NMR Spectroscopic Evidence for the Intermediacy of \(\text{XeF}_3^- \)

in \(\text{XeF}_2/\text{F}^- \) Exchange, Attempted Syntheses and Thermochemistry of \(\text{XeF}_3^- \) Salts,

and Theoretical Studies of the \(\text{XeF}_3^- \) Anion

Neil Vasdev,†‡ Matthew D. Moran,† Heikki M. Tuononen,§ Raman Chirakal,†‡ Reljo J. Suontamo,§ Alex D. Bain,† and Gary J. Schrobilgen†*

† Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada;
‡ Department of Nuclear Medicine, McMaster University Medical Centre and Hamilton Health Sciences, Hamilton, Ontario L8N 3Z5, Canada; § University of Jyväskylä, P.O. Box 35, FIN-40014, Jyväskylä, Finland

*Author to whom correspondence should be addressed. E-mail: schrobil@mcmaster.ca
Abstract

The existence of the trifluoroxenate(II) anion, XeF$_3^-$, had been postulated in a prior NMR study of the exchange between fluoride ion and XeF$_2$ in CH$_3$CN solution. The enthalpy of activation for this exchange, ΔH^\ddagger, has now been determined by use of single selective inversion 19F NMR spectroscopy to be 74.1 ± 5.0 kJ mol$^{-1}$ (0.18 M) and 56.9 ± 6.7 kJ mol$^{-1}$ (0.36 M) for equimolar amounts of [N(CH$_3$)$_4$][F] and XeF$_2$ in CH$_3$CN solvent. Although the XeF$_3^-$ anion has been observed in the gas phase, attempts to prepared the Cs$^+$ and N(CH$_3$)$_4^+$ salts of XeF$_3^-$ have been unsuccessful, and are attributed to the low fluoride ion affinity of XeF$_2$ and fluoride ion solvation in CH$_3$CN solution. The XeF$_3^-$ anion would represent the first example of an AX$_3$E$_3$ VSEPR arrangement of electron lone pair and bond pair domains. Fluoride-ion exchange reactions between XeF$_2$ and the F$^-$ anion have been probed computationally using CCSD and DFT (PBE1PBE) methods. The energy-minimized geometry of the ground state shows that the F$^-$ anion is only weakly coordinated to XeF$_2$ (F$_2$Xe---F$^-$; distorted Y-shape possessing C_s symmetry), while the XeF$_3^-$ anion exists as a first-order transition state in the fluoride-ion exchange mechanism, and is planar and Y-shaped (C_{2v} symmetry). The molecular geometry and bonding for the XeF$_3^-$ anion has been described and rationalized in terms of electron localization function (ELF) calculations, as well as the VSEPR model of molecular geometry. Quantum-chemical calculations at the CCSD/aVTZ level of theory, using a continuum solvent model (CH$_3$CN), accurately reproduced the transition-state enthalpy observed by 19F NMR spectroscopy, and shows a negative but negligible enthalpy for the formation of the F$_2$Xe---F$^-$ adduct in this medium.
Introduction

Of the binary xenon fluorides, only XeF₄ and XeF₆ are known to form anionic salts with fluoride ion donors. Xenon tetrafluoride behaves as a weak fluoride ion acceptor (calculated gas-phase fluoride ion affinity (FIA), 247.3 kJ mol⁻¹) towards alkali metal fluorides and the naked fluoride ion source [N(CH₃)₄][F] to give salts of the pentagonal planar XeF₅⁻ anion.¹ Xenon hexafluoride is a considerably stronger fluoride ion acceptor (FIA, 313.8 kJ mol⁻¹),¹ forming the XeF₇⁻ and XeF₈²⁻ anions with alkali metal (Na, K, Rb, Cs) fluorides.³,⁴ In addition to the alkali metal fluoride salts, the NO⁺ and NO₂⁺ salts have been prepared by direct reaction of XeF₆ with NOF or NO₂F, namely, [NO₂][XeF₇],⁵ [NO]₂[XeF₈],⁶,⁷ and [NO₂][Xe₂F₁₃].⁵ The [NO]₂[XeF₈] salt was shown, by single-crystal X-ray diffraction, to contain the slightly distorted square antiprismatic XeF₈²⁻ anion.⁶,⁷ Xenon hexafluoride also reacts with [NF₄][HF₂] in anhydrous hydrogen fluoride (aHF) to give [NF₄][XeF₇], which was converted to [NF₄]₂[XeF₈] by selective laser photolysis and characterized by vibrational spectroscopy.⁸ The XeF₇⁻ and Xe₂F₁₃⁻ anions have also been characterized by X-ray crystallography as their Cs⁺ and NO₂⁺ salts.⁵ The XeF₇⁻ anion has a monocapped octahedral structure, while the Xe₂F₁₃⁻ anion may be described as an XeF₆ molecule bridged by two long Xe–F bonds to an XeF₇⁻ anion such that the bridging fluorines avoid the axial nonbonding electron pair of the XeF₆ molecule.

In contrast, XeF₂ has not been conclusively shown by experiment to exhibit fluoride-ion acceptor properties in solution or in the solid state (FIA, 83.3 kJ mol⁻¹).¹ The trifluoroxenate(II) anion, XeF₃⁻, was first proposed to be a plausible anionic noble-gas species based on well-known diagonal trends within the Periodic Table.⁹ The XeF₃⁻ anion was later proposed as an intermediate in the “base-catalyzed” fluorination of SO₂ by XeF₂,¹⁰ however, reasonable alternative mechanisms were subsequently proposed for this reaction which did not involve this anion.¹¹ Experimental evidence for the XeF₃⁻ anion has been obtained in the gas phase from the
negative ion mass spectra of XeF$_2$ and XeOF$_4$, and from energy-resolved collision-induced dissociation studies of XeF$_2$. The related XeF$_3^-$ radical has recently been stabilized in an argon matrix and characterized by Fourier-transform infrared spectroscopy and explored by kinetic measurements. Radiochemical experiments using 18F (half life = 109.7 min) have failed to confirm fluoride-ion exchange with XeF$_2$ in water, CH$_2$Cl$_2$, or CH$_3$CN solvents. However, 18F$^-$ exchanges between $[^{18}$F]-HF, $[^{18}$F]-SiF$_4$, and $[^{18}$F]-AsF$_5$ and XeF$_2$ have been successfully used for the preparation of $[^{18}$F]-XeF$_2$ (through XeF$^+$ and Xe$_2$F$_3^+$ as intermediates), that was, in turn, used for the preparation of $[^{18}$F]-2-fluoro-2-deoxy-D-glucose and $[^{18}$F]-6-fluoro-L-3,4-dihydroxyphenylalanine. Computational chemistry has more recently been employed to study the nature of the XeF$_3^-$ anion in the gas phase, as well as the thermodynamics of its formation (for details see Computational Results).

