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Abstract

The great tragedy of Science - the slaying of a beautiful hypothesis by an ugly
fact.
- Thomas H. Huxley (1825 - 1895)

This thesis deals with geometrical, statistical and mechanical properties of ran-
dom line (fibre) networks. It begins with an introduction to elasticity theory
and various properties of random fibre networks. The main body of the the-
sis consists first of all of a review of a new mean field theory for the elasticity
of random three dimensional networks of fibres. This theory agrees very well
with the results of direct numerical simulations for a fairly wide range of pa-
rameters. An essential feature in this theory is the connectivity of the network,
i.e. the average number of contacts per fibre, which together with the prop-
erties of individual fibres completely determines the elasticity, and also the
porosity, of the network. The theory has been generalised to three dimensions
by determining numerically the ratio of apparent contacts which appear in
the two dimensional projection of the three dimensional structure. Also in this
case agreement with direct numerical simulations is found to be very good.
Extension of the theory to other disordered structures, e.g. granular packings,
is possible

Thereafter a ’stiffness evolution’ in two dimensional networks of elastic beams
(fibres) will be considered. As a first attempt, the evolution strategy is chosen
such that mass is moved from the least elastic energy containing segment to
the most energetic one, and the process is then iterated. Evolution of stress
bearing structures is then followed under constant elastic load. Results and a
minimal analytical model are given for applied tensile and shear stress. We
find e.g. that for low density networks the developing stress bearing structure
becomes localised around a single path for applied tensile (shear) stress, while
the structure becomes less localised for increasing density of the network.
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Chapter 1

Introduction

The elastic properties of any material depend upon the details of its structure.
The purpose of this thesis is to understand macroscopic properties of random
networks in terms of their constituents and their mutual interactions.
The first one to consider the properties of fibrous structures based on their con-
stituents and orientation was Cox [4]. Random fibre materials offer interesting
means for building materials with a wide variation of properties for different
applications. Airplanes and sailboats are made of glass fibre mats, as strong
and yet light structures are needed. Ordinary copy paper made of wood fi-
bres is another example where material stiffness and strength are important,
but in this case it is perhaps permeability which is even more important, as
it is related to the drying and printability of paper [5]. Also, evolution seems
to favour fibrous materials (more discussion on this in Ch. 5). The structure
of human bone, for example, is to a large extent of this kind. An interesting
feature of human bone is that it can adapt its material distribution to the ex-
ternal load conditions. An athlete, with specialised type of training, develops
a different kind of bone structure than an astronaut who has spent a long time
at zero gravity (i.e. zero load enviroment). A disturbance in the adaptive bone
mechanism leads to a condition of weakening bones which is known as osteo-
porosis.
This thesis is a continuation and related to the work previously done in the
Department of Physics [20,27,25] in the area of random fibrous structures. Dr.
Kellomäki concentrated in his work [20] on wave dynamics of random fibre
and random spring networks, and Dr. Latva-Kokko considered the rigidity of
randomly structured materials. This work is mainly a continuation to the work
of Dr. Mäkinen, as we deal with the elastic properties of fibre mats, and then
extend the topic to stiffness evolution.
The reason for studying the present topic is that materials of practical interest
rarely are perfect, and sometimes structural disorder is even desirable. Per-
fect materials are hard to manufacture, while introducing controlled disorder
is much easier. Disorder appears in many different scales, from the atomistic
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scale (as e.g. in a crystal structure) to the macroscopic scale (as e.g. in compos-
ite materials). The usual way to describe a material with imperfections is by
homogenization, i.e. the properties of the material are described statistically as
those of a homogeneous material, i.e. averaged over certain volume element.
Thus it is possible e.g. to describe the random fibre network as an effective
medium as described in detail in Sec. 3.2.

1.1 Outline of the thesis

In Ch. 2 I present an overview of the properties of two-dimensional random
fibre networks together with a comparison with random resistor networks. In
the following Ch. 3, the two-dimensional (2d) case is generalized to three di-
mensions. Furthermore, in Ch. 4 the effective medium model as presented in
Sec. 3.2.2 is extended to the porosity of the fibre network. In this way elas-
ticity and porosity are both found to be dependent on the connectivity of the
material. In Ch. 5 I consider the stiffness evolution in a 2d fibrous structure.
A simple analytical model is presented together with some statistical proper-
ties that follow from it. In the last Ch. 6 I summarize and discuss the results
obtained.

1.2 Basics of elasticity theory

I give here a short summary of elasticity theory as it is widely used in the rest
of the thesis. The basic equations of elasticity theory were formulated already
a long time ago by Cauchy and Poisson, for the description of the mechanics
of continuum media [23].
An elastic material is one that responds to an applied external force by de-
forming and returns to its original shape upon removal of this force. Elastic
behaviour thus precludes permanent deformation. Elasticity can be linear or
nonlinear. In the linear case, the deformation is proportional to the external
force used. In the following I consider only linear deformations.
We begin by defining the strain tensor through derivatives of the displacement
vector ui [24],

uij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

+
∂uk

∂xi

∂uk

∂xj

)
, (1.1)

where the suffixes i and j run through coordinate indexes.
The strain tensor gives the change in the local length units when the system is
deformed. By considering only small deformations in the linear regime we can
neglect the last term in Eq. (1.1) because it is of second order. Thus the strain
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tensor can be written as

uij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (1.2)

The basic assumption of a linearly elastic material is the generalised Hooke’s
law,

τij = Cijklukl, (1.3)

with τij the stress tensor and Cijkl the material constants (elastic stiffness con-
tants or elastic moduli). In principle we have 81 (= 34) different constants. Be-
cause the stress and strain tensors are both symmetric, one finds that Cijkl =

Cjikl, Cijkl = Cijlk, and, by energy considerations, Cijkl = Cklij. Thus C fi-
nally has only 21 linearly independent elements.
If the material constants do not depend on the space variables, the material
is said to be homogeneous. Also, if the elastic moduli do not depend on the
choice of the coordinate system, the material is said to be isotropic. For homo-
geneous, isotropic materials the number of elastic moduli reduces to just two,
and Eq. (1.3) can be written in the form

τij = λσijukk + 2µukl, (1.4)

where λ and µ are the Lamé coefficients1. More widely used (e.g. in engineer-
ing) elastic constants are Young’s modulus E and Poisson’s ratio σ,

µ =
E

2(1 + σ)
, λ =

Eσ

(1 + σ)(1 − 2σ)
. (1.5)

Notice that for mechanical stability λ, µ, E > 0, and 0 < σ < 1
2

. The mechanical
stability means that there exists an inverse of the generalized Hooke’s law so
that we can calculate the components of the strain tensor from the stress tensor
[28]. One reason for using the parameters E and σ is that they have a clear
physical interpretation; Young’s modulus describes how much force is needed
to attain a given deformation while Poisson ratio is the ratio of transverse
compression and the longitudinal extension.
The equilibrium condition for an isotropic body can be written in the form [24]

