real valued (not

voxel index) coordinate in the image. There are several schemes that can be used to

select the value. The most simple is the nearest neighbour interpolation; the real value

coordinate is rounded to the closest voxel index. This method is fast but loses details.

A bit more advanced method is linear interpolation [159]. In linear interpolation, an

“interpolation cube” is placed around the given point such that one vertex is at the nearest
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neighbour, the new value is a linear combination of the 8 neighbouring voxels as shown in

image figure 36. This type of interpolation provides adequate quality while being easy to

implement and is computationally fast. However, it does not provide a continuation of the

interpolation function along two adjacent voxels. Tricubic interpolation is the simplest

interpolation method that also provides the continuation; see [116] and [134]. Various

different interpolation methods have been proposed, however, all the methods produce

some kind of artefacts (see figure 37 for example) and thus, it is recommendable to avoid

excess rotation or scaling.

FIGURE 36 The schematic of linear interpolation. In 3D the interpolation is performed as series

of three linear interpolation. First the interpolation is performed along the X-axis,

then the Y-axis and finally along the Z-axis (note that for the sake of simplicity the

lines are not drawn at the top of the voxel).

Rotation

In principle, the rotation of a digital image is done voxel by voxel. We consider a vec-

tor that goes from the center of the image to the voxel being processed. This vector is

multiplied by a rotation matrix to find its new orientation. In three dimensional space the

rotation matrix is formed of three components:
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Rx(γ) =

⎡
⎢⎣1 0 0

0 cos γ − sin γ

0 sin γ cos γ

⎤
⎥⎦

Ry(β) =

⎡
⎢⎣ cos β 0 sin β

0 1 0
− sin β 0 cos β

⎤
⎥⎦

Rz(α) =

⎡
⎢⎣cos α − sin α 0

sin α cos α 0
0 0 1

⎤
⎥⎦ .

(22)

Here Rx(γ) defines the rotation around the x-axis at angle γ, Ry(β) defines the rota-

tion around the y-axis, and Rz(α) defines the rotation around the x-axis. These can be

combined into one single rotation matrix by multiplying them together:

R = Rx(γ) Ry(β) Rz(α), (23)

where the origo of the rotation is at the center of the image (translation is required if

otherwise). Now to rotate the image a we create a new image called ar (that is the rotated

image), we walk through every voxel v in ar and define its gray value from the original

non-rotated image: ar[v] = a(Rv). The voxel value is defined using interpolation if not

at the exact pixel location.

3.4 Image Preprocessing

Image preprocessing is a phase where the image is modified into a form where it is most

convenient to further process. This phase involves cropping, rotating, rescaling, reslicing,

gray value scaling, denoising, etc. The aim is to reduce the size of the image to make it

faster to perform operations. There are several possibilities for decreasing the image size.

Cropping the non-informative parts of the image is an effective way to reduce the file

size. The bit-depth of the image affects its memory consumption and one should consider

the lowest possible bit-depth that is suitable for the analysis. In the case lower resolution

shows enough details, the image can be scaled to a smaller size.

Image rotation is a common preprocessing task. If a cubical sample has not been

exactly aligned to the rotation axis of the scanner it appears to be tilted in the recon-

struction. This hinders the cropping of the sample. In addition some analysis methods

are position-sensitive and require proper alignment of the image. Unless the rotation is

multiplication of 90 degrees, it requires interpolation that degrades the image quality. In

figure 37 we compare results of interpolation methods after multiple consecutive rotation
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operations. The quality differences are obvious. Rotations of 90 ◦, 180 ◦, and 270 ◦ can be

done by rearranging the pixels (reslicing), and it does not affect the image quality. When

necessary to rotate the image it is best to minimize the number of rotations.

FIGURE 37 An example of an iteratively rotated image of 360 degrees with steps of 1 degree.

On the left the original image, nearest neighbour (2917 ms), bilinear(4587 ms) and

bicubic (25657 ms) respectively. The value inside the brackets is time the process

took on Intel i7-2600 CPU with 16GB of RAM.

In practice, manual 3D rotation is difficult as it is not easy to find the exact rotation

angles around each axis. A more visual way is to rotate the image slice-wise in each

direction; the reslice operation allows change between rotation axes.

Another way is to consider some sort of automatic rotation. For planar samples it is

possible to find the upper surface (VSurf) of the material. A plane Ax + By+Cz+ D = 0
can be fitted into this surface by finding A, B, C, and D that minimize the equation E =

∑[i,j,k]∈VSurf
(k− Ai+Bj+D

−C )2. By solving the least squares problem we can find the most

fitting, plane and the normal vector of this plane defines the rotation angles around the x

and y -axes.

Sometimes it is necessary to find an optimal rotation/translation, rigid transform, to

match one image into another. That is, for example, if you have taken an image that you

want to digitally compare with another and they need to be in the same position. At first

you need to use some automatic or manual method to find (at least) three points that are

the same in both images. The optimal solution is then found using the Kabsch algorithm

[107]. It in practice solves following problem: b = R ∗ a + t, where R is the rotation and

t is the translation applied to image a to align it with image b. The algorithm is explained

in more detail in Algorithm 3.

Algorithm 3 Kabsch algorithm

1: Find the centroids of both data sets using the method presented in equation (20). We

name them ac and bc.

2: Find the optimal rotation using Singular Value Decomposition (SVD). First compose

matrix H = ∑N
i=1(vai − ac)(vbi − bc), where vai and vbi are the corresponding

points in images a and b, respectively. Solve the SVD: [U, S, V] = SVD(H). Now

the rotation matrix R = VUT.

3: Check for reflection (SVD sometimes returns a reflected case of the rotation and it

does not work). If the determinant of R is negative, multiply the third column of the

R by -1.

4: Find the optimal translation by t = −Racbc.
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The rotation matrix R corresponds to the rotation matrix of equation (22) and is applied

in a similar way.



4 DENOISING

Noise is one artefact (see section 2.6) that cannot be fully removed by the image acqui-

sition system. Denoising is a process where the noise of the images is reduced using

some heuristic computational method. Denoising is very often the first step on the way to

segmentation and image analysis.

Standard techniques for noise reduction include linear filters like Gaussian filter

[80], rank filters like median filter [202] and transform-based filters like low- and high-

pass filters. While these classical methods are computationally very fast, they tend to

perform poorly if an image contains sharp edges or small details. More precisely, linear

and statistical methods tend to smooth edges out and diminish small details, whereas

transform-based methods suffer from ringing effects (so-called Gibbs’ phenomena) near

edges. On CT-imaging one common denoising method is median filter (like in [268, 103,

2, 147]). However, it has undesirable properties of removing small details, producing

staircase-like structures [111, 112] and combining objects that are close to each other, and

those can be important especially when utilizing CT imaging in material research. Some

edge preserving denoising methods, e.g., PDE-based [39, 114, 113, 110, 78, 168] and

statistical [91] methods and methods based on anisotropic diffusion [126], have therefore

been proposed. From the viewpoint of CT-imaging the benefit of these methods is good

denoising properties and the property of preserving the volume of the objects, but it comes

at the cost of computation time and memory need.

Each denoising method has its own properties. We compare here the methods by

their denoising quality, computational efficiency, and usability. In practice no method has

been perfect on every aspect, instead each method usually shines in one or two properties

but lacks on the third. This is visually depicted in figure 38.

4.1 Denoising of CT images

CT images have few properties that affect performance requirements of algorithms. Im-

ages are in 3D and are usually large, possibly tens of gigabytes in file size. An image is

almost always piecewise constant, i.e., material is often composed of homogeneous areas
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FIGURE 38 The requirement triangle of an denoising algorithm.

of constant gray value. Heterogeneous materials are composed of two or more materi-

als in the form of grains, fibres, particles, etc. There rarely exist short gradients, except

in artefacts. Gradients are usually fast caused by sharp shifts from one material to an-

other. Beam hardening, edge softening, ring artefacts or partial volume effect can cause

slow gradients. Some of them can be removed by changing the imaging conditions, but

it usually means longer scanning time, which can be limited. The edge quality of a CT

reconstruction depends on many variables. In parallel beam geometry the edges appear

sharper than in cone beam systems, where the half shadow effect reduces the edge quality

(see equation (1)). The noise type of the final output is hard to predict; the projection

images contain both, multiplicative (due to the signal gain) and additive noise [219], but

after reconstruction the noise properties are not the same [157]. The noise properties de-

pend also on imaging conditions and sample properties, on high contrasting samples low

frequency Gaussian-type noise is typical. On low contrasting samples, a speckle type of

noise is more dominant.

The practical limitations favours algorithms that perform in a filter-like manner, i.e.,

only a local area around the voxel to be denoised is required to get the results. Such classi-

cal algorithms are mean, Gaussian and median filters. They are fast and easy to use, while

the result usually has some unwanted properties. For more computation-demanding algo-

rithms anisotropic diffusion and bilateral filtering are popular and well studied algorithms

also used in tomography [196, 246]. They also have a tendency to sharpen the edges of

an image. In addition, we have studied the variance weighted mean filter, which is a com-

putationally relatively light weight edge-sensitive denoising algorithm. In some cases the

quality outweighs the computational demands; sliding Cosine transform [201, 64] is com-

putationally demanding while the denoising abilities are claimed to be good. Mean shift

is computationally demanding but is also effective at sharpening the edges. We compare

this group of denoising algorithms that we consider effective for various needs in X-ray

image processing.

A few promising methods were left out of the comparison due to the lack of suitable

implementation or performance issues. Non-local means [38] is based on an idea of

averaging all the voxels in the image - instead of just voxels surrounding the target voxel -

with weights obtained from the similarity of the neighbourhood of the voxels. However, as

such, the algorithm is extremely computation demanding and optimization is required. We

tested the algorithm found at Avizo-fire software, but for large datasets, used in this work,

the processing was too slow, in order of days. BM4D [152] is an extension of non-local

means, with a potential to be an excellent method for pure noise removal of tomographic
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images. According to [152] the processing of a 3D image of size of 181x217x181 took 11

minutes, which is over double the time the slowest method tested here is consuming. Yet,

the method look promising and should be considered when the computational capabilities

increase. Also, we consider the DCT-based method to give similar results (although the

noise removal performance is a bit worse) to the BM4D [154, 152] and, thus, can be used

as a reference to measure the performance of the method against XμCT images.

4.1.1 Convolution-based methods

In discrete form, convolution of two images a and b in 3D is as follows:

(a ∗ b)[i, j, k] =
∞

∑
l=−∞

∞

∑
m=−∞

∞

∑
n=−∞

a[l, m, n] · b[i− l, j−m, k− n]. (24)

Convolution is a weighted average of the image a at every location [i, j, k], where

the weighting is given by b = g[i− l, j− m, k− n] (g usually has a much smaller sup-

port and is called a kernel). The convolution operation shifts the kernel to each voxel

location [i, j, k] and performs the weighting operation. As such, this is a slow operation.

A common way to speed up the convolution with large kernels is to perform it in Fourier

space [223]. Fast Fourier transform (FFT) can be performed in O(N log N) time [70].

The Fourier theorem states that convolution of signal f with g is the same as taking the

FFT of both signals and multiplying them. See [80] for more details. Convolution can be

used in many processes such as denoising, sharpening, edge detection, etc. Convolution

with a delta-peak (discrete image terms an image with singe voxel having value 1) will

translate the image by the vector from the center of the image to the delta peak location

[223].

Mean and Gaussian filters are the simplest type of filters. The idea of these filters

is to replace the value of the denoised voxel with the weighted average of its surrounding

voxels. They can be used to remove noise in the image, but they will also diminish

small details from the image. Both filters are based on convolution of the image with a

certain kernel. For N-dimensional Gaussian filter, the weights for the kernel are defined

by Gaussian function:

g(v; σ) =
1

(
√

2πσ)N
e−

||v||22
2σ2 , (25)

where σ defines the variance of the filter, the larger the sigma more blurring is obtained.

For mean filter, the kernel is even simpler; the value of the voxel is replaced by a mean

value of the voxel neighbourhood. The mean and Gaussian filters are not particularly

good at noise removal, but they have other applications in image processing and can be

used as building blocks for more sophisticated applications. In addition, the mean filter

has a negative effect of producing a stopband characteristic with many sidelobes [216].

However, it has been shown that similar results to the Gaussian filter can be obtained by

applying a cascade of box filters [216], thus resulting in a fast implementation of Gaussian

filter. The standard deviation σ of the Gaussian filter when using a cascade of n box filters

with window size T is [216]:



72

σ =

√
nT
12

.

Both Gaussian and mean filters have the useful property of being separable. This

means that an n-dimensional kernel can be expressed as an outer product of n 1-dimensional

vectors. This also means that instead of convolution with a full n-dimensional kernel we

convolve n-times with a 1-dimensional kernel. The benefit is a speed-up in processing as

the amount of calculations per voxel is much less. For example with a 2D kernel of size

of 5x5, 25 calculations per pixel are originally needed, whereas with separated 5x1 and

1x5 kernels only 10 calculations per pixel are done.

4.1.2 Median filter

Median filter is a classical rank-based filter that is good for removing salt and pepper

noise. It assumed to preserve edges better than Gaussian or mean filters on low-noise

images [8]. The median filter replaces the denoised voxel intensity value with median

value of the voxel intensities in some neighbourhood of the voxel. Naturally, due to its

definition, if the size of an object in the image is less than half the size of the filtering

neighbourhood it will disappear.

Median filtering is a slow process compared to linear filtering. The process can be

sped up using accumulation schemes and histogram-based determination of the value of

the center rank [96]. To find a median value from the histogram, a cumulative histogram

of the voxel locality is defined (see section 3.3.1); median value can be found at the center

bin [149]. At the next voxel location, the histogram can be updated using the accumulation

method.

One parameter is used in this scheme:

• spatial parameter r is the radius of neighbourhood

4.1.3 Bilateral filter

Bilateral filter (BF), discussed in more detail in [234], can be presented with the following

equation:

a(v) =
1

w(v)

∫ ∞

−∞

∫ ∞

−∞
a(q) · ws(q, v) · wr(a(q), a(v))dq, (26)

with the normalization coefficient

w(v) =
∫ ∞

−∞

∫ ∞

−∞
ws(q, v) · wr( f (q), f (v))dp. (27)

The denoising effect is obtained using a similar approach as, e.g., in mean filter or Gaus-

sian filter: The surrounding voxels are averaged with certain (non-uniform) weights. The

double integral in equation (26) means the filter works in both spatial domain and range

domain. In spatial domain the weighting is obtained from ws(q, v), the function ws mea-

sures the closeness of the point q to the point v to be denoised. On codomain the weight-

ing obtained wr(a(v), a(q)), is the similarity in gray value. As the weights depend on
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the similarity properties at the locality, they can not be predicted and normalization has to

be incorporated.

In discrete form the filtering of image a can be expressed as:

abf[v] =
1

w[v] ∑
qi∈N [v]

a[qi] · ws(v, qi) · wr(a[v], a[qi]),

where N [v] is a window centred to v, W as in equation (27). The ws and wr can be any

functions but most often Gaussian function (see equation (25)) is used for both:

ws(q, v) = g(||q− v||2; σs),
wr(a(v), a(q)) = g(||a(v)− a(q)||1; σr).

(28)

Two parameters are used in this scheme:

• The spatial parameter σs, the larger features get smoothed when σs is increased.

• The range parameter σr affects the edge sensitivity. As σr increases the bilateral

filter gradually approaches Gaussian convolution, removing the edges more.

4.1.4 Mean shift

Mean shift (MS), introduced in [47], works similarly to bilateral filter; weighting is per-

formed in both spatial and co-domain. The key idea of the mean shift filter is to apply a

kernel density estimator in order to iteratively search the mode of the gray values closest

to the voxel currently inspected. The algorithm works in feature space that combines the

gray values and the coordinates to 4D space (for 3D images). At each data point a window

around it is defined and the center of mass of the values inside the window is calculated.

The window is then shifted to the center of mass. This is repeated until the shift is small.

The resulting gray value is then put into the spatial location of the original starting point.

So in 3D for each voxel v in image a we have a 4D vector ht = [xt, yt, zt, It], t
represent the current time step. The system is initialized as h0 = [v, a[v]]. We iterate the

following:

xt+1 =
∑q∈N [xt ,yt ,zt ] xt·m(ht,q)

m̄ ,

yt+1 =
∑q∈N [xt ,yt ,zt ] yt·m(ht,q)

m̄ ,

zt+1 =
∑q∈N [xt ,yt ,zt ] zt·m(ht,q)

m̄ ,

It+1 =
∑q∈N [xt ,yt ,zt ] It·m(ht,q)

m̄ and

m̄ = ∑q∈N [xt,yt,zt] m(ht, q)

(29)

where m(ht, q) = g( |x
t−qx|2
w2

x
)g( |y

t−qy|2
w2

y
)g( |z

t−qz|2
w2

z
)g( |I

t−a[q]|2
g2

x
) and g(x) = exp(−x).

