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Abstract

Because the purpose of multiobjective optimization methods is to optimize conflicting objectives
simultaneously, they mainly focus on Pareto optimal solutions, where improvement with respect to
some objective is only possible by allowing some other objective(s) to impair. Bringing this idea into
practice requires the decision maker to think in terms of trading-off, which may limit the ability of
effective problem solving. We outline some drawbacks of this and exploit another idea emphasizing
the possibility of simultaneous improvement of all objectives. Based on this idea, we propose a
technique for handling decision maker’s preferences, which eliminates the necessity to think in terms of
trade-offs. We incorporate this technique into an interactive trade-off-free method for multiobjective
optimization. We call the resulting method NAUTILUS 2, which is also suitable for negotiation
support. We demonstrate the applicability of the new method with an example problem.

Keywords: multiple objectives, interactive methods, preference information, NAUTILUS method,
negotiation support

1 Introduction

By solving a multiobjective optimization problem we typically understand finding a fea-
sible solution which satisfies the decision maker (DM) in the best way (see e.g. Miettinen
(1999)). Such a solution is often referred to as the most preferred solution and is deter-
mined based on the DM’s preference information. A widely used class of solution methods
in multiobjective optimization is interactive methods (see, e.g., Branke et al. (2008); Luque
et al. (2011); Miettinen (1999); Miettinen et al. (2008); Ruiz et al. (2012); and references
therein). They iteratively proceed towards the most preferred solution allowing the DM
to learn about the interdependencies among the objectives during the solution process
and adjust one’s preferences accordingly. Interactive methods usually generate feasible
solutions (to be called solution candidates) based on preference information provided by
the DM, and when the DM changes preferences, a new or some new solution candidates
are derived.

Most interactive methods concentrate on Pareto optimal solution candidates, where
none of the objective function values can be improved without impairing at least one of the
others. This concentration is natural as one can assume that the most preferred solution
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is Pareto optimal. Limiting the consideration in this way has some advantages, such as
significant reduction of the set of solution candidates, and also the possibility to benefit
from the theory of vector optimization. However, the analysis of solution processes from
the human perspective reveals some disadvantages, mostly because the concept of Pareto
optimality is strongly related to the concept of trade-off between objectives (referred often
to as conflicting objectives).

In this paper, our starting point is the same as in Miettinen et al. (2010) where the
interactive NAUTILUS method was proposed. We develop an approach to multiobjective
optimization, which is free from the necessity of considering trade-offs. We get rid of
thinking in terms of trade-offs both when handling DM’s preferences and guiding the DM
through the set of solution candidates. In order to introduce this in practice, we propose a
new preference handling technique which is easily understandable for the DM and allows
the DM to conveniently control the solution process. With examples we demonstrate the
easy controllability compared to the approaches proposed in connection with the NAU-
TILUS method. As a concrete example of how the new preference handling technique can
be used, we incorporate it in the interactive NAUTILUS method and the resulting method
is called NAUTILUS 2. It is a practical trade-off-free approach to solving multiobjective
optimization problems. At each iteration, we find a solution that simultaneously improves
all the objectives when compared to the previous iteration. Therefore, the DM will al-
ways be more satisfied with any new iteration. Thanks to the new preference handling
technique, the DM can conveniently control the improvement ratios among the objective
functions and only the final solution is Pareto optimal. This progressively satisficing tech-
nique can be seen to connect our approach with Simon’s models of rational choice (Simon,
1956).

The new preference handling technique can be also useful in negotiations when a group
of decision makers must reach a common decision. In this case, at each iteration, DMs
negotiate on the direction of simultaneous improvement of objectives. This is a fruitful
setting for negotiations when each DM can gain instead of having to sacrifice.

There are few interactive approaches that start from an inferior point and make
progress towards the Pareto optimal set by simultaneously improving objective values.
However, in these works no attention has been paid to ratios of improvement when ex-
pressing preferences by the DM. Among such methods, besides the already mentioned
NAUTILUS method (Miettinen et al., 2010), it is worth mentioning the algorithm by Ar-
bel and Korhonen (1996) (designed for linear problems only) and an interactive method
of negotiation support by Ehtamo et al. (2001).

This paper is organized as follows. In the next section, we formulate a general multiob-
jective optimization problem and briefly consider weaknesses of interactive methods based
on considering Pareto optimal solution candidates during the solution process. Based on
this motivation, in Section 3 we develop the preference handling technique which is free
from the thinking in terms of trade-offs and demonstrate its strengths when compared
to techniques proposed earlier. This supports the DM’s easy controllability of expressing
preferences with the new preference handling technique. In Section 4, we present two ex-
amples of how the preference handling technique can be used. Firstly, we incorporate the
technique into a trade-off-free interactive method to be called NAUTILUS 2. Secondly,
we present a numerical example to illustrate the applicability of the preference handling
technique and the method. Finally, we draw some conclusions in Section 5.
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2 Concepts and Consideration of Pareto Optimality

We consider multiobjective optimization problems formulated as follows:

minimize f(x) = (f1(x), . . . , fk(x))T

subject to x ∈ S,
(1)

where the DM wishes to simultaneously minimize k (k ≥ 2) objective functions fi : S → R.
The decision vectors x = (x1, . . . , xn)T belong to the feasible set S, which is a nonempty
compact subset of Rn. The image of the feasible set is called the feasible objective set
f(S) and its components z = f(x) = (f1(x), . . . , fk(x))T consisting of objective (function)
values are called objective vectors. By a DM we refer to a person who knows the problem
to be solved and can specify preference information related to it.

For any two vectors v, w ∈ Rk, we say that v dominates w if vi ≤ wi for all i = 1, . . . , k
and v 6= w. The set of Pareto optimal decision vectors is defined by

E = {x ∈ S : there is no x′ ∈ S such that f(x′) dominates f(x)}.

We use the term Pareto optimal solution to refer either to an element of E or f(E) (the
image of E in the objective space), which will be clear from the context. The set f(E) is
called the Pareto optimal set.