(1 − 2σ)
∂2ui

∂x2
k

+
∂2ul

∂xixl

= 0, (1.6)

and the external forces appear in the solution only through boundary condi-
tions.
Considering only an extension or a compression of a body, we get the follow-

1λ = C1122 and µ = C1212.
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ing relation by using Eqs. (1.2), (1.4) and (1.5),

τxx = Euxx, (1.7)

where elongation is along the x-axis. If Poisson contraction is prohibited in the
y-direction, we get

τxx =
E

(1 − σ2)
uxx. (1.8)

With similar reasoning from the same equations, we get for the shear defor-
mation of a body

τxy =
E

2(1 + σ)
uxy. (1.9)

Consideration of a more general theory instead of the rather simple assump-
tions of linear elasticity and Hooke’s law, would bring us to the so called
Cosserat elasticity. Cosserat elasticity is said to be the most general elasticity
theory that fulfills the Galilean invariance2. The displacement field of a rigid
solid in three dimensions can be characterized by translation and rotation, i.e.
by six degrees of freedom by introducing two strain fields which both will re-
spect the Galilean invariance. The strain is given by εij = ∂ijUj−εijkϕk, where
U is the displacement field, ϕ is the rotation field, and ε is an antisymmetric
tensor3. There is a minus sign in front of the rotation field so that the strain
remains invariant under rigid rotation. The rotation field also determines the
torsion field κ such that κij = ∂iϕj. From the theory it is possible to obtain
a length scale for rotations. Above this scale, rotations have no meaning, the
additional terms should vanish and only the displacement field is needed [14].
Different deformation modes regarding the individual building blocks of a
random fibre mat were considered in [50], and the rotations were shown not
to contribute to the elastic properties of the mat. Therefore, there is no need
for more general theory and we can neglect the rotation field introduced by
Cosserat elasticity.

2Galilean invariance implies that the stress field should not do any work under rigid motion of a solid.
3An antisymmetric (also called alternating) tensor is a tensor which changes sign when two indices are

interchanged.



Chapter 2

Two-dimensional random fibre
networks

Most of the research on the elastic deformation of disordered media is done on
lattice models with ad hoc disorder. Other models include bond-bending and
beam models. Often electrical random fuse network models are used as an
analogy to elasticity. The elasticity versus electricity aspect is studied in more
detail in Sec. 2.3.1. In the following section we present the basic construction
method of a random fibre network, and its percolation and statistical proper-
ties are considered as a consequence of the forming process. In Sec. 3 we ex-
tend this model to three dimensions for which an effective medium approach
is considered together with some transport properties.

2.1 Introduction

As a model for a random porous medium we use here a random network of
lines. Images of networks with different parameters are given in Fig. 2.1 below.
A random fibre network is defined as an independently deposited system of
finite-length lines on a two-dimensional plane. We construct our network by
depositing fibres of length Lf on a plane whose area is defined by LxLy, and
which has periodic boundaries in the y-direction.
The two-dimensional random line network thus constructed is a geometrical
structure. At every point where two fibres cross they are assumed to be rigidly
bonded to each other. The midpoints and the orientations of the fibres are cho-
sen from uniform uncorrelated distributions, the orientation angles from the
interval [−π/2, π/2], and the midpoints are uniformly distributed in the square
spanned by lengths Lx + Lf and Ly + Lf. The side lengths of the square have
been increased by Lf because we want to avoid the density of fibres to be lower
at the boundaries of the square defined by Lx×Ly. For small numbers of fibres
the system is not connected. With increasing coverage the system reaches the
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geometrical percolation threshold (more on this in Sec. 2.2) at qc ≡ 5.71 fibres
per unit area (with unit fibre length), and the system becomes connected.
By assuming that between the fibre-fibre bonds (nodes) there are central-force
springs, a geometrically connected network does not necessarily have a nonzero
stiffness. As a central-force network consists of both rigid (triangles) and non-
rigid (more than three-sided polygons) structures, the average coordination
number (see Table 2.1) never exceeds four, and random spring networks have
thus zero stiffness at any finite coverage. So the stiffness of a random fibre
network relies totally on a nonzero stiffness of all deformation modes (axial,
shear and bending) of an individual segment.

Figure 2.1. Examples of random line networks in an area of 2.1×2.1 with Lf = 1,
for densities q/qc = 1, 4 and 9 from left to right, respectively. Dangling ends are
removed.

2.2 Percolation and statistical properties

The specific process which is used to create the network depicts also many
of its properties. In the following we will study them more closely. We study
properties which percolate from one side of the system to the opposite side
like connectivity and rigidity. Percolation is applied in many different fields
of science like communication, biology and physics. Applications extend from
fluid flow in a porous medium and current flow in a metal-insulator system to
forest fires and diffusion. The wide variety of applications arises from the fact
that percolation is a generic model for spatially random processes [14]. As a
model for a disordered medium, percolation is also one of the simplest and yet
a powerful method that provides realistic and qualitatively good predictions
for random media. This is especially true in the field of phase transitions in
random networks.
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Geometrical connectivity-percolation was studied by Pike and Seager [34, 39]
using computer simulations. The percolation threshold considered by them
was the critical line length when there is a connected spanning cluster in the
thermodynamic limit L → ∞, and they found a critical line length that corre-
sponds to the (dimensionless) critical percolation density qc = 17.94/π = 5.71.
Other properties of the 2d random line network are summarized in the follow-
ing Table 2.1, where Nf is the total number of fibres, Lf the length of a fibre and
A the area of the network.

Total length of fibres L = NfLf

Density of fibres (dimensionless) q = NfL
2
f/A

Connectivity percolation density qc = 17.94
π

= 5.71

Number of crossing points between fibres Nc =

(
NfLf

)2

πA

Average number of crossing points per fibre c̄ = 2Nc

Nf
= 2NfLf

πA

Average distance between crossing points ^̀ = Lf

c̄
= πLf

2q

Average number of sides in a polygon Ns = 4

Number of polygons Nh = (Nc − Nf)e
−Nfᾱ/A

Table 2.1. Properties of the 2d random fibre (line) network.

Because both the angle and the centre-point distributions are uniform, we get
a Poisson distribution for the segment-length distribution,

σ(`) = ^̀−1e−`/^̀
, (2.1)

where ^̀ is the average segment length. By introducing a dilution factor a,
which satisfies 0 < a < 1, we can change the frequency of the Poisson pro-
cess. Now the average segment length becomes ^̀ = πLf/(2aq). This result can
be used to describe the situation where some of the bonds are diluted.