The final It is the denoised gray value to be put to the a[v].
Three (+1) parameters are required:

• Parameters wx, wy, wz affect the spatial sensitivity and in general are all the same,

thus considered here as one parameter ws.
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• wI affect to the edge sensitivity

• NeighbourhoodN p
r [·] has an effect to the denoising result. The r is a parameter for

the user; p can be selected at the implementation.

• (Number of iterations or some other stopping criterion can be implemented in the

code.)

4.1.5 Anisotropic diffusion

Anisotropic diffusion (AD), first introduced by Perona and Malik in [182], is a generaliza-

tion of diffusion process in such a way that it allows diffusion direction to be dependent

on the edges in the image. Gaussian filtering or generalized Weierstrass transform can

be considered as a diffusion process with a constant diffusion in all directions [257]. In

anisotropic diffusion the diffusion does not happen through edges (defined by parameters)

in the image, thus, smoothing only the constant areas between the edges. For voxel v in

an image, the anisotropic diffusion is as follows:

∂ f t(v)

∂t
= ∇ · (ct(v)∇ f t(v)

)
,

where ∇ denotes the gradient, div(·) is the divergence operator, ct(v) provides the dif-

fusion coefficients at coordinate v at time t. The index t denotes that the system is being

iterated over time. The diffusion coefficient is usually a function of the gradient image as

it preserves the edges well. Most commonly

c (||∇ f ||) = e−(||∇ f ||/K)2
or c (||∇ f ||) = 1

1+
( ||∇ f ||

K

)2 ,

where the K controls sensitivity to the edges.

Following Perona and Malik [182], the basic discrete 3D formulation of denoising

image a of the process is the following:

at+1
ad [v] = at

ad[v] + λω[v], (30)

where the content of the ω[v] depends on the dimensionality and discretisation of the

Laplacian operator. For C6[v] it can be written as:

ω[v] = ct
n[vn] · Δy

[1,0]a[v] + ct
s[vs] · Δy

[0,1]a[v] + ct
e[ve] · Δx

[1,0]a[v]+

ct
w[vw] · Δx

[0,1]a[v] + ct
u[vu] · Δz

[1,0]a[v] + ct
d[vd] · Δz

[0,1]a[v],
(31)

where subscriptions n, s, e, w, u, and d refer to the neighbouring voxels north (j+1),

south (j-1), east (i+1), west (i-1), up (k+1), and down (k-1) respectively, for example,

ct
n[v] = c(||∇at[i, j + 1, k]||). The gradient can be calculated as shown in section 3.2.3.

Equation (30) takes into account only the N6 neighbourhood where distance between the

neighbouring voxels is 1. If N18 of N26 are used the distances (
√

2 for edge connected

voxels and
√

3 for corner connected voxels) are used as weights for the ωs.

Two parameters are required:
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• K controls the sensitivity to the edges.

• Number of iterations adjust the smoothing efficiency.

4.1.6 Variance weighted mean filter

The principle of variance weighted mean filter (VaWe) uses local variance to give weights

for the window of a mean filter [80] (pp. 239-240). Variance is assumed to correlate with

the smoothness of the inspected area. A low variance is interpreted as a flat area and high

variance indicates an edge. A lower weight will be given to areas with high variance and

vice versa. Filter can be described with the following equation:

avw[v] = a[v]− σ2
η

σ2
l
(a[v]− μ),

where a is the image to be filtered, σ2
η is a parameter that describes the maximum variance

of the noise to be removed, σ2
l = Var(N p

r [v]) and μ = Ave(N p
r [v]) denote the variance

and average of a voxel neighbourhood as defined in section 3.2.2. A square neighbour-

hood (p = 1) can be used with user selectable radius r. When the local variance is close

to noise variance, there are no edges in the locality and the value of a voxel is replaced

with the mean of the locality. If the variance is high, i.e., there is edge in the locality, the

value of the voxel remains untouched. By using larger neighbourhood the filter can be set

to filter more grainy noise. More smoothing can be gained by using several passes with

different window sizes.

The method requires calculation of mean and a variance of given window size. The

variance can be calculated using the formula:

σ2
X = E[(X− μ)2] = E[X2]− (E[X])2,

where E denotes the expected value. The mean of an image can be calculated efficiently

using the scheme described in section 4.1.1. The mean of squared values can be calculated

similarly. There are also few variations to note. The adaptive window size version would

enlarge the calculation neighbourhood until the given variance limit is obtained. This will

cause more smoothing on flat areas and less on border. The iterative version uses window

size of 1 but runs multiple iterations until convergence. It can also be altered by using

different statistical estimates of location and scattering around it, e.g., σ-trimming, or

robust variance methods like median absolute deviation [16, 92]. The drawback of these

methods is that they tend to degrade the edge detection property and therefore will not

bring much benefit over the original method.

Two parameters are used in this scheme:

• The reference variance σ2
η can be obtained from the original image.

• The radius of the neighbourhood.

4.1.7 Sliding discrete cosine transform

Discrete cosine transform (DCT) [1] is a Fourier transform-like operation that transforms

a signal into a sum of different frequency cosine functions. DCT has many applications in
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data compression, where, e.g., JPEG, MP3 and MPEG are using it. DCT has a property

of being efficient on approximating signal with a small number of functions than many

other transforms. In addition the method is used efficiently in image denoising [201, 64].

To utilize the DCT on image denoising the image is divided into overlapping voxel

neighbourhoods (a window is slid over the image), whose DCT coefficients are thresh-

olded and then transformed back to spatial space. A common selection for the neighbour-

hood size is 8x8x8 [105]. The values are projected to image space such that overlapping

areas are weighted according to their relevance by a reciprocal of remaining non-zero

coefficients. There are many variants of DCT transform while the most common is fol-

lowing:

Xk =
N−1

∑
n=0

xn cos[
π

N
(n +

1
2
)k], (32)

where k = 1, ..., N − 1 and x is the original 1-D signal. The inverse transformation is the

following:

xk =
2
N
(

1
2

X0 +
N−1

∑
n=1

Xn cos[
π

N
(k +

1
2
)n]), (33)

The multidimensional transform is a composition of 1-D transform along each axis. To

speed up the execution the cosine parts can be pre-calculated for each n and k combina-

tion. We call the method sliding discrete cosine transform (SDCT). The overall algorithm

in overall is presented in Algorithm 4.

Algorithm 4 SDCT algorithm 3D

1: Create an empty result image ar = 0 and an empty weight sum image aw = 0.

2: for each 8x8x8 window n ∈ a do
3: Transform the n into DCT domain using equation (32), we obtain the coefficients

Xk.

4: Threshold the coefficients: set Xk = 0 if Xk < τ for all k, where τ is user defined

parameter.

5: Calculate weight w for the area: let C0 be the number of zero coefficients in Xk,

w = 1/C0).
6: Inverse transform the thresholded coefficients (equation (33)). Insert the resulted

values multiplied by w into the window n in ar. If there already exists a value at the

voxel then add the new value to the old one.

7: Insert value w into all voxels in the window n in aw. If there already exists a value

at the voxel then add the new value to the old one. This is for weight normalization.

8: end for
9: Normalization, ar ← ar/aw. Now ar contains the denoised image.

One parameter is required:

• The coefficient threshold limit τ affects to the denoising strength.
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4.2 Denoising results

Next we compare the various denoising methods in the context of actual XμCT imag-

ing. The quantitative comparison of different denoising methods is complicated as each

method has it own parameter space and characteristic behaviour. For example, any method

can be tuned to smooth the noise to a very low level, but at the same time details of the

image can disappear. The different methods do have their own properties that we group

here roughly:

• Gaussian and mean filters are not sensitive to edges, they smooth the image evenly

everywhere.

• Median filter preserves the edges better by changing its smoothing properties when

passing an edge.

• Anisotropic diffusion, MS and bilateral filter adjust their smoothing kernel accord-

ing to the shape of the details in the image. The edges are left intact.

• VaWe uses constant kernel, but does less denoising at the edges

• SDCT denoises the image by removing the less “important” frequencies of the noisy

area and tries to leave the relevant shape.

In this section we will try to find the characteristics features of each methods and also

try to gain understanding of how those properties would be beneficial in the viewpoint of

XμCT. In addition, the denoising and segmentation are a close couple as the quality of

denoising will have a impact on how easy (or difficult) the segmentation process will be.

Thus, the following segmentation chapter will continue to analyse the effect of denoising

methods on the segmentation process.

4.2.1 Denoising quality

We consider the noise in tomographic images mostly additive with the following model:

a = n + ā, (34)

where a is the observed image, n is the noise and ā is the true (non-noisy) image. The

result of a denoising method â is an approximation of the ā, and an approximation of the

noise n̂ can be found by subtracting â from a. Typically this can be used to approximate

the quality of the result; an optimal denoising method would produce n̂ that contains

only noise, however, all methods tend to remove some non-wanted image components

that can be seen as a structure in the n̂ as well. In XμCT the distribution of n is hard to

approximate due to the multiple phases of the tomographic imaging, thus, it is not easy to

create an artificial image that follows the noise model of XμCT images (see section 2.3)

exactly. To overcome this problem we use two tomographic images obtained with the

same parameters except for the exposure time, which was for single projection image 1 s

for noisy image and 30 s for low noise reference image. Imaging time for the low quality
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sample was around 1 hour and for the high quality one 30 hours. A cross-sectional images

of the sample data is shown in figure 39.

FIGURE 39 The sample images for the denoising comparison. On the left, the noisy, and on the

right, the reference image.

TABLE 3 Denoising parameters found by analysing five patches (P1 to P5) and finding the pa-

rameters that minimize the difference between denoised patch and reference image.

P1 P2 P3 P4 P5 Selected

Gaussian (σ) 1.3 1.3 1.2 1.3 1 1.22

Mean (r) 2.3 2.3 2.3 2.3 2 2.24

Median (r) 4 2.5 2.5 2.5 2 2.7

SDCT (τ) 82 77 77 78 64 75.6

BF (σs, σr) 2, 28 2, 33 2, 25 2, 33 1, 77 2, 28.6

MS (ws, wI , r) 10, 80, 4 10, 70, 4 10, 80, 4 10, 80, 4 40, 80, 3 10, 77.5, 4

AD (K, iters) 16, 9 15, 10 14, 9 15, 8 17, 9 15, 9

VaWe (σ2
η , r) 4, 6 3, 7 3, 8 3, 8 3, 7 3, 7.5

To find the parameters for the denoising algorithms, we compared the denoising

result of the noisy image to the reference image and tried to optimize the parameters such

that most similarity was obtained. To avoid problems with edge and flat area sensitivities,

we took five 1003 patches from the object area of the image and defined the optimal

parameters for each patch. The selected optimal parameter was the average over the

patches, unless there was a window size parameter, when the average was calculated

over the results with the most common window size (mode of the window sizes). The

parameters obtained are shown in table 3.

The comparison of the denoising results is visually demonstrated in figure 40. An

optimal filter would remove only the additive noise, but leave the object edges intact, thus,

the residual image should show no traces of the edges. By visually inspecting the results,

the SDCT image looks the best in that sense and Gaussian, mean and MS the worst. To

analyse the results quantitatively, we also compare the gray value differences between
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FIGURE 40 Comparison of the effect of denoising methods. The results are grouped such that

at the top a normal image and below it a the noise component. From top to bottom,

from left to right: reference image, AD, BF, SDCT, Gaussian, mean, median, MS,

and VaWe.

all the results and reference image, similarly to [79], for the whole sample and for three

different areas (one pure noise and two detail areas) depicted on figure 41. The results
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TABLE 4 The average gray value difference (l1 -norm) of the denoised results to the reference

image. The results are calculated for the whole image, to the pure noisy area, and to

two areas containing image details. The number in parenthesis marks the rank of the

result.

Whole image Noisy area Detail area 1 Detail area 2

Original noisy 6.412 4.689 8.527 8.127

AD 3.077 (5) 1.532 (5) 3.747 (7) 3.305 (4)

BF 3.025 (4) 1.490 (2) 3.712 (4) 3.340 (5)

SDCT 2.681 (1) 1.484 (1) 3.235 (1) 2.997 (1)

Gaussian 3.265 (7) 1.905 (7) 3.726 (5) 3.342 (6)

Mean 3.228 (6) 2.040 (8) 3.737 (6) 3.420 (7)

Median 2.999 (3) 1.714 (6) 3.548 (2) 3.229 (2)

MS 3.573 (8) 1.528 (4) 3.894 (8) 3.448 (8)

VaWe 2.941 (2) 1.525 (3) 3.613 (3) 3.254 (3)

FIGURE 41 The analysis areas for the denoising test. Areas marked with dark color and the

sample shape visualized in gray. The area outside the sample is to analyse the pure

noise area.

are shown in table 4. Here almost all the denoising methods are performed similarly in

terms of preserving the details (probably because we seek the parameters in such a way

that most of the details were preserved). The results indicate that the SDCT performs

best in all aspects: The noisy area is well denoised and also the detail are best preserved.

Gaussian and mean filter are able to preserve the details quite similarly to the many other

methods, but as the parameters are tuned to preserve the details, the noisy area is not

denoised as well. Median filter shows similar performance, but being a bit better on noisy
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patch. AD, BF and VaWe perform similarly, denoising the detail area as well as other

methods, but, in addition, the noisy area is denoised better (in comparison to Gaussian,

mean and median). MS gives the worst result; the reason for this is, by inspecting the

difference image, that it tends to sharpen the edges more than the other methods, thus

causing large residual values at the edges (l1-norm does not even overemphasize these).

This might be a good property for image segmentation, but for pure denoising analysis it

gives a bad result.

To analyse the edge behaviour of the filters more thoroughly we use sigmoid func-

tion to estimate the edge sharpness of the denoised images. The sigmoid is defined as:

S(x) =
1

1 + e−a(x+b)
, (35)

where a defines the slope of the sigmoid (the actual derivative at x = 0 is 4a) and b
defines the location of the sigmoid. In other words, a defines the steepness of the gradient

between “lower part” and “higher part” of the sigmoid and, thus, the sharpness of the

edge. See figure 42 for examples. We fitted the sigmoid to the edge profiles of denoised

images and to the reference image; the results are shown in figure 5. The larger the a
is, the sharper the edge is. In case a is larger than the value from the reference image,

we assume that the method sharpens the result, if smaller it softens the edge. Obviously

Gaussian and mean filter softens the edge notably. SDCT, VaWe and Median smooth

the edge a bit, but keep it close to the original sharpness. AD, BF and MS sharpen the

edge. MS filter sharpens the edge a notable amount. All the methods keep the edge in its

original location (parameter b marginally, by less than half a voxel).

FIGURE 42 Sigmoid function.

In addition to further analyse the behaviour of the denoising method, we used a set

of artificial test images with added Gaussian distributed noise with standard deviations of

15, 25, 35, 45 and 55. The test image contained a square box (value 192) over background

(value 128). Each test image was denoised with each method such that CNR over 8 was

obtained and edge quality was manually optimized. The results are presented in figure 43.

At the low noise levels the results are similar to previous results. When the noise level is
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TABLE 5 The fitting parameters of the sigmoid fitted into the denoised images. a defines the

slope and b defines the location of the sigmoid. Ref refers to the reference image. The

number in parenthesis marks the rank of the result.

a b

AD 1,347 (3) 0,002

BF 1,357 (2) -0,008

SDCT 1,107(5) 0,020

Gaussian 0,829 (8) 0,152

Mean 0,868 (7) 0,128

Median 1,071 (6) 0,044

MS 3,168 (1) -0,452

VaWe 1,117 (4) 0,039

Ref 1,204 0,000

increased the differences between the methods become less pronounced. And actually the

Gaussian filter gives quite similar results compared to the others. The bilateral filter has

an interesting behaviour as at the low noise level it performs well, but falls to the worst

when noise level is increased. SDCT provides the best results at the high noise levels. We

ranked the results according to the total sum of the sigmoid values: SDCT (1), MS (2),

AD(3), VaWe (4), BF (5), Median (6), Gaussian (7), Mean (8).

FIGURE 43 The edge preservation of denoising methods. The sigmoid slope as a function of

the noise std.

4.2.2 Processing time

The processing time of the denoising methods were compared by measuring the time

to process a series of images of various sizes. All methods were tuned to give same

signal-to-noise ratio. The 3D Gaussian and 3D median filters were implementations from
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ImageJ software [209]. The bilateral filter was ImageJ plugin called SUSAN [222]. The

mean filter, VaWe, SDCT, anisotropic diffusion were implemented by the author. All

realizations were multi-core implementations, however, there is probably a possibility to

further optimize the codes, and these results should just be used to roughly compare the

computational burden of the algorithms. In addition, anisotropic diffusion was also tested

using a commercial Avizo-fire (version 7.1) software.