It is often desirable to have some information about the ranges of the objective function
values in the Pareto optimal set. The ideal objective vector and the nadir objective vector
are defined, respectively, as z? = (z?1 , . . . , z

?
k)
T such that z?i = minx∈E fi(x) for i = 1, . . . , k,

and znad = (znad1 , . . . , znadk )T such that znadi = maxx∈E fi(x) for i = 1, . . . , k. That is, the
components of the ideal and the nadir objective vectors are, respectively, the best and the
worst values that each objective function can achieve in the Pareto optimal set. While
the ideal objective vector can be obtained by separately minimizing each of the objective
functions in the feasible set, the nadir objective vector is, in general, more difficult to
obtain and typically one needs to settle for approximations by using, e.g., payoff tables (see
Miettinen (1999) and references therein). Lately, some approaches for more reliable nadir
objective vector generation have been proposed (see, e.g., Deb et al. (2010); Szczepanski
and Wierzbicki (2003)).

Solving problem (1) means finding the most preferred decision vector (also referred
to as the most preferred solution), i.e., an element of S which is the most satisfying for
the DM. It is rational to assume that if one solution dominates another solution, the
DM always prefers the former to the latter. Therefore in multiobjective optimization,
the search for the most preferred solution is constrained to Pareto optimal solution set
(Miettinen, 1999; Branke et al., 2008). We concentrate on interactive methods because
they are regarded as the most promising methods of multiobjective optimization due to
numerous advantages (Miettinen, 2002; Miettinen et al., 2008; Miettinen and Hakanen,
2009). Broadly speaking, an interactive method consists of repetitive iterations of gener-
ating Pareto optimal solution candidates based on preference information provided by the
DM. In general, at each iteration the DM considers solution candidates and, by express-
ing preferences, indicates how the candidates should be changed to get more preferred
solution candidates. Solution processes facilitated by such methods involve moving from
one Pareto optimal solution to another and comparing solution candidates by the DM.

As mentioned in the introduction, the starting point of this paper in questioning the
idea of dealing with Pareto optimal solutions only throughout the solution process of an
interactive method is the same as in Miettinen et al. (2010). Here, we briefly summa-
rize the reasons. According to the definition of Pareto optimality, moving from one such
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solution to another one in order to improve the value(s) of some objective function(s) ne-
cessitates impairment of the value of some other objective function(s). The consequences
of such changes cannot be always easily assessed by the DM because of human biases, as
shown in the prospect theory developed by Kahneman and Tversky (1979). They discov-
ered that humans’ attitudes to losses loom larger than gains. For example, the pleasure
of gaining a sum of money is shown to be lower than the dissatisfaction of losing the same
amount of money. Thus, requiring the DM to trade-off may hinder her/his willingness to
move from the current Pareto optimal solution.

Further studies have demonstrated negative effects of trading-off such as decisional
stress (Janis and Mann, 1977), decisional conflict and as a result, less accurate decision
making (Aloysius et al., 2006), as well as too small numbers of iterations in interactive
methods (Korhonen and Wallenius, 1996). The latter phenomenon observed by Gardiner
and Vanderpooten (1997) can be attributed to anchoring (Miettinen, 1999; Buchanan and
Corner, 1997), where the DM fixes one’s thinking on some (possible irrelevant) information
which hinders his/her willingness to move from the current Pareto optimal solution.

The considerations concerning negative effects of trading-off and anchoring can be
applied also in the case of group decision making, where several DMs with possibly con-
flicting interests try to find a satisfactory solution for all of them. Trading-off between
interests of different persons may cause more substantial conflicts than just psychological
issues of a single DM. The anchoring effect influencing any of the group members affects
the whole group. Behavioral issues of a group of DMs are more complicated and have
not received so much attention as the case of a single DM. Some analysis can be found in
Tsay and Bazerman (2009).

Summing up, forcing the DM to trade-off among objectives and iterate among Pareto
optimal solutions only is not always advisable. If, on the other hand, the DM starts from
a point where improvement in all objectives is possible, the DM can direct the solution
process more freely always attaining only gains. Indeed, if the DM first sees a very
unsatisfactory solution, a somewhat better solution is regarded more satisfactory than
otherwise.

3 Preference Handling Technique

Even though the concept of conflicting objectives implying the need of trade-offs is
widespread in the multiobjective optimization literature, the DM may perceive multiple
objectives in decision making problems not as conflicting, but as mutually supportive if
one starts from an unsatisfactory point. Indeed, it follows directly from the multiobjective
optimization problem statement that all the objectives are to be minimized simultane-
ously, rather than some of them having to be improved at the expense of deteriorating
other ones. Moreover, in many practical problems, there are certain proportions in which
the objectives should be improved to achieve the most intensive synergy effect. Here, we
propose the idea of the most promising direction of simultaneous improvement of objec-
tives which agrees with the well-known assumption of concavity of the utility function
(Guerraggio and Molho, 2004), implying that this function grows faster in certain direc-
tions of simultaneous decrease of objective function values (starting e.g. from the nadir
objective vector).

The idea of a trade-off-free approach calls for a new way of expressing preferences. Once
the DM knows that all objectives can be simultaneously improved, the question is how
does (s)he want them to be improved. We propose to represent the DM’s preferences as
a direction of simultaneous improvement of objectives. Expressing such kind of aspiration

4



does not necessitate knowledge about the Pareto optimal set and, thereby, can be used
in the learning phase of interactive methods (cf. Miettinen et al. (2008)) even before
any Pareto optimal solutions are available. However, DM’s preferences expressed in this
way can be combined with the Pareto optimality concept, as the DM is aiming at a
Pareto optimal solution as the final one. An approach to dealing with such preferences
was presented in Podkopaev and Miettinen (2011). We use this to develop a preference
handling technique for implementing a trade-off-free method to support decision making.

3.1 Expressing preferences

Some ways for expressing preferences in trade-off-free environments have already been
proposed. In Luque et al. (2009) and Miettinen et al. (2010), two ways have been proposed
which are based on the importance given by the DM to the improvement of each objective:

• Rank the objectives according to the relative importance of improving each cur-
rent objective value. This importance evaluation allows to allocate the k objective
functions into index sets Jr which represent the importance levels r = 1, . . . , s. If
r < t, then improving the current objective function values in the index set Jr is less
important than improving the current objective function values in Jt.