2.3 Rigidity percolation

A system is said to be rigid if it cannot be deformed without changing its en-
ergy. Rigidity of a system can be checked by a) implying a nonzero deforma-
tion to the equilibrium configuration of the system, i.e. changing the boundary
conditions and solving the resulting set of elastic equations of the system, b)
considering the degrees of freedom and the constraints [26] or c) using graph
theory and matching algorithms [16].
In the first case we try to find if there is a definite response to a given deforma-
tion. Under positive response the system is rigid, otherwise not. Moreover, we
can check the system only in one direction at a time, thus this method is time
consuming if we want to study the behaviour in more than one direction.



8

Constraint counting considers rigidity as a static property as opposed to direct
solving of the elastic equations, where rigidity is seen as a dynamic property.
Now by defining a floppy mode as a motion which costs no energy, and as-
suming that each constraint removes one floppy mode1, we can examine con-
straint counting more closely. For any system (rigid or non-rigid) in d dimen-
sions, there exists d translations and

(
d
2

)
rotations. From the translations of N

mass points we get Nd degrees of freedom. So the number of floppy modes in
d dimenions with Nc linearly independent constraints is

F = Nd − Nc −

(
d +

d(d − 1))

2

)
. (2.2)

This method is called Maxwell counting. If we increase the number of con-
straints gradually, the number of floppy modes F found in this way becomes
zero at some concentration of bonds. It is assumed that at this point the net-
work becomes rigid as a whole (rigidity percolation occurs). Unfortunately
Maxwell counting is only approximate because some constraints are redun-
dant and they do not change the number of floppy modes. In addition, F is not
zero at the rigidity percolation transition because there are floppy inclusions
even if the network contains an infinite rigid cluster, so the transition point is
determined inaccurately.

Unlike in the methods based on static and dynamic properties of the system,
with matching algorithms we try to characterize the system based on the con-
cept of generic rigidity. A system might be rigid for some deformation but not
for others. These so called geometric singularities are possible when some col-
lective motions are allowed. A system is generically rigid if it is rigid in almost
all possible configurations given by the set of constraints. There might be cer-
tain special configurations in which rigidity is not assured, but they must have
zero measure in the probability space of all possible configurations.

For example, a system consisting of sites which occupy the corners of a square
and are connected by bonds along the sides of the square, is not rigid under
shear. The same is true for a chain of collinear bonds which can buckle. For two
dimensions there is the so called Laman’s theorem based on graph theory, which
is sufficient for ensuring the generic rigidity of a generic network. However
in higher dimensions the theorem is necessary but not sufficient. Based on
Laman’s theorem there are so called matching algorithms [13] which can be
used to identify all rigid clusters in the system. One version of this algorithm
is the ’pebble game’ [16].

1i.e. we assume that all constraints are linearly independent and each binds one degree of freedom
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2.3.1 Random fibre network vs. Random resistor network

Scalar percolation [40] is a simple model used for describing the behaviour
of a scalar conserved quantity, e.g. an electric charge across a random diluted
system, as first suggested by de Gennes [10] in relation to the elasticity of gels.
Since then the problem of elasticity of random percolating systems was viewed
as analogous to the problem of electrical conductivity, until Feng and Sen [8]
showed that it was not generally true. In addition, they suggested that the
central-force elastic percolation belongs to a new universality class. More pre-
cisely, if the conductivity vanishes at the geometric percolation concentration
pc as σ ∼ (p − pc)

t, and the elastic modulus as ∼ (p − pc)
f, then the prediction

by de Gennes is that f = t, and by Feng and Sen that f 6= t [48, 8, 19].
In order to look more closely into this matter, we start by defining the kind of
networks we are dealing with. The elastic forces between the nearest neigh-
bours give rise to a random network of elastic bonds. In the framework of the
Born model, we can write the Hamiltonian of the microscopic elastic energy
as [10, 8, 19, 8]

H =
1

2

∑
i,j(nn)

Kij

[
α(~ui − ~uj)

2
‖ + β(~ui − ~uj)

2
⊥

]
, (2.3)

where (nn) denotes nearest neighbours, (~ui −~uj)‖ is the relative displacement
of site j in the direction parallel to the bond (i, j), (~ui − ~uj)⊥ is the relative dis-
placement in the perpendicular direction and Kij is a random variable which
assumes values 1 and 0 with probabilities p and 1 − p, respectively. The Born
model (Eq. (2.3)) is a useful model which gives qualitatively correct results
in many instances [21]. In the case of purely isotropic Born model, i.e. when
α = β, Eq. (2.3) reduces to a scalar problem, and so to the usual universality
class of conductivity problem, as predicted by de Gennes. On the other hand
when α = 1 and β = 0, the Hamiltonian in Eq. (2.3) represents a random
network of springs, i.e. forces are involved only when a bond stretches or con-
tracts. This model does not reduce to a scalar problem and the analogy with
electrical networks is no longer evident. The Born model gives wrong results
for example for systems composed of long thin rods, and a solution for this
system is proposed in [19] as a new model for elasticity of percolating lattice
networks.
Summarizing, if angular forces are present, as opposed to central-force net-
works, only a singly connected path is required to make the system rigid. Im-
portant is also the question raised in [48] that in what kind of stressed elastic
network is the de Gennes prediction exactly valid? This subject of classifica-
tion of rigidity percolation in different kinds of networks (in and off-lattice,
stressed, tension free, at zero or at finite temperature) has drawn lately a con-
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siderable amount of interest [6, 7, 18, 16, 48, 8, 19, 32, 16, 20, 25, 34, 39, 41, 45, 38].



Chapter 3

Random networks of elastic beams

3.1 Introduction

Rigidity does not address the question of system’s response to a deformation
or of the strength of the response. In a rigid system its constituents are in fixed
positions with respect to one another. If the system can be deformed without
cost of energy, it is not rigid.
Three-dimensional mats of randomly (in 2d) oriented fibres can be formed
by sedimenting flexible fibres in a random and uncorrelated fashion on a flat
substrate. The fibres are originally straight, horizontal, and deposited from
above. When a depositing fibre first comes into contact with a fibre below, it
bends by an angle φ on both sides of the contact (Fig. 3.1(A)).

fibre
(A) (B)

Figure 3.1. A)Definition of the bending angle φ and B) an example of bending
of a fibre between two crossing fibres.