In an earlier study, the authors observed exchange between F$^-$ and XeF$_2$ in CH$_3$CN solvent under rigorously anhydrous conditions by use of 2-D 19F-19F EXSY experiments. Fluorine-19 exchange occurred between the “naked” fluoride-ion source, [N(CH$_3$)$_4$][F], and XeF$_2$ in CH$_3$CN solvent at 15 °C, providing the first conclusive evidence for XeF$_2$/F$^-$ exchange on the NMR timescale. The 19F exchange was postulated to proceed through the formation of XeF$_3^-$ (eq 1).

$$\text{XeF}_2 + \text{F}^- \rightleftharpoons \text{XeF}_3^- \tag{1}$$

The objectives of the present study are to better define the nature of the XeF$_2$/F$^-$ exchange, using single selective inversion NMR and to establish the fluoride ion acceptor properties of XeF$_2$ by attempting the syntheses of representative salts containing the XeF$_3^-$ anion. Computational methods (CCSD and DFT) have also been used to explore the nature of the XeF$_2$/F$^-$ exchange. The current study also clarifies inconsistencies that have arisen in recent computational studies relating to the structure of the XeF$_3^-$ anion.
Results and Discussion

Intermolecular Exchange Between F⁻ and XeF₂. Although EXSY experiments are very effective for determining connectivities among exchanging sites, one-dimensional, single selective inversion experiments are considered to be superior for the study of slow exchange processes and for probing the thermodynamics of the transition states. The enthalpy of activation, ΔH^\ddagger, for intermolecular 19F exchange between fluoride ion and XeF₂ was determined from two samples containing equimolar amounts of [N(CH₃)₄][F] and XeF₂ in CH₃CN solvent (0.18 and 0.36 M), in conjunction with single selective inversion NMR spectroscopic experiments conducted at variable temperatures. Figure 1 shows the results of a 19F selective inversion experiment acquired at –15 ºC for a 0.18 M sample of XeF₂ and [N(CH₃)₄][F] in CH₃CN solvent using various delay times. The analysis of this intermolecular exchange process was carried out over the temperature range –40 to 0 ºC, and the data were fit (Figure 2), yielding a ΔH^\ddagger value of 74.1 ±5.0 kJ mol⁻¹. A more concentrated sample (0.36 M XeF₂ and [N(CH₃)₄][F] in CH₃CN solvent) was similarly analyzed over the temperature range –35 to –15 ºC, yielded a ΔH^\ddagger value of 56.9 ±6.7 kJ mol⁻¹. Because the two values are not statistically different (to within ±3σ) within the concentration and temperature ranges amenable for study by NMR spectroscopy, the values can be averaged (65.5 ±8.4 kJ mol⁻¹) and are indicative of a single transition state (see Computational Results). The presence of HF₂⁻ in the samples (Figure 2), as seen previously, results from F⁻ or XeF₂ attack on the solvent to produce HF which, in turn, reacts with F⁻ to form HF₂⁻. The former and predominant reaction occurs by abstraction of H⁺ from CH₃CN by F⁻ and by reaction of XeF₂ with CH₃CN. The HF₂⁻ anion was not found to exchange with XeF₂ by single selective inversion NMR spectroscopy (Figure 2) or by 2-D 19F-19F EXSY.
The enthalpy of activation, ΔH^\ddagger, determined by use of single selective inversion 19F NMR spectroscopy to be 74.1 ± 5.0 kJ mol$^{-1}$ from a stoichiometric sample (0.18 M in both [N(CH$_3$)$_4$][F] and XeF$_2$ in CH$_3$CN solvent at -15 $^\circ$C) of XeF$_2$ (●) and F$^-$ (■).
Figure 2. The 19F NMR resonances of XeF$_2$, [N(CH$_3$)$_4$][F], and [N(CH$_3$)$_4$][HF$_2$] in CH$_3$CN solvent (−15 °C). The 1-D NMR spectrum of XeF$_2$ and its natural abundance 129Xe satellites and F$^-$ (top trace) and the full-observed relaxation under the combined influence of spin-lattice relaxation and chemical exchange that results in the selective inversion of F$^-$ with respect to XeF$_2$.
Attempted Syntheses of the Cs⁺ and N(CH₃)₄⁺ Salts of XeF₃⁻. In attempts to synthesize [N(CH₃)₄][XeF₃], stoichiometric amounts of XeF₂ and [N(CH₃)₄][F] were dissolved in CH₃CN solvent by briefly warming the mixture to room temperature, and in CHF₃ solvent at 0 °C (12 h) under autogeneous pressure in a heavy-wall glass vessel. The Raman spectra of both samples were recorded at −160 °C under the frozen solvents and after solvent removal. Only bands arising from unreacted starting materials were observed, demonstrating that no XeF₃⁻ salts had formed based on calculated vibrational frequencies and Raman intensities of XeF₃⁻ (Table S1 in the Supporting Information). The inability to form a salt of the XeF₃⁻ anion in either CHF₃ or CH₃CN solvents parallels failed attempts to form [N(CH₃)₄][F₃] from F₂ and [N(CH₃)₄][F] in CH₃CN and CHF₃ solvents, and was attributed to the high solvation energies of the fluoride ion in these polar solvents.