• Specify percentages reflecting how the DM would like to improve the current objective
values, by answering to the following question: Assuming you have one hundred
points available, how would you distribute them among the current objective values
so that the more points you allocate, the more improvement on the corresponding
current objective value is desired?

These ways of expressing preferences have two major drawbacks. Firstly, given that the
DM is asked about the relative importance of improving each objective, the quantification
of this information may not be straightforward. Besides, we also need to normalize the
numbers obtained according to the ranges of the objective function values in the Pareto
optimal set. For example, in the former case, all objectives belonging to the index set Jr
are assigned the weight

µi =
1

r(znadi − z∗i )
(i ∈ Jr). (2)

In the latter case, if pi points are given to the objective function fi, then ∆qi = pi/100
and

µi =
1

∆qi(znadi − z∗i )
(i ∈ Jr). (3)

Although the information required in these two ways may be regarded as easy to
be provided by the DM, there is a certain degree of arbitrariness in the election of the
parameters that are used to build the weights, and this can result in undesired effects when
determining the corresponding solutions. Secondly, many authors argue that weighting
objective functions based only on the psychological notion of importance is one of the
most common critical mistakes when modelling preferences (see, e.g. Keeney (1996)).

In order to avoid the drawbacks and possible inconsistencies described above, in this
paper, we propose a preference model specification based on actual values of the objective
functions and comparisons among them. The way we propose for defining a direction
of simultaneous improvement of objectives consists of a starting point in the objective
space and a vector representing a direction of improvement. In terms of problem (1),
the starting point is defined by s ∈ Rk and the direction by δ ∈ Rk. Although it is not
required for the starting point to be a feasible objective vector, it is assumed that s is
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meaningful for the DM. In other words, s represents some hypothetical objective vector,
which can be evaluated by the DM on the basis of his/her expertise and preferences.

The information represented by s and δ is interpreted as follows: the DM wants to
improve the starting point s as much as possible, decreasing the objective function values
in proportions of δ. By setting δi > 0 for i = 1, . . . , k we emphasize the fact that the DM
wants to improve all the objective values simultaneously.

The DM can select the starting point keeping in mind that the final objective vector
should have smaller values in all components, thus, there must be space for improvement
in all components. Another possibility is to set the nadir objective vector as the starting
point ensuring that any Pareto optimal objective vector is initially a possible improvement.

There are different approaches to express preferences in order to define the direction of
improvement. The following three approaches were outlined in Podkopaev and Miettinen
(2011).

(i) The DM sets the values δ1, . . . , δk as components of δ directly. This is possible when
the DM understands the idea of the preference model and can operate with objective
function values in his/her mind.

(ii) We define the improvement ratio between two different objectives fi and fj as θij =
δj/δi. This ratio has the following meaning: the DM wishes that the improvement of
fi by one unit should be accompanied with the improvement of fj by θij units. Here,
the DM selects an objective fi (i = 1, . . . , k) and for each of the other objectives
fj sets the value θij. Then the direction of improvement is defined by δi = 1 and
δj = θij, j 6= i.

(iii) As a generalization of the approach (ii), the DM sets values of improvement ratios
freely for some selected pairs of objective functions. In what follows, we describe
a procedure supporting the DM in doing that, which includes a mechanism ensur-
ing that improvement ratios set by the DM define the components of the vector δ
completely and consistently.

Note that these approaches of providing directions of improvement are based on objec-
tive function values, rather than considerations about the importance of each objective.
Therefore, these new approaches do not share the drawbacks described earlier in this
section that are valid for the ways proposed in Luque et al. (2009) and Miettinen et al.
(2010). The first two approaches are easy to implement. The third, the most flexible
approach, requires an interactive procedure that guides the DM in expressing preference
information while ensuring that this information fully and consistently defines a direction
of improvement. Below we propose such a procedure.

To give further details of the approach (iii), let us assume that improvement ratios
have been set by the DM for some pairs of objectives. Let us denote this information
by Θ and the ratio set for a pair of objectives (i, j) by θij. We construct an undirected
graph G corresponding to Θ as follows: the set of nodes is the set of indices of objectives
V = {1, . . . , k}; the set of edges contains those and only those index pairs {i, j}, for which
the DM has set the value of θij. Note that setting the value of θij implies also setting the
value of θji = 1/θij and, therefore, our graph is undirected. Obviously, in order to be able
to obtain a vector δ from information Θ, it is necessary and sufficient that G contains a
spanning tree of the complete graph on k vertices of V (denoted by Kk). Then, one can
obtain δ by the following procedure.

Procedure 1 : Set δi = 1 for some arbitrary i = 1, . . . , k. Use a tree search algorithm
(e.g. depth- or breadth-first, cf. Cormen (2009)) starting from i in order to visit each
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node j of the spanning tree and set δj = δpθpj, where p ∈ V is a previously visited node
connected with j.

Observe that although the components of δ depend on the starting point of the tree
search, it is easy to see that the ratios between any of them do not. This means that once
G is a spanning tree of Kk, the existing information Θ uniquely determines improvement
ratios between the rest of the pairs of different objectives.

Keeping the above considerations in mind, let us outline an interactive procedure
implementing the approach (iii) for defining the direction of improvement δ. Setting
improvement ratios by the DM is accompanied by adding corresponding edges to G. The
aim of the procedure is guiding the DM in setting improvement ratios such that G will
become a spanning tree of Kk. Therefore, in the procedure it is ensured that G remains
a forest (disjoint union of trees). For this purpose, a set P is introduced which contains
all pairs of objectives such that adding to G an edge corresponding to any of these pairs
does not create a cycle. The DM is allowed to set improvement ratios only for pairs in P .

The procedure is initialized by setting G = (V, ∅), where V = {1, . . . , k} and P =
V × V \ {(1, 1), (2, 2), . . . , (k, k)}. At each iteration of the procedure:

• Present the set P to the DM.

• Ask the DM to select a pair of objectives (i, j) from P and to provide a value T > 0
as the desirable improvement ratio of this pair.

• Add the edge {i, j} to G, set θij to T and θji to 1/T .

• If the number of edges in G equals k − 1, then G is a spanning tree of Kk, which
means that the procedure is completed. Otherwise, remove all pairs of vertices where
one vertex is either i or j and the other one is some other vertex of the same tree1

from P and repeat the iteration of the procedure.