It can thus come into contact with another fibre, where a similar bending is
performed until the fibre end or the substrate is reached. At the end of the
fibre an end-node is created, and in the case of the fibre hitting the substrate a
bending-type of node is created whereafter the rest of the fibre lies flat on the
substrate. The fibre must also bend in between two crossing fibres (Fig. 3.1(B))
in such a way that it can fulfil at both crossings the bending rule shown in
(Fig. 3.1(A)). The final result of this deposition process is a kind of zig-zag
pattern formed by the fibres as shown in Fig 3.2.
The contacts are assumed to be stiff and all internal stresses formed during the
sedimentation process are assumed to vanish. When the angle φ approaches

11
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} w sin( )0 φ

Figure 3.2. A schematic representation of the zig-zag pattern formed by a fibre
in the fibre mat. Parameter wo is a typical segment length and the thickness of
the structure is indicated.

zero, a fibre mat is simply a pile of sticks, which obviously has a high porosity.
Consequently, as the angle φ increases, the porosity will decrease. This aspect
of the random fibre network is examined in more detail in the following chap-
ter.
Because the deposition process is very similar to that of the two-dimensional
version (now the width of lines is counted) as introduced in Sec. 2.2, the other
geometrical and statistical properties of the 3d fibre networks are pretty much
the same as for the 2d version. This kind of deposition process obviously pro-

Figure 3.3. A three-dimensional random fibre mat, q/qc = 10, Lf = 1.0, w =

0.02 and φ = 0.3. See Sec. 3.2.2 for explanation of the terms.

duces a rough surface, but the surface properties are out of the scope of this
thesis. For discussion of rough surfaces produced by a similar KCL-PAKKA
model see [42].
As implied, our model is similar to the lattice-based PAKKA model [30,12,42,
29,36]. The PAKKA model was developed to study the three-dimensional net-
work structure of paper. In this model flexible fibres are deposited in the same
way as in our model, but the bending rules on contacts with other fibres are
somewhat different, and bending is of course discrete as the system is defined
on a square lattice. Bending is governed by a dimensionless parameter called
the bending flexibility number F = Twf/tf, where T is the actual flexibility, wf
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the width of the fibres, and tf the thickness of the fibres. F gives the largest
allowed vertical deflection of the fibres from one lattice cell to the next. The
PAKKA model only describes the geometrical structure of the system, while
our model [52] decribes a fully elastic network of flexible fibres.

3.2 Mechanical properties

To analyze the stress-transfer mechanisms in random fibre networks it is use-
ful to study the stress distribution in the segments. In the fracture of random
media the stress distributions can be used to calculate the initial failure process
as this process is uncorrelated [14].
Simulations [53] reveal that in this particular kind of network, the distribution
of segment stresses can be separated into two different distributions of differ-
ent physical origin. Figure 3.4 a) shows the segment stress distribution (P(σ))

averaged over 10 runs [53]. In general, it can be said that in the case of tensile
stress in the x direction, in each segment of the network the x component of
the stress must be positive and the y component must average to zero due to
periodic boundary conditions in that direction.
There is thus a local positive compensation for any negative stress, and this
compressive deformation distribution (Ps) must be symmetric as the com-
pressive part of the total stress distribution (σ < 0) describes it unambigu-
ously. The remaining load-bearing distribution (Pt) of positive stresses can be
parametrized in the form [53]

(a) (b)

Figure 3.4. (a) Distribution of axial segment stressess and (b) its splitting into
separate distributions Pt and Ps [53].

Pt(σ) = Θ(σ)
A

σtΓ(m)

( σ

σt

)m−1

e−σ/σt , (3.1)

where σt is the width of the distribution, A is a normalization constant, Θ is the
unit step function, Γ is the gamma function and m is a constant which depends
on density and Lf/w. The compressive deformation stresses and their positive
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compensation can be parametrized as

Ps(σ) =
B

2σs

e−|σ/σs|, (3.2)

where σs is the width of the distribution and B is a normalization constant.
Using Eqs. (3.1) and (3.2), the whole segment stress distribution is given by

P(σ) = Pt + Ps = Θ(σ)
A

σtΓ(m)

( σ

σt

)m−1

e−σ/σt +
B

2σs

e−|σ/σs|, (3.3)

which is normalized such that A + B = 1.

This kind of stress distribution in random line networks was first noted in [53],
and in [20] for a random network composed of springs. In the case of spring
networks under global compression, the total stress distribution was symmet-
ric.

The basic quantities which describe the mechanical behaviour of a system are
its elastic moduli. In the case of tensile stress the relevant modulus is the
Young’s modulus. Effective-medium theories and numerical results indicate
that the Young’s modulus of 2d random fibre networks is asymptotically a
linear function of the areal density (q),

Ee(q) = A(q − qmin), (3.4)

where Ee is the effective Young’s modulus, A is a constant, and qmin is a ’crit-
ical’ density that depends on the percolation treshold and the stress transfer
mechanism. Close to the percolation treshold qc one finds a scaling regime,
as expected, similarly to other transport properties, and for q � qc (high
coverage) the system is in the linear regime. This kind of phenomenon can
be demonstrated experimentally in hand-made sheets of paper [37, 35]. The
dependence of qmin on the percolation threshold is due to the fact that the
network has to be geometrically connected for it to be able to carry load. The
other elastic moduli of the system can be deduced from continuum elasticity
theory (see below).

Next we introduce the Cox model [4] and its variant, the shear-lag model [33],
and then introduce a qualitatively new effective-medium model [50]. The shear-
lag model suggests that qmin should be dependent on the length of the fibres
used, Lf, which is not supported by experiments. Also it gives the prefactor A

at best qualitatively. The variation of the average stress with respect to fibre
orientation, as given by the shear-lag model, seems to be correct, and it is also
used in the new effective-medium model. This latter model tries to overcome
the shortcomings of the Cox model, and its variant.
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3.2.1 Cox model and its variants

In the Cox model we assume that a single fibre is attached to a homogeneous
background with full effective stress transfer between the fibre and the back-
ground. The stress-strain behaviour of both the fibre and the background are
assumed to be linear. The shear-lag model differs from the Cox model by intro-
ducing a finite length for the fibres, while in the Cox model the fibres extend
from one side of the system to the other. The shear-lag model in particular as-
sumes that stress is transferred to fibres through fibre crossings, see Fig. 3.5 [4].
Usually a fibre will lie at an angle θ with respect to the direction of tensile stress

UfUs

Figure 3.5. Connection of a fibre to the effective medium in the Cox/shear-lag
model.

in a homogeneous medium, so we will first consider the case without angu-
lar dependence, and return to this dependence afterwards. In the small strain
limit we can write a differential equation for the stress (σf) along a fibre as

〈ls〉
dσf

dx
= c

uf − us

〈ls〉
. (3.5)

Here uf and us are the local displacements of the fibre and of the backgound
as shown in Fig. 3.5, 〈ls〉 is the average segment length and factor c is a stiff-
ness constant. Because we assumed linear elasticity in the limit of small strain,
the stresses and strains are related through σ = Eε, where E is the Young’s
modulus of the fibre. Using this, it is easy to verify that the stress along the
fibre, i.e. the solution of Eq. (3.5), is given by

σf(x, k) = Eεx

(
1 −

cosh[k(1
2

− x/Lf)]

cosh(k/2)

)
, (3.6)

with k =
√

cLf/〈ls〉, and εx is the strain in the x direction. We can now take
into account also the effect of fibre orientation. By assuming isotropic angular
distribution for fibres, and in the absence of transverse Poisson contraction, a
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rotation of the infinitesimal field σf gives

σf(x, θ) = σf(x) cos2 θ, (3.7)

where θ is the angle of the fibre with respect to the external strain.
The elastic modulus of the network is found by integrating over the angle θ

and the axial coordinate x along the fibre. In the Cox model we consider a fibre
network, where each line extends across the whole system. In this case we get
for the Young’s modulus per unit thickness [4]

Ee =
1

3
EAfq, (3.8)

where E is the axial Young’s modulus of the fibre, Af is the cross-sectional area
of the fibre and q is the total fibre length per unit area.
In the case of the shear-lag model we have fibres of finite length, and stress
transfer happens between the nearest segments, i.e. by the shear-lag mechanism,
while in the Cox model there was no interaction between the fibres, only with
the background. The shear-lag model gives [33]

Ee =
3

8
EAf(q − Kqc), (3.9)

where constant K is π/5.71
√

1 + σ with σ the Poisson contraction of the fibres.
The last term in Eq. (3.9) is due to stress vanishing at the fibre ends. There is
also a variant of the shear-lag model with elastic bonds [35].