The syntheses of the Cs⁺ and N(CH₃)₄⁺ salts containing the XeF₃⁻ anion were also attempted in the absence of a solvent. Fusion of a four-fold molar excess of XeF₂ with CsF resulted in no reaction up to 170 °C. When a six-fold molar excess of XeF₂ with respect to [N(CH₃)₄][F] was slowly heated to the melting point of XeF₂ (129 °C), rapid oxidative fluorination of the N(CH₃)₄⁺ cation ensued with detonation of the sample. The inability to form salts of the XeF₃⁻ anion prompted thermochemical and computational studies to investigate the formation of XeF₃⁻ in the solid state, gas phase, and in CH₃CN solution.

Thermochemistry. To account for failed attempts to prepare either the Cs⁺ or N(CH₃)₄⁺ salt of the XeF₃⁻ anion, quantum-chemical calculations and established semi-empirical methods were used in conjunction with known thermodynamic quantities to estimate ΔH°rxn, ΔS°rxn, and ΔG°rxn for eq 1 in the absence of a solvent. The standard enthalpies for the reactions were determined by analyzing their Born-Fajans-Haber cycles (eq 2). The enthalpy change for the gas-
phase reaction (eq 3) corresponds to the negative of the fluoride ion affinity (FIA) of XeF₂. A prior reported fluoride ion affinity value of 83.3 kJ mol⁻¹ has been used.¹ The experimental

\[\Delta H^o_{\text{rxn}} ([M][XeF_3]) = H^o_L ([M][F]) + \Delta H^o (\text{XeF}_2)_{\text{sub}} - \text{FIA(\text{XeF}_2)} - \Delta H^o_L ([M][XeF_3]) \]

(2)

\[\text{XeF}_2(g) + F^-(g) \rightarrow \text{XeF}_3^-(g) \]

(3)

value for the enthalpy of sublimation \((\Delta H^o (\text{XeF}_2)_{\text{sub}})\) for \(\text{XeF}_2\) (55.71 kJ mol⁻¹) was used.³⁰ The lattice enthalpies of \([M][F]\) and \([M][XeF_3]\) were estimated by use of the volume-based method of Bartlett et al.²⁵,²⁶ as generalized by Jenkins et al.²⁷,²⁸ in eq 4, where \(R\) is the gas constant (8.314 J K⁻¹mol⁻¹), \(I\) is the ionicity of the salt and the constants, \(\alpha, \beta,\) and \(p\), depend on the nature of the salt. For the salts under investigation, which are singly charged and non-linear, the following values were used: \(I = 1\), \(\alpha = 117.3\) mm kJ mol⁻¹, \(\beta = 51.9\) kJ mol⁻¹, and \(p = 2\). In this formalism, \(\Delta H^o_L\) is the lattice enthalpy and is defined as the energy required to break the crystal lattice, and therefore has a positive value. The volume-based approach is particularly useful because the formula unit volume \((V_m)\) of an unknown salt can be estimated with reasonable accuracy using several methods.²⁷,³¹ In the present case, \(V_m([M][XeF_3]) = V_m(\text{XeF}_2) + V_m([M][F])\), where \(V_m(\text{XeF}_2) = 0.0622\) nm³, \(V_m([Cs][F]) = 0.0573\) nm³, and \(V_m([\text{N(CH}_3)_4][F]) = 0.1460\) nm³, giving \(V_m([Cs][XeF_3]) = 0.1195\) nm³ and \(V_m([\text{N(CH}_3)_4][XeF_3]) = 0.2082\) nm³. The calculated lattice enthalpies are:

\[\Delta H^o_L ([Cs][F]) = 717\ \text{kJ mol}^{-1} \]

\[\Delta H^o_L ([\text{N(CH}_3)_4][F]) = 554\ \text{kJ mol}^{-1} \]

\[\Delta H^o_L ([Cs][XeF_3]) = 585\ \text{kJ mol}^{-1} \]

\[\Delta H^o_L ([\text{N(CH}_3)_4][XeF_3]) = 505\ \text{kJ mol}^{-1} \]

and net enthalpies (eq 2) calculated for the reactions of \([M][F]\) \((M = \text{N(CH}_3)_4, \text{Cs})\) with \(\text{XeF}_2\) under standard conditions are:

\[\Delta H^o_{\text{rxn}} ([Cs][XeF_3]) = 105\ \text{kJ mol}^{-1} \]

\[\Delta H^o_{\text{rxn}} ([\text{N(CH}_3)_4][XeF_3]) = 22\ \text{kJ mol}^{-1} \]
A method for estimating the absolute standard entropy of a salt from its unit volume has been reported by Jenkins and Glasser (eq 5) where \(k = 1360 \text{ JK}^{-1} \text{ mol}^{-1} \text{ nm}^{-3} \) (formula unit)\(^{-1}\)

\[
S^\circ = kV_m + c
\]

and \(c = 15 \text{ J mol}^{-1} K^{-1}\). The standard entropies for the \([\text{M}][\text{F}]\) and \([\text{M}][\text{XeF}_3]\) are:

\[
S^\circ([\text{Cs}][\text{F}]) = 92.9 \text{ J mol}^{-1} K^{-1} \quad S^\circ([\text{N}(\text{CH}_3)_4][\text{F}]) = 213.5 \text{ J mol}^{-1} K^{-1}
\]

\[
S^\circ([\text{Cs}][\text{XeF}_3]) = 177.5 \text{ J mol}^{-1} K^{-1} \quad S^\circ([\text{N}(\text{CH}_3)_4][\text{XeF}_3]) = 298.2 \text{ J mol}^{-1} K^{-1}
\]