Once the graph is a spanning tree of Kk, the direction of improvement is obtained as
described in Procedure 1.

The proposed procedure of setting improvement ratios looks more complicated than it
really is for the DM, if it is appropriately implemented with a user-friendly interface. The
electronic attachment “direction setting interface.cdf” demonstrates the implementation
of this procedure for the example described below in Computable Document Format
(CDF). Its interface includes a table of input fields for entering improvement ratios for all
allowed pairs of objectives. The directed version of graph G is drawn and automatically
updated, where the directions correspond to pairs of objectives selected by the DM.
Besides ratios directly set by the DM, the image of the graph also contains improvement
ratios for other pairs of objectives which follow from the entered information. The file
“direction setting interface.cdf” can be opened in any web browser and needs a free plug-in
(if the plug-in is not installed, a link to it appears in the browser).

Let us illustrate the described procedure with a real-life problem presented in Cabello
et al. (2014). The problem is to construct a portfolio of electrical power sources (electricity
mix) for Andalućıa region in Spain. Different ways of producing electricity have different
impacts on economic and environmental interests of the region. We consider the following
subset of seven objective functions (to be minimized) from the set of fourteen objective
functions presented in the paper: Cost, annual cost of purchasing electricity (f1, Me),
Vulner, vulnerability of the production system measured as the share of imported fuel
in the fuel consumption (f2, %) and five environmental objectives estimating negative

1Note that any tree search algorithm can be used for discovering all vertices of this tree starting from i or j. If the edge
{i, j} is not connected to any other existing edge, remove only pairs (i, j) and (j, i) from P .
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Figure 1: Graph G after the 4th and 5th iterations

effects of electricity production on the following aspects (each estimation is represented
as a number of so-called Eco-points from 0 to 100): Warming, global warming (f3), Ozone,
hole in the ozone layer (f4), Cancer, carcinogens (f5), Smog, winter smog (f6), Rad. waste,
radioactive waste (f7).

We assume that the DM considers the objective vector (3550, 48%, 49, 10, 11.5, 10,
1.3) describing an unsatisfactory solution, and the direction of simultaneous improvement
expresses the desire to improve the objective values. At the beginning of the procedure,
we have G = (V, ∅) where V := {1, . . . , 7} corresponds to {Cost, Vulner, Warming, Ozone,
Cancer, Smog, Rad. waste}, and P = V × V \ {(1, 1), (2, 2), . . . , (7, 7)}.

1st iteration. The DM decided that saving each Me should be accompanied with a
decrease of the share of imported fuel by 0.5%. Then the improvement ratio between Cost
and Vulner θ1,2 is set as 0.5, θ2,1 is set as 2 and the edge {1, 2} is added to G. The pairs
(1, 2) and (2, 1) are excluded from P.

2nd and 3rd iterations. We assume that from the DM’s point of view, in each of the
following two pairs of objectives, both objectives should be improved in the same ratio:
Warming and Ozone, and Cancer and Smog. This means setting θ3,4 = θ5,6 = θ4,3 =
θ6,5 = 1 and adding edges {3, 4} and {5, 6} to G. Taking into account that these edges
are not connected with any other edges of G, only pairs (3, 4), (4, 3), (5, 6) and (6, 5) are
removed from P . Observe that after the 3rd iteration, G consists of three disconnected
trees of size 2 (disconnected edges), and an isolated vertex 7.

4th iteration. We assume that the DM associates decreasing Cost by each Me with
decreasing Smog by 3.5 Eco-points. Then θ1,6 is set to 3.5, θ6,1 is set to 2/7 and the edge
{1, 6} is added to G making its directed version look like in Figure 1 a. The pairs (1, 6),
(6, 1), (1, 5), (5, 1), (2, 6) and (6, 2) are removed from P .

5th iteration. The DM decides that decreasing Smog by each Eco-point should be
accompanied by decreasing Warming by 1.2 Eco-points. Then θ6,3 is set to 1.2, θ3,6 is set
to 5/6 and the edge {3, 6} is added to G making its directed version look like in Figure 1
b. Now P contains only the pairs (1, 7), (2, 7), . . . , (6, 7) and (7, 1), (7, 2), . . . , (7, 6).

6th iteration. The DM provides the improvement ratio between Rad. waste and Cancer
as 2. Then θ7,5 is set to 2, θ5,7 is set to 0.5 and the edge {5, 7} is added to G. After this,
G becomes a spanning tree of K7 as the number of edges equals to 6 (see Figure 2). This
means that the procedure of setting improvement ratios is completed.

Finally, we use Procedure 1 to obtain the direction of improvement, that is, we consider
the tree shown in Figure 2 to conduct breadth-first search of all vertices starting from 1:
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Figure 2: Graph G built as a result of the procedure of setting improvement ratios

δ1 = 1.

1. From vertex 1, visit 2 (δ2 = δ1 ∗ 0.5 = 0.5) and 6 (δ6 = δ1 ∗ 3.5 = 3.5).

2. From vertex 6, visit 3 (δ3 = δ6 ∗ 1.2 = 4.2) and 5 (δ5 = δ6 ∗ 1 = 3.5).

3. From vertex 5, visit 7 (δ7 = δ5/2 = 1.75).

4. From vertex 3, visit 4 (δ4 = δ3 ∗ 1 = 4.2).

As a result, we obtain the direction: δ = (1, 0.5, 4.2, 4.2, 3.5, 3.5, 1.75).
It is important to note that the final direction of improvement obtained using our new

preference handling technique makes use of information that is not hard for the DM to
provide. On the contrary, when using the percentage importance information used in
Miettinen et al. (2010), in order to obtain weights following expression (3), which are
equivalent to the direction (1, 0.5, 4.2, 4.2, 3.5, 3.5, 1.75), the DM would have to be able to
give directly the following percentages

(2.21%, 22.08%, 18.54%, 18.54%, 15.45%, 15.45%, 7.73%),

which cannot be regarded as an easy task. On the other hand, it is not at all possible to
obtain this particular direction using integer ranks in (2). To get an equivalent rank the
DM would have to use decimal ranks as follows

J1 = {1}, J3.5 = {7}, J7 = {5, 6}, J8.4 = {3, 4}, J10 = {2}.