3.2.2 The effective-medium model

As in the Cox model we begin by considering a single unit attached to a ho-
mogeneous background. We do not however treat the fibres as the basic units
of the network, nor do we try to describe the stress distribution along them.
By doing so we would make the segment stresses correlated along the fibres.
In the shear-lag model based on fibres of finite length, there is an explicit con-
tribution in the effective Young’s modulus as a consequense of the assumed
stress transfer mechanism (the constant K in Eq. (3.9)). This assumed stress
transfer mechanism is wrong, as it predicts that the stress is transferred to a fi-
bre at its ends and thus leads to an incorrect density dependence. The shear-lag
model also underestimates the elastic energy of segments aligned perpendic-
ular to the external system [37].
Instead of investigating the stress transfer in a whole fibre, we concentrate on
a single segment. As explained in Sec. 2.2, the segment length distribution is
Poissonian. An effective-medium theory of the elasticity of the network can
be based on this additional piece of information. Yet another ingredient of the
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effective-medium model of Refs. [50, 52, 51] is that the segments of fibres are
assumed to deform only in the most energetically favourable mode depending
on their length.
When a fibre network is deformed there must be a force equilibrium at each
node. Each of the segments can deform by stretching, bending and shearing.
For fibres of square cross section the bending stiffness is Ew4/l3, the shear stiff-
ness is Ew2/

(
2(1 + σ)l

)
and the tensile stiffness is Ew2/l. When the length of

the segment is much larger than its width (slender segments), bending is the
preferred mode of deformation. For small l, however, stretching and shear-
ing are preferred. We can simplify this behaviour by assuming that there is a
cut-off length lc above which the only deformation mode is bending, and be-
low which the segment is only deformed by stretching and shearing. A rough
qualitative argument gives lc = w

√
2(1 + σ), which suggests seeking lc nu-

merically in the form lc = (consta + constbw)
√

2(1 + σ), with the result that
consta = 0.11 and constb = 1.9 [52].
To determine the stiffness of the network we still need to quantify the orien-
tation dependence of the local displacements. We show in Fig. 3.6, that this
orientation dependence is correctly given by the Cox model although its in-
herent stress transfer mechanism does not seem to be valid. If θ is the angle
between the external tensile stress and the orientation of a fibre segment, elon-
gation of the segment is proportional to cos2 θ, and its shear and bending are
proportional to sin θ cos θ.

Figure 3.6. The average orientation distributions of displacements compared
with the Cox model displacement fields. Bending (sin(θ) cos(θ)), axial (cos2(θ)),
and rotational (Ω(θ)) deformations as functions of the orientation angle θ [50].

As mentioned above, we also need the segment length distribution, which is
the same as in Sec. 2.2, but now with a dilution factor a. As the arguments
used above apply in 2d networks, we essentially consider a 2d projection of
the real 3d fibre mat, for which a fraction (a) of the apparent crossings are not



18

bonded. Now the segment length distribution is given by Eq. (2.1),

σ(l) =
2aq

πLf

exp
(

−
2aq

πLf

l

)
, (3.10)

and the average segment length can be written as ^̀ ≡ πLf/(2aq). The valid-
ity of our assumption that the 2d projection of a 3d fiber mat gives the cor-
rect segment-length distribution is tested in Fig 3.7, where the comparison
between Eq. (3.10) and the numerical segment-length distributions of the sim-
ulated random fibre network for parameter values q = 4qc and q = 6qc is
shown.

Figure 3.7. The segment-length distributions for q/qc = 4 and q/qc = 6

(points) in comparison with unnormalized Eq. (3.10) (straight lines) [50].

To get the elastic energy of the whole network, we must sum up all the energies
of the different deformation modes. The energies are calculated by multiply-
ing the energy of a single-segment deformation by the average number of such
segments, and then integrating over the segment length distribution with ap-
propriate limits. We also have to integrate over the angular distribution which
is the same as in the shear-lag model. The elastic energy of the whole network
is then given by

W =
Ew2

2
ε2

xq
LxLy

Lf

∫ π
2

− π
2

cos4 θ

π
dθ

∫ `c

0

`

^̀2
e−`/^̀

dl

+
Gw2

2
ε2

xq
LxLy

Lf

∫ π
2

− π
2

cos2 θ sin2 θ

π
dθ

∫ `c

0

`

^̀2
e−`/^̀

dl

+
Ew4

2
ε2

xq
LxLy

Lf

∫ π
2

− π
2

cos2 θ sin2 θ

π
dθ

∫∞
`c

1

^̀2`
e−`/^̀

dl, (3.11)

where the energies of deformations by stretching, shearing and bending are
represented by the first, the second and the third term on the right hand side,
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respectively, and G = E/(2(1+σ)). The last integral is an Exponential-Integral
function and thus it cannot be expressed with elementary functions. Here it is
best to approximate the Exponential-Integral function by a rational approxi-
mation [1],

E1(z) =
z2 + a1z + a2

z2 + b1z + b2

e−z

z
+ ε(z)

e−z

z
, (3.12)

where a1 = 2.3347, a2 = 0.2506, b1 = 3.3307, b2 = 1.6815 and |ε(z)| < 5×10−5.

On the other hand, the energy of the network can be written in the form W =
1
2
Eeε

2
xLxLy, if it is treated as a homogeneous plate. In this way we can get

an expression for the stiffness of the network as a function of w and q. The
result is an effective Young’s modulus (Ee) which can, after solving the other
integrals in Eq. (3.11), be written in the form

Ee =
Ew2q

8Lf

[(
2aqw

πLf

)2

E1(z) +

(
3 +

1

2(1 + σ)

)[
1 − e−z(z + 1)

]]
, (3.13)

where E1(z) is an Exponential-Integral (Eq. (3.12)) and parameter z equals
2aqlc/(πLf).