When coupled with the experimental standard entropies of \(\text{XeF}_2\) (115.09 J mol\(^{-1}\) K\(^{-1}\)), this method allows \(\Delta S^\circ_{\text{rxn}}\) (eq 6) and \(\Delta G^\circ_{\text{rxn}}\) (eq 7) to be calculated for the reactions of interest.

\[
\Delta S^\circ_{\text{rxn}} ([\text{M}][\text{XeF}_3]) = S^\circ([\text{M}][\text{XeF}_3]) - S^\circ(\text{XeF}_2) - S^\circ([\text{M}][\text{F}])
\]

\[
\Delta G^\circ_{\text{rxn}} ([\text{M}][\text{XeF}_3]) = \Delta H^\circ_{\text{rxn}} ([\text{M}][\text{XeF}_3]) - T\Delta S^\circ_{\text{rxn}} ([\text{M}][\text{XeF}_3])
\]

The \(\Delta S^\circ_{\text{rxn}}\) and \(\Delta G^\circ_{\text{rxn}}\) values obtained for these reactions are:

\[
\Delta S^\circ_{\text{rxn}} ([\text{Cs}][\text{XeF}_3]) = -30.5 \text{ J mol}^{-1} K^{-1} \quad \Delta S^\circ_{\text{rxn}} ([\text{N}(\text{CH}_3)_4][\text{XeF}_3]) = -30.4 \text{ J mol}^{-1} K^{-1}
\]

\[
\Delta G^\circ_{\text{rxn}} ([\text{Cs}][\text{XeF}_3]) = 114 \text{ kJ mol}^{-1} \quad \Delta G^\circ_{\text{rxn}} ([\text{N}(\text{CH}_3)_4][\text{XeF}_3]) = 31 \text{ kJ mol}^{-1}
\]

The reaction enthalpies and Gibbs free energies are positive indicating that both reactions are endothermic and non-spontaneous under standard conditions. As expected, the reaction employing the larger \(\text{N}(\text{CH}_3)_4^+\) cation is far less endothermic and closer to spontaneity.

Computational Results. It was first suggested that the \(\text{XeF}_3^-\) anion would have an octahedral (meridional) AX\(_3\)E\(_3\) (A = central atom, X = bonded electron pair, E = valence electron lone pair) VSEPR arrangement of bonded pairs and valence electron lone pairs (T-shaped geometry).\(^9\) Although the *mer*-isomer of \(\text{XeF}_3^-\) anion minimizes the lone pair-lone pair repulsions, there are no examples known in which three valence electron lone pairs are positioned at approximately 90\(^\circ\) to one another. Because the \(\text{XeF}_3^-\) anion has thus far eluded solid-state characterization, computational chemistry was employed to help elucidate its structure in the gas phase as well as in CH\(_3\)CN solution through employment of a continuum solvent model. The thermodynamic
properties of XeF$_3^-$, XeF$_2$, and F$^-$ were also computed for comparison with the experimentally determined transition-state energy for the formation of the anion from XeF$_2$ and F$^-$ in CH$_3$CN ($\Delta H^\ddagger = 65.5 \pm 8.4$ kJ mol$^{-1}$).

To fully appreciate the complexity of this seemingly simple system, it is important to distinguish the two, discrete forms of the anion that have stationary points on the potential energy surface (PES), as computed in the present work and in previous studies: a planar, distorted Y-shaped anion (C_s symmetry, Figure 3a) possessing two short Xe–F bonds and one long Xe–F bond (which is still within the sum of the van der Waals radii of xenon and fluorine, 3.63 Å32), and a planar, Y-shaped anion (C_{2v} symmetry, Figure 3b) possessing three similar Xe–F bond lengths. The former will be referred to as the F$_2$Xe---F$^-$ adduct, while the latter will be referred to as the XeF$_3^-$ anion. A third, T-shaped adduct of C_{2v} symmetry was also computed as a stationary point on the PES,1,14 but it was found that a slight, symmetry-lowering distortion to C_s symmetry gave the lower energy, ground-state structure, which is, in fact, the mer-structure.

Figure 3. Calculated gas-phase geometries (PBE1/aVTZ) of (a) the F$_2$Xe---F$^-$ adduct (ground state, C_s symmetry), and (b) the XeF$_3^-$ anion (transition state, C_{2v} symmetry).
(albeit with one long Xe---F interaction). Finally, a Y-shaped anion (D_{3h}) was also computed as a diradical species, in accord with the structure predicted by MO theory,14 but was found to be 59.8 to 110.0 kJ mol$^{-1}$ higher in energy than the ground-state structure.

(a) Electronic Structures of the XeF$_3^-$ and F$_2$Xe---F$^-$ Anions. (i) In the Gas Phase. The optimized geometries of the XeF$_3^-$14 and F$_2$Xe---F$^-$1,14 anions have recently been reported; the results, along with the present work, are summarized in Table 1. In the former report, DFT calculations with the B3LYP functional indicated that the XeF$_3^-$ anion (C_{2v}) is the energy-minimized structure (all frequencies real, Table S1 in the Supporting Information) when either an all-electron Maroulis basis set or an ECP basis set (SDB-cc-pVTZ) is used for xenon.14 The F$_2$Xe---F$^-$ adduct (C_{2v}) was higher in energy relative to the XeF$_3^-$ anion by ca. 2.1--15.1 kJ mol$^{-1}$,1,14 and is a transition state (one imaginary frequency). However, the previous work14 overlooked a lower-energy, ground-state conformation of the F$_2$Xe---F$^-$ adduct possessing a lower symmetry (C_3), as found in the latter study (4.85 kJ mol$^{-1}$ lower than the C_{2v} structure at the CCSD(T)/aVTZ level of theory).1 Although the bond lengths for the adduct are incorrectly reported in the text, they are correct in the Supporting Information.1 The latter bond lengths and angles are in good agreement with the bond lengths calculated for the F$_2$Xe---F$^-$ adduct in this study (Table 1). Furthermore, the existence of the XeF$_3^-$ anion as a transition state was not explored.1