FIGURE 44 The processing time of the denoising algorithms as a function of image size.

The results are shown in figure 44. The results were calculated on a standard desk-

top computer (Intel i7, 16GB of memory). The simplest mean and Gaussian filters per-

formed almost equally as quickly, being able to process even a large image (> 10243)

while the user is waiting. The median filter, VaWe and bilateral filter form the second

group, having a bit longer processing time, but still less than an average coffee break for

even large images. AD is a bit more time consuming but still should process an average

image in reasonable time. SDCT and MS are rather slow processes requiring a night or

more to process large image. We ranked the results according to the total processing time

for all sample images: Gaussian (1), Mean (2), Median (3), VaWe (4), AD (5), BF (6),

SDCT (7), MS (8).

4.2.3 Usability

The usability study of such an algorithms the is hard to perform realistically and, there-

fore, we content ourselves with studying just the number of parameters and how well they

are defined.

For all the methods having only one parameter (Gaussian, Mean, Median, SDCT),

the parameters affects the strength of the smoothing and, thus, those can be considered

equally good. Three methods have two parameters, namely BF, AD and VaWe. For Vawe

and BF, the parameters describe the spatial size of the kernel and the edge sensitivity of

the system. For AD, the parameters (gradient threshold scale and number of iterations)

are not that easy to interpret. MS has three parameters. To this end we conclude to the
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following ranks: Gaussian (4), Mean (4), Median (4), SDCT (4), BF (6), VaWe (6), AD

(7), MS (8).

4.3 Results

Most of the denoising methods are based in the a weighted average on voxel neighbour-

hood around the denoised voxel. The selection of which voxels to average and with which

weights varies. To this end the methods can be further categorized by the selection of av-

eraged voxels. For Gaussian, mean, median and VaWe the averaging is performed over

a local non-adaptive window, thus leading into easily predictable memory consumption

and computing time. The other methods have somehow adaptive collection of averaging

neighbourhoods. Bilateral filter has a constant spatial window, but the weights in the gray

value range make the system adapt into local shapes. Anisotropic diffusion does not have

a particular window, but instead the process lets the gray values diffuse without crossing

edges even from large distances as the system is iterative. SDCT differs in the sense that

it does not average voxels directly but first suppresses the frequencies assumed to be noise

and then averages the voxels in patches such that more weight is given to patches with no

edges.

The denoising tests here indicate that in case there are details in the denoised struc-

ture, the edge-sensitive methods result in more smoothing at the flat areas while preserv-

ing the details. SDCT is the most effective in preserving the details. VaWe and median

filters also performed well in this test. In addition, the edge-sensitive methods keep the

edges of the structures sharper. AD, MS and BF even enhance the edges by making the

gradient steeper; whether this is a benefit or not depends on application.

The usability of the methods is hard to analyse. We can consider the number of

parameters and the ease with which the user can find a good parameter for the current im-

age processing problem. Obviously for mean, median and Gaussian filters, there is only

one parameter, that is, the size of the denoising kernel. As each of those methods is rea-

sonable fast, user can quite easily test the methods and find the most suitable parameter.

The response of the filters on change of the kernel size is also very predictable. In SDCT

there is also only one parameter which, is also easy to determine. SDCT is, on the other

hand, slower and the usability is not as high as with the simpler methods. For VaWe there

are two parameters for the user to select, both of which are well defined in the problem

domain and thus are quite easily determined. For anisotropic diffusion we have one pa-

rameter that defines the sensitivity to the edges and another for the number of iterations.

The parameters need to be defined experimentally and, thus, it is a bit more laborious than

with the previous methods. However, methods that analyse the noise properties to define

the K parameter for AD exist [238]. In MS there are three parameters to be chosen, and

as the method is a bit slow it is not the easiest to use to find the parameters.

The processing time of the methods can be roughly divided into three groups. The

simple Gaussian and mean filters are fast and can be applied to data while waiting. The

median, VaWe, AD and bilateral filters perform quite similarly and can be applied to

the data while taking a short break. The SDCT, NLM, and MS are slow algorithms and
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TABLE 6 Summary of denoising results. The origin 1 is table 4, 2 is table 4, 3 is table 4, 4 is

table 4, 5 is table 5, 6 is figure 43, 7 is figure 44 and 8 is usability.

Origin 1 2 3 4 5 6 7 8 SUM

AD 5 5 7 4 3 3 5 7 39 (5)

BF 4 2 4 5 2 5 6 6 34 (4)

SDC T 1 1 1 1 5 1 7 4 21 (1)

Gaussian 7 7 5 6 8 7 1 4 45 (6)

Mean 6 8 6 7 7 8 2 4 48 (8)

Median 3 6 2 2 6 6 3 4 32 (3)

MS 8 4 8 8 1 2 8 8 57 (7)

VaWe 2 3 3 3 4 4 4 6 29 (2)

require usually at least overnight processing. However, maybe for efficient algorithms a

slightly slower processing time can be allowed if it similarly shortens the scanning time

i.e. same image quality with less scanning time (groups usually have only one XμCT

scanner, but many computers. Having quick scans is in demand).

To this end, we consider the SDCT to provide the best results in terms of image

quality and usability. However, the processing time is long, but there is still room for

optimization (pre-calculations, GPU calculations etc.). The VaWe provides a quite usable

and reasonably fast method that provides reasonable results as well. However, the VaWe

is most usable in cases when the noise std is less than the difference between gray values

of two neighbouring material components in the image. BF and AD are standard methods

quite commonly used and are good choices if one has knowledge of the usage; however,

they have the same limitation as VaWe. Gaussian, mean and median filters are fast and

easy to use, but the results are not on par with the other methods. The can, however, be a

effective and quick solution especially on very noisy images where the edges are already

hard to locate. The overall results are summarized in table 6 to compare the results in

similar way as in [203]. SDCT was the best in this comparison; we can see from the

results that it is good on denoising the image in such a way that the results are close to

the reference image. VaWe become the second in this comparison, and is a “Jack of all

trades master of none”. AD, BF and median gave quite similar results, AD and BF being

better at enhancing the smooth edges of the image. MS has a strong tendency to sharpen

the edges of the image, also causing it to perform poorly on denoising tests, as the edge

sharpening resulted large differences to the reference image. Gaussian and mean filter are

fast, but denoising-wise, perform poorly.



5 SEGMENTATION

Segmentation is a process in which the interesting structures within an image are separated

from one another. With voxel data, this typically means that each voxel is given a label that

identifies the structure to which it belongs. As tomographic imaging usually focuses on

analysing properties like volume, thickness, connectivity and surface area of the material,

the accuracy of segmentation is essential for obtaining reliable results. Segmentation

should be consistent throughout the image to ensure that, if some areas of the image are

well segmented, then the other areas are, as well. It is also beneficial if the analysis

result can be inspected as a function of the segmentation parameter to see how robust the

segmentation method is.

Depending of the property we are interested in, segmentation can be performed in

different ways. figure 45 presents a overview of the segmentation procedure.

FIGURE 45 The segmentation process of a XμCT image analysis.

In figure 45, segmentation of XμCT images is divided into two categories: 1) ma-

terial segmentation, where the material components (matter in a physical sense) of the

image are distinguished from each other and 2) structural segmentation, where the struc-

tural components (possibly of the same material) are distinguished from each other by

their shape. Path a refers to the methods that convert an image that has been input into

an image in which each piece of matter has its own label (thresholding being the most

common method). Path b refers to the methods that convert an image that has been input

into an image in which the structural components have their own labels; region growth,

level sets, and watershed are the most common methods. Path c defines the process of

first separating the material phases and then separating the structures inside the material
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phases (watershed and flood fill, for example). Path d uses structural segmentation to

detect the shape of the object and then further divides it into material components.

Material segmentation can be further divided into two categories: materials consist-

ing of two components (typically air and some other material) or more than two compo-

nents. Structural segmentation can also be divided into two groups: materials in which the

structural components are either not touching (some foams for example) or are touching

(fibres in papers or composites, for example). In non-touching cases, the structural seg-

mentation is trivial; the traditional method of dividing/labelling all non-connected compo-

nents is to use the flood fill algorithm (see section 3.3.3). When the structural components

are touching, segmentation is usually more complicated, and solutions are often related

to the characteristic shape to be restored.

Dividing an image into individual material components is achieved using methods

that analyse the gray scale values of individual voxels and/or their neighbourhood. In

principle, each material component can have it’s own gray scale value and segmentation

can be performed by choosing the gray scale value of the desired component using rela-

tively simple tools. Segmentation into more than two phases is more complicated. Noise,

beam hardening artefacts, and edge spreading are impossible to fully remove from the

image (see section 2.6). figure 46 shows the results of the false gray values near the edges

of artefacts.

FIGURE 46 An edge spreading on multiphase segmentation of igneous rock. In the left labelled

image, air is represented by black, the light mineral is represented by dark gray, and

the heavier mineral is represented by light gray. In the right image (which shows the

original data), the gray value corresponds (roughly) to the density of the material.

As the interface between the phases of brightest and darkest gray value distributions

is smooth, values exist that belong to phases between these two.

Various methods exist for gray value image segmentation problems. The methods

can be grouped in many ways, as shown in [52, 80, 264, 274, 262]. We define the main

groups as follows:

1. Threshold-based methods

2. Region-based method

3. Partial differential equation (PDE) -based methods

4. Graph-based methods
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5. Artificial neural network-based segmentation

6. Morphology-based methods

Threshold-based methods [80] are simple considering only the voxel gray value in their

basic form, not taking into account any shape or region similarity. Threshold is a common

segmentation method used in XμCT, because it is easy to understand and to adapt to

different external measurements, like known volume or structure thickness of the data. It

is an attractive choice for segmentation due to its simplicity and is the reason that different

materials should be separated by their gray values. The selection of the threshold value

can have a large impact on the analysis results. Moreira et al. [166] and Nogueira et

al. [173] have studied the effect of threshold selection on the image analysis results.

They found that variations between the selected threshold values can be large between

the operators and automated method, leading to considerable divergence in the average

porosity values. Many methods for automating the algorithm have been proposed: Otsu

[28], entropy-based methods, iterative methods [256], and local methods [251] can be

used to find the suitable threshold value. For homogeneous materials threshold selection

using data obtained from shadow images was proposed in [21].

The region-based methods [80] assume voxel value similarity and connectivity be-

tween the voxels. It is possible to incorporate many kinds of similarity criteria [100].

Region-based methods are typically more laborious to use because they require seed re-

gions that are often defined manually [80]. For images with more artefacts, region grow

can be used to split the sample into two or more phases. For instance, in [196] it is used

for binarisation of an XμCT image of a paper, in [215] for an XμCT image of a iron ore

sinter, and in [82] for rock. Region grow based methods are fast and especially useful

when trying to separate certain connected structural components in the image when the

component areas of the image have the same gray value. The watershed algorithm[254]

is an algorithm that can be used to separate connected structures, into smaller pieces us-

ing certain rules. For structural segmentation of porous or grainy material, the watershed

algorithm is often used to separate the individual pores or grains; as shown in [2] and

[252]. Faessel and Julin [60] used a method called stochastic watershed to avoid the

over-segmentation.

PDE based methods are a family of tools used for denoising [182, 199], segmen-

tation [36, 115], and many other image processing [41, 42] algorithms. The connecting

thread between the methods are the partial differential equations used to represent some

specific properties. In segmentation, these algorithms usually assume voxel similarity

and connectivity between the voxels, and adds constraints to the shape using the surface

tension property. These methods are slower than the ones from the first two groups and

usually require special knowledge to tune the algorithm. PDEs are often used to solve

level-set method-type segmentation problems, although they have not gained great pop-

ularity on XμCT material analysis, probably due to high computational costs, but also

and lack of commercial implementations. In [63] the level-set method was used to detect

fatigue crack propagation. It has mostly used in biological [186, 5] and medical [236] ap-

plications where one or few organs are segmented from neighbouring tissue. As with the

region growth, these methods usually require certain prior information for initialization.
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The graph-based methods can be used in similar applications as PDE-based meth-

ods [18], such as for edge-preserving denoising [18] and segmentation [34]. Graph-based

methods also have high computational requirements, however, they are mathematically

more stable, do not require approximation of the PDEs [34], and can be a viable option

when computing power increases. In segmentation, voxel similarity, connectivity between

the voxels, and additional shape constraints can be used to handle the edge discontinuities

in a similar manner as in PDE-based methods.

Artificial neural network-based segmentation methods are adaptive feature based-

systems that can be trained to adapt to specific problems. In [53], an artificial neural

network was used to recognize bone structure. Pulse-coupled neural networks are models

based on the feline visual cortex and were used to segment MRI images in [44].

Many other tools and adaptations are used as well. In [255], a grainy sample is

separated using a deformable surface that allows analysis of each individual grain. In

[211], cracks in carbon-epoxy laminate were segmented using seeded growth. In a fibrous

sample, it is of interest to separate each individual fibre, which was partially achieved

in [9] and [10] by tracking the lumens of the fibres, and in [269] and [150], a medial

axis transform was used to segment non-hollow fibres, and in [259], segmentation was

obtained using graph cuts. In [156], (non-hollow) fibre segmentation was carried out

using the heavy ball method. In bone research, it is interest to analyse both the structure

of the pore space and the different types of bone. In [183], constrained region growth was

used to detect the remodelling zones of a bone. To separate the trabecular and cortical

bone, various methods exist based on image morphology [194], [40] and image filtering

[146].

5.1 Segmentation of XμCT Images

The most commonly used segmentation methods in XμCT are relatively simple. The

simplest and most adequate method is usually the most suitable. The properties of XμCT

images (e.g., large datasets, no gradients, and material separation by a gray value based on

density) and the requirement for simple use makes thresholding an efficient segmentation

method for many purposes. The need for other segmentation method occurs when the

image quality drops and thresholding cannot produce acceptable results.

5.1.1 Material Segmentation

Segmentation refers to an operation during which the voxels of the image are grouped

according to their gray value or geometrical similarity. In material segmentation, the

voxels are grouped according to their gray value similarity.

Once the segmentation is complete, a binarised or labelled image is produced. The

binarised and labelled images may require post processing to remove falsely labelled ar-

eas. There are several possible techniques for post processing. Opening and closing

operations are effective for removing noise (see section 3.3.2). During opening and clos-

ing operations, the size of the noise particles define the structuring element or the number
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of iterations of subsequent dilations and erosion (opening or closing). The operations can

be performed before segmentation using gray value morphology. A median filter is also

effective for removing small, falsely labelled areas from the image. Flood fill can be used

to find the some property of the separated particles and the ones below some threshold

(volume, surface area, circularity etc.) can be removed.

Thresholding

Thresholding is the most common and simplest way to binarise an image. The idea of

thresholding is to divide the voxels according to their intensity value:

T(a, τ) =

{
a[p] > τ ⇒ p ∈ Object,
a[p] ≤ τ ⇒ p ∈ Background,

where τ is the chosen threshold value.

Fog high quality images, thresholding is an efficient way for segmenting an image.

However, it requires the histogram of the image to show clear peaks for each material. To

demonstrate the use of histograms and thresholding, see figure 47.

Due to artefacts the gray value of each material is not constant; instead it has a dis-

tribution that usually overlaps with neighbouring materials. The threshold value should

be selected to optimally divide the image in least worst way. There are a few publications

([166, 173] for example) that claim large error margins for manual thresholds. To find

the optimal threshold value automatically, several methods have been proposed. It is gen-

erally more accepted method to use an automatic threshold selection algorithm. Sankur

[204] lists 40 methods and categorized them into six classes:

1. Histogram shape-based methods, where the τ is found by analysing the shape of

the histogram, e.g. [198, 191, 76].

2. Clustering based methods, where the gray values of the image are clustered into

two groups (e.g. [193, 118, 177]).

3. Entropy based methods that aim on minimizing the entropy of the voxel groups

(e.g. [136, 109]).

4. Object attribute-based methods that attempt to find a τ that maximizes the similarity

between the gray value image and binarised image (e.g. [237, 95]).

5. Spatial methods use higher order probability distribution or pixel correlations (e.g.

[69]).

Many automatic threshold selection methods are tuned to work with certain types of data

and may not be applicable to XμCT images. The automatic systems optimize certain

properties of the image or histogram that may not most suitable for the XμCT images.