Using decimal ranks is not allowed in Miettinen et al. (2010), as it is not realistic to
assume that the DM could provide such information.

The percentages and ranks have been obtained by taking into account the ranges of
the objective functions in the Pareto optimal set. As can be seen, a DM would hardly
be able to provide such accurate information using the importance information required
in Miettinen et al. (2010), and the results obtained using other importance information
would most probably be misleading. An integer ranking close to the previous one, like for
example,

J1 = {1}, J4 = {7}, J7 = {5, 6}, J8 = {3, 4}, J10 = {2},
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Figure 3: Objective vector z0 satisfying DM’s preferences is not Pareto optimal, because it is dominated
by other objective vectors (in the cone outlined by dashed lines).

can (depending on the structure of the Pareto optimal set) lead to a different solution.
Besides, if the DM is thinking in terms of relative importance of the objectives, for the
previous case (s)he would most probably give the following classes:

J1 = {1}, J2 = {7}, J3 = {5, 6}, J4 = {3, 4}, J5 = {2},

which is equivalent (taking f1 as the reference function) to the direction of improvement

δ = (1, 0.25, 2, 2, 1.5, 1.5, 1).

As can be observed, the values assigned to functions f2 – f6 are significantly smaller than
those of the original direction. Therefore, this direction of improvement will probably
produce worse results for these functions.

With the examples above we have demonstrated severe shortcomings of the ways of
expressing preference information given in Miettinen et al. (2010). They imply only rough
means of representing preference information. The new preference handling technique
proposed enables a DM to conveniently and directly control how objective function values
should be improved. It involves understandable questions and the preference information
is directly applicable without any mappings to weights.

3.2 Deriving solutions

Next we address the issue of determining a solution which satisfies the DM’s preferences
expressed as a direction of simultaneous improvement of objectives. Improving objectives
as much as possible starting from s in the direction δ literally means finding a feasible
solution for which the corresponding objective vector is located farthest from s along the
half line {s − hδ, h ≥ 0} ⊂ Rk or, in other words, an objective vector which solves the
following single objective optimization problem

max {h : h ∈ R, h > 0, s− hδ ∈ f(S)} . (4)

However, problem (4) is inappropriate as it does not necessarily have solutions (e.g.,
the half line does not necessarily intersect with the feasible objective set). Even if a
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Figure 4: Selecting the solution ẑ satisfying the DM’s preferences.

solution exists, it is not guaranteed to be Pareto optimal as, for example, in Figure 3.
Note that even though we question the meaningfulness of employing only Pareto optimal
solutions during the interactive solution process, we still expect the final solution to be
Pareto optimal. Thus, we need a method that guarantees generating a Pareto optimal
solution satisfying the DM’s preferences. Such a method is described below.

If a solution to (4) exists, let us denote the corresponding objective vector by z0. Oth-
erwise, we set z0 = s. If z0 is a Pareto optimal objective vector, we have found a feasible
solution in the direction defined by δ, which cannot be further improved. Therefore, we
choose a feasible decision vector corresponding to z0 as the solution satisfying the DM’s
preferences. In the case z0 is not feasible or Pareto optimal, we proceed as follows. Given
a point z on the line defined by the direction of improvement, let us call any Pareto opti-
mal objective vector dominating z as its superior. Let us move from z0 along the direction
of improvement until we find the farthest point in this direction having a superior. We
denote this farthest point by z̄. We select any objective vector ẑ among superiors of z̄ as
the solution satisfying the DM’s preferences.

Figure 4 illustrates this solution selection reasoning in the case where z0 is not Pareto
optimal. Observe that ẑ does not lie on the half line defined by the desired direction of
improvement. However, the correspondence of the derived solution to the DM’s prefer-
ences can be justified: z̄ is preferred to z0 because it lies farther along the direction of
improvement, and ẑ is preferred to z̄ because of domination. No further improvement of
the objective vector based on the available preference information can be obtained.

To derive a solution which satisfies the DM’s preferences according to the above rea-
soning, we solve the following problem involving an augmented achievement scalarizing
function (from Wierzbicki (1986))

min
x∈S

max
i=1,...,k

1

δi
(fi(x)− si) + ρ

∑
j=1,...,k

(fj(x)− sj) , (5)

where ρ > 0 is a small augmentation coefficient. It can be proven that by solving this
problem one obtains a Pareto optimal solution (see, e.g., Miettinen (1999); Wierzbicki
(1986)). In our case, it corresponds to the preference information expressed as the direc-
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tion of simultaneous improvement of objectives, where the correspondence is understood
through the reasoning above.

It is important to note that as has been proved in Wierzbicki (1986), all properly
Pareto optimal solutions and only them can be obtained by solving (5) with different
parameters. The set of properly Pareto optimality is a subset of Pareto optimal solutions
(see e.g. Miettinen (1999)) where ρ sets bounds on trade-offs (for more details, see e.g.
Wierzbicki (1986); Podkopaev (2007)). Because we do not consider bounding trade-offs,
we set ρ as a small positive value which ensures proper Pareto optimality, but does not
significantly influence the properties of solutions obtained.

Originally, problem (5) was formulated for deriving solutions based on preference in-
formation expressed as aspiration levels of objectives in the reference point method, see
Wierzbicki (1980, 1986) and Miettinen (1999). The main differences in our approach
are the way how DM’s preferences are elicited and how the solution selection process is
interpreted. In reference point based methods, a solution closest (in some sense) to the
reference point is searched for. In our approach, based on a direction of improvement, the
reference point is replaced by the starting point which has a different meaning. (Note that
achievement scalarizing functions have other interpretations related to a DM’s preference
models see, e.g., Kaliszewski (2004); Luque et al. (2009).)

4 Examples of Applying the New Preference Handling Tech-
nique

In this section, we give two examples of how the new preference handling technique
proposed in the previous section can be applied. In the first example, we describe how
the technique can be incorporated into an interactive method without trading-off. In the
second subsection, we demonstrate how this method can be applied, that is, we describe
the solution process of solving a numerical example.

