This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s): Armstrong, Andrea; Chivers, Tristram; Tuonenon, Heikki; Parvez, Masood; Boeré, René

Title: Cubic and Spirocyclic Radicals Containing a Tetraimidophosphate Dianion [P(NR)3(NR')]•2-

Year: 2005

Version:

Please cite the original version:

All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Cubic and Spirocyclic Radicals Containing a Tetraimidophosphate Dianion

$[\text{P(NR)}_3(\text{NR'})_2^-]$

Andrea F. Armstrong,† Tristram Chivers,‡* Heikki M. Tuononen,† Masood Parvez,†
and René T. Boeré.‡

Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4 and
Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge,
Alberta, Canada T1K 3M4

† University of Calgary
‡ University of Lethbridge

* To whom correspondence should be addressed.

Telephone: +1-403-220-5741

Fax: +1-403-289-9488

E-mail: chivers@ucalgary.ca
Abstract

The reaction of Cl$_3$PNSiMe$_3$ with three equivalents of LiHNR (R = 3Pr, Cy, 3Bu, Ad) in diethyl ether produces the corresponding trisamino(imino)phosphoranes (RNH)$_3$PNSiMe$_3$ (1a, R = 3Pr; 1b, R = Cy; 1c, R = 3Bu; 1d, R = Ad); subsequent reactions of 1b–1d with nBuLi yield the trilithiated tetraimidophosphates [Li$_3$[P(NR)$_3$(NSiMe$_3$)]] (2a, R = Cy, 2b, R = 3Bu; 2c, R = Ad). The reaction of [(3BuNH)$_4$P]Cl with one equivalent of nBuLi results in the isolation of (3BuNH)$_3$PN3Bu (1e); treatment of 1e with additional nBuLi generates the symmetrical tetraimidophosphate [Li$_3$[P(N3Bu)$_4$]] (2d). Compounds 1 and 2 have been characterized by multinuclear (1H, 13C, and 31P) NMR spectroscopy; X-ray structures of 1b and 1c were also obtained. Oxidations of 2a–2c with iodine, bromine or sulfuryl chloride produces transient radicals in the case of 2a or stable radicals of the formula {Li$_2$[P(NR)$_3$(NSiMe$_3$)]LiX•3THF} (X = Cl, Br, I; R = 3Bu, Ad). The stable radicals exhibit C$_3$ symmetry and are thought to exist in a cubic arrangement, with the monomeric LiX unit bonded to the neutral radical {Li$_2$[P(NR)$_3$(NSiMe$_3$)]}$^+$ to complete the Li$_3$N$_3$PX cube. Reactions of solvent-separated ion pair {[Li(THF)$_4$][Li(THF)$_2$((μ-3N3Bu)$_2$P(μ-3N3Bu))$_2$Li(THF)$_2$]} 6 with I$_2$ or SO$_2$Cl$_2$ produce the persistent spirocyclic radical {(THF)$_2$Li(μ-3N3Bu)$_2$P(μ-3N3Bu)Li(THF)$_2$}$^+$ (10a); all radicals have been characterized by a combination of variable concentration EPR experiments and DFT calculations.
Introduction

Investigations into the design and synthesis of persistent and stable inorganic radicals represent an active area of inorganic chemical research. Interest in stable radicals stems from their potential utility in several branches of chemistry, particularly as polymerization catalysts, spin-labels for biomolecules, and magnetic materials. Though most radicals are transient species due to their open-shell electronic configurations, kinetic stabilization can be combined with delocalization of the unpaired electron over several electronegative atoms to produce stable, or at least persistent, radicals. Of especial interest at the present time are phosphorus-containing radicals as hyperfine coupling of the unpaired electron to the ^{31}P ($I = 1/2$, 100%) nucleus results in much larger hyperfine coupling constants (HFCCs) than those observed for other abundant spin-active nuclei such as ^{14}N ($I = 1$, 99%) due to the larger gyromagnetic ratio of phosphorus (^{31}P, $\gamma = 10.83 \times 10^7 \text{rad/Ts}$; ^{14}N, $\gamma = 1.933 \times 10^7 \text{rad/Ts}$). From a fundamental standpoint, stable radicals are intriguing as they exist in violation of one of the fundamental tenets of chemical bonding theory – that electrons are usually paired in molecular compounds of the p-block elements.

Previously we reported that the reaction of ($^t\text{BuNH})_3\text{PNSiMe}_3$ (1c) with n-butyllithium yields the dimeric trilithiated tetraimidophosphate \{Li$_3$[P(N$^t\text{Bu})_3(NSiMe$_3$)]]$_2$ (2b), which exists as a bi-capped Li$_6$N$_6$ hexagonal prism. The one-electron oxidation of 2b with bromine or iodine has resulted in the isolation of the stable neutral radicals \{Li$_2$[P(N$^t\text{Bu})_3(NSiMe$_3$)]LiX•3THF\}$^+$ (3b, X = Br; 3c, X = I); the solution EPR characterization of these radicals and the X-ray structure of 3c were
reported in a preliminary communication.14 In the solid state, the dilithiated tetramidophosphate radical \{Li\textsubscript{2}[P(NtBu\textsubscript{3})(NSiMe\textsubscript{3})]\}* was observed to trap a monomeric LiX unit, forming the distorted PN\textsubscript{3}Li\textsubscript{3}X cube 3b or 3c. The NSiMe\textsubscript{3} group is \textit{exo} to the cluster, and a molecule of THF is coordinated to each lithium cation. We have also shown that this neutral radical can trap a monomeric lithium alkoxide, specifically LiOtBu, forming the cluster \{Li\textsubscript{2}[P(NtBu\textsubscript{3})(NSiMe\textsubscript{3})]\cdot LiOtBu\cdot 3THF\} * (3d), which is isostructural with 3b and 3c.15

![Diagram of 2b and 3c radicals]

Although several persistent and stable neutral phosphorus-containing radicals are known,5–11 only the 1,3-diphosphaallyl, [iPr\textsubscript{2}NPC(NiPr\textsubscript{2})PNiPr\textsubscript{2}]6 and tetramidophosphate radicals 3b–3d are stable in the solid state and only 3c and 3d have been characterized by X-ray crystallography.14,15 The remarkable stability of these radicals can be attributed to the delocalization of spin density over two or four nitrogen atoms, respectively, as well as the presence of bulky \textit{iso}propyl or \textit{tert}-butyl substituents to impede their reactivities.

Initial studies14 of 3b and 3c indicated that the EPR spectra of these two radicals are dependent on both temperature and sample concentration. At extreme dilution, distortions in the EPR spectrum of 3b had been suggested to result from disruption of the cubic
framework to form a monocyclic radical; alternatively, it is conceivable that a mixture of paramagnetic species is present in solution. More recently, we have reported the synthesis and EPR characterization of a the persistent spirocyclic radicals\(^\text{16}\) \{Me\(_2\)Al[(\(\mu\)-NR)(\(\mu\)-N\(^t\)Bu)\(\mu\)-N\(^t\)Bu)]Li(THF)\(_2\)\}' (4\(a\), R = SiMe\(_3\); 4\(b\), R = \(^t\)Bu) in which the tetraimidophosphate ligand bis-chelates one lithium cation and one dimethylaluminum cation. These species were found to be considerably less stable than the cubic radicals 3.

In order to gain further insight into the sources of stability of tetraimidophosphate radicals, a series of mixed amino/imino compounds (RNH)\(_3\)PNSiMe\(_3\) (1\(a\), R = \(^i\)Pr; 1\(b\), R = Cy; 1\(c\), R = \(^t\)Bu; 1\(d\), R = Ad) and (\(^t\)BuNH)\(_3\)P\(^t\)Bu (1\(e\)) have now been synthesized and characterized; the reactions of their trilithium salts \{Li\(_3\)[P(NR)\(_3\)(NSiMe\(_3\))]\}\(_x\) (2\(a\), R = Cy, 2\(b\), R = \(^t\)Bu; 2\(c\), R = Ad and \{Li\(_3\)[P(N\(^t\)Bu)\(_4\)]\} (2\(d\)) with oxidizing agents are described below. The radicals so produced have been characterized by a combination of variable concentration EPR spectroscopy and theoretical calculations.

Experimental

Reagents and General Procedures. All experiments were carried out under an argon atmosphere using standard Schlenk techniques. Tetrahydrofuran (THF) and \(n\)-hexane were dried over Na/benzophenone, distilled, and stored over molecular sieves prior to use. Bromine and \(^{8}\)BuLi (2.5 M solution in hexanes) were used as received from
Aldrich. The lithium amides LiHNR (R = Cy, Ad) were prepared by the reaction of the corresponding primary amines with nBuLi. Iodine was sublimed prior to use. Cl₃PNSiMe₃ and [(tBuNH)₄]Cl were prepared according to the literature procedures; Cl₃PNSiMe₃ was freshly distilled prior to use.