An another, perhaps more recommended way for selecting the τ is to use an inde-

pendent measurement compared to the results measured from the binarised image. In-

formation about porosity (measured, for example with a mercury intrusion porosimeter,
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(a) Original image (b) Labelled image

(c) Histogram

FIGURE 47 Thresholding, histogram, and labelled images. The vertical lines in the histogram

denote the (hand-selected) threshold values, and the colors of the labelled image

denote the colors of the areas in the histogram.

see [99] for details), density, weight, volume, or thickness of details (seen by some other

imaging method) can be used to ensure the threshold value.

In some cases the thresholding is not working due to the reason that the gray value

ranges of different material phases overlap we need a stronger approach for the segmen-

tation. Region grow based methods are the next option where also the locality and neigh-

bourhood of the voxels are taken into account. This adds more work to the segmentation

process as the seeds for the regions need to be determined.

Multiphase thresholding

In the case of multiple phases, similar-histogram based method than thresholding can be

used to label the voxels, see figure 49. The voxels are divided into more than one class

by finding more than one threshold value. The Otsu’s method [177] has possibility to

find multiple thresholds, and Mardia and Hainsworth (MH) have introduced a Bayesian

based threshold method [155] for image labelling. Their method is based on the Bayesian

allocation rule which assigns voxel gray values into group to maximizes the likelihood of
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that allocation.

Another general multi-phase segmentation method is based on Gaussian mixture

model (GMM), which assumes that images have n number of regions distinguishable

from each other by their gray value distributions, and assumed to follow a Gaussian shape

with a mean of μn and a standard deviation of σn. The gray value probability distribution

for the whole image is a mixture of the Gaussian distribution from all regions:

p(θ) =
n

∑
i=1

φiN (μi, σi),

where φ represents the weight given for each normal distribution N , and θ is the group

of parameters describing the whole distribution (θ = φ1...phin, μ1, ...μn, σ1, ..., σn). The

system is usually solved using an expectation maximization (EM) algorithm, which is

described in more detail, for example, in [62].

In figure 48 an example of the Gaussian mixture model is given for an igneous rock

image.

FIGURE 48 An example of the Gaussian mixture model for an igneous rock sample. The filled

areas represent the Gaussian components of the image, the thick line is the sum of

the Gaussian components, and the thin line is the original gray value probability

distribution obtained from the image.

Region Grow

Region growing [80] is a method for determining connected areas in an image. The

connectivity is based on similarity on voxel gray values, and it can be the gray value itself

or some value calculated from the it (e.g., the gradient or standard deviation). Region grow

is typically used in cases where the gray value distributions of separate phases overlap,

but the edges of the objects are well defined (in which case the thresholding does not

produce satisfactory results). Algorithm 5 describes the method in more detail.
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Algorithm 5 Region grow

1: For each desired region, Vi define at least one seed point (i.e, a point that belongs to

the region).

2: For each Vi if there is a voxel in Bout(Vi) that fulfils the region similarity rule, it is

added to the region.

3: Repeat step two until there are no voxels that do not belong to any region.

In practice, there are two approaches to region grow, either all the voxels of the

image must be in a certain region (in which case step two of Algorithm 5 must be changed

so that at least one point is added to some region), or the system is stopped when certain

criteria are met. For both approaches, certain rules will hold true for the regions:

• Vi is a connected region;

• Vi
⋂

Vi = ∅, regions do not overlap; and

• All pixels in Vi must satisfy the similarity criteria.

A common way to define the seed areas is to use the threshold to find the regions that are

known to belong the correct phase. The problem here can be the noise which can cause

false seeds. To speed up the processing, it is useful for each region to have a list of its

current neighbours stored in a histogram type container (in which the voxels are indexed

according to their gray value), and thus the next voxel of requires gray value is fast to

acquire.

The ruling for voxel similarity is typically gray value based; also gradient based

similarity measurements are used in case the edges area sharp. The main problem with

region growing is the leaking that occurs when the edges of the objects are not sharp; edge

sharpening preprocessing can be useful (e.g., AD, BF, and MS denoising).

The benefits of this method are that it is simple, relatively fast, and requires an

understandable parameter set. It usually tolerates noise quite well and also provides good

customization possibilities. The following issues must be defined to realize the region

grow algorithm:

• The set of seed points

• Definition of similarity

5.1.2 Structural Segmentation

In structural segmentation, the problem in practice is separation of the objects that are

touching. Usually the point where the objects touch is small, and the structure should be

separated from its local narrowings into separate substructures. We consider here mostly

the watershed algorithm that is versatile in such a segmentation in case there are several

object that need to separate simultaneous. In case there are only few objects, more manual

methods can be used, and to this end we present the Edwards-Wilkinson equation based

segmentation method.
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Watershed

The watershed algorithm can be used to separate structures that are connected to each

others by a local narrowing. The idea in 2D is to consider the gray value image as a

topographic map, where the gray values represent the height of the corresponding pixels

on the map. The algorithm then finds the lines that work as a watershed in the topographic

map (i.e., if water droplets would fell on both sides of the line, they would slide down in

separate directions). For 3D images the topographic map can be interpreted as a gravity

field where randomly placed particles would be attracted to certain gravitation maximums

and the watershed lines are actually surfaces that separate the interfering volume of the

gravitation maxima.

Several algorithms determine the watershed lines, one efficient for large 3D images

is given in Algorithm 6 (modified from [27]). The distance map adt of the original binary

image is given as a parameter.

Algorithm 6 Watershed

1: Invert the distance map: adt = max(adt)− adt.

2: Find the local minima of adt. Let Vi be the group of pixels belonging to i th local

minima. Notation min(Vi) is used for the local minima value belonging to Vi.

3: Start flooding with virtual water. Let ht depict the height of the water level, while h0

is initialized to the global minimum gray value in adt.

4: while ht is less than the maximum value at adt do
5: ht ← ht−1 + 1
6: For each Vi with a min(Vi) = ht−1, add the free neighbouring pixels with gray

value ht to the Vi, but only if the labelled neighbours of that pixel have have the same

label i.
7: end while
8: The watershed lines are now where virtual water from two or more basins Vi meet.

This method works if the structures themselves do not contain any local narrowings

(smaller than the areas where the objects are connected). It is efficient to separate the

individual pores of a connected pore network or individual particles.

The watershed algorithm tends to over-segment. With a normal watershed each

local minimum creates a new basin area in the image. In natural images, the noise can

cause more local minima than necessary. There are several schemes to avoid the over-

segmentation. First is by preprocessing, in which denoising and geodesic reconstruction

(see Algorithm 2) can be used to remove minimums that are close in codomain. Another

option is a seeded watershed. In a seeded watershed the basins are initiated only from the

given seeds, that are provided separately. This sometimes provides better result because

the seed image can be processed separately. A third option to avoid the over-segmentation

is to use post processing operations, some examples of those include:

• Small areas are merged to its neighbour. Thus, when finished, if ∑v∈Vi)
v value is

smaller than a given threshold, it is merged to a neighbour.
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• Areas where the narrowing between the basins is small are merged. That is let

Vi and Vj be neighbouring basins, if |min(Vi) −min(Vj)| is smaller than some

threshold, the basins are merged. This can be obtained using the geodesic recon-

struction.

• Neighbours with large common interface area are merged.

EW Based Interface Detection

In cases where only a few objects in the image are to be segmented, manual tools can

be used. The level-set and active contours method are common in these situations. Next

a simple and fast image segmentation method suitable for planar, tubular and spherical

objects [241] is presented. This method allows a flexible sheet (with a known location) to

adapt itself to the shape of the interface. The method is based on the following Edwards-

Wilkinson equation:

∂h(x; t)
∂t

= ν Δh(x; t) + F + ρ f (x, h(x; t)), (36)

in which x = (x, y) are the lateral coordinates of the sheet and h(x; t) is its depth at time

t. Thus, the location of the sheet in the 3D image at time t is (x, y, h(x; t)). The Laplace

operator, Δh(x; t), is the surface tension term, which gives the sheet resistance to noise

and defects in the surface. Surface tension is controlled by factor ν and controls the toler-

ance to noisy pixels and discontinuities. a(x, z) is the grey-scale value of the original 3D

image at (x1, x2, z). A constant downwards force, F, makes the sheet propagate towards

the interface, and ρa(x, z) describes the spatially varying force opposing its propagation.

While the sheet is above the surface, noise in the image will cause small fluctuations

in ρa(x, z), which are counteracted by the surface tension of the sheet. When the sheet

meets the surface, there will be an increase in the opposing force causing the sheet to halt,

after which the sheet will fluctuate locally and adapt itself to the topography of the surface.

The chosen surface tension then determines how the interface follows sharp features (i.e.,

indentations, holes, and protrusions) in the topography. When the terms in equation (36)

are in steady state, h is immobile and the final position of the surface of interest. If GSV
is defined as the average gray-scale value, GSV = Ave(a(x, h)), of the surface to be

detected, ρ = −F/GSV is chosen to allow for the sheet to come to a halt at the surface.

The Weierstrass’ function [30] provides an efficient way to discretise the method.

The Weierstrass transform is closely related to the the diffusion equation, which has a con-

stant diffusion coefficient. Using a property of the Weierstrass transform, Wt{Ws{ĝ}} =
Wt+s{ĝ}, the equation can be expressed in a form suitable for discretisation,

ht+Δt = WΔt{ht}+
∫ t+Δt

t
Wt+Δt−s{ghs} ds. (37)

Implementation of the algorithm is the shown in Algorithm 7. Image a is given as

the parameter. F is the down force, which is in practice 1. Parameter ρ defines the sheets

sensitivity to gray values (i.e., the gray value that stops it). Parameter σ defines the surface

tension.
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Algorithm 7 EW segmentation

1: Initialize the sheet ht, t = 0 to the desired level: h0 ← l. The sheet is often initialized

at l = 0, but occasionally if the surface to be detected is far from the z = 0 level, it

is convenient to initialize it closer to it.

2: repeat
3: Apply the vertical forces: ht[i, j] = ht[i, j] + F + ρa[i, j, ht[i, j]];
4: Apply the surface tension: ht[i, j] = Wσ(ht);
5: t = t + 1;

6: until The sheet is stable or the iteration limit is reached.

TABLE 7 The similarity percentage of different multiphase segmentation methods. The phases

refer to material phases shown in color in figure 49.

Phase 1 2 3 4 5

GMM - K-means 77.2 66.1 59.1 66.3 11.3

MH - GMM 71.8 56.2 55.1 74.7 21.5

K-means - MH 92.8 83.2 87.5 79.5 52.4

The tubular and spherical shapes are obtained using a coordinate transform to shape

the sheet.

5.2 Segmentation results

In this section, we provide the segmentation results from the perspective of XμCT imag-

ing. We consider the differences in denoising methods when separating the material

phases (intensities) from the image. In addition, we show a few commonly used struc-

tural segmentation methods. figure 49 shows a results obtained using few semi-automatic

multiphase segmentation methods.

As we do not have a gold standard for segmentation results, it is impossible to

estimate how well the methods performed. table 7 compares results between different

methods. There is a significant variance between the methods, and it is impossible to say

which performs the best. To this end, some controlled test samples is needed.

5.2.1 Segmentation of matter

In this section we analyse the material segmentation methods. Considering the results

from the previous section we consider three denoising methods: 1) Blurring methods

(Gaussian), 2) Edge sensitive methods (VaWe), and 3) The edge enhancing methods (MS).

Simple structure

The first test on segmentation is a simple case of binarisation of pencil lead (graphite)

mixed with epoxy (see figure 50). The pencil leads are 0.7 mm thick and broken into
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FIGURE 49 The result of few multiphase segmentation algorithms. The upper left panel original

image shows the Gaussian mixture model. The lower left panel shows K-means

segmentation, and the lower right panel shows Mardia-Hainsworth segmentation.

In the segmented images, black and darkest gray represents the void and other gray

values different minerals.

short sticks. The approximate volumes of the leads are known: there are 12 pieces of

lead; the thickness of apiece of lead varies between 0.70 mm to 0.72 mm, and the length

of each piece of leads is 60 mm. These pieces of lead are broken into shorter pieces and

mixed with epoxy. The sample is imaged using a Skyscan 1172 XμCT scanner, with the

X-ray tube set to 44 kV source voltage and 76 uA current. The rotation step is set to 0.25

degrees. The voxel size of the resulting image is 16.16 μm with a resulting file size of 2

GB.

Due to the variation in lead thickness, we have a certain margin of error within

the approximation of the sample’s real volume. In addition, the density of epoxy is not

homogeneous; some air bubbles are present, as well as some more dense spots (perhaps

resulting from the process of mixing the two components by hand). The dense spots pose

a challenge for segmentation as the density of the graphite is very close to the density of

some of spots. However, as we know that our material consists only of bulky pieces, we

can filter out the dense particles that are smaller than a certain volume threshold. This

can be done from the binary image using flood fill, or from the gray value image using

top-hat filtering; see section 3.3.2 for details. Here, we used the top-hat transform in order

to obtain non-biased volume threshold curve to select the threshold value.

Figure 51, which shows the results, also presents the volume of the binarised graphite

as a function of the threshold value. The results indicate that even the simplest denoising

methods are able to denoise the sample and to provide satisfying binarisation results. For
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FIGURE 50 A cross-sectional image of the pencil leads in epoxy.

non-edge sensitive methods, the slope of the curve is steeper, indicating that the small

changes in threshold value will affect to the volume of the sample more than with the

edge-sensitive methods. However, because the top-hat transformed curve is close to the

original curve (i.e., not many small particles have been removed), the changes in threshold

value are more likely to affect the thickness of the structures than to add new solid regions.

That effect can be useful if the thickness of the structures is known; the know thickness

value can be used to validate the threshold value selection. For the edge-sensitive meth-

ods, it is obvious that the bright blobs are not smoothed, and that these blobs should be

removed before they are compared with the experimental value. The benefit of these

methods is that the slope of the volume-threshold curve is lower, thus providing a longer

“OK” section for the threshold value; this makes the selection of an appropriate thresh-

old value more robust. If the denoising time is being considered, the non-edge-sensitive

method is a reasonable choice for denoising, though an experimental measurement for

selecting the threshold value is also required.

The final measurement performed in this study involved analysing the surface area be-

tween the different pieces of the contact area. The results are shown as a percentage of

voxels belonging to the contact area (see table 8; the results for all denoising methods
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(a) Gaussian filter

(b) DCT

(c) VaWe

(d) MS

FIGURE 51 The threshold vs. object volume for the segmentation of the simple graphite epoxy

sample. The solid line is after top-hat filtering and dotted line is without it. The

horizontal line is the experimentally measured volume of the sample and the vertical

line shows the threshold value when the true volume is expected. The gray area

shows the error limits of the measured volume. The graph has been zoomed to

focus on the area of interest.
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can be found in table 14 of Appendix 2). Of note here is the variability of the results.

This is because the smoothing denoising methods lower the details detectability of the

system, and thus makes larger area to appear being in contact. The real contact area of

rigid particles, with mostly round shape, is near zero. Due to the limited resolution of the

imaging system, the contact areas reflected are larger than the real contact areas. Hence, it

is necessary to acknowledge that this analysis might not actually measure the real surface

area of the contact area; instead, it may actually measure the surface area of the objects

that are so close that they are considered to be touching one another, keeping in mind

imaging limitations, noise, and post-processing.

TABLE 8 The percentage of voxels belonging to the contact area.

Gaussian DCT MS Vawe

0.22 0.08 0.09 0.09

We also considered the automatic threshold selection methods. We used the algo-

rithms provided by ImageJ [209]. We used the resulting gray value to binarise the image,

then determined the corresponding solid volume. The results are shown in figure 52 (the

results for all denoising methods can be found in figure 87 of Appendix 2). The results of

this portion of the study are further discussed in section 5.2.1.

FIGURE 52 The volume of the sample determined using some automatic threshold selection

methods. The red line indicates the measured volume. Isodata, Moments, and

Triangle gave out-of-scale, truncated results.

Grainy structure

The second segmentation test was a more complex binarisation of pencil lead (graphite)

that had been crushed down to various particle sizes and mixed with epoxy. The weight

of the crushed pencil lead particles is measured to approximate the volume of the lead.
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The sample was imaged using a Skyscan 1172 XμCT scanner with an X-ray tube set to

44 kV source voltage and 76 uA current. The degree of rotation used was 0.25. The voxel

size of the resulting image was 16.16 μm resulting in a file size of 2 GB.

Because we did not know the size distribution of the grains, we were unable to use

the top-hat filter to remove the smaller particles from the data. The epoxy contained some

spots that were close in density to the graphite; however, these spots were slightly less

dense than the graphite, and their edges were usually less sharp. The adjust for this, the

parameters of each denoising method were adjusted in order to smooth the spots and that

each method would give almost the same noise standard deviation for the noisy area.