4.1 Algorithm Example: NAUTILUS 2

In this section, we integrate the new preference handling technique into an interactive
method which does not require the DM to consider Pareto optimal solutions until the
solution process is at the very end. The method we present is called NAUTILUS 2, and
it is a modification of the NAUTILUS method proposed in Miettinen et al. (2010). In
the following paragraphs, for completeness, we briefly describe the main features of the
method.

NAUTILUS 2 adopts the core idea of NAUTILUS which is to iteratively direct the
search starting from an inferior point towards the most preferred solution by simultane-
ously improving all objective function values. The solution derived and shown to the DM
at each iteration dominates that of the previous iteration. Thus, by starting from an
inferior point the DM can reach any Pareto optimal solution dominating this point and,
in particular, by starting from the nadir objective vector the DM can reach any Pareto
optimal solution. Note that after each iteration, the set of reachable Pareto optimal so-
lution narrows. However, this narrowing is reversible as the DM is allowed to make steps
backwards by returning to solutions from previous iterations. At each iteration, the DM
can get information about the reachable part of the Pareto optimal set and the proximity
to it and, thus, gain understanding of which parts of the Pareto optimal set can no longer
be obtained without going backwards and what can be achieved when approaching the
Pareto optimal set in a certain direction.
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It must be pointed out that the idea of finding a Pareto optimal solution as the final
one is not questioned by NAUTILUS 2. Moreover, the DM does not lose sight of the
Pareto optimal set at any moment during the solution process. In this way, NAUTILUS
2 supports the DM in a free search for the most preferred solution. Next we describe the
NAUTILUS 2 method.

In the initialization step, the DM is asked to determine the starting objective vector
z0. It has the same meaning as the starting point s described in Section 3, i.e., it is an
inferior objective vector which the DM wishes to improve during the solution process. For
example, one can set z0 = znad. The DM can also optionally give the overall number of
iterations (s)he wishes to carry out, denoted by itn. This initial estimate is not a critical
parameter, because it can be modified at any time during the solution process if the DM
wishes so.

We denote by h the current iteration (ordinary) number, and by zh the vector in the
objective space corresponding to the current iteration to be called the current iteration
point. If the desirable number of iterations was provided by the DM, we denote by ith

the number of iterations left (including iteration h). Therefore, it1 = itn.
To proceed to the next iteration, a Pareto optimal solution xh is generated by solv-

ing (5) based on the preference information obtained from the DM using the preference
handling technique described in Section 3. Because the previous iteration point zh−1 is
used as the starting point s, the DM provides only the information about the direction
of improvement δ. We denote fh = f(xh). The current iteration point zh will lie on the
segment between the previous iteration point zh−1 and fh. Its exact location is determined
via a parameter v, 0 < v ≤ 1, representing the ratio between the distance from zh−1 to zh

and from zh−1 to fh:
zh = (1− v)zh−1 + vfh. (6)

One should observe that zh dominates zh−1. In this way, the DM gets closer to the Pareto
optimal set. The larger the value of v, the faster the DM approaches the Pareto optimal
set. Therefore, it is reasonable to adjust the rule of setting the value of v so that the pace
of movement towards the Pareto optimal set is suitable for the DM. For example, some
DMs may wish to take relatively big steps at the beginning of the solution process and
move with more care closer to the end. Then, a “rule of thumb” can be to set v = 1/2.
If the desirable number of iterations is given by the DM, the parameter v can be defined
as proposed in Miettinen et al. (2010):

v =
1

ith
, (7)

which means that at each iteration, the relative amount of movement towards the Pareto
optimal set increases. It must be noted that if h is the last iteration, then ith = 1, and
thus, zh = fh is Pareto optimal and the final objective vector, while xh is the corresponding
final solution in the decision space.

A graphical idea of the solution process is shown in Figure 5, where the desirable
number of iterations is four, and two iterations have been taken. At each iteration, the
current iteration point zh is a point lying in the segment that joins zh−1 and fh. It gets
closer to the Pareto optimal set as the iterations proceed.

The information about Pareto optimal objective vectors that are reachable starting
from the current iteration point is provided to the DM in terms of lower and upper bounds
on vectors’ components. These bounds are denoted by zh,lo and zh,up, respectively. It is
obviously that zh,up = zh−1. The r-th component of zh,lo, r = 1, . . . , k, is obtained as
the optimal objective function value of a corresponding ε-constraint problem (P h

r ) (see
Miettinen et al., 2010).
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Figure 5: Graphical idea of the NAUTILUS 2 method.

It is verified that for each iteration h, [zh,loi , zh,upi ] ⊆ [zh−1,loi , zh−1,upi ]. This means that
once a Pareto optimal solution is left out of the box defined by zh,lo and zh,up, it will
not be reachable at any following iteration, unless a step backwards is taken. For this
reason, the attainable ranges of objective function values provide very useful information
to the DM, because they allow to evaluate the effect of the current iteration, and to decide
whether to carry on or to go backwards.

Note that the computational cost of solving the k problems (P h
r ) at each iteration

may be high for some problems like simulation-based optimization problems. Therefore,
depending on the special features of each particular problem, one must decide whether
these bounds are worth being calculated, or whether it is too time-consuming.

Another piece of information to be shown to the DM is the relative closeness of the
current iteration point to the Pareto optimal set. We propose to use the same approach
to calculating the measure of the closeness as in Miettinen et al. (2010):

dh =
‖zh − z0‖2
‖fh − z0‖2

× 100, (8)

where ‖ · ‖2 is the L2-norm, that is, for z = (z1, . . . , zk)
T ∈ Rk, ‖z‖2 =

√
z21 + · · ·+ z2k.

Note that if zh = z0, then dh = 0 and, on the other hand, if zh = fh, then dh = 100.
Summing up, after having specified preference information with the new preference

handling technique, at each iteration of the NAUTILUS 2 method, the DM directs the
solution process by choosing between the following options:

• take a step forward without changing the preference information;
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• take a step forward providing new preference information to change the direction;

• take a step backwards;

• stop the solution process.

Besides this, at each iteration, the DM may ask to increase or decrease the pace of
movement towards the Pareto optimal set by changing v, or redefine the number of re-
maining iterations, if it was given. The solution process continues until the most preferred
Pareto optimal solution is found. The NAUTILUS 2 method is described in detail in Ap-
pendix 1.