Instrumentation. ¹H, ¹³C, ⁷Li and ³¹P NMR spectra were collected on a Bruker DRX-400 spectrometer at 22 ºC. The ⁷Li and ³¹P chemical shifts are reported relative to 1.0 M LiCl in D₂O and 85 % H₃PO₄ in D₂O, respectively, while the ¹H and ¹³C spectra were referenced internally to ¹H impurities in the deuterated solvents. Infrared spectra were recorded as Nujol mulls on KBr plates using a Nicolet Nexus 470 FTIR spectrometer in the range 4000–400 cm⁻¹. EPR spectra were recorded on a Bruker EMX 113 spectrometer; all spectra were recorded at 22 ºC, unless otherwise noted. Spectral simulations were carried out using XEMR¹⁹ and WINEPR SimFonia;²⁰ hyperfine coupling constants and linewidths used to create spectral simulations are summarized in Table 4. Lorentzian lineshapes were used in all simulations. The g-values of the radicals were calculated using the field/frequency ratio of each sample. Elemental analyses were provided by the Analytical Services Laboratory, Department of Chemistry, University of Calgary.

Synthesis of (iPrNH)₃PNSiMe₃ (Ia). Cl₃PNSiMe₃ (3.011 g, 13.41 mmol) was added slowly to a white slurry of LiHNiPr (2.617 g, 40.24 mmol) in diethyl ether (40 mL) at 22 ºC producing a creamy suspension. After 4 h, the reaction mixture was filtered and the solvent was removed from the orange filtrate in vacuo leaving (iPrNH)₃PNSiMe₃ as a
yellow liquid (3.334 g, 11.40 mmol, 85 %). \(^1\)H NMR (C\textsubscript{6}D\textsubscript{6}, \(\delta\)): 3.31 (m, CHMe\textsubscript{2}, 3 H), 1.80 (s, NH, 3 H), 1.04 [d, CHMe\textsubscript{2}, \(^4\)J(\(^1\)H–\(^3\)P) = 6.5 Hz, 18 H], 0.23 (s, 9 H, SiMe\textsubscript{3}). \(^1\)H NMR (C\textsubscript{6}D\textsubscript{6}, \(\delta\)): \(3.31\) (m, CHMe\textsubscript{2}, 3 H), 1.80 (s, NH, 3 H), 1.04 [d, CHMe\textsubscript{2}, \(^4\)J(\(^1\)H–\(^3\)P) = 6.5 Hz, 18 H], 0.23 (s, 9 H, SiMe\textsubscript{3}).

\(^{13}\)C\(^{\{1\}H}\) NMR (C\textsubscript{6}D\textsubscript{6}, \(\delta\)): 65.81 (s, C\(\text{HMe}_2\)), 26.62 [d, CHMe\textsubscript{2}, \(^3\)J(\(^{13}\)C–\(^3\)P) = 23.1 Hz], 4.48 [d, SiMe\textsubscript{3}, \(^3\)J(\(^{13}\)C–\(^3\)P) = 14.9 Hz]. \(^{31}\)P\(^{\{1\}H}\) NMR (C\textsubscript{6}D\textsubscript{6}, \(\delta\)): 7.1 (br, s).

IR(neat): 3407.4 cm\(^{-1}\) (\(\nu\ N–H\)). Anal. Calcd for C\(_{12}\)H\(_{33}\)N\(_4\)PSi: C, 49.28; H, 11.37; N, 19.16. Found: C, 49.09; H, 11.70; N, 18.57.

Preparation of (CyNH\(_3\))PNSiMe\(_3\) (1b). A clear colorless solution of Cl\(_3\)PNSiMe\(_3\) (2.983 g, 13.29 mmol) in diethyl ether (10 mL) was added to a white slurry of LiHNCy (4.189 g, 39.85 mmol) in diethyl ether (40 mL) at 0 ºC producing a white slurry. After 2 h, the reaction mixture was warmed to 22 ºC and stirred for an additional 14 h. The reaction mixture was filtered and the solvent was removed in vacuo; the product was washed with pentane (10 mL) at –60 ºC leaving (CyNH\(_3\))PNSiMe\(_3\) as a pale yellow solid (4.658 g, 11.29 mmol, 85 %). \(^1\)H NMR (C\textsubscript{6}D\textsubscript{6}, \(\delta\)): 3.08 (m, NH), 1.94 (m), 1.60 (m), 1.22 (m), 1.00 (m), 0.41 (s, SiMe\(_3\), 9 H). \(^{13}\)C\(^{\{1\}H}\) NMR (C\textsubscript{6}D\textsubscript{6}, \(\delta\)): 50.41 (s, N–CH), 36.82 [d, \(^3\)J(\(^{13}\)C–\(^3\)P) = 14.0 Hz], 26.04 (s, CH\(_2\)), 25.73 (s, CH\(_2\)), 4.65 (s, SiMe\(_3\)). \(^{31}\)P\(^{\{1\}H}\) NMR (C\textsubscript{6}D\(_6\), \(\delta\)): 1.7 (s). IR(Nujol): 3408.6 (br), 3300.2 (s), (\(\nu\ N–H\)). Anal. Calcd for C\(_{33}\)H\(_{57}\)N\(_4\)PSi: C, 61.12; H, 10.99; N, 13.58. Found: C, 59.66; H, 11.25; N, 13.46.

Preparation of (AdNH\(_3\))PNSiMe\(_3\) (1d). A clear colorless solution of Cl\(_3\)PNSiMe\(_3\) (0.943 g, 4.20 mmol) in diethyl ether was added to a white slurry of LiHNAd (1.829 g, 11.64 mmol) in diethyl ether (40 mL) at 0 ºC producing a pale blue slurry. After 1 h, the reaction mixture was warmed to 22 ºC and stirred for an additional 18 h, resulting in a
white slurry. The reaction mixture was filtered and the solvent was removed in vacuo leaving \((\text{AdNH})_3\text{PNSiMe}_3\) as a white powder (1.597 g, 2.81 mmol, 72%). \(^1\)H NMR (C\(_6\)D\(_6\), \(\delta\)): 1.99 (br, 24 H, CH\(_2\)), 1.63 (br, 24 H, CH\(_2\)), 0.48 (s, 9 H, SiMe\(_3\)). \(^{13}\)C\{\(^1\)H\} NMR (C\(_6\)D\(_6\), \(\delta\)): 51.24 [d, \(\alpha\)-C, \(^2J\(^{13}\)C\(\rightarrow\)P) = 5.1 Hz], 45.50 [d, NC(CH\(_2\))\(_3\), \(^3J\(^{13}\)C\(\rightarrow\)P) = 17.1 Hz], 36.82 (s, CH), 30.36 (s, CH\(_2\)), 4.70 [d, SiMe\(_3\), \(^2J\(^{13}\)C\(\rightarrow\)P) = 9.6 Hz]. \(^{31}\)P\{\(^1\)H\} NMR (C\(_6\)D\(_6\), \(\delta\)): \(-19.3\) (s). Anal. Calcd for C\(_{33}\)H\(_{57}\)N\(_4\)PSi: C, 69.67; H, 10.10; N, 9.85. Found: C, 69.61; H, 10.27; N, 9.36.

Preparation of \((\text{tBuNH})_3\text{PN}^\text{tBu}\) (1e). A solution of \(^{8}\)BuLi in hexane (0.92 mL, 2.3 mmol) was added to a white slurry of \((\text{BuNH})_4\text{PCl}\) (0.809 g, 2.28 mmol) in diethyl ether (20 mL) at 22 °C. The reaction mixture was stirred for 4 h, then filtered yielding a clear colorless solution. The solvent was removed in vacuo, leaving \((\text{BuNH})_3\text{PN}^\text{tBu}\) as a white powder (0.541 g, 1.70 mmol, 75 %). \(^1\)H NMR (C\(_6\)D\(_6\), \(\delta\)): 1.52 (s, 9 H, \(\text{tBu}\)), 1.29 (s, 27 H, \(\text{tBu}\)). \(^{13}\)C\{\(^1\)H\} NMR (C\(_6\)D\(_6\), \(\delta\)): 50.46 (s, NCMe\(_3\)), 50.42 (s, NHCMe\(_3\)), 35.45 [d, NCMe\(_3\), \(^2J\(^{13}\)C\(\rightarrow\)P) = 47.2 Hz], 32.13 [d, NHCMe\(_3\), \(^2J\(^{13}\)C\(\rightarrow\)P) = 16.7 Hz]. \(^{31}\)P\{\(^1\)H\} NMR (C\(_6\)D\(_6\), \(\delta\)): \(-26.9\) (s). Anal. Calcd for C\(_{16}\)H\(_{39}\)N\(_4\)P: C, 60.32; H, 12.35; N, 17.59. Found: C, 60.72; H, 12.50; N, 17.70.