We also used the automatic threshold selection methods (provided by ImageJ [209])

with this sample. The resulting threshold value was used to binarise the image, after which

we determined the corresponding solid volume. The results from this analysis is shown in

figure 54, and the results for all denoising methods can be found in figure 88 of Appendix

2). Studying the result here, and also from figure 52, we conclude that the automatic

methods seem to be slightly sensitive to the denoising method and can be unreliable.

Some methods, such as those of Huang, Li and Otsu seem more robust for this kind of

process. However, the test material related to the automatic methods in this study is quite

small, making it impossible to reach reliable conclusions

Multiphase structure

To compare the segmentation of a multiphase case, we created an image in which the

volume of the materials was known. The materials we user were an eraser, a rubber band,

and a pencil lead (graphite). The volume of each of these materials was first determined

by XμCT; the materials were first scanned whole, then chopped into small pieced and

immersed in the epoxy. The eraser and rubber were easily distinguished from the epoxy,

while the graphite created a challenge for the segmentation, as the gray values overlapped

with the background intensity. The sample was imaged using a Skyscan 1172 XμCT

scanner with an X-ray tube set to 72 kV source voltage and 137 uA current. A rotation

step set to 0.3 degrees and an aluminium filter of 1 mm were used to avoid beam hardening

of the artefacts. The voxel size of the resulting image was 4.47 μm, resulting in a file size

of 123 GB. For practical reasons, the file was cropped and rescaled to obtain 18 μm voxel

size; the final file size was around 2 GB.

The segmentation of the rubber band and the eraser was straightforward, as these

items could be segmented using thresholding. We calculated the joint volume of these

materials and determined the threshold value using the volume-threshold curve. The sep-

aration of rubber band and eraser was not that straightforward, figure 55 shows the over-

lapping gray values of the rubber band and eraser caused by the internal structure of the

rubber band. Thus, plain thresholding is not sufficient for separating these two phases.

We used morphological gray value opening (the operation is defined in more detail in al-

gorithm 8) to level the gray values in each phase (see figure 56 for the result). We used the

binary image of rubber band and eraser as a mask for the levelled image, then thresholded

the result to separate the eraser and rubber band. The results are shown in table 9, and the

result for all denoising methods can be found intable 18 Appendix 2. The average amount

of error was 1.5%, with the mean and the Gaussian filter giving the smallest amount of
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(a) Gaussian filter

(b) DCT

(c) VaWe

(d) Mean shift

FIGURE 53 The threshold vs. object volume for segmentation of the graphite particles epoxy

sample. The black line is the volume as a function of the threshold. The horizontal

line is the experimentally measured volume of the sample. The vertical line shows

the threshold value when the true volume is expected. At the cross-section of the

horizontal and vertical line is the tangent of the black line. The gray area depict the

error limits for the true volume. The graph is zoomed into the area of interest.
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FIGURE 54 The volume determined using some automatic threshold selection methods. Red

line is the measured volume.

FIGURE 55 A 2D crop of the segmentation sample image. The brightest material (with internal

structure) is the rubber band, the mid-gray is the eraser, and the darkest gray (oval

shape) is the graphite. At the far left side of the image, the edge of the plastic

container is visible.

error.

ar contains the mask for rubber band and ae contains the mask for eraser.

The segmentation of the graphite, however, was entirely different from the segmen-

tation of the other materials. The shadow and streak artefacts (see section 2.6) cause

variation in the background gray values overlapping with the gray values of the graphite.

This makes it impossible to find a threshold value that would separate the graphite from

the background. We have no evidence for following, but in our opinion, if the sample con-

tains materials with large density differences, the streaks and shadows very easily hinder

the segmentation of the lighter materials. If the acceleration voltage is adjusted accord-

ing to the high-density material, the contrast will be low at the least dense material. If

the acceleration voltage of the XμCT scanner is adjusted according to the low-density

material, the high-density material will cause shadows. The properties that differentiate
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Algorithm 8 Morphological separation

1: aτ ← T(a, τ), where threshold value τ is selected, such that the rubber band and the

eraser are separated from background.

2: aleveled ← a ◦ b, where the size of b is selected, such that the shape of the objects

is preserved as well as possible, but a reasonable smoothing of gray values is still

accomplished.

3: ae+r ← aleveled ∪ aτ, where ∪ denotes the masking operation.

4: ar ← T(ae+r, τ), where τ is selected to separate the rubber band from the background.

5: ae ← ae+r − ar

the graphite from the background are the shape of the tubes and the faster gradient at

the edges. We used this information to build a segmentation algorithm based on region

growing, where the enlargement of the area was based on the gradient such that the re-

gion did not expand into areas surrounded by large gradients. This allowed us to binarise

the image into a solid and a background, and the graphite region could then be separated

by subtracting the (already known) rubber band and eraser from the solid volume. This

method is clearly more complicated, more time consuming, and harder to control. The

parameters of this method are the seed points and the gradient step limit, and we were

therefore unable to create a similar volume–parameters graph to ensure the correctness of

the volume. The obtained graphite volumes of this method are given in figure 9. In this

case, the more advanced denoising methods clearly give better results. The property of a

denoising method of preserving the large gradients (the edges of the relevant objects), or

even sharpening them, is beneficial for this kind of a segmentation. Here, the edge sharp-

ening methods gives the best result, while the other methods all have quite a large amount

of error. The result from all denoising methods can be found in table 18 of Appendix 2;

these results show how the anisotropic diffusion is only slightly worse in this method than

it is with other comparable methods. However, the stronger edge-sharpening property of

MS denoising makes it more suitable for this kind of a segmentation problems (see figure

57 for comparison of the edge sharpening property of these methods).

FIGURE 56 A 2D crop of the segmentation sample image shown after the gray-value opening

with a radius of 4 pixels.
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(a) (b)

FIGURE 57 A cross-sectional image of the denoising result of AD (a) and MS (b).

TABLE 9 The volume of different materials in voxels, obtained from the labelled data. The

values are rounded to the closest thousand (k denotes kilo).

Material Measured Gaussian DCT MS Vawe

Eraser 78731 k 79475 k (101%) 79958 k (102%) 80067 k (102%) 79946 k (102%)

Rubber band 15109 k 15270 k (101%) 14909 k (99%) 14772 k (98%) 14869 k (98%)

Graphite 4237 k 5139 k (121%) 4842 k (114%) 4301 k (102%) 5927 k (139%)

5.2.2 Segmentation of Structures from Binarised Images

To analyse the quality of the segmentation, we performed the thickness analysis for the

binary images on the simple pencil leads (see section 5.2.1). The thickness analysis is

also a method for separating the structures according to their thickness. The average

thickness of the structures were determined using the local thickness transformation (see

section 6.1.2). The results are shown in table 10 and the results for all denoising methods

can be found in table 15 of Appendix 2. The values in the table were determined by

taking the average gray value from the center part of each piece of lead (determined by

thresholding the distance transform of the structure), thus avoiding the problems the edges

would cause. The results from the different pieces of lead were all quite similar. However,

this type of analysis tends to underestimate the thickness values; this is because the local

thickness transform finds the “maximal fitting ball”, which is very easily disturbed by any

noise in the sample. For example, the values for the MS binarisation were lower than the

others due to edges that created some binary noise in the sample. Fortunately, this error

represented less than 1.5% of the error caused during the preprocessing method, which is

less than the voxel size of the image.

In addition to conducting a thickness analysis, we separated the individual leads

pieces using the method described in section 12. The number of individual graphite pieces

found with each segmentation method is shown in table 11 (the results for all denoising

methods can be found in table 16 of Appendix 2). The difference in results is mostly due

to the star artefacts (see section 2.6) caused by impurities in the graphite. The artefacts
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(a) Original data with star

artefact.

(b) VaWe filtered and seg-

mented.

(c) Gaussian filtered and seg-

mented.

FIGURE 58 An example of an effect of a start artefact (see section 2.6) to segmentation process.

TABLE 10 The average thickness of the leads analysed by local thickness transformation. If the

real thickness of a lead is approximately 710 μm, the largest error (1.3% error) is

with the MS.

Gaussian DCT MS Vawe

704,8 μm 706.8 μm 700,6 μm 705,6 μm

cause unpredictable events to occur during the segmentation process (see figure 58 for

visual demonstration). The more edge-sensitive algorithms do not smooth these artefacts

as the smoothing filters do; therefore, the artefacts remain in the binary data, causing

segmentation problems.

TABLE 11 The number of individual graphite particles found using each denoising method. The

real number of particles (108) was determined manually.

Gaussian MS DCT VaWe

108 109 109 111

To further analyse the crushed graphite pieces (see section 5.2.1), we used the local

thickness transform to define the thickness distribution (see section 6.1.2) of the particles.

This method can also be used to separate the structures according to their thickness. The

results of the thickness transform are shown in figure 59 (see Appendix 2 to see the re-

sults for all denoising methods). The shape of the distribution was relatively similar for

the larger grain sizes between the different methods. With the non-edge sensitive meth-

ods, the small particles were smoothed out or merged into the larger particles. This caused

the distribution to be missing small particles, and it also widened the other peaks to the

right, thus creating more large particles. The edge-sensitive methods all had similar per-

formances due to their similar shape distributions. However, we do not have a ground

true particle size distribution for this material and the results should be interpreted only

qualitatively.

We also used the watershed segmentation (see section 12) for this sample. table

12 is presents the number of separated particles captured by each method. The result

for all denoising methods can be found in table 17 of Appendix 2. There were major

differences in the number of separated particles captured due to the different denoising
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FIGURE 59 The volume of particles as a function of particle diameter.

methods used; some methods were able to smooth out more particles and combine them

in different ways, depending on the parameters given.

TABLE 12 The number of particles found using a watershed for particle separation.

Gaussian DCT MS VaWe

7198 20017 12012 57592

5.2.3 Segmentation of Structures from Gray Value Images

The segmentation of structures directly from gray value images requires methods that are

generally more labour-intensive than those methods that use binary data. When consid-

ering the entire process (denoising, segmentation, etc.), however, the amount of labour

involved can to be about the same across the different methods. Dividing the overall pro-

cess into smaller tasks usually simplifies the individual tasks and makes the entire process

more approachable. On the other hand, a long chain of small tasks may cause the effects

of the parameters and errors to all accumulate at the end of that chain, again complicating

the process of finding the correct parameters and minimizing error. The methods that sep-

arate the structures from the gray value images are, in our opinion, best used when there

are only a few things to separate. The use of EW segmentation is described in section

5.1.2.

Paper is a complex material with various end uses. Some paper grades are coated

with, a mixture of mineral pigments and latex. A common task in the 3D analysis of paper

structure is determining the topology of the aforementioned coating layer.

In the present study, segmentation of the coating layer took place in two phases.

During the first phase, we determined the top surface of the coating layer (see figure

60), while in the second phase, we determined the bottom surface (see figure 61). The
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FIGURE 60 Top surface of a coating layer of paper. This surface is shown as a thick white line

above the coating.

FIGURE 61 Bottom surface of a coating layer of paper. This surface is shown as a thick white

line beneath the coating.

following steps were used throughout the process:

1. In order to detect the top surface of the coating layer, the sheet was initialized at the

top of the image. The downward force on the sheet was constant, and the upward

force was set up to stop the sheet when the sheet met the interface (ν = 1/45). The

stopping parameter was selected by inspecting the gray values at the coating layer.

This method is quick and efficient for testing a few parameters in order to find the

optimal one.

2. Surface tension of the sheet was adjusted so as to handle the surface holes.

3. The bottom surface of the coating layer was detected by continuing the propagation

of the sheet from the top surface. This required taking a negative of the image and

adjusting the forces to fit the new intensity values; we used ν = 1/210 for the

upward force.

FIGURE 62 Top and bottom surface topographs of a coating layer of paper.

The output of this process was a profile of the coating layer. In addition, coating layer

could be removed from the image so as to allow an easier analysis of the base paper.

Next example is to use the EW segmentation method to find a seam between two

friction-welded wood samples. The X-ray intensity of the seam was the same as that of

the annual rings and, thus, it would have required a special pre or post processing if a

simple binarisation method had been used for segmentation of the image.

This segmentation process took place in two phases. During the first phase, the

upper surface of the seam was detected using a planar version of the method. The sheet

was then allowed to approach the seam from above in order to initialize to the top of the
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image. In the second phase, the lower surface of the seam was detected by letting the sheet

move upwards, starting from the bottom of the image. The results of these two processes

are shown in figure 63. Because these processes gave us the upper and lower surfaces of

the seam, the image could then be binarised for a more detailed analysis (see figure 64).

FIGURE 63 Cross-sectional image of a friction-welded wood sample; the upper and lower sur-

faces of the seam are marked with a white line.

FIGURE 64 Three-dimensional visualization of a binary image of the seam.

A cylindrical coordinate transform allowed us to segment the elongated objects.

We used the EW method for segmentation of the femoral bone of a mouse. The sheet

was initialized around the bone and was then allowed to shrink towards it. Parameters

were set to first detect the outer surface of the bone, and then to continue detection of the

interface between the cortical and trabecular bones (by adjusting the surface tension and

GSV). The cortical and trabecular bones were separated (figure 65). This method can

also provide the surface topography of the bone.

FIGURE 65 Left panel: The interface between the air and the cortical bone. Right panel: The

interface between the cortical bone and the trabecular bone. Bone was embedded in

PMMA, which cracked the bone while it was being cured. The white lines represent

the locations of the sheet.

We obtained a nanotomographic X-ray image of a piece of a nuclear bomb (from

the Thule accident in 1968). This particle was very porous and thus had a badly defined

surface. The spherical version of the EW method was used to determine the surface. The

qEW sheet was initialized around the particle and let to shrink towards its center, as shown

in figure 66. This allowed us to determine the content of solids in the particle.
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FIGURE 66 Cross-sectional image of segmentation of a nuclear particle. Left panel: the initial

state of the spherical sheet. Right panel: the final segmented particle. The white

lines represent the locations of the sheet.

A nano-tomographic image of a cell was obtained from Berkeley National Labo-

ratory. To segment the nucleolus of the cell, we used the spherical version of the EW

method. We applied the EW method to the gradient image as the edge of the nucleolus

has both brighter and darker areas than the center of the nucleolus. In addition, we used a

high surface tension to avoid the surface becoming stuck in the holes inside the nucleolus.

The results are shown in figure 67.

FIGURE 67 Left panel: cross-sectional image of the 3D stack of the cell nucleolus. Middle

panel: cross-sectional image of the 3D stack; the cell nucleolus is marked. Right

panel: 3D visualization of the segmented nucleolus.

5.3 Results

The methods reviewed by this study could all be easily performed in a reasonable amount

of time using a desktop computer. We found the most crucial aspects of successful seg-

mentation to be imaging and denoising. This was especially true for low-contrast samples,

as the artefacts caused by the imaging system can seriously impair the segmentation pro-

cess for these samples. However, denoising also plays an important role. A denoising

method that sharpens the edges and smooths the flat areas effectively is essential for suc-

cessful segmentation, especially when the imaging is not occurring in optimal conditions.

Bilateral filter, anisotropic diffusion, and mean shift are all effective methods for denois-

ing in this sense (Chapter 4). Mean shift is particularly useful, as it creates sharp edges;

these edges make segmentation easier, as they create a less significant edge effect to the

threshold selection.

With thresholding it is easy to add many kinds of priori information to ensure the

obtained volumes are correct. The selection of the denoising method and threshold value
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plays a crucial role in establishing the reliability of the results. The results gathered in

this chapter show that the selection of the denoising and segmentation method depends

on the contrast between the background and objects, the size and shape of the objects to

be analysed, and the artefacts in the image. As our first test indicated for simple data

with large structures, good contrast, and clear distance between structures, almost any

denoising method is sufficient. The volume and thickness of the objects are not greatly

affected by of the denoising method chosen if an independent measurement is used. Each

of the methods have their own benefits, for example, the smoothing methods can remove

certain artefacts more better than other methods. However, the differences do become

visible when small properties - such as the contact area — are analysed, as methods that

cause more smooth make the detail (like gap between object) detectability also worse.

When analysing structures where the object size is altered the selection of the de-

noising method is very important. The results of the grainy sample indicate that all the

edge-sensitive methods perform quite similarly. The non-edge sensitive-methods com-

bine objects that are close to each others.

The most complicated process was the multiphase segmentation. During this pro-

cess, the selection of the denoising method was most important for the low-contrast sam-

ples. The dense objects could be labelled using thresholding. However, the shadow arte-

facts caused by the dense objects were mixed with the gray values of the less dense ob-

jects, causing the gray values of the objects and background to overlap and also sometimes

fade out the edges of the objects. Thus, it was impossible to use thresholding for these

objects. Region growing type of segmentation was required, and while the method being

quite simple, controlling the result (with the external measurement) become more compli-

cated and the whole process more time consuming. Thus, in this situation, more advanced

denoising methods are required.