Calculations performed in the present work (DFT using the PBE1 functional, and CCSD; basis sets: aVTZ (for F) and aVTZ(-PP) (for Xe) were done without symmetry constraints, and reveal that the global-energy minimum of the anion is the F$_2$Xe---F$^-$ adduct (C_3 symmetry), in
Table 1. Calculateda Gas-Phase and Solution-Phase (CH\textsubscript{3}CN)b Geometries for the XeF\textsubscript{3}− and F\textsubscript{2}Xe--F− Anions

<table>
<thead>
<tr>
<th>bond lengths (Å)</th>
<th>XeF\textsubscript{3}−</th>
<th>F\textsubscript{2}Xe--F−</th>
</tr>
</thead>
<tbody>
<tr>
<td>gas phase (C\textsubscript{2\textsubscript{v}})</td>
<td>CH\textsubscript{3}CN (C\textsubscript{2\textsubscript{v}})</td>
<td>ref. 14 (C\textsubscript{2\textsubscript{v}})c</td>
</tr>
<tr>
<td>Xe–F(1)</td>
<td>2.084 (2.115)</td>
<td>2.026 (2.067)</td>
</tr>
<tr>
<td>Xe–F(2)</td>
<td>2.153 (2.182)</td>
<td>2.207 (2.230)</td>
</tr>
<tr>
<td>Xe–F(3)</td>
<td>2.153 (2.182)</td>
<td>2.207 (2.230)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bond angles (º)</th>
<th>XeF\textsubscript{3}−</th>
<th>F\textsubscript{2}Xe--F−</th>
</tr>
</thead>
<tbody>
<tr>
<td>F(1)–Xe–F(2)</td>
<td>145.4 (145.2)</td>
<td>145.9 (146.0)</td>
</tr>
<tr>
<td>F(1)–Xe–F(3)</td>
<td>145.4 (145.2)</td>
<td>145.9 (146.0)</td>
</tr>
<tr>
<td>F(2)–Xe–F(3)</td>
<td>69.1 (69.6)</td>
<td>68.2 (68.1)</td>
</tr>
</tbody>
</table>

a CCSD/aug-cc-pVTZ(PP) (PBE1PBE/aug-cc-pVTZ(-PP) values in parentheses). b Values were computed using the CPCM solvent model. c Using the B3LYP functional with aug-cc-pVTZ basis set for F and SDB-cc-pVTZ basis set for Xe. d CCSD(T)/aug-cc-pVTZ.
accord with the CCSD(T) results reported in the Supporting Information of reference 1 (Table 1, Figure 3a). For the DFT structure, one of the Xe–F bonds is distinctly longer (2.378 Å) than the other two (2.045 and 2.099 Å), but well within the sum of the van der Waals radii for Xe and F. The F–Xe–F fragment is slightly bent (159.6°) so that the structure can be viewed as XeF₂ perturbed by a fluoride ion, in agreement with the previous work.⁠¹ Although the qualitative agreement with the geometries optimized at the DFT and CCSD levels is good, the geometric parameters (Table 1) show that the PBE1 functional predicts a structure in which F(1) is more strongly bound to the XeF₂ fragment, whereas the coupled-cluster method predicts a significantly longer Xe–F(1) bond length (2.561 Å) and a more open F(2)–Xe–F(3) bond angle (169.1°).

In order to elucidate the structure of the transition state, a scan involving the step-wise reduction in the long Xe–F bond length of the F₂Xe−−F⁻ adduct was computed. In both cases (PBE1 and CCSD), the transition-state structure was that of the Y-shaped XeF₃⁻ anion (Figure 3b). The structures thus obtained were further optimized as transition states at their respective levels of theory (Table 2). Calculations were also performed to determine if the T-shaped, Cᵥ-symmetric transition state was a potential, competing transition state. The Cᵥ-symmetric transition state was 14.6 (PBE1) and 16.7 (CCSD) kJ mol⁻¹ higher in energy than the Y-shaped XeF₃⁻ anion, indicating that the latter is the more favored transition state. Thermodynamic calculations for the intermolecular exchange between XeF₂ and F⁻ were also reinvestigated in the present work (see Computational Assessment of Intermolecular Exchange).

The transition state (XeF₅⁻) appears to be far more covalently bound than the ground-state F₂Xe−−F⁻ adduct; using DFT methods, the XeF₅⁻ anion possesses three similar Xe–F bond lengths (2.115 Å and 2.182 Å (×2)). The two large (145.2°) angles and one small (69.6°) angle allow for the retention of the lone-pair torus around the xenon atom, as shown by ELF analyses (see Electron Localization Function (ELF) Analyses). The structure computed at the
CCSD/aVTZ level of theory was found to possess similar geometric parameters to that of the DFT structure (Table 1). It is unclear why the XeF$_3^-$ anion was computed to be an energy minimum in the previous study14 since the structure remains a transition state even when the calculations are performed using the same basis set-density functional combination as employed in the original work.

(ii) **In CH$_3$CN Solution.** Because of the thermodynamics for the enthalpy of activation of F$^-$ ion exchange with XeF$_2$ in CH$_3$CN solvent were found to be in good agreement with the experimental findings (see Computational Assessment of Intermolecular Exchange), the structures for F$_2$Xe---F$^-$ and XeF$_3^-$ were also determined in CH$_3$CN (using the CPCM model,33 Table 1). For the F$_2$Xe---F$^-$ adduct, the bond between XeF$_2$ and F$^-$ loses some of its covalent character. The optimized structure contains a near-linear XeF$_2$ fragment (PBE1, 178.2°; CCSD, 178.3°) with a long Xe–F bond equal to 3.112 Å (PBE1) and 3.035 Å (CCSD) that is still within the sum of the Xe and F van der Waals radii. Unlike the gas-phase structures, the geometric parameters in CH$_3$CN solution do not change significantly between PBE1 and CCSD (Table 1), and show that the interaction between XeF$_2$ and F$^-$ is primarily electrostatic in nature, precluding the observation of an F$_2$Xe---F$^-$ adduct by 19F NMR spectroscopy in this solvent or by low-temperature Raman spectroscopy in frozen CH$_3$CN solution. In contrast to the adduct, the geometry for the XeF$_3^-$ anion modeled in CH$_3$CN solution remains essentially unchanged from that determined in the gas phase (Table 1).