Preparation of \{Li\(_3\)[P(NCy)\(_3\)](NSiMe\(_3\))\}\(_2\) (2a). A solution of \(^{8}\)BuLi in hexanes (8.75 mL, 14.0 mmol) was added to a clear pale yellow solution of (CyNH)\(_3\)PNSiMe\(_3\) (1.925 g, 4.66 mmol) in hexane (25 mL) at 22 °C resulting in an off-white slurry. The reaction was stirred for 4 h; the solvent was then removed in vacuo and the product washed with 3 x 5 mL of hexane. \{Li\(_3\)[P(NCy)\(_3\)](NSiMe\(_3\))\}\(_2\) was recovered as a pale
yellow powder (1.855 g, 2.155 mmol, 92 %). 1H NMR (d$_8$-THF, δ): 1.89 (m, CH), 1.63 (m, CH$_2$), 1.27 (m, CH$_2$), 1.05 (m, CH$_2$), 0.00 (s, SiMe$_3$). 7Li NMR (d$_8$-THF, δ): −1.0–3.0 (br). 13C${[^1]}$H NMR (d$_8$-THF, δ): 53.97 (s, NC), 42.80 (s, CH$_2$), 27.62 (br, CH$_2$, CH$_2$), 6.42 (s, SiMe$_3$). 31P$[^1]$H NMR (d$_8$-THF, δ): 36.1 (s). Anal. Calcd for C$_{21}$H$_{42}$N$_4$PSi: C, 58.59; H, 9.83; N, 13.02. Found: C, 57.50; H, 9.88; N, 11.87.

Preparation of {Li$_3$[P(NAd)$_3$(NSiMe$_3$)]}_2 (2c). A solution of 9BuLi in hexanes (1.70 mL, 2.72 mmol) was added to an opaque mixture of (AdNH)$_3$PNSiMe$_3$ (0.510 g, 0.896 mmol) in hexane (20 mL) at 22 ºC, resulting in an off-white slurry. The reaction was stirred for 4 h; the solvent was then removed in vacuo leaving {Li$_3$[P(NAd)$_3$(NSiMe$_3$)]}_2 as a pale yellow solid (0.431 g, 0.367 mmol, 82 %). 1H NMR (d$_8$-THF, δ): (br, 24 H, CH$_2$), (br, 24 H, CH$_2$), (s, 9 H, SiMe$_3$). 13C$[^1]$H NMR (d$_8$-THF, δ): 53.85 (s, NC), 50.08 [s, NC(CH$_2$)$_3$], 38.64 (s), 38.64 (s, CH), 32.27 (s, CH$_2$), 6.60 (s, SiMe$_3$). 31P$[^1]$H NMR (d$_8$-THF, δ): 16.5 (br). Anal. Calcd for C$_{33}$H$_{54}$N$_4$PSiLi$_3$: C, 67.53; H, 9.28; N, 9.55. Found: C, 67.17; H, 10.40; N, 8.54.

Preparation of {Li$_3$[P(NtBu)$_4$]} (2d). A solution of 9BuLi in hexane (1.8 mL, 4.5 mmol) was added to a clear colorless solution of (tBuNH)$_3$PNtBu (0.467 g, 1.466 mmol) in hexane (20 mL), resulting in a white slurry. The reaction was stirred at 22 ºC for 1 h; the solvent was then removed in vacuo, leaving {Li$_3$[P(NtBu)$_4$]} as a white powder (0.490 g, 1.457 mmol, 99 %). 1H NMR (d$_8$-THF, δ): 1.30 (s, tBu). 7Li NMR (d$_8$-THF, δ): 1.68, 0.93 (~2:1). 13C$[^1]$H NMR (d$_8$-THF, δ): 52.46 (s, CMe$_3$), 37.89 [d, CMe$_3$,
$J^{(13}\text{C}\cdots{}^{31}\text{P}) = 31.1$ Hz]. $^{31}\text{P}\{^1\text{H}\}$ NMR (d$_8$-THF, δ): 7.4 (s). Satisfactory analyses could not be obtained due to the extremely hygroscopic nature of this sample.

Preparation of {Li$_2$[P(N'Bu)$_3$(NSiMe$_3$)]•LiCl•3THF.dylib (3a). A solution of SO$_2$Cl$_2$ in hexane (1.33 mL, 0.332 mmol) was added to a clear colorless solution of {Li$_3$[P(N'Bu)$_3$(NSiMe$_3$)]$_2$ (0.234 g, 0.332 mmol) in THF/hexane (5 mL/15 mL) at 22 °C, resulting in a deep blue solution. After 5 min, the solvents were removed in vacuo leaving {Li$_2$[P(N'Bu)$_3$(NSiMe$_3$)]•LiCl•3THF.dylib as a deep blue powder (0.213 g, 0.353 mmol, 53 %).

Preparation of {Li$_2$[P(NAd)$_3$(NSiMe$_3$)]•LiCl•3THF.dylib (9a). A solution of SO$_2$Cl$_2$ in THF (1.54 mL, 0.154 mmol) was added to a pale yellow solution of {Li$_3$[P(NAd)$_3$(NSiMe$_3$)]$_2$ (0.180 g, 0.153 mmol) in THF (15 mL) at 22 °C, resulting in a deep blue solution. After 5 min, the solvent was removed in vacuo leaving {Li$_2$[P(NAd)$_3$(NSiMe$_3$)]•LiCl•3THF.dylib as a deep blue powder (0.141 g, 0.168 mmol, 55 %).

Preparation of {Li$_2$[P(NAd)$_3$(NSiMe$_3$)]•LiI•3THF.dylib (9b). A solution of I$_2$ in THF (10.0 mL, 1.02 mmol) was added to a pale yellow solution of {Li$_3$[P(NAd)$_3$(NSiMe$_3$)]$_2$ (1.198 g, 1.021 mmol) in THF (20 mL) at 22 °C, resulting in a deep blue solution. After 15 min, the solvent was removed in vacuo and the product was extracted with 3 x 10 mL of hexane. Removal of the hexane in vacuo afforded {Li$_2$[P(NAd)$_3$(NSiMe$_3$)]•LiI•3THF.dylib
as a deep blue powder (1.299 g, 1.397 mmol, 68 %). Anal. Calcd for C\textsubscript{45}H\textsubscript{78}N\textsubscript{4}PSiILi\textsubscript{3}O\textsubscript{3}: C, 58.12; H, 8.45; N, 6.02. Found: C, 56.84; H, 8.68; N, 6.23.

Oxidation of \{Li\textsubscript{3}[P(NtBu)\textsubscript{4}]\} (2d). A solution of I\textsubscript{2} in THF (4.4 mL, 0.19 mmol) was added to a pale yellow solution of Li\textsubscript{3}[P(NtBu)\textsubscript{4}] (0.129 g, 0.384 mmol) in THF (15 mL) at 22 ºC, resulting in a grey-blue solution. After 72 h, the color had faded, leaving a yellow solution which was EPR silent.

A solution of SO\textsubscript{2}Cl\textsubscript{2} in THF (2.5 mL, 0.25 mmol) was added to a pale yellow solution of Li\textsubscript{3}[P(NtBu)\textsubscript{4}] (0.167 g, 0.497 mmol) in THF (15 mL) at 22 ºC, resulting in a green-blue solution. After 42 h, the color had faded, leaving a yellow solution; no EPR signal was detected.

X-ray Analyses. Colorless crystals of 1b and 1c were coated with Paratone 8277 oil and mounted on a glass fiber. All measurements were made on a Nonius Kappa CCD diffractometer using graphite monochromated Mo-K\textsubscript{a} radiation. Crystallographic data are summarized in Table 1. The CCDC reference number for 1c is 190650. The structures were solved by direct methods21 and refined by full matrix least squares methods with SHELXL-97.22 Hydrogen atoms were included at geometrically idealized positions and were not refined; the non-hydrogen atoms were refined anisotropically. Thermal ellipsoid plots were created using Diamond 2.1.23

Computational Details. The structures of the model radicals \{Li\textsubscript{2}[P(NtBu)\textsubscript{3}(NSiMe\textsubscript{3})]•LiX•3OMe\textsubscript{2}\}+ (5a, X = Cl; 5b, X = Br; 5c, X = I; 5d, X = OtBu)
and \{\text{(Me}_2\text{O)}_2\text{Li(μ-N}^\text{t-Bu})_2\text{P(μ-N}^\text{t-Bu})\text{Li(OMe}_2\text{)}_2\}^+ (10b) were optimized in their doublet ground states using Density Functional Theory (DFT) and found to display near-\text{C}_3 (5a-5d) and \text{D}_2d (10b) symmetry, respectively. Hybrid PBE0 exchange-correlation functional24 and Ahlrichs' triple-zeta valence basis set augmented by one set of polarization functions (TZVP)25 were used in the optimizations. All geometry optimizations were done with the Turbomole 5.726 program package.