We also have to take into account that not all of the segments carry load, es-
pecially near the critical percolation density. The simplest possible tranfor-
mation from q to the density of load carrying fibres ql is given by q/qc =

q/ql + 0.55 + 0.45/(ql/qc + 1). This equation is just a crossover from q = qc,
when ql = 0, to ql → q − 0.55qc in the limit when ql and q both approach
infinity. Thus the q in Eq. (3.13) should be replaced by ql,

ql =
qc

2

{
q

qc

− 1.55 +

[(
1.55 −

q

qc

)2

− 4
(
1 −

q

qc

)]1/2
}

. (3.14)

A three-dimensional mat has almost the same stiffness as a two-dimensional
one, provided the degree of bonding is the same and the external presssure is
low enough for the fibres to bend only little [52]. We expect that the fraction
of all the fibre-fibre crossings in the two-dimensional projection of a three-
dimensional mat that form real contacts, behaves as a ∝ 1/q for large q.
This is a consequence of the fact that the total number of bonds in the two-
dimensional projection increases proportional to q2, but in the three-dimensional
mat new bonds are only formed at the surface of the mat. The number of
contacts in the 3d mat grows therefore proportional to q. Also, if the ratio
w/(w0 sin φ), where w is the width and w0 is a typical segment length (see
Fig. 3.2) and φ is the bending angle of a fibre, remains constant, only the length
scale in the thickness direction of the mat is changed. Hence a remains un-
changed and must be given by a = f(w/(w0sinφ))/q for large q. The number
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of contacts per fibre (n) is thus related to this function f such that

n =
2

π
f(w/(w0 sin φ)). (3.15)

Using Eq. (3.14) and function f, we can write Eq. (3.13) in the form

Ee =
Ew2ql

8Lf

[(
zw

lc

)2

E1(z) +

(
3 +

1

2(1 + σ)

)[
1 − e−z(z + 1)

]]
, (3.16)

where the function f(w/(w0 sin φ)) appears through parameter z ≡ 2flc/(πLf).
Simulations reveal that the model gives correct results for the stiffness of mats
under low external pressure provided the fibre density is q > 3qc, and the
fraction of bonded contacts a ≥ 0.25. Within these limits Eq. (3.16) gives the
same mat stiffness as the numerical simulation as demonstrated in Fig. 3.8.

Figure 3.8. The effective-medium stiffness Ee (Eq. (3.16)) vs. the 3d simulated
stiffness. Parameter values in the simulations vary in the intervals q/qc = 4 − 6,
w = 0.003 − 0.01, and θ = 0.03 − 0.11.

Summarizing, we have found an expression for the effective Young’s modulus
of a random fibre network, which depends on the properties and number of
its constituents together with the function f which defines the connectivity.
The possibility of applying Cosserat elasticity can be neglected because the
rotational deformation Ω equals zero as shown in Fig. 3.6. Because the mat
has an effective response to a macroscopic deformation, when treated as a
continuum plate, we can derive expressions for the other elastic constants by
using continuum elasticity theory (see next).
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Back to continuum theory

In order to find expressions for the other elastic constants we need to resort to
continuum elasticity theory of solids [23]. That is, above a certain density we
expect the mat to act as a continuum plate of in-plane dimensions Lx and Ly

and thickness Lz. The coordinate system is chosen such that the z direction is
normal to the plane of the mat, the y direction is along the periodic in-plane
direction and the x direction is from the left to the right boundary.
The spring constant in the x direction of a continuum plate for which Poisson
contraction is prohibited by periodic boundary conditions in the y direction,
is [24]

Kx =
E

(1 − σ2)

LyLz

Lx

. (3.17)

Here E is the Young’s modulus and σ the Poisson ratio of the plate. Moving
the right boundary in the y direction corresponds to a shear deformation and
yields for the spring constant in the y direction [24]

Ky =
E

2(1 + σ)

LyLz

Lx

. (3.18)

Solving for the Poisson ratio from Eqs. (3.17) and (3.18), we get

σ = 1 − 2
Ky

Kx

. (3.19)

The spring constants Kx and Ky can be easily determined for the numerical
model of randomly deposited fibres. We show in Fig. 3.9 results of Kx/Ky ver-
sus fibre density for five combinations of the parameters w and φ. The ratio
Kx/Ky clearly seems to converge to an asymptotic value Kx/Ky ≈ 3.15, inde-
pendent of the parameters even for fairly low fibre densities. This behaviour
is consistent with the fibre mat behaving effectively as a continuum elastic
medium. The asymptotic average ratio of Kx/Ky corresponds to a Poisson ra-
tio of σ ≈ 0.37, which is in good agreement with the typical values of σ found
for paper. Based on these results we can quite confidently use continuum elas-
ticity for q ≥ 3qc and e.g., write the shear stiffness of the mat in the form

Ge =
Ky

Kx

Ee, (3.20)

which, using Eq. (3.13), gives Ge in the form Ge = Ge(q,w,φ, σ, Lf, E).
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Figure 3.9. The ratio Kx/Ky for the following parameter values: (w,φ) =

{(0.02, 0.1), (0.04, 0.1), (0.06, 0.1), (0.02, 0.2), (0.06, 0.2)}. The line represents the
value Kx/Ky = 3.15. The data is averaged over 40 samples of the size (2.1Lf)

2.



Chapter 4

Porosity of random fibre networks

In addition to the mechanical properties of random fibrous structures addressed
in the previous chapter, they have also other important (macroscopic) param-
eters such as porosity.
We define here the two-dimensional (area) porosity ρm of a three-dimensional
fibre mat as a fraction of a cross-section not covered by fibres. This area poros-
ity divides the mat into three regions; bottom, bulk and surface region. At the
bottom fibres lie flat, and the porosity is at its lowest value, while it quickly
increases to a constant value in the bulk region. This behaviour can be seen in
Fig. 4.1, where different lines represent different percolation densities of the
mat. In the rough surface region the porosity increases from its bulk value to
unity.

Figure 4.1. The area porosity ρm as a function of distance z in the thickness
direction for q/qc = 12, 16 and 20. The peak on the left results from fibres lying
flat on the substrate, and should be discarded [49].