(b) **Computational Assessment of Intermolecular Exchange between Fluoride Ion and XeF$_2$.** (i) **In the Gas Phase.** In light of the 19F NMR spectroscopic study (see Intermolecular Exchange Between Fluoride Ion and XeF$_2$), the reaction between XeF$_2$ and F$^-$ was modeled by a series of computational scans with optimizations of the stationary points (PBE1 and CCSD) to (1) establish the exchange pathway, and (2) determine how well the
calculated thermodynamics agree with the experimental 19F NMR spectroscopic results. Although the energy profile for the direct fluoride ion loss from the XeF$_3^-$ anion was recently calculated at the DFT level,14 failure to obtain the correct ground-state and transition-state structures (see Electronic Structures of the XeF$_3^-$ and F$_2$Xe---F$^-$ Anions) led to an erroneous interpretation of the exchange thermodynamics.

The stepwise elongation of the long Xe–F bond of the F$_2$Xe---F$^-$ adduct (i.e., the FIA) within the C_s symmetry constraint led to a smooth increase in the total energy of the system with an asymptotic (optimized) value of 97.1 kJ mol$^{-1}$ at the PBE1/aVTZ level of theory (115.3 kJ mol$^{-1}$ at the CCSD/aVTZ level of theory). The PBE1 energy is in good agreement with the gas-phase enthalpies determined in previous experimental (81.2 ± 5.9 kJ mol$^{-1})^{14}$ and theoretical (96.714 and 83.3 1 kJ mol$^{-1}$) work. Conversely, the stepwise shortening of the long Xe–F bond of the F$_2$Xe---F$^-$ adduct (i.e., the enthalpy of activation) resulted in the XeF$_3^-$ anion as the transition state. The enthalpy change in going from the ground state to the transition state was small (PBE1, $\Delta H^\ddagger = 1.3$ kJ mol$^{-1};$ CCSD, $\Delta H^\ddagger = 13.4$ kJ mol$^{-1}$). Although the gas-phase results indicate that the FIA of XeF$_2$ is sufficient to form the F$_2$Xe---F$^-$ adduct in the solid state, the FIA value is much smaller than those determined for XeF$_4$ (247.3 kJ mol$^{-1})^{1}$ and XeF$_6$ (313.8 kJ mol$^{-1})^{1}$ Furthermore, the energy barrier to fluoride ion exchange between XeF$_2$ and F$^-$ (i.e., the formation of the XeF$_3^-$ anion) is very small in contrast with the experimental findings. Therefore, in an attempt to reconcile the experimental and computational findings, the thermodynamics of the XeF$_2$/F$^-$ exchange were modeled in CH$_3$CN.

(ii) In CH$_3$CN Solution. In marked contrast with the gas-phase results, the step-wise elongation of the long Xe–F bond of the F$_2$Xe---F$^-$ adduct (i.e., the FIA) yielded a much smaller increase in the enthalpy (PBE1, 5.0 kJ mol$^{-1};$ CCSD, 7.1 kJ mol$^{-1}$). The enthalpy of formation from XeF$_2$ and F$^-$ suggests that XeF$_2$ possesses little to no affinity for the fluoride ion in CH$_3$CN.
solution. Because the enthalpy of formation is small for the \(\text{F}_2\text{Xe}---\text{F}^- \) adduct, the enthalpy for the formation of \(\text{XeF}_3^- \) (i.e., the enthalpy of activation) could be determined relative to free \(\text{XeF}_2 \) and \(\text{F}^- \), and gave energy barriers for the fluoride ion exchange reaction that were much higher than those in the gas phase: 24.7 (PBE1) and 50.2 kJ mol\(^{-1}\) (CCSD). While the value using the PBE1 functional was underestimated, the value obtained using the CCSD method fell within the range of those experimentally determined for the fluoride-ion exchange (65.5 ± 8.4 kJ mol\(^{-1}\)).

Taken as whole, the calculations confirm that the direct reaction between \(\text{XeF}_2 \) and \(\text{F}^- \) in solution leads to fluoride ion exchange via a transition state corresponding to the Y-shaped \(\text{XeF}_3^- \) anion.

Finally, in order to assess the validity of averaging the two activation enthalpies obtained by \(^{19}\text{F}\) NMR spectroscopy (i.e., that the two energies did not correspond to two different transition states existing at two different concentrations), other possible transition states on the potential energy surface were explored. Both \(\text{XeF}_4^2^- \) and \(\text{XeF}_5^-\cdot\text{XeF}_2 \) were assessed using the CH\(_3\)CN solvent model at both the PBE1/aVTZ and MP2/aVTZ levels of theory, but dissociated to \(\text{XeF}_3^- \) and \(\text{F}^- \) and to \(\text{XeF}_3^- \) and \(\text{XeF}_2 \), respectively. These calculations lend further support to the view that the \(\text{XeF}_3^- \) anion is the only viable transition state in the exchange between \(\text{XeF}_2 \) and \(\text{F}^- \).