Hyperfine coupling constants were calculated for all systems in their geometry-optimized structures using the unrestricted Kohn-Sham formalism. The non-relativistic calculations utilized the same basis sets and density functional as the geometry optimizations; several benchmarks have recently been published which demonstrate the suitability of the TZVP basis set for the calculation of EPR parameters.27 For the heavier nucleus iodine, the use of an effective core potential prevents the direct determination of the HFCC using the same method. In addition, relativistic calculations are essential in order to obtain more than a qualitative accuracy; thus, relativistic calculations were carried out for 5c. The calculations utilized the large QZ4P STO basis set, the PBEPBE GGA24a-c functional as well as the scalar-relativistic ZORA formalism. The hyperfine coupling constant calculations were done with the Gaussian 0328 (non-relativistic) and ADF 2004.0129 program packages (relativistic). The values reported are non-relativistic for the lighter nuclei and scalar-relativistic for the heavier atom iodine.
Results and Discussion

Synthesis and NMR Characterization of 1a–d and X-ray structures of 1b and 1c. The trisalkylamino(trimethylsilylimino)phosphoranes (RNH)$_3$PNSiMe$_3$ (1a, R = iPr; 1b, R = Cy; 1c, R = tBu; 1d, R = Ad) are readily obtained via the reaction of Cl$_3$PNSiMe$_3$ with three equivalents of the corresponding lithiated amide LiHNR at room temperature in diethyl ether. The iso-propyl derivative 1a exists as yellow oil at room temperature, and has been characterized by 1H and 31P NMR spectroscopy. The 1H NMR spectrum contains the expected two resonances which arise from the presence of three equivalent iPr groups; an unresolved septet is observed at ~ 3.3 ppm due to the CH units, while the methyl groups produce a sharp doublet at 1.05 ppm. An additional resonance at 0.23 ppm is attributed to the trimethylsilyl fragment, and the relative integrations of these three resonances (3:18:9) confirm the identity of the product 1a; a singlet is observed in the 31P NMR spectrum at 7.1 ppm.

The heavier cyclohexyl analogue 1b is a solid, which has been isolated in 85 % yield. The 1H NMR spectrum of 1b consists of several broad multiplets due to unresolved 1H–1H couplings; the 13C NMR spectrum, however, displays the four singlets characteristic of the cyclohexyl group, as well as a single resonance due to the SiMe$_3$ substituent. The 31P NMR spectrum of 1b contains the anticipated singlet at a chemical shift (1.7 ppm) that is similar to that observed for 1a.

As reported previously,13 the 1H NMR spectrum of the tert-butyl derivative 1c contains two peaks at 1.24 and 0.41 ppm with integrations of 27 H and 9 H assigned to the tBu and SiMe$_3$ groups, respectively; the corresponding three resonances are observed
in the 13C NMR spectrum. A broad doublet, attributable to the NH protons, is also apparent in the 1H NMR spectrum of $1c$ at 1.92 ppm; no such resonance can be observed for $1b$ due to overlap of the cyclohexyl signals in this region. However, the infrared spectra confirm the presence of NH units in $1a$–$1c$, with sharp N–H stretching absorptions observed at 3409 cm$^{-1}$, 3407 cm$^{-1}$, and 3392 cm$^{-1}$. The 31P NMR signal of $1c$ appears at −13.6 ppm, i.e. at lower frequency than the resonances observed for $1a$ (7.1 ppm) and $1b$ (1.7 ppm), suggesting that the phosphorus nucleus of $1c$ experiences significantly different shielding.

In order to probe the reason for this difference in 31P NMR shifts, X-ray structures of both $1b$ and $1c$ were obtained and are shown in Figures 1 and 2, respectively. In the solid state, the structure of $1b$ displays four bent P–N–E (E = C, Si) linkages, with the three PNC bond angles averaging 125.1(2)$^\circ$, and a slightly larger PNSi bond angle of 132.8(2)$^\circ$. As expected the mean P–NHCy distance of 1.645(2) Å is substantially longer than the P=N double bond length of 1.553(2). In comparison, the P–NH$^\text{tBu}$ bond length in $1c$ is somewhat longer at 1.667(1) Å, while the P=NSiMe$_3$ distance is less than that in $1b$ at 1.520(2) Å. The most obvious and significant difference between the structures of $1c$ and $1b$, however, is that $1c$ contains three bent P–N–C linkages [127.19(9)$^\circ$] and a linear P–N–Si unit. This unexpected conformation is attributed to the influence of steric crowding caused by the three tert-butylamino groups and implies that the nitrogen lone pair is not stereochemically active.

In order to examine this phenomenon in more detail, the model system H$_3$PNSiH$_3$ was analyzed at the PBE0 level of theory with the PNSi bond angle constrained at 180$^\circ$. An electron localization function (ELF)-based bonding analysis did not reproduce a
simple Lewis-type bonding arrangement, i.e. one monosynaptic nitrogen valence basin (lone pair) as well as two and one bisynaptic bonding basins for the PN and NSi units, respectively. Instead, the ELF analysis revealed a “superbasin” which is further split into mono- and bisynaptic valence basins. Rather than the “rabbit ear” type of lobe, which is characteristic of a sp² nitrogen atom, a torus-shaped ELF-basin was observed at the nitrogen atom, indicating that the lone pair is uniformly delocalized about the PNSi moiety to minimize the electron-electron repulsions involving the P–H bonds, or, in the case of 1c, the NH'Bu groups. This redistribution of electron density obviously has a large effect on the electronic environment at the phosphorus center, which is borne out in the observed differences between the ³¹P NMR shifts of 1a,b and 1c. Similar steric effects are observed in derivatives of the trilithium salt of 1c,¹⁴,¹⁵ as well as in the sterically encumbered rhenium complex \{[(Me₃SiN)₂P(μ-NSiMe₃)₂[μ₂-Re(CO)₃]P(NSiMe₃)N(SiMe₃)]₂\} in which the exocyclic PNSiMe₃ units display a nearly linear PNSi configuration [174(2)°].³⁰

The adamantyl derivative 1d is readily obtained in good yield (72 %) via the reaction of Cl₃PNSiMe₃ with three equivalents of LiHNAd at room temperature. The smaller yield of this product compared to those of 1a and 1b is caused by the lower solubility of 1d in diethyl ether, resulting in some product loss during filtration. Three broad resonances (1:2:2) are observed in the ¹H NMR spectrum of 1d along with a sharp singlet due to the SiMe₃ group; better resolution is achieved in the ¹³C spectrum which exhibits four sharp signals for the adamantyl units and a single resonance further upfield at 4.70 ppm, which is attributed to the trimethylsilyl substituent. The ³¹P NMR signal of 1d appears at –19.3 ppm, which is similar to the ³¹P shift observed for 1c (–13.6 ppm),
but considerably upfield from those of 1a and 1b, indicating that the electronic environment at the phosphorus center of 1d is closer to that in 1c than those in 1a or 1b. Although an X-ray structure of 1d has not been obtained due to difficulties in growing suitable crystals, the 31P NMR data suggest that the steric crowding from the bulky adamantyl groups results in a linear PNSi arrangement in 1d as is observed for 1c and its derivatives.14,15

In order to prepare a precursor to the symmetrical tetraimidophosphate $[\text{P}(\text{NR})_4]^{3-}$, an alternative synthetic strategy was adopted using a variation on a literature procedure.31 Rather than the reaction $[(\text{tBuNH})_4\text{P}]\text{Cl}$ with four equivalents of $^n\text{BuLi}$, which leads to the formation of tetraimidophosphates that are contaminated with various amounts of lithium chloride,31 only one mole equivalent of n-butyllithium was used. After removal of LiCl by filtration, the product $(\text{tBuNH})_3\text{PN}^\text{tBu}$ (1e) was recovered as a pure compound (Equation 1) in good yield (75 %). The 1H NMR spectrum of 1e displays two tert-butyl resonances at 1.52 and 1.29 ppm, with appropriate relative intensities, assigned to the imino- and amino- groups, respectively. The 13C NMR spectrum also contains two sets of ^1Bu resonances, with signals at 50.46 and 33.45 ppm attributed to the N$^\text{tBu}$ group and resonances (50.42 and 32.13 ppm) assigned to the NH$^\text{tBu}$ units. A single resonance is observed in the 31P spectrum at -26.9 ppm. Though this cannot be directly compared with the 31P NMR signals for 1a–d due to the different imino group present in 1e, this up-field shift suggests considerable steric crowding at the phosphorus atom, which is consistent with the presence of four tert-butyl units.

$$([(\text{tBuNH})_4\text{P}]\text{Cl} + ^n\text{BuLi} \xrightarrow{\text{Et}_2\text{O}} 4\text{h}} (\text{tBuNH})_3\text{PN}^\text{tBu} + \text{LiCl} \quad (1)$$
Synthesis and NMR Characterization of 2a–d. The unsymmetrical tetraimidophosphates \(\{\text{Li}_3[\text{P(NR)}_3(\text{NSiMe}_3)]\}_2\) (2a, R = Cy; 2c, R = Ad) can be prepared in much the same manner as the tert-butyl analogue \(\{\text{Li}_3[\text{P(N}^{\text{iBu})}_3(\text{NSiMe}_3)]\}_2\) (2b)\(^{13}\) by the reaction of 1b or 1d with three equivalents of \(n\)-butyllithium in organic solvents such as hexane or toluene at 22 ºC. All attempts to prepare the iso-propyl derivative \(\{\text{Li}_3[\text{P(N}^{\text{iPr})}_3(\text{NSiMe}_3)]\}\) were unsuccessful, as three-fold deprotonation could not be achieved regardless of the reaction conditions employed; only the \([\text{P(N}^{\text{iPr})}_2(\text{NH}^{\text{iPr}})(\text{NSiMe}_3)]_2^{-}\) dianion was observed.