Threshold methods are able to provide sufficient results when used with materials

with good contrast. For low-contrast materials, region-based methods can be useful; how-

ever, these methods may require more work, as they usually involve some type of manual

initialization. The structural segmentation method chosen was the watershed method;

this method partitioned the structure from its local narrowing. This method is suitable

for many uses, including pore space segmentation and the separation of many kinds of

structures that are touching each other. When only one part of the structure is being seg-

mented, the labour required for noise-tolerant methods is justified. We consider our EW

equation-based method to be robust and useful for many different purposes.



6 IMAGE ANALYSIS

The process of CT imaging often aims to statistically analyse the material. This often

means comparing several samples of similar material according their structural properties.

Components that are typically analysed by CT imaging include morphology, material

proportions, interfaces between the phases, connectivity, routes through the material, and

structural or density changes. For the purpose of analysing particle/pore images, Schladitz

[208], suggests the use of so-called intrinsic volumes – otherwise known as Minkowski

functionals or quearmass integrals – to summarize the material properties of the image.

In practice, these properties refer to volume, surface area, the integral mean curvature,

and euler number. Intrinsic volumes can be used to find any additive property of an object

[260]. Axelsson [13] described a complete set of properties that can be analysed of a

porous sample. In addition to standard single pore measurements, a pore connectivity

graph was found useful for finding flow-related values, such as tortuosity.

Additionally, the medial axis of the pore network allows us to perform various con-

nectivity related analyses [184, 142, 273, 132]. Medial axis, distance transform, and

thickness transform allow us to perform a simple simulation of liquid intrusion into the

material as shown in [99, 58]. Fibrous materials have many properties of interest for sci-

entists and according to [178] these remains perhaps the least understood material. In

[178] the properties analysed are related in its strength, wetting behaviour, packing and

flexibility. For fibrous structures, it is possible to approximate the fibre orientations using

a variety of operations. The structure tensor is often used to find the orientation, as this

method does not require the use of binarised data [125]. Axelsson [11] proposes the use

of quadrature filters and structure tensors for fibre orientation analysis. In [25, 50], the

fibre orientation results are obtained using a robust binary technique called mean inter-

cept length. In [229], the following measurements were described for fibrous samples:

fibre wall thickness, lumen thickness, degree of collapse, fibre length, free fibre length,

slenderness ratio, fibre curl, and torsional resistance. Thickness of the structures can be

analysed either by manual methods or by using local thickness transform [90]. The local

thickness transform is not suitable for analysing hollow fibres, but it has been used for the

analysis of bone, such as in [265] it can also be used to measure distances between the

objects.

For fibre length analysis a path-opening method [148] has been used, such as in
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[106]. The surface area of a sample can be calculated many ways. A common way is to

use triangulation [145]. Triangulation has been applied to material research, such as for

the analysis of [170] and stone [132]. Deformation analysis is a method where some sort

of manipulation (compression/stretching/pending, heating/cooling, humidity/wetting) is

performed, and the sample is imaged at the original and deformed stages. The present

study was interested in investigating the structural changes that occur either due to direct

(i.e., deformation field) or indirect (i.e., structural parameters) effects. The effect of com-

pression on a Fontainebleau sandstone was studied in [66]. In [67] the displacement map

of a compacted sugar is analysed in 3D using a digital volume correlation. In another

study, XμCT imaging was used to measure water flooding inside a sandstone [213].

6.1 XμCT image characterization methods

Image characterization refers to operations that output numerical or statistical information

from the image data. Histograms (see section 3.3.1), image moments (see section 3.3.1),

and image correlation (see section 6.1.5) are methods that are often used to character-

ize structures. Some more specific characterization tools are described in the following

sections.

6.1.1 Fast Marching method

The Fast Marching method is a numerical method for solving boundary value problems or

boundary propagation problems. This method calculates the travel time of a surface as it

passes through a specific point in space. The starting points used may be freely initialized

in space, and the curve propagates toward its outer normals. The speed of the surface may

be dependent on the material (i.e., the gray value of the voxel). This method is explained

in detail in [212]. It is based on the Eikonal equation:

F(v)|∇T(v)| = 1.

This method is used to solve the evolution of a closed curve. This is done by finding

the function of time T, which describes when the curve passes through a given point.

The starting points of the curve are given and the curve front moves towards its normal

direction until the whole T is determined. According to Eikonal equation, the gradient of

T is inversely proportional to the speed of the front. The speed function F can, in practice,

be an image.

The method is a simplified version of level-set method, it performs faster as only

outward flow from the seeding area is allowed. The algorithm uses a narrow-band method

to limit the calculation only to the relevant area. The relevant area is established by

tagging the grid points as either accepted, neighbours or far away. The points in the

accepted group are locked and cannot be processed again. The points in the far away
region are not immediately processed, as they are too far away to be of any relevance. As

soon as they become close enough, these points are moved to the neighbour group. The

points in the neighbour group are processed until they are moved to the accepted group.
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The main idea of the Fast Marching algorithm is that the information propagates

from smaller values of T to larger ones. This means that the container for the neighbours
must be ordered ordered in such a way that the lowest T value can be found quickly. In

cases where constant speed are used a histogram-type point container is effective. The

histogram-type container is a two-dimensional queue in which the first index includes

the T value and the second index includes the points that have the T value. In the case

of F = 1 we can store the T values in power of two which means they are all integer

values. By keeping track of the smallest stored value, we can restore the smallest point

very quickly without needing to sort the container.

The T at point v is approximated using the following scheme:

1/F[v]2 =max(max(Δx
[0,1]T[v], 0),−min(Δx

[1,0]T[v], 0))2

+max(max(Δy
[0,1]T[v], 0),−min(Δy

[1,0]T[v], 0))2

+max(max(Δz
[0,1]T[v], 0),−min(Δz

[1,0]T[v], 0))2.

(38)

The algorithm itself contains the following steps:

Algorithm 9 Fast Marching Method 3D

1: Initialization: Set the starting points VA as accepted. Set T = 0 for all points in VA.

Set the narrow band VN points (All C6[VA] points). Set T = 1/F(x) for all points in

VN. Let all the other points be far away points. Set T = inf for all the points in far

away.

2: while VN is not empty do
3: Take point v with smallest T value from VN.

4: Add v to VA and remove it from VN.

5: Gather all the 6-connected neighbours that are either on narrow band or far away.

If neighbour is far away, move it to VN.

6: Recompute the values of T at all neighbours according to equation (38) and select

the largest possible solution to the quadratic equation.

7: end while

At step 6 the calculation of T is done by finding a solution that satisfies the equation

(38). The solution is proven in detail in [212]. Here, we briefly describe how to find the

solution at point [i, j, k]. Let f = 1/F and

t ={min(T[i− 1, j, k], T[i + 1, j, k]),
min(T[i, j− 1, k], T[i, j + 1, k]),
min(T[i, j, k− 1], T[i, j, k + 1])}.

We define t1 = min(t), t2 = min(t \ {t1}), and t3 = min(t \ {t1, t2}). Now

T =

⎧⎪⎪⎨
⎪⎪⎩

t1 + f if t1 + f < t2,

max
(−b1+

√
d1

4 , −b1−
√

d1
4

)
if t1 + f < t3,

max
(−b2+

√
d2

6 , −b2−
√

d2
6

)
if t1 + f ≥ t3,
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where b1 = −2t1 − 2t2, d1 = b2
1 − 8(t2

1 + t2
2 − f 2), b2 = −2t1 − 2t2 − 2t3, and

d2 = b2
2 − 12(t2

1 + t2
2 + t2

3 − f 2).

6.1.2 Local Thickness Transform

FIGURE 68 The principle of the local thickness analysis. Voxels get the distance value, which is

the diameter of the largest sphere that fits inside the object and contains the voxel.

If the dark sphere is the largest sphere that fits inside the structure, all the voxels

inside the sphere will get 2r as their value, unless there is a larger sphere that also

contains that voxel.

Local thickness is a distance transform-related operation that was first introduced in

3D in [90]. Let A be a binary image with two voxel classes: object and background. The

local thickness transform converts a binary image into a thickness presentation, where the

gray value of each object voxel is the radius of the maximal sphere that can be fitted into

that locality, and which includes that voxel (see figure 69 for an example). A maximal

sphere is the largest possible sphere that can be fitted inside the object such that it does

not contain any void voxels (see figure 68). As a result of the transform, each voxel gets

a value that is the same as the diameter of the largest sphere that can fit inside the object

and contain that voxel.

The implementation of the local thickness transform in 3D is performed in three

steps (see Algorithm 10). First, the data is distance transformed. The result of the DT

is an image that describes the largest sphere that can be fit into the locality of that voxel.

The second step is to discard the spheres that are included by larger ones. Done this

way, the second step of implementation has very high computation demands and is quite

inefficient. To improve its efficiency, this step can be optimized by finding the median

axis of the distance image; then, the points that are not found on the median access can

be determined as being part of the larger spheres [90]. The median axis can be found by

finding the so-called "distance ridge" from the DT. Fitting the spheres only to the relevant

points can significantly reduce the amount of calculation required.
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FIGURE 69 Top: the original image. Bottom: the local thickness transform applied to the orig-

inal image. The gray value represents the local thickness value.

6.1.3 Affine region detector

Structure tensor [29] and Hessian shape descriptor [165] are methods used to determine

orientation and simple shapes, such as tubes, blobs, or sheets, in gray value or binary

images. The methods are based on analysing the eigenvalues of a matrix constructed

from the gradient information of the image. For structure tensor, the matrix, at each voxel

v at image a, is constructed as:

J[v] = ∑
q∈N [v]

w(q)

⎡
⎢⎣

( ∂a
∂x [u])

2 ∂a
∂x [u] · ∂a

∂y [u]
∂a
∂x [u] · ∂a

∂z [u]
∂a
∂y [u] · ∂a

∂x [u] ( ∂a
∂y [u])

2 ∂a
∂y [u] · ∂a

∂z [u]
∂a
∂z [u] · ∂a

∂x [u]
∂a
∂y [u] · ∂a

∂z [u] ( ∂a
∂z [u])

2

⎤
⎥⎦ ,

where u = v− q. The purpose of weighting (windowing) with w is to allow the different

scales of structures to be detected. w is often chosen to be Gaussian [250, 249].

For the Hessian shape descriptor, the matrix is as follows:
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Algorithm 10 Local thickness transform

1: Let a be a binary image.

2: Let adt be distance map of a.

3: Remove all the points from adt that are not at the ridge. See ref. [141] for more

details.

4: Define the local thickness at each point belonging to the ridge. The local thickness

can be found using the distance map adt (this value is the radius of the maximum

sphere).

H(v) =

⎡
⎢⎢⎣

∂2a
∂x2 [v]

∂2a
∂x∂y [v]

∂2a
∂x∂z [v]

∂2a
∂y∂x [v]

∂2a
∂y2 [v]

∂2a
∂y∂z [v]

∂2a
∂z∂x [v]

∂2a
∂z∂y [v]

∂2a
∂z2 [v]

⎤
⎥⎥⎦ .

To make the Hessian shape descriptor sensitive to a certain sized objects and to avoid

artefacts caused by image noise, Gaussian filtering is used to smooth the image data so

that the details below the desired size scale are removed. For multi-scale detection, the

shape descriptor needs to be applied to the scale space (a cascade of Gaussian filtered

images) representation. The scale space approach requires the user to know the size range

of the objects of interest. Due to the commutative property of the Gaussian derivative

operators, the derivatives can be determined in a scale space image as convolutions of the

image using derivatives of the Gaussian kernel in the desired scales [224] to enhance the

accuracy.

The eigenvalues (λ1, λ2, λ3) of matrix H can be solved using the algorithm de-

scribed for the example in [221]. The eigenvalues are then used to define the local shape

using the following rules (the -+ means value is close to zero, the - - value is negative, the

++ value is positive):

λ1 λ2 λ3 Structure type

-+ -+ -+ Noise

-+ -+ - - Bright sheet

-+ -+ ++ Dark sheet

-+ - - - - Bright tube

-+ ++ ++ Dark tube

- - - - - - Bright blob

++ ++ ++ Dark blob

For the Hessian shape descriptor to apply these rules to evaluate the abundance of certain

shapes, various formulae have been proposed. Frangi’s formula for the abundance of

tubular shapes in the structure [68] is as follows:

Vσ(λ) =

⎧⎨
⎩

0 if λ2, λ3 > 0,

(1− e−
R2

A
2α2 )e

− R2
B

2β2 (1− e
− S2

2γ2 ) otherwise,
(39)

where RA = |λ2|
|λ3| (sheetness), RB = |λ1|√

λ2λ3
(blobness), and S =

√
λ2

1 + λ2
2 + λ2

3 (noise).

Parameters α, β, and γ are defined by the user. In figure 70 the results of applying this
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formula to an image of blood vessels in the brain is shown. Equation (39) can be adapted

for extraction of blob like structures by replacing e
− R2

B
2β2 with 1− e

− R2
B

2β2 . This means, in

essence, that all eigenvalues have a similar magnitude. Also the trace of H is strongly

correlated with the abundance of blobs. For the multi-scale sheetness various formulae

has been proposed; for example in [4, 55]:

Sσ(λ) =

⎧⎨
⎩

0 if λ3 > 0,

(e−
−R2

A
2α2 ) · (1− e

− R2
B2

2β2 ) · (1− e
− S2

2γ2 ) otherwise,
(40)

where RB2 = |(2|λ3|−|λ2|−|λ1|)|
|λ3| is another blobness measurement.

FIGURE 70 On the left is a cross section of the original image of blood vessels in the brain. On

the right is the map of Hessian coefficients by the above formula for the same cross

section.

The difference between the structure tensor and Hessian shape descriptor is that the

former is based on first order variations; the response is strong at boundaries. Whereas

the latter is based on the second order variations; it responds more at the inside of the

structure [55].

In addition to shape detection, the both structure tensor and Hessian shape detector

can be used to find the orientation of the structures. The shortest eigenvector points to the

direction of the slowest gray value change and thus marks the orientation of the structure.

In figure 71 the orientation analysis is demonstrated using an artificial test pattern.

6.1.4 Surface Area Estimation

The surface area of a 3D object is a measured based on how much of the object’s area is

exposed to other material phases. Accurately calculating the surface area is complicated

because continuous data are presented on a discrete grid (see in figure 72). The real shape

of the object is approximated by square blocks. Digitalization is a one way transform; a

digitalized shape can be produced from any object, although, the real shape of the object

cannot be determined from a digitalized shape. Thus, the surface area analysis is always
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FIGURE 71 Orientation analysis of a test pattern. The test pattern is on the left and the right

image shows color-coded orientation after analysis.

done within certain accuracy limitations [160], because how the border actually behaves

in each locality must be approximated.

FIGURE 72 On the left is the original data, in the middle is the modified original data, and on

the left is the discretised version of both data sets using a Gaussian digitization.

The original and modified data obviously have different real surface areas but the

discretised version is still the same.

Various methods approximate the surface area; the most simple way is to calculate

the number of voxels between a solid and a void. However this method underestimates

surface area and provides different values depending on the orientation of the image.

One way to calculate the surface area is to use marching cubes [145] to obtain a

polygonal mesh of the voxel data and then adding area of the triangles. This method

has a maximal asymptotic error of 12.8% [117]. A version with optimized weights for

each configuration was published 2005 by Lindblad [140], yielding a 7.3% maximum

asymptotic error. The improved version uses weighted local voxel configurations. A 2 x 2

x 2 matrix is shifted over the object, and the local configuration is determined according to

which 8 voxels are solid and which are void. This leads to 28 possibilities, but when taking

into the account the rotation symmetry and complementary cases, the configurations can

be reduced to 14. Each configuration has its own weight, and the sum of these weights

determines the total surface area of the object.

A statistical approach for surface area estimation uses the Cauchy-Crofton formula

(see [144] for more details). Consider a 3D object O with a boundary S and a surface area
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of s. L is a group of all possible lines l in R3 and dLi is the density of all lines intersecting

the surface. The Cauchy-Crofton formula can now be written as∫
l∈L

wldLi = πs, (41)

where wl is the number of intersection points of the given line l with the surface. Next, the

reference object Or is considered alongside the boundary Sr to determine the surface area

sr, letting O be contained by Or. Consider a set ι of m lines that are randomly sampled

from the set of lines that intersect Or. Let ns and nr be the total number of intersection

points with ι S, and Sr respectively. Now equation (41) is:

ns

N
≈ cπs and

nr

N
≈ cπsr.