Unlike the original NAUTILUS method (as criticized in Section 3), NAUTILUS 2
provides a trade-off-free decision making approach which is transparent to the DM. To
be more specific, the DM can directly control the solution process by giving directions of
simultaneous improvement of objective functions rather than considering the importance
of improving different objectives, which requires mappings and enables controlling the
solution process only roughly.

Apart from solving multiobjective optimization problems, a natural field of application
of NAUTILUS 2 is negotiation support. As it was mentioned before, starting from a
Pareto optimal solution in a group decision making problem is not always a good policy.
When several DMs with conflictive objectives negotiate, this can result in anchoring for
those negotiators who regard the current Pareto optimal solution as advantageous for
their interests. Therefore, starting from a “bad” point and moving towards a solution
that dominates it (so-called win-win situation) enables the DMs to continue negotiating,
because they all know that they can improve their payoffs.

In group decision making problems, negotiations can consist of determining the start-
ing point s and the directions of improvement δ. Such negotiations may exhibit much
smaller degrees of conflict and anchoring effects than negotiations over Pareto optimal
objective function values, as the notions of a starting point and a direction of improve-
ment can be regarded by the DMs as less straightforward payoffs than objective vectors
themselves. Note that introducing negotiations into the process of determining the direc-
tion of improvement may require further developing the preference elicitation techniques
described in Section 3.

4.2 Numerical Example

In this section, we demonstrate how NAUTILUS 2 involving the new preference handling
technique can be applied to solve a multiobjective optimization problem. We consider
a situation where a group of DMs solves a problem, where no a priori information is
available about the structure of the Pareto optimal set or trade-offs between objective
functions. We consider as a group decision making problem the problem of designing
water treatment facilities presented in Narula and Weistroffer (1989) (originally for a
single DM).

There are three objects located in a valley along a river: Fresh Fishery Company
near the head of the valley, the city of Fortuna downstream from the fishery, and the
municipality border downstream from the city. The company and the city are sources of
river pollution resulting in a low dissolved oxygen level (DOL) in the water measured in
mg/l. The company and the city are planning a joint investment to build water treatment
facilities along the river. They need to decide on treatment facilities which influence the
improvement of water quality (in terms of increasing DOL) and costs. The latter in turn
affects the financial performance of the company and the city.

We assume that there are three parties (DMs) participating in the solution process:
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(1) association “Citizens for clear water”,

(2) the Fresh Fishery Company and

(3) the city council.

The following four objectives are considered:

f1 maximize DOL in the city,

f2 maximize DOL at the municipality border,

f3 maximize the percent return on equity at Fresh Fishery and

f4 minimize addition to the tax rate at Fortuna.

It is natural to assume that not all the DMs are equally interested in each objective: for
example, (1) is interested in f1 and f4, (2) is mostly interested in f3 and slightly in f4,
and (3) is interested in f1, f2 and f4.

The following problem was presented in Narula and Weistroffer (1989) (converting all
the objectives to be minimized)

minimize f1(x) = −4.07− 2.27x1
f2(x) = −2.60− 0.03x1 − 0.02x2 − 0.01

1.39−x21
− 0.30

1.39−x22
f3(x) = −8.21 + 0.71

1.09−x21
f4(x) = −0.96 + 0.96

1.09−x22
subject to 0.3 ≤ xi ≤ 1.0, for i = 1, 2,

(9)

where the decision variables x1 and x2 determine proportional amounts of two types of
contaminants removed from the water. An example of a solution process utilizing the
NAUTILUS 2 method and the directions of simultaneous improvement of objectives is
described below.

Initialization
The starting point z0 is chosen as follows. Its first and second components are set

to the current DOLs at the city and the municipality border, respectively. These levels
can be determined as DOLs in the case were no contaminants are removed, i.e., z01 =
f1(0, 0) = −4.07 and z02 = f2(0, 0) = −2.82. The fishery agrees to take part in the project
under the condition that the return on equity will not fall below 3%, therefore z03 = −3.
The city determines the maximum allowable tax increase as 4%, therefore z04 = 4. Thus,
z0 = (−4.07,−2.82,−3, 4)T . The value of ρ is set to 10−5. (The starting point is such
that all objective function values can be improved.)

By solving four ε-constraint problems (P 1
r ) we obtain z1,lo = (−6.29,−3.28,−7.5, 0)T .

This information is presented to the DMs. They agree to set the maximum number of
iterations to three (and thereby the velocity v is set by (7)).

1st iteration
The DMs start negotiating on the direction of improvement.

• The city council proposes to start from the following direction of improvement: δ1 =
1.5mg/l, δ2 = 2mg/l, δ3 = 0.5pp (percentage points) and δ4 = 1pp.

• The association “Citizens for clear water” insists that clear water at the city level is
more important than at the municipality border. Thus, it proposes to increase δ1 to
3: δ = (3, 2, 0.5, 1)T .
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• The Fresh Fishery representative indicates that when compared to δ1 and δ2, the
value of δ3 is too small, while the fishery provides half of the invested money. Thus,
the following requirements should be met: δ3

δ1
≥ 0.5, δ3

δ2
≥ 0.5 and δ3

δ4
≥ 0.75. The

representative proposes to increase δ3 to 1.5 and we get δ = (3, 2, 1.5, 1)T .

• The City Council, emphasizing financial aspects, proposes to decrease δ1 and δ2 by
one, which does not violate conditions imposed by two other DMs: δ = (2, 1, 1.5, 1)T .
Thus, the increase of DOL at the municipality border by each unit (mg/l) should be
accompanied with the increase of DOL in the city by 2 mg/l, increase of the percent
return at Fresh Fishery by 1.5% and decrease of city taxes by 1%.

With δ = (2, 1, 1.5, 1)T as the final result of negotiations at the 1st iteration and
solving (5) with s = z0 = (−4.07,−2.82,−3, 4)T and δ = (2, 1, 1.5, 1)T gives a Pareto
optimal objective vector f1 = (−6.26,−3.26,−3.65, 3.57)T . The iteration point z1 =
(−4.8,−2.97,−3.22, 3.86)T is computed by (6). The lower bound vector for the next iter-
ation is found to be z2,lo = (−6.28,−3.27,−7.5, 0.43)T . Vectors z1 and z2,lo are presented
to the DMs. They are also informed that the closeness of the current iteration point to
the Pareto optimal set calculated by (8) is equal to 33.3%.