The cyclohexyl derivative 2a is isolated in excellent yield (95 %) after 4 h. Though the \(^1\)H NMR spectrum of 2a in \(d_8\)-THF consists of a series of unresolved multiplets, the \(^{13}\)C NMR spectrum shows the expected resonances due to the three equivalent cyclohexyl groups, and an additional singlet attributed to the trimethylsilyl substituent. A single resonance at 36.1 ppm is observed in the \(^{31}\)P NMR spectrum of 2a, which is shifted significantly to higher frequency compared to the \(^{31}\)P signal observed for 2b (5.3 ppm).\(^{13}\) This disparity is attributed to the different electronic environment at the phosphorus center due to the linear PNSi unit of 2b,\(^{13}\) as discussed earlier for 1b and 1c. The \(^7\)Li NMR spectrum of 2a consists of a broad resonance spanning approximately 4 ppm, suggesting that the lithium cations are dynamic in THF solutions.

The adamantyl derivative 2c was isolated in 72 % yield. As was observed for 1d, the \(^1\)H NMR spectrum of 2c is not well resolved, and the \(^{13}\)C NMR spectrum gives a better indication of the identity of the product. Only four alkyl signals are observed, indicating the equivalence of the three adamantyl groups; an infrared spectrum showed no N–H stretching vibrations, confirming that 1d has indeed been triply deprotonated.
While an X-ray structure of 2c could not be obtained due to difficulties in growing suitable crystals, the equivalence of the NAd units indicates that this molecule possesses C₃ symmetry and suggests that it may be isostructural with 2b. The single resonance in the ³¹P NMR spectrum (16.5 ppm) of 2b confirmed its purity.

The symmetrical tetraimidophosphate \{Li₃[P(NᵗBu)₄]\} (2d) was prepared by trilithiation of the trisamino(imino)phosphorane 1e with nBuLi. One resonance is observed at 7.4 ppm in the ³¹P NMR spectrum of 2d in d₈-THF, while the ¹H and ¹³C NMR spectra indicate the existence of only one environment for the four tert-butyl groups. These spectroscopic data suggest that, rather than displaying a dimeric hexagonal prism structure like 2a–2c, the tetraimidophosphate anion of 2d adopts a spirocyclic conformation in solution due to partial solvation of its lithium cations by THF, to give the solvent-separated ion pair \{[Li(THF)₄][Li(THF)₂(μ-NᵗBu₂)P(μ-NᵗBu₂)₂Li(THF)₂]\} (6).

The formation of a similar complex has been reported for the analogous naphthyl derivative \{[Li(THF)₄][THF]₂Li(μ-Nnaph₂)P(μ-Nnaph₂)Li(THF)₂]\} (7), which is known to display a spirocyclic structure both in solution and in the solid state. This proposed geometry of 6 is corroborated by the ⁷Li NMR spectrum of 2d in d₈-THF, which contains signals at 1.68 and 0.93 ppm in an approximately 2:1 ratio that can be assigned to the N,N’-chelated lithium cations and the free [Li(THF)₄]⁺ cation of the ion pair 6, respectively.

\[
\begin{align*}
\text{R} = & \text{tBu, 6; R = naph, 7}
\end{align*}
\]
Variable Concentration EPR Studies of the Radicals \{\text{Li}_2[\text{P}(\text{N}^\text{t}\text{Bu})_3(\text{NSiMe}_3)]\} \cdot \text{LiX} \cdot 3\text{THF}\}^\cdot (3\text{a}, \ X = \text{Cl}; \ 3\text{b}, \ X = \text{Br}; \ 3\text{c}, \ X = \text{I}). The oxidation of \{\text{Li}_3[\text{P}(\text{N}^\text{t}\text{Bu})_3(\text{NSiMe}_3)]\}_2 (2\text{b}) with one equivalent of sulfuryl chloride in THF proceeds in much the same manner as the analogous reactions with iodine and bromine,14 a deep blue-black solution forms immediately, indicating the presence of a radical species. Removal of the solvent \textit{in vacuo} yields the stable neutral radical \{\text{Li}_2[\text{P}(\text{N}^\text{t}\text{Bu})_3(\text{NSiMe}_3)]\} \cdot \text{LiCl} \cdot 3\text{THF} \}^\cdot (3\text{a}) as a bright blue solid. A finely powdered material is obtained by redissolving 3\text{a} in hexane and decanting the deep blue solution, followed by immediate removal of the hexane in vacuo, as the stabilities of 3\text{a}–3\text{d} in hydrocarbon solvents are limited.

The structures of the distorted-cubic model radicals \{\text{Li}_2[\text{P}(\text{N}^\text{t}\text{Bu})_3(\text{NSiMe}_3)]\} \cdot \text{LiX} \cdot 3\text{OMe}_2 \}^\cdot (5\text{a}, \ X = \text{Cl}; \ 5\text{b}, \ X = \text{Br}; \ 5\text{c}, \ X = \text{I}; \ 5\text{d}, \ X = \text{O}^\text{t}\text{Bu}) were optimized and found to display near C_3 symmetry. The calculated metrical parameters for 5\text{c} and 5\text{d} are in good agreement (see Supporting Information) with the corresponding structural parameters of 3\text{c} and 3\text{d}, respectively, which were determined by X-ray crystallography. The singly occupied molecular orbitals (SOMOs) of 5\text{a}–d are essentially identical, with no dependence on the identity of the X atom or group observed. The SOMO of 5\text{c}, as depicted in Figure 3, indicates that the spin density is primarily located in p-type orbitals on the three nitrogen atoms within the cubic framework. Consequently, the EPR spectra of these radicals are expected to exhibit large hyperfine couplings to three equivalent ^{14}N atoms, as well as a smaller coupling to the NSiMe$_3$ nitrogen atom. Though the SOMO indicates only minimal spin density on the phosphorus atom, a significant ^{31}P hyperfine coupling constant (HFCC) is anticipated due to a combination of spin-polarization effects.
and the large gyromagnetic ratio of that nucleus; similarly, couplings to three ^7Li cations and the halogen atom of $5a$–c are expected. The calculated HFCCs for these model systems are compiled in Table 4 along with the values used to create spectral simulations of $3a$, $3c$ and $3d$. The similarities between the SOMOs of $5a$–d are reflected in their calculated HFCCs, of which only the halogen HFCC varies significantly from $5a$ to $5c$. Thus, the differences between the appearances of the experimental EPR spectra of $3a$–d are attributed in large part to the identity ($3a$–c) or absence ($3d$) of the spin-active halogen atom.

EPR spectra of \{Li$_2$[P(NtBu)$_3$(NSiMe$_3$)]\•LiCl\•3THF\}' (3a) were recorded as a function of concentration in THF and hexane, but changes in the concentrations of the samples had no effect on the observed spectra. The EPR spectrum of 3a in THF is shown in Figure 4. The main features of this spectrum can be reproduced by including hyperfine coupling constants (Table 4) to one phosphorus atom ($a_{31P} = 24.68$ G), three equivalent lithium cations (^7Li, $I = 3/2$, 94 %, $a_{7\text{Li}} = 2.19$ G) and three equivalent nitrogen centres ($a_{14N} = 5.26$ G). The additional fine structure is caused by a small coupling to the fourth and unique nitrogen atom ($a_{14N} = 0.40$ G) and to the chlorine atom ($a_{35\text{Cl}} = 0.10$ G). The simulation created using these HFCCs and a linewidth of 0.3 G is shown in Figure 4, and is an excellent match with the experimental spectrum.

A comparison with the calculated HFCCs for the model system 5a shows good agreement between the two sets of values, though the experimental $^{14}\text{NtBu}$ HFCCs are somewhat larger than the calculated values; conversely, the experimental ^{31}P HFCC is ca. 4 G smaller than expected. This systematic error has been observed previously in related studies. It arises due to the apparent tendency of this functional basis set
combination to underestimate couplings which arise due to the spin density of the unpaired electron, such as the 14NtBu couplings, while overestimating those which arise due to spin-polarization effects, as does the 31P coupling. The EPR spectrum of 3a in hexane (see Supporting Information) is consistent with the presence of a single cubic radical in solution and can be simulated by using HFCCs similar to those used to create the simulation of 3a in THF. These HFCCs (Table 4) are in better agreement with those calculated for 5a than are the HFCCs present in the spectrum of 3a in THF. However, significant line-broadening is seen in this spectrum (lw. \approx 2 G) due to slower molecular tumbling of the polar cluster 3a in the non-polar solvent hexane, rendering the values of the HFCCs to the 35Cl and 14NSiMe$_3$ atoms somewhat speculative.