By combining these s can be estimated by:

s ≈ ns

nr
sr. (42)

An algorithm [144] to find surface area of an object is given in Algorithm 11.

Algorithm 11 Surface area estimation

1: Generate a reference object Or containing O. This can be, for example, minimum

sphere that contains O. The Gartner miniball method is suggested in [75].

2: Generate a set ι of uniformly distributed lines that sample the set of all lines inter-

secting the reference object Or. To accomplish this low-discrepancy sequences are

used.

3: Compute ns and nr.

4: Use equation (42) to estimate the surface area of s.

6.1.5 Image Correlation

Correlation is mathematically related to image convolution (see section 4.1.1). For func-

tion f , the correlation with signal g can be expressed as:

( f ∗ g)(t) =
∫ ∞

−∞
f (τ)g(t + τ)dτ.

The local maximum of ( f ∗ g)(t) gives the translation for where the images best match.

To obtain subpixel accuracy, interpolation should be used. For fast correlations, FFT can

be used to calculate the convolution in O(N log N) time.

Autocorrelation is the correlation of an image with a translated version of itself. It

can be used to find repeating patterns in the image and determine the orientation distri-

bution of elongated structures [195]. Autocorrelation can be defined using the following

equation:

R(a, b, c) =
∞

∑
i=−∞

∞

∑
j=−∞

∞

∑
k=−∞

a[i, j, k] · a[i− a, j− b, k− c],

where a, b, and c represent the translation of f in x, y, and z directions respectively.
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Image similarity

Let a be the original image and b be image to correlate with a; the problem is to deter-

mine how similar the images are. To accomplish this a similarity measurement between

the two images must be defined. Various similarity measurements have been proposed and

reviewed ([133, 181]). The similarity measurements can be roughly divided into feature-

based and intensity-based [133]. In the feature-based approaches the image information is

converted into features that are located in all images to be correlated. This makes the algo-

rithm fast, but finding the mutual features is automatically is difficult. The intensity-based

methods compare the voxel values directly and calculate a statistical value representing

the similarity. These typically require more computation but can be easily automated.

The intensity-based methods are usually based on a normalized cross correlation:

C(a, b) = ∑v∈Ω(a[v]−Ave(a))(b[v]−Ave(b))
Var(a)Var(b)

.

Other measurement for the similarity is the sum of absolute difference values:

A(a, b) = ∑
v∈Ω

(|a[v]− b[v|).

This can be normalized to a 0–1 range by dividing it with the maximum allowed gray

value multiplied by the total number of voxels. In addition to the plain sum standard

deviation, entropy, and the histogram standard deviation of the difference image are used

[133].

6.2 General Analysis

In this section a few general analysis methods are defined. As noted in Chapter 5, the

segmentation process separates the interesting areas for analysis in this phase. The success

of the segmentation process depends on the image quality. If successful, the separation

of objects in interest was possible and analysis of those objects individually can be done.

However, if the quality of the image does not allow the segmentation of the objects, in

some cases, the analysis of shapes can be approximated using other methods. In this

section we define few general purpose 3D image analysis methods.

6.2.1 Porosity

Porosity is the percentage of void volume in a whole sample. This is one of the most

basic analyses that can be easily performed. In general, there are three possibilities for

the segmentation: cropping the sample so that the outside is not in image area, labelling

the image so that internal and external pore space is individually labelled, and defining

the shape of the object for use as a mask.

To calculate the porosity, there are a few possibilities. From segmented images void

voxels inside the sample and the total voxels of the sample are calculated. Additionally it

can be defined directly from the histogram if the threshold value is known.
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6.2.2 Analysis of local thickness

Many analyses or structural segmentation methods (see Chapter 5) are based on analy-

sis of object diameter. There are several methods for finding the diameter of an object

[45] such as morphological opening (granulometry) or the local thickness transform. See

figure 73 for an example of results obtained with these methods. These methods work

especially well on tubular shapes. As the algorithm finds the maximum sphere that fits

completely inside the sample (see figure 68) it will underestimate objects with sharp cor-

ners or oval shape. Despite this, it is a general purpose tool for both segmenting objects

of different thickness and analysing the thickness of the objects. Additionally, skeleton

combined with EDT can be used to analyse the thickness of structures to provide results

for spherical, plate-like, cylindrical, tubular, and many other shapes.

FIGURE 73 The pore thickness distribution of a volcanic stone sample obtained using granu-

lometry and the local thickness transform.

6.2.3 Z-projection

Projection of certain values (like porosity, density, maximal particle size) along one of

the 3D axis is a robust and simple tool to show information about the sample structure.

Different types, like mean, maximum, minimum, or standard deviation value, can be used

for the projection. If combined with segmented or labelled images it can provide infor-

mation, such as pore count, mean fibre orientation, porosity, or tortuosity, as a function of

plane depth. An example of a such a z-profile is given in figure 74.

6.2.4 Histograms

Gray value histograms are typically used in XμCT is to analyse a material volumes inside

a sample. In figure 75 you can see a typical histogram of a 3D image of coated paper.

The image has three phases: air, base paper, and the coating layer, seen as peaks in the

histogram.
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FIGURE 74 Z z-profile of labelled paper sample showing the portions of coating, fibre, and pore

space as a function of depth in z-axis.

FIGURE 75 Gray value histogram of a coated paper sample.

Multidimensional histograms can be used to find internal structural correlations for

an image. For example, a previously mentioned histogram combined a distance transform

and density information. figure 76 shows a 2D histogram where x-axis is the shortest

distance from the void phase (distance transform) and the y-axis is the density.

From this histogram we can say that the more dense areas are further away from the

void, they are more inside the sample.

6.2.5 Distance Through Material

The fast marching method (section 6.1.1) can be used to define the time it takes to travel

from a given start point or start points to the connected material points in image. For ex-

ample, it if someone dropped a stone into water, the fast marching method would calculate

when the front of the waves would arrive at other points of the water container. If the ve-

locity is constant the distance can be calculated from the arrival time values. Additionally,

is is possible to have a variable velocity that changes, for example, according to the local
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FIGURE 76 A distance-density histogram for a porous stone sample. Gray values represent the

count. The histogram reveals that the more dense areas of the image are closer to

the inside of the sample.

thickness of the material (which could be useful for simulating liquid transportation).

figure 77 shows two cross-sectional time maps (with a constant velocity) of fibrous

material, where the start points were at the bottom of the image, and the fast-marching

method was used to define the distance to the top of the stack. Further more, this can be

used to define the distances or routes through the material.

6.2.6 Rigid Shape Transforms

Transforms inside an object, such as twists or object translations can be analysed using

image correlation. The analysis can be performed for whole images or by cropping to

certain areas. In some cases filtering (e.g., the Gaussian filter) can add robustness to the

method.

For twist analyses, the center of rotation must be defined, which is often the same as

the center of mass. When the center of rotation is known, the image correlation is defined

a function of the rotation angle. The maximal correlation value reveals the rotation angle.

For object translation, similar procedures may be used. For more complex trans-

forms, the optical flow [228] algorithm is used to find the local transformation vectors.

6.3 Porous and Particle Material

Pore and particle analyses are similar to each other as in both we have a group of individ-

ual objects (pores and particles), that are usually touching. As a results of the analysis we

commonly want a distribution of certain properties for the individual objects. In practice,

there are two options:
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(a) Sideview (b) Crossectional view.

FIGURE 77 The result of fast marching method to a fibrous sample. The seed points were at

bottom slice of the image. At figure 77a is shown the distance from “side view”, at

figure 77b is shown the cross-sectional distance map of the top-most slice.

• Separate the structure into individual objects and analyse each object separately to

obtain the distribution.

• Approximate the distribution using an analysis method that does not require sepa-

ration of the distribution (e.g. the local thickness transform).

Structural segmentation is easy to obtain for objects that are not touching each other. For

pores or particles that are connected, the watershed segmentation can be used to split the

structure into individual objects. When using the watershed transform, the definition of

a pore is that it is a space limited by local structural narrowings. For some structures, a

K-means clustering can be used to split the structure into equally spaced and similar sized

particles. See figure 78 for an example of both of the segmentation results.

The surface of a porous material can be difficult to determine due to the surface

pores. There is no explicit way to define whether a cavity at the surface of the material is

pore or hole. The rolling ball algorithm [226] or the surface segmentation tool defined at

section 5.1.2 can be used for this purpose.

6.3.1 Analysis of individual pores / particles

CT images allow us calculations of various parameters for each individual pore or particle

([12]). For labelled images, the following parameters for each pore and particle can be

defined:

• Center of mass can be calculated using 3D image moments. See section 3.3.1.

• Volume can be analysed by calculating the number of voxels inside the pore or

particle using a flood fill algorithm. the volume is also M000 moment of the image.

See section 3.3.1.

• Orientation can be approximated using the image moments. See section 3.3.1.
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FIGURE 78 The first row shows the original image, the second row shows the result of cluster

segmentation (where the number of clusters is approximated from the volume of the

object), and the third row shows the watershed segmentation of a particle sample.

• Surface area can be determined using surface triangulation. See section 6.1.4.

• The number of connected components can be defined from samples in which the

particles are touching each other. The number of neighbours can be extracted by

analysing the outer edge of the pore defined by the flood fill algorithm.

• The area of the interfaces can be defined by using the surface area calculation for

the interface area only. See section 6.1.4.

• The number of holes inside a object can be calculated using the flood fill algorithm

to fill the connected void space from outside the object. The unconnected void space

defines the holes inside the particles.

• The shape of the object can be described using many methods. One is to define the

sphericity, using Ψ =
3√36πV2

A , where V is the volume of the object and A is the
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surface area of the object. An other option is to define statistical parameters from

the distance between the center of mass and the outer edge of the particle.

6.3.2 Analysis of Pore Network

The labelled connected object network can be divided into a graph presentation, where

objects define the pores and links are the throats between the pores. This graph allows a

simple physical simulations of the structure. For example, non-wetting liquid penetration

into the pore space can be analysed this way. The basic physical phenomenon affecting

liquid intrusion into the material is surface tension. A certain force is required for a non-

wetting liquid to overcome the capillary pressure in an opening of a given size in the

pore structure. The relation between the external pressure P and the size r (radius) of the

opening is determined using the Washburn equation:

Pr = −2γ cos θ,

where γ is the surface tension and θ the contact angle of the liquid. Both γ and θ are usu-

ally assumed to be constants, and the size of the opening is directly related to the external

pressure, r = −2γ cos θ/P. This result assumes that pores are cylindrical capillaries.

To simulate liquid intrusion, a virtual pressure is used to push liquid into the struc-

ture. Throat size (links) limits the movement according to the given pressure. When the

pressure limit is reached, the space behind the links are filled until a throat with a smaller

radius is found. This is similar to mercury intrusion porosimetry (MIP), which is a com-

mon way to experimentally measure the pore size distribution of a material. The pore

size distribution is obtained by letting mercury intrude the sample for increasing values

of pressure, so that the mercury will penetrate increasingly smaller openings in the pore

structure. The amount of pores accessible for a given opening can then be calculated

from the volume of the mercury at each pressure step. MIP measurement has two phases.

During the intrusion phase, the external pressure is gradually increased and pores behind

openings of gradually decreasing size will be filled. This process is called invasion per-

colation. Opening here refers to the interface between two pores. During the extrusion

phase, the pores are emptied when the external pressure is decreased. According to the

Washburn equation, the smallest pores have the highest capillary pressure pushing the liq-

uid out of the pore (i.e., the smallest pores are emptied first). The liquid intrusion can also

be simulated using, e.q., the Lattice-Boltzmann (LB) method. However, this is very time

consuming and requires high performance computing facilities. The graph-based method

is lightweight and fast in comparison.

The intrusion phase is initialized by choosing the initial area of the liquid. All

the voxels belonging to this area are marked as the liquid front. The algorithm fills the

volume using the liquid front as a starting area, and the throat thickness to limit the filling

to certain radius (expanding the front). This process is continued for decreasing sizes of

openings (corresponding to the gradually increasing pressure of the intruding liquid) until

the whole pore space is filled. The extrusion step is initiated by analysing the sizes of the

pores in the whole pore space. The smallest pores are extruded first. The assumption is

that a pore is emptied (when its size allow) only if it has a liquid connection to the sample

surface. Therefore, a certain amount of liquid will be trapped inside the sample and the
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liquid connection may get broken

The graph representation allows also analysis of the tortuosity by calculating the

routes through the material from the nodes. Tortuosity is a measurement that defines how

complex the paths through the pore network are, and it is defined as:

τ =
Rave

D
,

where Rave is the length of an average route between the two surfaces, and D is the

Euclidean distance between the surfaces.

6.3.3 Pore structure analysis

When the pore structure cannot be split into individual pores, few another analysis meth-

ods can be applied. To obtain an approximation of the pore size distribution, the local

thickness transform (see section 6.1.2) or granulometry (see section 3.3.2) can be applied.

Those give a volume-radius curve of the structure. Additionally similar liquid intrusion

simulation (MIP) can be performed by using the radius defined by the local thickness

transform to limit the flood fill. The liquid front is defined by the user, and the intrusion is

simulated using flood fill to fill the space until all voxels connected to the liquid front that

have larger gray values (in thickness map) than the given limit are filled. Then the gray

value is decreased and the flood fill is performed again. The starting value is the largest

gray value found from the initialized front.

6.4 Fibrous Material

CT images allow us calculations of various parameters for fibrous materials, such as fibre

length, volume fraction, aspect ratio and orientation. The binarisation of fibrous samples

is usually simple because it is usually composed of only two materials. However, to keep

the correct thickness of the fibres can require an usage of an external measurements as

the beam hardening and the point spread function can cause the fibre edge to be smooth.

For example, a microscope can be used to determine the fibre thickness to be used as an

independent measurement for segmentation.

The segmentation of individual fibres is difficult for hollow natural fibres because

they tend to break easily, causing shapes that are not easy to model. For fibres that keep

their shape, segmentation of individual fibres can be realized using graph cuts such as in

[259], by following the lumen of the fibres [10], or by using skeletonization. In addition,

morphological tools can provide a way to segment the fibres. A simple morphological

segmentation of non-hollow touching fibres is shown in Algorithm 12

The algorithm assumes all the fibres are of similar thickness and that there is some

separation between them even though they may touch each other. For optimal watershed

transformation, each object requires exactly one seed. On digitized tubular structures,

these local maxima are seldom continuous inside an individual tube due to inaccuracies

in the discretisation. The inaccuracies create small variations in tube thickness that cause

the local maxima of EDT vary across the length of the tube, which in turn cause more
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Algorithm 12 Morphological separation

1: Binarise the fibres (using tools provided in Chapters 4 and 5). See figure 79a for a

visual demonstration.

2: Perform distance transform (see section 3.3.2). The maxima of the distance trans-

form are ridges that follow the center lines of the fibres. See figure 79b for visual

demonstration.

3: Use the geodesic reconstruction algorithm (see section 3.3.3) to flatten small varia-

tions of the ridges caused by small thickness differences in the fibres. See figure 79c

for a visual demonstration.

4: Generate a seed image that contains the top part of each ridge by thresholding the

reconstructed distance transform. See figure 79d for a visual demonstration.

5: Use the watershed segmentation with previously generated seeds to separate the indi-

vidual fibres. See figure 79e for a visual demonstration.

than one seed into each tube. To remove this problem the geodesic reconstruction [253]

is applied. The effect of this transform is that all neighbouring local maxima that are

maximum of h gray values different from each other are connected to each other. In

essence, the small variations at the center lines of the tubes in EDT are combined.

For segmentation of fibres of various diameters, either the fibre wall thickness or

fibre thickness, the local thickness transform (see section 6.1.2) is an efficient method.

figure 80 shows an example of such a segmentation.

The success of segmentation of individual fibres is highly dependent of the type of

the fibres. For good quality fibres (round, symmetrical, whole, low fibre density) segmen-

tation is possible to do using several different approaches (see section 5). When individ-

ual fibres are separated, similar measurements as those used for pores and particles can

be used to define the properties. For samples that are not easy to label, such as broken or

deformed fibres, the segmentation results are easily low quality and can not be used for

analysis.

However, number of other analyses can be performed for fibre material without seg-

menting the individual fibres. In [59], an analytic model for number of contacts in a planar

fibrous network is determined using an average shortest path through the sample in the

out-of-plane direction. The shortest path was calculated using a chamfer distance trans-

form, although a more precise length could be obtained using the fast marching method.