(c) **Natural Bond Orbital (NBO) Analyses.** The results from the NBO analyses conducted for \(\text{XeF}_3^- \) and \(\text{F}_2\text{Xe}---\text{F}^- \) are collected in Table 2. The calculated natural population analysis (NPA) charges for the \(\text{F}_2\text{Xe}---\text{F}^- \) adduct (from PBE1 and CCSD geometries, respectively) show that the combined charge of the \(\text{XeF}_2 \) fragment is near zero (–0.18/–0.04), and that the negative charge is distributed unevenly among the three fluorine atoms, with F(1) carrying most of the charge (–0.82/–0.96). The most logical Lewis-like depiction of the total electron density given by the NBO analysis shows that bonding in the \(\text{F}_2\text{Xe}---\text{F}^- \) adduct has two
Table 2. Gas-Phase and Solution-Phase (CH$_3$CN)a NBO Analyses and NPA Charges for the XeF$_3^-$ and F$_2$Xe---F$^-$ Anionsb

<table>
<thead>
<tr>
<th></th>
<th>XeF$_3^-$</th>
<th></th>
<th>F$_2$Xe---F$^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gas phase</td>
<td>solution phase</td>
<td>gas phase</td>
</tr>
<tr>
<td>Xe</td>
<td>1.227 (1.097)</td>
<td>1.242 (1.161)</td>
<td>1.292 (1.130)</td>
</tr>
<tr>
<td>F(1)</td>
<td>-0.720 (-0.684)</td>
<td>-0.661 (-0.654)</td>
<td>-0.956 (-0.817)</td>
</tr>
<tr>
<td>F(2)</td>
<td>-0.753 (-0.707)</td>
<td>-0.791 (-0.754)</td>
<td>-0.699 (-0.681)</td>
</tr>
<tr>
<td>F(3)</td>
<td>-0.753 (-0.707)</td>
<td>-0.791 (-0.754)</td>
<td>-0.636 (-0.633)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>bond orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xe–F(1)</td>
<td>0.219 (0.255)</td>
</tr>
<tr>
<td>Xe–F(2)</td>
<td>0.167 (0.229)</td>
</tr>
<tr>
<td>Xe–F(3)</td>
<td>0.167 (0.229)</td>
</tr>
</tbody>
</table>

a Values were computed using the CPCM solvent model. b CCSD/aVTZ//CCSD/aVTZ (PBE1/aVTZ//PBE1/aVTZ in parentheses).
major contributions; a bonding Xe–F interaction within the F(2)–Xe–F(3) fragment (Xe–F bond orders of 0.259/0.248 and 0.293/0.292) and an adduct interaction between neutral XeF2 and the major contributions; a bonding Xe–F interaction within the F(2)–Xe–F(3) fragment (Xe–F bond orders of 0.259/0.248 and 0.293/0.292) and a weak covalent interaction between neutral XeF2 and the fluoride ion, F(1) (bond order of 0.155/0.020), which is calculated to be much stronger using DFT methods. Using the solvent model, the bond orders for the DFT and CCSD structures become more similar, with slightly stronger Xe–F(2)/F(3) interactions (0.297/0.312 and 0.301/0.316, respectively) and a much weaker Xe–F(1) interaction (0.011/0.003).

In contrast to the F2Xe---F− adduct, the XeF3− anion is a covalently bound Y-shaped anion (C2v), with all the fluorine atoms having similar charges (PBE1: −0.67, −0.71, and −0.71; CCSD: −0.72, −0.75 and −0.75), and also possessing similar bond orders (PBE1: 0.262, 0.204, and 0.204; CCSD: 0.219, 0.167, and 0.167). These values do not change substantially when modeled in CH3CN solution.

(d) Electron Localization Function (ELF) Analyses. The use of ELF for inorganic systems containing xenon has proven useful for qualitative analysis.34 It is also well known that while ELF analyses can be instructive, there is no direct physical interpretation for an ELF basin or its population.

The linear structure of XeF2, and its calculated ELF isosurface (performed on the PBE1/VTZ-optimized geometry) shows a torus comprised of the three lone pairs around xenon (Figure 4a). Addition of a fluoride ion results in a distortion of the lone pair torus upon addition of another bonding pair of electrons and an increase in electron-electron repulsion. This repulsion is reduced by lowering the symmetry from C2v to C3, allowing the fluoride ion to avoid a “head-on” interaction with the electron lone-pair torus (Figure 4b), and keeping the fluoride distance longer than a typical covalent Xe–F bond (Table 1). In contrast to the F2Xe---F− adduct,
the XeF$_3^-$ anion shows strong covalent bonding for all three fluorine atoms. Where VSEPR would predict a mer-arrangement (based on an octahedral arrangement of bond pairs and lone pairs), computations show a highly distorted, planar Y-shaped geometry with C_{2v} symmetry. The ELF analysis (Figure 4c) indicates that the distortion arises from retention of the torus about the xenon atom. In contrast with the F$_2$Xe---F$^-$ adduct, the torus is slightly distorted towards the F(1) atom, and away from the F(2) and F(3) atoms. It is interesting to note that it is energetically more favorable when two fluorine atoms are 69º away from each other, rather than having three lone pairs at an approximately 90º angle to one another (the meridional structure).

Figure 4. Electron localization function isosurfaces (contour level 0.7) of (a) XeF$_2$, (b) the F$_2$Xe---F$^-$ adduct, and (c) the XeF$_3^-$ anion (calculated at the PBE1/aVTZ level of theory. Color scheme: blue, lone-pair (monosynaptic) basin; red, core basin.

Conclusions

The standard enthalpy of formation for the intermolecular 19F-exchange between XeF$_2$ and [N(CH$_3$)$_4$][F] in CH$_3$CN solvent was measured by single selective inversion NMR
spectroscopy and determined to be 65.5 ±8.4 kJ mol⁻¹. The inability to synthesize salts containing the XeF₃⁻ anion in the present work is attributed to the low fluoride ion affinity of XeF₂. The calculated energy-minimized geometries (DFT and CCSD) of the F₂Xe---F⁻ and XeF₃⁻ anions show distorted Y-shaped (adduct) and Y-shaped (anion) structures, respectively. Computed enthalpies using the CH₃CN solvent model demonstrated that XeF₂ has no affinity for the fluoride ion in solution, and gave activation enthalpies (CCSD) that agreed well with the experimentally determined activation enthalpy.

Experimental Section

Materials and Synthetic Techniques. Fluoroform, CHF₃ (Canadian Liquid Air, 98%) was handled using a metal vacuum line. Before entering the vacuum manifold, CHF₃ gas was passed through a copper coil cooled to −78 ºC in solid dry ice. Preparation of all other starting materials and standard techniques were conducted as previously described, unless otherwise specified.