The observation that the EPR spectrum of 3a does not vary with sample concentration indicates that the cubic structure of this radical is retained even at extreme dilution in THF, in contrast to the earlier proposal for 3b,c.14 This finding prompted a re-examination of the EPR data reported previously for the lithium tert-butoxide adduct [Li$_2$P(NtBu)$_3$(NSiMe$_3$)]•(LiOtBu)•3THF$^\cdot$ (3d).15 A good simulation of the EPR spectrum of this species had been obtained assuming dissociation of the cubic framework to yield the monocyclic radical $\{(\text{THF})_2\text{Li}(\mu^t\text{N}^t\text{Bu})(\mu^t\text{NSiMe}_3)\text{P(N}^t\text{Bu}_2)\}^-; \text{ however, the fact that 3a does not dissociate in solution would suggest that 3d also retains its cubic structure, as the Li–X bonds which cement these frameworks are stronger for X = O than X = Cl. Inspection of EPR spectrum of 3d in the absorption mode (Figure 5) reveals an exponential decay pattern at both the high- and low-field ends of the resonance, which is characteristic of hyperfine coupling to more than one equivalent nucleus with $I > 1$, such as 7Li. Integration of the spectral simulation published previously15 does not reproduce
this pattern. In consequence, the EPR spectrum of 3d was simulated anew, assuming the C_3 symmetry which is expected for this cubic radical. By including HFCCs (Table 4) to one phosphorus atom ($a_P = 25.19 \text{ G}$), three equivalent nitrogen atoms ($a_N = 5.39 \text{ G}$), three equivalent lithium nuclei ($a_{Li} = 1.88 \text{ G}$), and an additional ^{14}N coupling due to the exo-cluster NSiMe$_3$ group ($a_N = 0.36 \text{ G}$), which accounts for the “jagged” appearance of the spectral lines, an excellent simulation of the experimental spectrum was obtained (Figure 5). Both the line spacings and intensities present in the spectrum in the dispersion mode and the decay pattern observed in the absorption spectrum are accurately reproduced by this new spectral simulation. In consequence, we consider that the simulation in Figure 5c is a more accurate representation of the EPR spectrum in Figure 5b than the simulation described previously. The HFCCs that were used to create the new simulation (Table 4) are more accurate values for this radical, which, in the final analysis, appears to retain its cubic structure in dilute THF solutions.

In comparison to the EPR spectrum of 3a, the EPR spectra obtained for the bromine analogue 3b are considerably more complex. This additional hyperfine coupling arises in part due to the presence of a bromine atom which, like chlorine, has two spin-active isotopes. However, they are approximately equal in natural abundance (^{79}Br, $I = 3/2$, 50.7 %; ^{81}Br, $I = 3/2$, 49.3 %)6 and have significantly larger gyromagnetic ratios, resulting in larger hyperfine coupling constants than those to the $^{35,37}\text{Cl}$ nuclei of 3a. As the γ-values of ^{79}Br and ^{81}Br are quite similar, their HFCCs will differ only by a factor of 1.1, causing overlap between the spectral lines and further complicating the experimental spectrum.

Examination of a concentrated (ca. 8 mM) solution of 3b in THF at 22 °C gives a strong indication that this radical also displays a cubic geometry, and while reasonable
simulations can be constructed implementing a variety of different ^{14}N, ^7Li, and $^{79,81}\text{Br}$ HFCCs, no exact match with an experimental spectrum has been achieved. Though good approximations of the hyperfine coupling constants to ^{31}P and the three $^{14}\text{N}^\text{Bu}$ atoms can be extracted from the experimental spectrum, the plethora of fine structure due to the lithium cations, the fourth nitrogen atom, and the two bromine isotopes, has rendered accurate determination of these HFCCs virtually impossible. However, conclusive evidence that 3b exists as a cube at this concentration has been obtained previously in the form of a low-temperature EPR spectrum, which clearly indicated HFCCs to three equivalent ^{14}N atoms.14

The limiting EPR spectrum of 3b in THF (ca. 1.5 mM), which was reported in a preliminary communication,14 does not display the obvious inversion symmetry that is characteristic of a single paramagnetic species in solution and is observed in the EPR spectra of both 3a and 3d. This spectral distortion, indicating the presence of a second paramagnetic species in solution, supports the hypothesis that at extreme dilution in THF, partial dissociation of the cubic framework of 3b occurs, presumably due to THF-solvation of the lithium cations (Scheme 1). The expected products of this process are the neutral spirocyclic radical \{(THF)$_2$Li[(μ-$^\text{N}^\text{Bu}$)(μ-NSiMe$_3$)P(μ-$^\text{N}^\text{Bu}$)$_2$]Li(THF)$_2$\}$^+$ (8) in which two lithium cations are bis-chelated by the tetramidophosphate ligand, and a THF-solvated molecule of lithium bromide. The fact that this occurs for 3b but not 3a or 3d can be attributed to the weaker nature of Li–Br bonds of 3b as compared to the Li–X linkages present in 3a (X = Cl) and 3d (X = O).
EPR spectra of the iodine-containing radical 3c were also recorded as a function of concentration in both THF and hexane. The spectrum of a moderately concentrated sample (ca. 7 mM) in THF is shown in Figure 6, and exhibits a bi-modal pattern like those of 3a, 3b, and 3d due to the presence of a large 31P coupling. An excellent simulation of this spectrum was obtained by using HFCCs (Table 4) that are similar to those present in 3a and a line-width of 0.4 G; a significantly larger iodine HFCC ($a_{^{127}I} = 0.53$ G) is observed compared to the 35,37Cl HFCC of 3a due to the larger γ-value of the former isotope (127I, $I = 5/2$, 100 %, $\gamma = 5.35 \times 10^7$ rad/T•s). The difference in appearance between this EPR spectrum and that of 3a in THF (Figure 3) can be attributed in large part to the presence of the higher-spin nucleus 127I. As was observed previously for 3a, the EPR spectrum of 3c in hexane (see Supporting Information) is not dependent upon sample concentration, though significant line broadening occurs (vide supra) even for extremely dilute solutions. This spectrum can be simulated accurately using HFCCs (Table 4) which are quite similar to those used to simulate the EPR spectrum of 3c in THF, confirming that this radical retains its cubic structure in the non-coordinating solvent hexane.

The EPR spectrum of 3c in THF is highly susceptible to concentration-dependent line broadening. Dilution of the EPR sample to ca. 1.4 mM resulted in the acquisition of a limiting EPR spectrum (see Supporting Information), where nearly all the hyperfine couplings are resolved. A fairly accurate simulation of this spectrum is obtained using the
same HFCCs as for the more concentrated sample, but with a much smaller line-width (0.2 G). The lack of an exact agreement between the experimental and simulated spectra may be indicative of the presence of a second paramagnetic species in solution as was observed for 3b; however, the reasonable agreement observed indicates that the cubic radical is the predominant species at extreme dilution.

At extremely low concentrations (< 2 mM) in THF, the stability of 3c is found to decrease significantly, and the blue colour of the solution fades appreciably over a period of a few hours. Concurrently, colorless crystalline needles are formed. An X-ray analysis has identified this material as (THF)₃LiI indicating that, at extreme dilution, dissociation of the cubic framework of 3c occurs with the extrusion of lithium iodide. If a second paramagnetic species is present in the EPR spectra of these extremely dilute THF solutions, it is thus thought to be the neutral spirocyclic radical \{(THF)₂Li[(μ-N'Bu)(μ-NSiMe₃)P(μ-N'Bu₂)Li(THF)₂]*\} (8), which is also believed to be present in dilute samples of 3b. Attempts to identify and indeed confirm the presence of a second radical in solution by means of an electron nuclear double resonance (ENDOR) experiment were not successful.

Oxidation of 2a and 2c: Synthesis and EPR Characterization of the Stable Tetraimidophosphate Radicals \{Li₂[P(NAd)₃(NSiMe₃)]·LiX·3THF\} (9a, X = Cl; 9b, X = I). Reactions of \{Li₃[P(NCy)₃(NSiMe₃)]\}₂ (2a) with the oxidizing agents iodine or sulfuryl chloride SO₂Cl₂ produce blue solutions reminiscent of the tetraimidophosphate radicals described previously;¹⁴–¹⁶ however, this color is fleeting, lasting for only a few seconds. Attempts to record EPR spectra of these transient radicals were unsuccessful as
no signal could be observed due to the short lifetimes of these species. This pronounced decrease in stability upon replacing the tert-butyl groups of 2b with cyclohexyl substituents of 2a suggests that, without the kinetic stabilization provided by the steric bulk of the 1^Bu groups, the radicals either decompose or dimerize rapidly to a diamagnetic species.

In light of this observation, the effect of the replacement of the tert-butyl groups of the radicals 3 by even bulkier substituents, was investigated. The oxidation of [Li₃[P(NAd)₃(NSiMe₃)]]₂ (2c) with iodine or sulfuryl chloride produces deep blue solutions; removal of the solvent in vacuo yields the paramagnetic blue powders [Li₂[P(NAd)₃(NSiMe₃)]•LiX•3THF]’ (9a, X = Cl; 9b, X = I) which are stable for long periods in the solid state. The EPR spectra of these two radicals are essentially identical, displaying a bi-modal pattern due to a large HFCC to ³¹P; a typical spectrum of 9b in THF (ca. 8 mM) is shown in Figure 7. The best simulation of this spectrum is obtained by using a line-width of 2.8 G and including HFCCs to one phosphorus atom (26.00 G) and three equivalent nitrogen centers (5.20 G). The distorted or “S-curve” shape of the experimental spectrum is characteristic of a spectrum which contains unresolved hyperfine couplings; the inclusion of a HFCC of 1.05 G to the three equivalent lithium cations reproduces this spectrum in a satisfactory fashion. Due to the broadness of the spectral lines (l.w. ≈ 3.5 G), the HFCCs to the NSiMe₃ nitrogen atom and the halogen could not be determined. Though coupling to three equivalent ¹⁴N atoms (I = 1, 100 %) would be expected to result in a doublet of septets, overlap at the centre of the spectrum combines with line-shape effects to produce the observed pattern.
The C_3 symmetry implied by the EPR spectra is consistent with the cubic structure displayed in the solid state by $3a$ and $3d$, and suggests that these adamantyl-containing radicals are isostructural with the tert-butyl analogues 3. The broad lines observed in the EPR spectra of $9a$ and $9b$ are believed to be due to the steric effects of the bulky adamantyl groups, which slow molecular tumbling to a point where the EPR spectra are not entirely isotropic. A similar effect can be seen in the EPR spectrum of $3b$ at low temperature, where the cooling of the solvent, THF, restricts the tumbling of $3b$, producing an anisotropic spectrum.