To analyse fibre orientation, the methods from section 6.1.3 can be used. To demonstrate

the usage, the orientation analysis for the sample in section 5.2.1 was performed using

structure tensor. The results are visualized in figure 81. The fibre length distribution can

be analysed using a method called path opening [148, 163, 43], which is a modification

of granulometry, where the opening operations are performed length-wise taking into ac-

count the shape of the object.
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(a) Binary image (b) Distance transform (c) Geodesic reconstruction

(d) Seeds (e) Result

FIGURE 79 Cross-sectional images of the fibre segmentation procedure.

FIGURE 80 Segmentation of fibres according to their thickness. The left image shows the center

of the thick fibres in the original image, the right image shows the thin fibres of the

original image.

6.5 Fluid Flow Simulations

XμCT can be used to obtain realistic geometries of various materials for computational

fluid dynamics. Computational fluid dynamics allows the use of direct voxel geometry for

simulations and to obtain, e.g., the permeability value for a given material. Permeability is

a measure of the ability of a material to transmit fluids. Many methods for the simulations

exits and while they are not discussed in detail here, the processes for obtaining geome-

tries for simulations are described. This research utilized a LB simulation directly to the

binary voxel data. In other models a 3D triangulated geometry is preferred, although few
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FIGURE 81 The visualization of color coded orientation of the sample in section 5.2.1.

commercial software packages are to provide this. However, when binary geometry is

needed and the tools discussed at Chapters 4 and 5 can be used to obtain a high quality

presentation. Artefacts, such as noise and edge blurring, cannot be avoided when using

XμCT, and the effect has been studied more in details in [120]. The effect of edge blurring

while thresholding a sample is visualized in figure 82 and compared to the numerically

defined permeability value (Lattice-Boltzmann simulation) compared to experimentally

obtained ([120]) is presented in figure 83. For the wool fibre web, the optimal threshold

value would have been between 20 and 30. By visually examining the corresponding im-

ages, it was found that there was still noise left in flow channels at a threshold value 30.

Permeability at the optimal threshold value would not have resulted using realistic sample

geometry, combination of noise causing higher specific surface areas and thinner fibres

increased the porosity of the geometry.

If untreated, the noise causes flow resistance to the flow channels and surface rough-

ness. The effect of noise was tested here by simulations. Artificial sample geometries of

hexagonal arrays of cylinders were prepared to test and demonstrate the effect of different

imaging artefacts on structure and numerical fluid flow analysis. The volume size of the
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FIGURE 82 Visualization of a segmented wool fibre web sample at different threshold values:

(a) 20, (b) 30 and (c) 40, and a manually processed reference segmentation (d).

FIGURE 83 Numerically solved permeability coefficients for the wool fibre web as a function

of the threshold value. Experimental results are given as an average of the five

measurements for each sample type.

simulation geometries was 693 x 400 x 100 pixels and the porosity of the cylinder arrays

50 %. Visualisations of the flow field of four hexagonal arrays of cylinders having differ-

ent levels of noise are shown in figure 84. Noise level is defined as a percentage of faulty

voxels in the total volume of the sample.

The effect of noise on pore size distribution was evaluated as a function of noise

level. Pore size distributions were determined using the local thickness transform. The

pore size distribution was found to change dramatically as a function of noise level. The

mode value of the distribution of the geometry with a noise level of 0.01% was approxi-

mately one third of the mode value for the noise free geometry.
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FIGURE 84 Visualisation of flow speed field of four hexagonal arrays of cylinders having dif-

ferent levels of noise: a) 0%, b) 0.05%, c) 0.3%, and d) 5%. Flow direction is in

these cases from top to bottom. Red and yellow colours represent high flow speed

and green and blue low flow speed.

6.6 Conclusions

In this chapter, we have listed various general purpose image analysis methods. Because

these methods are all quite unambiguous in practice, we did not perform any tests or

experimentally compare any of the methods. The reliability of the results depend on the

steps taken to get those results (i.e., optimal imaging, proper denoising and segmentation).

If we are interested in the properties of some structural components of the materials

at hand, we have two options for analysis:

• The structural components are individually labelled, and each component or its

interaction is analysed.

• If it is not possible to separate individual components, the best means are used to

analysed as a whole to obtain information regarding these individual components.

The common themes of the analysis are region-based analysis (statistical information

about the regions of the image), connectivity analysis (how the parts of interest are con-

nected to each others), distance measurements (finding routes through the materials), and

simulations (using image geometry to computationally model some-real world phenom-

ena).

The one thing not covered in this work is the representation of the data. Data can be

represented visually in many different ways. Traditional charts can be used, and region-

related properties, such as volume, connectivity, and number of holes, can be color-coded

into the material and visualized using tools like those presented in section 2.8.
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This paper has presented the entire process of XμCT imaging, starting from the image

acquisition and ending with the results of the structural analyses. The final part of the

continuum, understanding the results, has not been presented, as this aspect of the process

is almost solely dependent on each individual case. Tomography has long been used as

a medical examination tool for taking images of various body parts. The XμCT devices

started the era of tomographic material research, which, in many cases, requires a different

set of tools: this is where computer-aided image processing comes in. While the human

visual system is highly adaptive, it is also easily distracted, and thus it is not able to

perform accurate statistical analysis of images or gray values (see figure 85). The fact

that XμCT images are large and require a great deal of effort to analyse also make the

use of computers favourable for analysis of these images. However, the benefit of the

human eye is that it tolerates noise and artefacts and is very good at finding shapes in

images. Most computational methods of analysis perform poorly when working with

noisy environments, and their ability to adapt to shapes is also limited. This is why

most research performed on image analysis focuses on denoising and segmentation. The

primary purpose of those two phases is to convert the data to a simple enough form for

the computer to analyse it.

FIGURE 85 Left: Are the center dots the same size? Right: Are the gray bars the same color?

Chapter 2 presented the basics of the physical and technical background of XμCT

imaging. That information is essential when trying to optimize the quality of the im-

ages, which is the key factor of success for image processing. X-ray behaviour, scanner

functionality, and sample preparation are essential components of the imaging process.



135

Spending more time on imaging can help save time on solving the potential problems

caused by poor image quality. Some problems cannot be solved using computational

methods. By knowing the capabilities and limitations of the device, one also knows what

can be expected from the device and from the images. If there is a problem with the im-

age, the researcher should know whether or not there is a way to solve the problem using

the hardware available to them.

Image processing can also solve many problems that occur during imaging that

cannot be avoided. Noise, for example, often cannot be fully removed from images; if left

unaddressed, this issue can render the analysis process useless, as it causes gray values

that should be similar to become different. Many denoising methods have been developed

to help reduce image noise. However, there seems to be a lack of understanding regarding

how a denoising method should be selected and how they perform as a part of the imaging

continuum. In this work, we wanted to compare the denoising methods in the context of

XμCT to see if the selection of the method makes any difference. Chapter 4 compared the

denoising methods according to their denoising quality, computational complexity, and

usability. We were able to rank those methods according to the properties we consider

important in denoising. Each method clearly has its advantages — some are best for

restoring the original shape of the sample, some are faster than others, and some are more

simple to use. The choice is often made between denoising quality and processing time.

Computers are still limited in terms of XμCT image processing ability, and choosing the

right algorithm can save a significant amount of processing time. Denoising quality is not

the first priority for all applications.

Noise removal, however, is not the only benefit of using this algorithm. The benefit

of choosing the ideal denoising method also occurs in later aspects of the image process-

ing continuum. This can be seen in Chapter 5, where the denoising is combined with

segmentation. Simple methods allow for the labelling of images with decent accuracy;

however, when image quality decreases, simple methods are no longer efficient. Simi-

larly, methods that perform well in pure-noise removal are also not ideal. Some denoising

methods are able to reduce certain XμCT artefacts (like edge blurring and shadows),

which is highly beneficial when segmenting the sample. Those methods produce more

robust segmentation results and reduced the risks of segmentation errors. To this end, we

can conclude that the selection of the denoising method does have an effect the ease with

which segmentation is completed. Still, if no complicated segmentation or analysis of

details close to the spatial resolution, is required, a simpler denoising method can also be

sufficient.

The end of the XμCT image processing continuum marks the end of the image

analysis. When considered as separate from the continuum, the image analysis if often

very mechanical part, where there are not many uncertainty factors; the volume, orienta-

tion, or shape (etc.) of an object does not change when using different methods, only the

implementation of the method can make difference to the usage.However, the selections

made in earlier stages of the continuum may have some effect on the image analysis. For

example, the resolution of the imaging system affects the size of the details that can be

seen in the image, and the selection of the denoising and segmentation methods affects

on how well the details of the image are preserved during the image processing. In some

cases, the imaging parameters, denoising method and segmentation can affect what can
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be analysed in the image. If no contrast or edge is found between two material phases, it

is impossible to separate those phases for the analysis.

Thus, when considering the efficiency and accuracy of the whole XμCT image pro-

cessing continuum, one can reverse the continuum, starting with the analysis, and use that

information to determine the requirements for the algorithms from the previous parts of

the continuum. The significance of each part of the continuum can also be considered in

terms of the whole process:

1. Image acquisition: During this stage we can make selections that can make the

image processing either easy, doable, or impossible. At this point in the process,

the selections have a very large impact on the entire process.

2. Image processing: The selection of the denoising method affects how easy or diffi-

cult segmentation will be. The chosen denoising method also affects on the quality

of the analysis results. The choice of segmentation method affects what kind of

analysis can be performed.

3. Image analysis: Using the correct analysis method makes the interpretation of the

results easier.

In conclusion, the entire image processing continuum should be considered before indi-

vidual methods for each step are selected. The selections made at the beginning of the

continuum have a great impact on the steps that occur later in the process. The selections

should be made according to what need to be done to avoid excess work. For example,

the ability of a denoising method to remove all noise is not always necessary; often, a

simpler and faster method can be used instead. However, for analysis where sharp edges

are required, the selection of the noise removal method has to be considered.

In the end, the usability of the algorithm for the specific task at hand is what is most

important. The easiest solution will be the one that is most appealing to the end user. If

the parameters are difficult to define, and if results depend heavily on correctly defining

those parameters, the user may choose to use a simpler (but less effective) algorithm, or

they may try unsuccessfully to use a more complicated algorithm. It should also be noted

that all algorithms have their limitations. Even the best algorithm cannot generate any

more detail than is allowed by the resolution of the optical resolution of an image (though

there are some exceptions; see [179]). If the quality of the image is low, the error limit of

the analyses will be higher, and this reduces the reliability of the conclusions drawn from

these analyses.

7.1 Future work

One of the major limitations on this research is the lack of a good open source multi

threaded 3D image processing toolkit that takes into account the memory consumption

and use efficient algorithms and is able to run processes in batches. A few 3D image

processing toolboxes exist, including::
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• Insight Toolkit. This toolkit has expanded, and it now includes more than just

XμCT image processing. For some researchers, this toolkit may seem complicated

and difficult to use.

• DipImage (DipLip). This toolkit is limited to use with MATLAB, and thus, it has

some issues with memory and efficiency.

Many smaller tools also exist, but the lack of maintenance to these programs causes prob-

lems, such as poor documentation. Thus, there is currently a need for the development of

an open-source library. Such a publicly accessible library would be beneficial for many

researchers.

There are also more tools and research needed for the development of structural

segmentation. Many of the problems faced during segmentation pertain to the shape-

related properties of structures to be separated; many of these issues have not yet been

researched very extensively. Analysis methods that do not depend on structure separation

are also of interest to many researchers, as these methods can be used for more general

purposes and thus can be used to solve may different problems. Scale-space and local-

shape methods could be particularly useful for the study of many different materials.

In the present study, we examined the denoising methods to be used alone. To obtain

better results, a combination of two methods should be studied. In practice DCT has been

efficient for pure denoising and MS works well on edge restoration. A combination of

these two methods, or perhaps some other similar methods, could provide better results

for overall image processing.

Many of the methods presented by this paper are traditional, well-established meth-

ods. They have remained popular because they are simple and efficient. In future research,

it would be interesting to explore whether more sophisticated methods, such as machine

learning, graph theory, data mining, and modern simulation methods (like SPH) are able

to glean more information from the images. The computers are constantly evolving al-

lowing usage of computationally more demanding algorithms some day.
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YHTEENVETO (FINNISH SUMMARY)

Otsikko: Huokoisten heterogeenisten materiaalien tutkiminen mikrotomografiakuvista.

Tässä työssä tutkitaan mikrotomografiakuvantamisketjun vaikutusta kuva-analyysin

tulosten luotettavuuteen ja prosessin sujuvuuteen. Mielestämme ketjun alkupään toimen-

piteet ovat oleellisimmat, ja vaikuttavat oleellisesti koko kuvantamisketjun laatuun. Työssä

tutkitaan erityisesti kohinanpoistomenetelmien vaikutusta, ei pelkästään menetelmien ko-

hinanpoistokykyä ajatellen, vaan myös ottaen huomioon koko kuvantamisketjun; sopi-

valla kohinanpoistomenetelmällä voidaan helpottaa työtä ketjun myöhemmissä vaiheissa.

Lisäksi työn lopussa esitellään yleisimmin mikrotomografiassa käytettyjä segmentointi-

ja kuva-analyysimenetelmiä.
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APPENDIX 1 COMPUTATIONAL TESTS

Following c++ code

bool boolvariable = false;
cout << "Size of boolvariable: " <<
sizeof(boolvariable) << "bytes \n";

ran on a 64-bit windows 7 returns

Size of boolvariable: 1 bytes

meaning that the size of Boolean in C++ is 1 byte. This is true, for example, in Java

and C++, where every variable needs to be addressable and the memory is divided into

8-bit (byte) sized blocks. Java documentation [176] states that the size of boolean ”isn’t

something that is precisely defined,” meaning meaning that it can be something other than

a 1-bit. However, Boolean data can be compressed efficiently, or a special image type can

be defined using binary shifting and masking operations of for addressing individual bits

in memory. For example, in C++:

void setBit(int x, int y, int z, bool value) {
//Data is stored into 1-dimensional array, here
//we find the index to given coordinates
int coord = z*x_size*y_size + y*x_size + x;
//This is the address to the correct byte
int byteCoord = coord/8;
//This is the bit index at the byte
int bitIndex = (coord%8);

//The assignment operations
if (value) image[byteCoord] |= (1 << bitIndex);
else image[byteCoord] &= ~(1 << bitIndex);

}

table 13 contains a comparison of the basic arithmetic operations for the four data types.

It can be seen here that the division operation with the double type is significantly slower

than the other types of operations.

TABLE 13 The time it took to perform 1000000000 rounds of given operations with different

data types.

Data Type Add./Subtr. Div./Mult.

Integer 2062 ms 3859 ms

Short 2061 ms 3836 ms

Float 2089 3834

Double 2116 6012



APPENDIX 2 SEGMENTATION RESULTS FOR ALL
DENOISING METHODS

TABLE 14 The percentage of voxels belonging to the contact area for all denoising methods.

AD BF DCT Gaussian Mean Median MS VaWe

0,08 0,15 0,08 0,22 0,37 0,19 0,09 0,09

TABLE 15 The average thickness of the lead pieces analysed by local thickness transform for

all denoising methods.

AD BF DCT Gaussian Mean Median MS VaWe

705.4 μm 706.3 μm 706,8 μm 704,8 μm 702,8 μm 707,2 μm 700,6 μm 705,6 μm

TABLE 16 The number of individual graphite particles found for all denoising methods. The

real number of particles (108) was determined manually.

AD BF DCT Gaussian Mean Median MS VaWe

110 111 109 108 108 109 109 111



162

TABLE 17 The number of particles found using a watershed for particle separation.

AD BF DCT Gaussian Mean Median MS VaWe

7816 18517 20017 7198 19876 22337 12012 57592

FIGURE 86 The volume of particles as a function of particle diameter.

FIGURE 87 The volume determined using some automatic threshold selection methods for sim-

ple material from section 5.2.1. The red lines indicate the measured volume.
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FIGURE 88 The volume determined using some automatic threshold selection methods for

grainy material from section 5.2.1. The red lines indicate the measured volume.

FIGURE 89 The volume graphite phase with different denoising methods for the multiphase

sample.
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TABLE 18 The volume of different materials in voxels, obtained from the labelled data and for all denoising methods.

Method Measured AD BF DCT Gaussian Mean Median MS VaWe

Eraser 78731127 79977147 80097431 79957865 79474590 79384370 80037341 80066684 79946446

101,6% 101,7% 101,6% 100,9% 100,8% 101,7% 101,7% 101,5%

Rubberband 15109399 14837686 14754959 14908909 15270660 15300550 14830590 14771824 14869336

98,2% 97,7% 98,7% 101,1% 101,3% 98,2% 97,8% 98,4%

Graphite 4236882 4353979 5578354 4841576 5139303 7506863 6718069 4301361 5927249

102,8% 131,7% 114,3% 121,3% 177,2% 158,6% 101,5% 139,9%
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