2nd iteration
When analyzing z1 and z2,lo, the DMs notice that there is not much space for further

improvement of water quality, while financial indicators have been noticeably improved
and there is some potential for further improvement. Therefore, it is decided to give more
emphasis to improving the water quality by increasing δ1 and δ2 by 1 leaving δ3 and δ4
on the same levels.

Solving (5) with s = z1 = (−4.8,−2.97,−3.22, 3.86)T and δ = (3, 2, 1.5, 1)T gives f2 =
(−6.27,−3.26,−3.44, 3.71)T . The next iteration point z2 = (−5.54, −3.12,−3.33, 3.78)T

and the lower bound for the next iteration z3,lo = (−6.28, −3.27,−7.15, 1.62)T are calcu-
lated and presented to the DMs. They are also informed that the closeness of the current
iteration point to the Pareto optimal set now equals 56.1%.

3rd (final) iteration
The DMs are quite satisfied with the improvement of DOL levels and want to set more

emphasis on financial performance. The Fresh Fishery representative has been convinced
that decreasing taxes is more important, as it will also influence the Fresh Fishery’s
financial situation. Therefore, the DMs agree that further increase of the percent return
on equity at Fresh Fishery has to be accompanied with twice the decrease of additional
tax rate at Fortuna. As a result, the following direction of improvement is accepted:
δ = (2, 1, 5, 10)T .

Solving (5) with s = z2 = (−5.54,−3.12,−3.33, 3.78)T and δ = (2, 1, 5, 10)T gives the
final Pareto optimal solution x∗ = (0.964, 0.9146)T corresponding to the objective vector
f3 = (−6.26,−3.21,−3.81, 2.83)T .

For simplicity, we carried out only three iterations and did not take steps backwards.
Our aim was to demonstrate that guiding the solution process based on the direction of
improvement concept can be useful even in the case of group decision making. Each DM
could attain improvement in one’s objectives and direct the search for the final solution.

5 Conclusions

In this paper we have proposed a new preference handling technique for multiobjective
optimization. Our research is intended to overcome cognitive difficulties a DM may face
when solving multiobjective optimization problems by traditional methods, i.e., methods
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based on evaluating and comparing different Pareto optimal solutions during the solution
process. Our idea is to protect the DM from the necessity of trading-off, always placing
the DM in a situation where all the objectives can be improved simultaneously. In group
decision making, this is referred to as a win-win situation. From ratios of improvement
we get a direction of simultaneous improvement in the new preference handling technique
which allows the DM to conveniently control how different objective functions should be
improved.

In order to demonstrate the validity of the new preference handling technique, we have
incorporated it in the earlier NAUTILUS method resulting with an interactive multiob-
jective optimization method NAUTILUS 2 which is much more convenient for the DM to
provide preference information and directly control the solution process. The preference
handling technique and the progress of the solution process do not force the DM into
considering trade-offs.

The information about the DM’s preferences in our method is presented in such a trans-
parent form that it can be easily explained and discussed with others. Therefore, besides
supporting a single DM in finding the most preferred solution without trading-off and an-
choring, the proposed method can successfully be used in group decision making, where
at each iteration several DMs negotiate on the direction of simultaneous improvement of
objectives.

We have demonstrated the course of such a group decision making process with a nu-
merical example. We believe that the new way of specifying preferences provides for DMs
better control of directing solution processes as well and hinders premature convergence.
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Appendix 1

Algorithm of the NAUTILUS 2 method.

Step 0. Initialization. Ask the DM to determine the starting point z0. Alternatively,
estimate the nadir objective vector and set it as z0. Set h = 1 and ρ to a small
positive scalar. Calculate lower bounds z1,lo for the first iteration by solving the
k problems (P h+1

r ). If the DM wishes to give the number of iterations itn to be
carried out, set it1 = itn and set v according to (7), otherwise, set v = 1/2.

Step 1. Preference information I. Elicit from the DM preference information in
terms of proportions of simultaneous improvement of objectives δhi (i = 1, . . . , k)
using one of three approaches (i)–(iii) described in Section 3.

Step 2. New solution. Set s = zh−1 and δi = δhi (i = 1, . . . , k) and solve problem
(5). Let xh be the optimal solution and fh the corresponding objective vector.

Step 3. New iteration point. Calculate a new iteration point zh according to (6).

Step 4. Bounds for the next iterations. Given zh, find the vector fh+1,lo by solv-
ing the k problems (P h+1

r ). Furthermore, set fh+1,up = zh. Calculate the distance
to the Pareto optimal set dh using formula (8).
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Step 5. Show current iteration point. Show the current values zhi (i = 1, . . . , k),

together with the additional information [zh+1,lo
i , zh+1,up

i ] (i = 1, . . . , k) and dh to
the DM.

Step 6. Revise the approach rhythm. If the DM wishes to speed up or slow down
the pace of moving toward the Pareto optimal set, adjust the parameter v used in
(6). Namely, if v was originally set to 1/2, multiply v by 2 (speed up) or divide by
2 (slow down). If the desirable number of iterations was set by the DM, (s)he must
set a new value for the number of remaining iterations and ith is set accordingly.

Step 7. Preference information II. Ask the DM whether (s)he would like to take
a step backwards. If so, go to step 9. Otherwise, continue.

Step 8. Next iteration. If ith = 1 or the DM wishes to stop, stop the solution process
with the last solution xh and the corresponding objective vector fh as the final
Pareto optimal solution. Otherwise, set h = h+ 1 and ith+1 = ith− 1, if ith is set.
If the DM wants to give new preference information, go to step 1. Alternatively,
the DM can take a new step in the same direction (using the preference information
of the previous iteration). Then, set fh = fh−1, and go to step 3.

Step 9. Preference information III. Ask the DM whether (s)he would like to pro-
vide new preference information starting from the iteration point zh−1. If so, go
to step 1. Alternatively, the DM can take a shorter step from the previous it-
eration point with the same preference information given in step 1. Then, set
zh = 1

2
zh + 1

2
zh−1 and go to step 4.
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