Due to the high computational cost associated with including three NAd groups, DFT calculations have not been carried out for $9a$ and $9b$ in order to confirm the relative magnitudes of their HFCCs. However, the SOMOs of these radicals are not expected to differ significantly from those of $3a$–d and, thus, the model systems $5a$–d (Figure 3). In consequence, the HFCCs for the adamantyl derivatives $9a$ and $9b$ are expected to be similar to those observed for their isostructural tert-butyl analogues $3a$ and $3b$, as is indeed the case.

In contrast to the behavior of $3b$ and $3c$, EPR spectra of $9a$ and $9b$ are independent of both concentration and temperature, and indicate that the C_3 symmetry of these radicals is retained even at extreme dilution. The proposed dissociation pathway of clusters $3b$ and $3c$ is attributed to the coordination of the strong donor solvent THF to the lithium cations, resulting in the cleavage of Li–N bonds and the formation of new Li–O linkages. Consequently, the disruption of the cubic structures is dependent upon the accessibility of the lithium cations. The fact that this does not occur for $9a$ and $9b$ can be attributed to the additional steric protection which is provided by the adamantyl groups:
not only does this aid in the stabilization of these radicals, it also affects the solution behavior of these species by preventing the close approach of additional molecules of THF to the lithium cations so that the cubic frameworks of 9a and 9b are retained even at extreme dilution.

Formation and EPR Characterization of the Persistent Spirocyclic Radical

\{(\text{THF})_2\text{Li}(\mu-\text{N}^\text{tBu})_2\text{P}(\mu-\text{N}^\text{tBu})\text{Li(THF)}_2 \}^\cdot (10a).

In order to elucidate the reason for the low stability of the heterobimetallic, spirocyclic radicals \{\text{Me}_2\text{Al}[(\mu-\text{NR})(\mu-\text{N}^\text{tBu})\text{P}(\mu-\text{N}^\text{tBu})_2]\text{Li(THF)}_2 \}^\cdot (4a, R = \text{SiMe}_3; 4b, R = \text{tBu}),^{16} the synthesis of dilithiated analogue 10a was undertaken according to Scheme 2. Oxidation of the solvent-separated ion pair 6 in THF by addition of half-an-equivalent of iodine or sulfuryl chloride produced a pale blue-green solution which persists for ca. 3 days; attempts to isolate this radical were unsuccessful as it decomposes rapidly in the solid state. The color of the solution is not nearly as intense as that observed in the oxidation of 2b or 2c, suggesting that radical formation in this instance is either not quantitative, or that the radical species is short-lived; this was confirmed by the relatively weak EPR signal produced by the reaction mixture.

The EPR spectra obtained from the iodine- and sulfuryl chloride-oxidized systems were identical, confirming that the same radical is formed in both reactions and that the halogen atom is not bonded to the paramagnetic species. An EPR spectrum of iodine-oxidized 2d is shown in Figure 8 and displays the doublet of multiplets that is characteristic of the tetraimidophosphate radicals. An excellent simulation of this spectrum was obtained by including hyperfine couplings to one phosphorus nucleus (\text{a}_{31P})
= 25.60 G), four equivalent nitrogen atoms \((a_{14N} = 4.25 \text{ G})\), and two lithium centers \((a_{7Li} = 1.08 \text{ G})\) which accounts for the observed line spacing. These spectral parameters are consistent with the formation of the spirocyclic radical \(10a\) in which the unpaired electron is delocalized equally over all four nitrogen atoms. DFT calculations on the geometry-optimized structure of the model system \((\text{Me}_2\text{O})_2\text{Li(}\mu-\text{N}^\text{tBu})_2\text{P(}\mu-\text{N}^\text{tBu})\text{Li(OMe}_2)_2\}^* (10b) corroborate a homogeneous spin distribution among the four \(\text{N}^\text{tBu}\) nitrogen atoms; the SOMO of \(10b\) is shown in Figure 9. The calculated HFCCs for \(10b\) are in good agreement with those used to create the spectral simulation (Table 4). The EPR spectrum of \(10a\) is independent of sample concentration, even at extreme dilution, indicating that no dissociation of this radical occurs; this is not surprising since each of the two lithium cations is tightly bound by two highly basic \(\text{N}^\text{tBu}\) groups.

The conspicuous drop in stability from the cubic radicals 3 and 9 to the spirocycle \(10a\) appears to result from the difference between the geometries of these species. Though the unpaired electron of \(10a\) is more extensively delocalized (over four N atoms) than in 3 or 9 (over three N atoms), which should render \(10a\) more stable than its cubic analogues, the reactive nitrogen centers are less sterically protected in the spirocycle \(10a\) allowing for the more rapid decomposition of the radical to form an intrinsically more stable diamagnetic species, perhaps through dimerization via lithium-nitrogen bond formation. While significantly less stable than 3 or 9, the spirocycle \(10a\) is considerably more stable than the heterobimetallic analogues 4a and 4b which persist for a few hours in solution.\(^{16}\) This difference can be attributed to the fact that the spin density in 4 is essentially localized on two nitrogen atoms, whereas it is equally distributed over the four...
nitrogen atoms of 10a. The trends in stability of the tetraimidophosphate radicals are summarized in Table 5.

Conclusions

The reaction of Cl$_3$PNSiMe$_3$ with primary lithium amides is a simple synthetic route to a variety of amino/iminophosphoranes of the type (RNH)$_3$PNSiMe$_3$ (R = alkyl). Further reaction of such species with nBuLi under mild conditions produce the unsymmetrical tetraimidophosphates \{Li$_3$[P(NR)$_3$(NSiMe$_3$)]\}. Symmetrical tetraimidophosphates \{[Li$_3$[P(NR)$_4$]]\} can be prepared by the reaction of PCl$_5$ with excess amine, followed by lithiation with nBuLi. Oxidation of tetraimidophosphates with iodine, bromine, or sulfuryl chloride produces radicals that are transient when R is a secondary alkyl group, but persistent or stable when more bulky R groups are used. For R = Cy, only a transient radical is observed; for R = Ad, the radical retains a cubic structure in solution as steric effects prevent dissociation of the cluster. The symmetrical tetraimidophosphate \{[Li$_3$[P(NtBu)$_4$]]\} produces the persistent spirocyclic radical \{Li$_2$[P(NtBu)$_4$]\cdot4THF\}* in solution (Scheme 1); further dissociation to a monocyclic radical is inhibited by the basicity of the NtBu nitrogen atoms.

Acknowledgment. We thank the University of Calgary and the Natural Sciences and Engineering Research Council of Canada for funding, and Helsingin Sanomain 100-vuotissäätiö for a scholarship (H. M. T.), as well as Dr. D. Murphy for attempts to obtain ENDOR spectra of 3.
Supporting Information Available: Experimental and simulated EPR spectra of: 3a and 3c in hexane, and 3c in THF (limiting spectrum, ca. 2 mM); overlaid experimental and simulated EPR spectra of the aforementioned spectra as well as those in Figures 4–8. X-ray crystallographic files, in CIF format. This material is available free of charge via the Internet at http://pubc.acs.org.

References and Notes

1. (a) As defined in Reference 1b, a “stable” radical is one which is inherently stable as an isolated species and does not decompose under an inert atmosphere at room temperature. A “persistent” radical is one which has a relatively long lifetime under the conditions which are used to generate it. (b) For a recent review, see Power, P. Chem. Rev. 2003, 103, 789.

2. See, for example, Hawker, C. Acc. Chem. Res. 1997, 30, 373.

5. For a recent review, see Armstrong, A.; Chivers, T.; Boeré, R. T. Modern Aspects of Main Group Chemistry: The Diversity of the Stable and Persistent Phosphorus-Containing Radicals; ACS Symposium Series, American Chemical Society, 2005,
917, in press. Some recent examples of neutral P-containing radicals are reported in refs 6–11.

19. Eloranta, J. XEMR version 0.7, University of Jyväskylä, Finland.
25. For iodine, an ECP basis set of triple-zeta valence quality was used. All basis sets were used as they are referenced in the Turbomole 5.7 internal basis set library.