It should also be noticed that the density q corresponds to mass per unit area in
the bulk region. The bulk density does not change when q is increased. When
new fibres are deposited on the mat, they only add a new ’fibre layer’ with the
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same bulk density. This is seen to be true within statistical variations, as ex-
pected. Because of the surface effects, in the analysis of porosity of fibre mats,
rather thick mats (i.e. large density q) should be used. As the area porosity ρm

is constant through the bulk region of the material, it coincides there with the
three dimensional porosity of the mat. Also, since the deposition process lays
the fibres always at angle φ with respect to the plane of the mat, 1−ρm should
be equal to w2/(L2 sin φ), which is the area fraction in a cross section of size L2

covered by a crossing fibre multiplied by the total number of fibre segments
crossing the cross section.
The thickness of the mat can be scaled by the parameters w and sin φ while
keeping the ratio w/(w0 sin φ) constant. This scaling is equivalent to a scale
transformation in the thickness direction of the mat, and w0 is the typical seg-
ment length. Therefore, the area (and bulk) porosity can be expected to have
the form

ρm = 1 − g

(
w

wo sin φ

)
w2

sin φ
, (4.1)

in which g(x) is some scaling function which describes the number of seg-
ments going through a unit cross section in a plane. As explained in Ch. 3,
fibres form zig-zag patterns between contacts because of the deposition rules
applied. The ratio of the width (w) and the height of the zig-zagging pattern
of the fibre (w0 sin φ) (as schematically described in Fig. 3.2) determines how
many times, on the average, such bending fibre crosses the plane. Therefore,
the width of a fibre can be seen as a measure for the thickness of a fibre layer in
the mat, and so the ratio (w0 sin φ/w) determines the number the layers which
one fibre covers in the structure of a fibre mat. This means that we would ex-
pect the function xg(x) to act the same way as f(x) defined in Sec. 3.2.2.
The bulk porosity of a mat has been determined for a number of values of
w2/(w0 sin φ) so that function g can be solved numerically through Eq. (4.1).
The other scaling function f can be determined numerically through Eq. (3.15)
from n = (2/π)f(w/(w0 sin φ)). Numerical results for f(w/(w0 sin φ)) and

w
w0 sin φ

g(w/(w0 sin φ)) are shown in Fig. 4.2.
It is evident from Fig. 4.2 that f(x) and xg(x) are, as expected, very similar.
This similarity suggests that they should in fact coincide upon rescaling of
both axis:

xg(x) = c1f(c2x), (4.2)

where c1 and c2 are scaling constants. We show in Fig. 4.3 that by using c1 and
c2 as fitting parameters, the two functions can indeed be made to exactly over-
lap with the scaling parameters c1 = 4.7 and c2 = 0.65. It is also worth noticing
that, through function f and Eqs. (3.10), (3.13), (3.15), (3.20), (4.1) and (4.2), it
seems possible to determine the entire structure and mechanical behaviour of
a random beam network.
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Figure 4.2. Plots of the functions f(w/w0 sin φ) and (w/w0 sin φ)g(w/w0 sin φ)

in a log-log scale. For small w/w0 sin φ, the power-law (w/w0 sin φ)−3/4 is fit-
ted to the data. For large w/w0 sin φ the power-law changes to a constant value
with a crossover approximately at w/w0 sin φ ' 0.3.

Figure 4.3. The same functions as in Fig. 4.2 in a semilogarithmic scale with the
function xg(x) rescaled according to Eq. (4.2) with c1 = 4.7 and c2 = 0.65. The
scale on the y axis is given by qc ≈ 5.7.

The form of function f suggests a power-law dependence for small values of
the argument, and it clearly levels off to a constant at large values of the argu-
ment (n approaches its minimum average value n = 2). Simple least-squares
fitting in the two respective regimes gives{

f(x) ∝ x− 3
4 , x . 0.3

f(x) = const., x & 0.3
. (4.3)

For the sake of completeness it should be mentioned that it would also be
possible to study the porosity of a two-dimensional fibre mat by letting the
thickness of the fibres in a three-dimensional mat vanish. The porosity of such
a material will decrease continuously to zero when the number of constituents
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is increased, and its behaviour will thus be qualitatively different from that of
a three-dimensional mat. For this reason two-dimensional fibre mats are not
considered here.
We have demonstrated above that the porosity of a random fibre mat is de-
termined by parameters related to the properties of the constituents together
with essentially the same measure of connectivity as the one applicable to its
elastic properties. It should be noticed that a sedimented material is defined
by its constituents and the specific deposition process (see Sec 3.1), which to-
gether define the texture of the material. Sedimented materials with similar
constituents but created by different processes do not usually have the same
relations between their porosity and stiffness on the one hand, and connec-
tivity on the other hand. Therefore the function that describes the connec-
tivity must be process dependent, which justifies the term ’process function’
for function f. We have only considered random fibre mats here, but similar
approach can be used for other kinds of randomly ’deposited’ materials. For
random packings of elastic (two- or three-dimensional) discs, e.g., this process
function is the trace of the average fabric tensor 〈n〉 [49].



Chapter 5

Stiffness evolution in random fibre
networks

In this chapter we present a model for stiffness evolution in a 2d random fi-
bre network. In this model evolution is realised by moving fibre material from
one location to another based on local load. The topology of the network is
not changed although it can be argued that changing the topology (i.e. shape)
is more favourable than changing the material properties [43]. For example,
the basic bone development is determined by genes, but the final structure is
governed by adaptive response to mechanical load. In 1892, J. Wolff [46] pos-
tulated that the form of bone is related to mechanical stress by a mathematical
law. In his law, Wolff referred to form and function as a static mathematical
relationship between trabecular architecture and stress trajectories, and he be-
lieved that the shape of the bone is inherited. Regardless of these misconcep-
tions, his law has been accepted as a foundation for the functional adaptation
of bone [9].
Previous simulation results [15] have also confirmed the results we have found
that Wolff’s law is very general, and strengthening of a structure in the direc-
tion of an external principal load can be achieved using very simple rules. We
also give an estimate on how effective this strenghtening procedure is for fibre
networks.

5.1 Introduction

The adaptivness of the mammal skeleton is a well documented phenomenon.
The skeleton of astronauts, for example, becomes weaker the more time they
spend in a gravity-free environment. This is due to lack of mechanical load-
ing of the bones. On the other hand, athletes usually develop anomalous bone
strength due to large amounts of spezialized training. A tennis player e.g. de-
velops a stronger bone structure in the arm with which he holds the racket. The
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basic mechanism behind this remodelling of bones is the activity of two types
of cells: osteoblasts which form new bone and osteoclasts which devour bone.
The rate of remodelling and devouring depends obviously on the amount of
mechanical loading.
Understanding this phenomenon, and the increased bone loss in elderly peo-
ple (osteoporosis), which is related to it, is of course important, and it has
received wide interest in the medical research [15]. To understand this phe-
nomenon from a statistical physics point of view has, to our knowledge, not
been attempted so far. The question we address here is: How efficiently can na-
ture optimize the strength-to-weight ratio of a random structure by strength-
ening parts which are much loaded and devouring parts which experience
little load?

5.2 Numerical model

In order to investigate the physics of this type of strength adaptivness, we in-
troduce a minimal model of a network of randomly deposited elastic fibres.
The total mass of the network is set to be constant. The mechanical load on
each fibre segment due to the applied global loading conditions can be calcu-
lated repeatedly by solving a set of linear equations. After each time the elastic
equilibrium is determined, some mass is transferred from the least to the most
loaded fibre segment. This way the load distribution and the stiffness of the
network is changed continuously.