Attempted Syntheses of Salts Containing the XeF₃⁻ Anion. Inside a drybox, [N(CH₃)₄][F] (0.01620 g, 0.01739 mmol) and XeF₂ (0.02960 g, 0.01749 mmol) were loaded into a glass thick-wall h-shaped reaction vessel (9-mm o.d., 2.5-mm i.d.). The reaction vessel was attached to a stainless steel vacuum line and anhydrous CHF₃ was condensed into the vessel. Once the reaction vessel was flame sealed it was placed in a dewar containing a 95% ethanol/liquid nitrogen slush at ca. −110 ºC. The reaction mixture was then agitated over a period of 30 min while warming to 0 ºC and allowed to stand for 12 h. The sample was mixed again and a Raman spectrum was recorded at −160 ºC directly on the thick-walled glass reaction vessel containing the solid sample. The CHF₃ was distilled into one arm of the reaction vessel and was flame sealed off. A white, crystalline powder was obtained and Raman spectra were recorded at −155
℃ directly on the sealed off portion of the thick-wall glass reaction vessel containing the solid sample.

Equimolar amounts of [N(CH₃)₄][F] (0.01620 g, 0.1739 mmol) and XeF₂ (0.02960 g, 0.1749 mmol) were also loaded into a ¼-in. glass tube fused to a 5-mm o.d. thick-wall glass NMR tube, inside a drybox. The reaction vessel was attached to a stainless steel vacuum line and anhydrous CHF₃ was condensed into the vessel at −196 ºC to a height of ca. 5 cm and the sample tube and the content were cooled to −196 ºC and flame-sealed under vacuum. The reaction vessel was warmed in stages up to room temperature and maintained at 0 ºC for 12 h. After cooling to −78 ºC, a white, crystalline powder precipitated and the Raman spectra of the solid under frozen solvent was recorded at −160 ºC (directly on the upper and lower regions of the sealed off portion of the thick-wall glass reaction vessel containing the solid sample), and confirmed that no reaction had occurred.

Equimolar amounts of [N(CH₃)₄][F] (0.01474 g, 0.1582 mmol) and XeF₂ (0.02394 g, 0.1414 mmol) were added to a 4-mm o.d. FEP reaction vessel. Dry acetonitrile solvent was then added to the sample and reacted for ca. 1 h at −30 ºC. The solvent was removed under vacuum at −30 ºC and a Raman spectrum was recorded at −160 ºC on the non-volatile residue, confirming that no reaction had occurred.

Cesium fluoride (0.08105 g, 0.5336 mmol) and XeF₂ (0.38827 g, 2.294 mmol) were loaded into a 4-mm o.d. FEP tube. The tube was then heat sealed under ca. 0.5 atm N₂, and then immersed in an oil bath and heated to 145 ºC. A Raman spectrum recorded at −155 ºC confirmed that no reaction had occurred. A sample of [N(CH₃)₄][F] (0.02076 g, 0.0223 mol) and XeF₂ (0.23772 g, 1.404 mmol) was similarly prepared. The sample was immersed in an oil bath and detonated violently at the melting point of XeF₂ (129 ºC).
Nuclear Magnetic Resonance Spectroscopy. Single selective inversion experiments were conducted as previously described and the full observed relaxation,21 under the combined influence of spin-lattice relaxation and chemical exchange was analyzed using the CIFIT program.35 Equimolar samples of XeF\textsubscript{2} and [N(CH\textsubscript{3})\textsubscript{4}][F] were prepared in CH\textsubscript{3}CN solvent with concentrations of 0.18 M and 0.36 M, as described previously.17

Fluorine-19 NMR spectra were referenced to external CFCl\textsubscript{3} at 30 °C. The NMR probe was cooled using a nitrogen flow and variable temperature controller (BV-T 2000). All spectra in this study were recorded unlocked without spinning the samples. The NMR spectra were recorded on a Bruker DRX-500 spectrometer and acquired at 470.560 MHz in 64 K memories over a 14.86 kHz spectral width corresponding to an acquisition time of 0.23 s and a data point resolution of 2.18 Hz/point.

Raman Spectroscopy. Low-temperature (−155 to −165 °C) Raman spectra were recorded on a Bruker RFS 100 FT Raman spectrometer using 1064-nm excitation as previously described.36 Spectra were recorded in glass or ¼-in. FEP sample tubes using a laser power of 200 mW and a total of 300 scans.

Computational Methods. Molecular geometries were optimized with CCSD and DFT (using the PBE1PBE exchange-correlation functional) with aug-cc-pVTZ (F) and aug-cc-pVTZ-PP (Xe) basis sets (basis sets obtained from https://bse.pnl.gov/bse/portal). The nature of all stationary points found was assessed by performing frequency analyses. Calculations involving solvent effects were performed using the CPCM model33 and employing the default parameters for CH\textsubscript{3}CN. Natural atomic orbital and natural bond orbital analyses were conducted using the NBO 5.0 code;37 electron localization function analyses were performed with the program package TopMod.38 Visualizations of molecular structures and ELF isosurfaces were done with the gOpenMol program.39,40 Quantum-chemical calculations were carried out using the program
Gaussian 0941 for geometry optimizations, vibrational frequencies, and their intensities and the program Gaussian 0342 for NBO analysis.

Acknowledgements. We thank the Natural Sciences and Engineering Research Council of Canada for the award of a postgraduate scholarship (N.V.) and for support in the form of a Discovery Grant (G.J.S.). We also thank the Academy of Finland (H.T.) for financial support. This work is dedicated to the memory of Dr. Donald W. Hughes (1949-2010).

Supporting Information Available: Calculated gas-phase frequencies (cm\(^{-1}\)) and relative Raman intensities for the XeF\(_3^-\) and F\(_2\)Xe---F\(^-\) anions (Table S1); complete references 41 and 42.

References