33. Though chlorine has two spin-active isotopes (\(^{35}\text{Cl}, 75.5\%, I = 3/2;\) \(^{37}\text{Cl}, 24.5\%, I = 3/2\)), including hyperfine coupling to \(^{37}\text{Cl}\) has no effect on the appearance of the simulation due to the low gyromagnetic ratio (\(\gamma\)-value) and natural abundance of that isotope; the \(^{37}\text{Cl}\) HFCC of 0.08 G was determined by taking the ratio of the \(\gamma\)-values of the two isotopes and combining this with the optimum value of the \(^{35}\text{Cl}\) HFCC. Thus, hyperfine coupling to \(^{37}\text{Cl}\) is included in the spectral simulation for completeness, but does not alter its appearance appreciably.

Table 1. Crystallographic Data

<table>
<thead>
<tr>
<th></th>
<th>1b</th>
<th>1c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>$\text{C}{21}\text{H}{45}\text{N}_4\text{PSi}$</td>
<td>$\text{C}{15}\text{H}{39}\text{N}_4\text{PSi}$</td>
</tr>
<tr>
<td>m, g</td>
<td>412.67</td>
<td>334.56</td>
</tr>
<tr>
<td>space group</td>
<td>$\text{P2}_1/\text{n}$</td>
<td>$\text{R}-3$</td>
</tr>
<tr>
<td>a, Å</td>
<td>10.5001(3)</td>
<td>14.7950(4)</td>
</tr>
<tr>
<td>b, Å</td>
<td>22.8914(7)</td>
<td>14.7950(4)</td>
</tr>
<tr>
<td>c, Å</td>
<td>20.9785(5)</td>
<td>16.3978(4)</td>
</tr>
<tr>
<td>α, deg</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β, deg</td>
<td>101.7596(13)</td>
<td>90</td>
</tr>
<tr>
<td>γ, deg</td>
<td>90</td>
<td>120</td>
</tr>
<tr>
<td>V, Å3</td>
<td>4936.6(2)</td>
<td>3108.46(14)</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>T, K</td>
<td>173(2)</td>
<td>173(2)</td>
</tr>
<tr>
<td>λ, Å</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>d_{calc}, g cm$^{-3}$</td>
<td>1.110</td>
<td>1.072</td>
</tr>
<tr>
<td>μ, mm$^{-1}$</td>
<td>0.173</td>
<td>0.19</td>
</tr>
<tr>
<td>$F(000)$</td>
<td>1824</td>
<td>1116</td>
</tr>
<tr>
<td>R^a</td>
<td>0.063</td>
<td>0.036</td>
</tr>
<tr>
<td>R_w^b</td>
<td>0.152</td>
<td>0.106</td>
</tr>
</tbody>
</table>

$^a R = [\Sigma |F_o| - |F_c|]/[\Sigma |F_o|]$ for reflections with $I > 2.00\sigma(I)$

$^b R_w = \{[\Sigma w(F_o^2 - F_c^2)^2]/[\Sigma w(F_o^2)^2]\}^{1/2}$ for all reflections
Table 2. Selected Bond Lengths (Å) and Angles (°) for 1b

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length</th>
<th>Bond</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(1)--N(1)</td>
<td>1.648(2)</td>
<td>P(1)--N(3)</td>
<td>1.641(2)</td>
</tr>
<tr>
<td>P(1)--N(2)</td>
<td>1.646(3)</td>
<td>P(1)--N(4)</td>
<td>1.553(2)</td>
</tr>
<tr>
<td>Si(1)--N(4)</td>
<td>1.699(3)</td>
<td>N(2)--C(7)</td>
<td>1.466(4)</td>
</tr>
<tr>
<td>P(1)--N(1)--C(1)</td>
<td>122.9(2)</td>
<td>P(1)--N(2)--C(7)</td>
<td>127.3(2)</td>
</tr>
<tr>
<td>P(1)--N(3)--C(13)</td>
<td>125.1(2)</td>
<td>P(1)--N(4)--Si(1)</td>
<td>132.83(16)</td>
</tr>
</tbody>
</table>
Table 3. Selected Bond Lengths (Å) and Angles (°) for 1c

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Bond</th>
<th>Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(1)–N(1)</td>
<td>1.520(2)</td>
<td>Si(1)–N(2)</td>
<td>1.667(2)</td>
</tr>
<tr>
<td>P(1)–N(2)</td>
<td>1.667(1)</td>
<td>N(1)–C(1)</td>
<td>1.485(2)</td>
</tr>
<tr>
<td>P(1)–N(1)–C(1)</td>
<td>127.19(9)</td>
<td>P(1)–N(2)–Si(1)</td>
<td>180.0</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms: #1 –y,x–y,z #2 –x+y, –x,z
<table>
<thead>
<tr>
<th>Nuclei</th>
<th>5a Calcd(^a)</th>
<th>3a in THF(^b)</th>
<th>3a in hexane(^b)</th>
<th>5b Calcd(^a)</th>
<th>5c Calcd(^a)</th>
<th>3c in THF(^b)</th>
<th>3c in hexane(^b)</th>
<th>5d Calcd(^a)</th>
<th>3d in THF(^b)</th>
<th>10b Calcd(^a)</th>
<th>10a in THF(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{31})P</td>
<td>-28.6</td>
<td>24.68</td>
<td>26.70</td>
<td>-28.4</td>
<td>-28.2</td>
<td>27.11</td>
<td>24.15</td>
<td>-29.3</td>
<td>25.19</td>
<td>-30.5</td>
<td>25.60</td>
</tr>
<tr>
<td>(^{14})N</td>
<td>3.2</td>
<td>5.26</td>
<td>5.23</td>
<td>3.2</td>
<td>3.2</td>
<td>5.37</td>
<td>5.27</td>
<td>5.39</td>
<td>3.1</td>
<td>3.7</td>
<td>4.25</td>
</tr>
<tr>
<td>(^{14})N</td>
<td>-0.6</td>
<td>0.40</td>
<td>0.51</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.20</td>
<td>0.40</td>
<td>0.36</td>
<td>-0.6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(^{7})Li</td>
<td>-2.5</td>
<td>2.19</td>
<td>2.44</td>
<td>-2.6</td>
<td>-2.6</td>
<td>1.91</td>
<td>2.35</td>
<td>1.88</td>
<td>-2.3</td>
<td>-1.4</td>
<td>1.08</td>
</tr>
<tr>
<td>X</td>
<td>-0.2</td>
<td>0.10</td>
<td>-</td>
<td>-0.7</td>
<td>-0.8</td>
<td>0.53</td>
<td>-</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>lw.(^c)</td>
<td>-</td>
<td>0.10</td>
<td>1.20</td>
<td>-</td>
<td>-</td>
<td>0.50</td>
<td>1.40</td>
<td>-</td>
<td>0.32</td>
<td>-</td>
<td>0.40</td>
</tr>
<tr>
<td>g-value</td>
<td>-</td>
<td>2.0051</td>
<td>2.0052</td>
<td>-</td>
<td>-</td>
<td>2.0053</td>
<td>2.0055</td>
<td>-</td>
<td>2.0048</td>
<td>-</td>
<td>2.0057</td>
</tr>
</tbody>
</table>

\(^a\) HFCCs calculated for the model systems 5a–5d and 10b.
\(^b\) HFCCs used to create spectral simulations of 3a, 3c/3d, and 10a.
\(^c\) Linewidths used to create spectral simulations.
Table 5. Stability of Tetramidophosphate Radicals

<table>
<thead>
<tr>
<th>Stability</th>
<th>Amount of radical formed</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>indefinite in the solid state</td>
<td>quantitative</td>
<td></td>
</tr>
<tr>
<td>R = 'Bu, Ad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X = Cl, Br, I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>solution only; persists for days</td>
<td>moderate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>solution only; persists for hours(^a)</td>
<td>quantitative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>solution only; persists for hours(^a)</td>
<td>moderate</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) As described in Reference 11.
Scheme 1. Dissociation of the cubic radicals 3b and 3c to the spirocycle 8 in dilute THF solutions (X = Br, I).
Scheme 2. Synthesis of the persistent spirocyclic radical \{((\text{THF})_2\text{Li}(\mu-N'\text{Bu})_2\text{P}(\mu-N'\text{Bu})\text{Li(THF)}_2)^\cdot\} (10a).
Figure Captions

Figure 1. Thermal ellipsoid plot of 1b (30 % probability ellipsoids).

Figure 2. Thermal ellipsoid plot of 1c (30 % probability ellipsoids).

Figure 3. SOMO of 5c; OMe₂ molecules omitted.

Figure 4. Experimental (top) and simulated (bottom) EPR spectra of 3a (ca. 8 mM in THF).

Figure 5. EPR spectra of 3d in THF (a) absorption mode (b) dispersion mode (c) simulation of cubic 3d.

Figure 6. Experimental (top) and simulated (bottom) EPR spectra of 3c (ca. 7.6 mM in THF).

Figure 7. Experimental (top) and simulated (bottom) EPR spectra of 9b (ca. 8 mM in THF).

Figure 8. Experimental (top) and simulated (bottom) EPR spectra of 10a.

Figure 9. SOMO of 10b; OMe₂ molecules omitted.
Figure 1
Figure 2
Figure 4
Figure 5
Figure 7
Figure 8
Figure 9