Figure 5.1. A 2d random fibre network with parameters q = 4qc and Lf = 1

in an area of 2.1 × 2.1, and an enlarged part of it for the visualization of mass
transfer. Topology of the network is conserved in the mass transfer, only the
widths of the two segments are changed. Arrows indicate the segments between
which mass transfer takes place.

In practice this means that in the beginning we strip away all dangling ends of
the fibres and save the corresponding amount of mass for later use (in order
to conserve the total mass of the system). The removal of the dangling ends
can be done, as they do not contribute to the global stiffness of the network. It
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is done in order to reduce the number of nodes and to minimize the needed
computational task.

Further, after solving the deformation of each fibre segment, as a response to
global loading with the given boundary conditions, we calculate the elastic
energy of every segment. If there is still mass left from the dangling ends, we
use and move it to the most energetic segment. Otherwise we take mass from
the segment containing the least elastic energy and move it to the most ener-
getic segment. The mass transfer is done in proportion to the original width of
the segment. None of the segments is completely removed, only their width is
changed so the topology of the network is conserved.

We have defined a relative minimum/maximum limit for the segment width
to avoid unlimited shrinkage/growth of it. Otherwise this would create patho-
logical geometries in the evolving network and we do not want to change
the topology, only the mass distribution among the segments. After the mass
transfer, the elastic equilibrium of the system is recalculated, and mass trans-
fer is then repeated. Iterations are done until a predefined maximum number
of iterations is reached.

The elastic energy of the whole random fibre network can be calculated from
the local stresses of each segment. The elastic energy of the network is then the
sum of the elastic energies of all the segments. Through loading conditions we
are able to produce different kinds of deformation modes in the network. We
consider here tensile stress, but could also consider in a similar fashion e.g.
the cases of pure shear stress and a stress mode that consists of opposite phase
sine-waves on the left and right sides of the network as shown in Fig. 5.2.
Because the y direction is periodic, the elastic network can be thought to be
rolled into a tube. Deformation modes can now be seen as elongation of a
tube, twisting the ends of a tube in opposite directions, and bending of a tube.

(B)(A) (C)

Figure 5.2. Possible types of deformation modes; tensile stress, pure shear stress
and a stress mode composed of opposite-phase sine waves.
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5.3 Calculation of elastic energy

In order to start modelling our network on a computer we return back to the
basics of elasticity theory (see Sec. 1.2). The building blocks of our network are
linear elastic rods. From Eq. (1.7) we get for the elongation of a rod in the x

direction
ux =

l

EA
Fx, (5.1)

where l is the length of the rod, A is the cross-sectional area of the rod and ux

is the displacement at the other end of the rod with one end clamped, and Fx

is the applied force. This is similar to a spring in the linear case, and it can be
written in the form Fx = kux, where the stiffness constant is k = EA/l.

x

y
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F2

u2 1u

F1

1u
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12 1

(a) (b)

Figure 5.3. (a) Rod under loads F1 and F2 acting on ends 1 and 2 of the rod,
respectively, and (b) rod under load F in the x direction when the movement of
the other end is prohibited. Corresponding displacements ui are also marked.

If the rod is part of a bigger structure, we have to take into account the case
that both ends of the rod can move as shown in Fig. 5.3(a). We need to write
down the connection between displacements u1 and u2 (numbers denote the
ends of the rods) and their respective forces F1 and F2. In matrix form this can
be written as {

F1

F2

}
=

[
k11 k12

k21 k22

]{
u1

u2

}
, (5.2)

or shortly as
{F} = [K] · {U}. (5.3)

The stiffness constants kij can now be easily calculated based on equilibrium
condition fot the acting forces. Because kij represents the force at point i when
the displacement uj is set to unity, and other displacements are zero, we can
solve one column at a time from the stiffness matrix. Setting u1 = 1 and u2 = 0

we get a situation described in Fig. 5.3 and Eq. (5.1). The force at the right end
of the rod is now

F1 = k · 1 = k11, (5.4)



31

and the force at the left end is obtained from the equilibrium condition1

F2 = −F1 = −k · 1 = k21. (5.5)

Similarly, by setting u1 = 0 and u2 = 1 we get{
F2 = k · 1 = k22

F1 = −F2 = −k · 1 = k12.
(5.6)

The stiffness matrix in the equilibrium equation Eq. (5.3), which describes the
equilibrium conditions for the nodes (end points of the rod), can now be writ-
ten as a 2× 2 matrix,

[K] =

[
EA
l

−EA
l

−EA
l

EA
l

]
. (5.7)

If we also want to take into account the other deformation modes, namely
bending and rotations, we can do this separately from the elongination as
there is no coupling between them. We start by defining the displacement vec-
tor U as

U = {u1y, u1θ, u2y, u2θ}T , (5.8)

where the components uy are the displacements of the respectively numbered
rod end in the y direction, and the components uθ are the angles of rotation,
respectively. Similarly, we define the corresponding force vector as

F = {F1,M1, F2,M2}
T , (5.9)

and would like to derive the familiar equation {F} = [K]{U} between them. We
can now use the same method as previously for the elongination of the rod. We
set each of the displacements to unity one at a time, while other displacements
are zero, and calculate the forces acting on the rod. Considering the case in
Fig. 5.4(a), where all degrees of freedom but u1y is fixed, we get relations

F1 = k11u1y

M1 = k21u1y

F2 = k31u1y

M2 = k41u1y.

(5.10)

We now need expressions for the displacement uy(x) and for the moment
M(x). We start by considering small deflections of the rod. If the radius of
curvature of the bent rod is small, we arrive at a differential equation which
describes the line of bending of the rod assuming that it takes place in the xy

1As the body does not move, the sum of the acting forces must be zero.
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plane [24],

EI
d2uy

dx2
+ M(x) = 0, (5.11)

where I is the moment of inertia of the rod and M(x) is the moment inflicted
at point x of the rod.
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Figure 5.4. (a) Pure transverse translation of the rod with force F while the other
end is clamped and (b) bending of a rod with moment M while the other end is
clamped.

The moment M(x) in the case of Fig. 5.4(a) is of the form

M(x) =
F1l

2
− F1x. (5.12)

Combining this with the Eq. (5.11), we can write the differential equation in
the form

EI
d2uy

dx2
= −

F1l

2
+ F1x. (5.13)

Solving this with the following boundary conditions,
uy(0) = u1y

uθ(0) = u ′
y(0) = 0

uy(l) = 0

uθ(l) = u ′
y(l) = 0,

(5.14)

we arrive at the solution

uy(x) =
F1l

3

12EI

(
1 −

3x2

l2
+

2x3

l3

)
. (5.15)

The maximum value for uy given by Eq. (5.15) is max(uy) = u1y = F1l3

12EI
,

which, by solving for F1 (as the displacement u1y was set to unity), gives
us the first k11 element of the stiffness matrix as seen from Eq. (5.10). From
Eq. (5.12) it can be clearly seen that the maximum of the moment is given by
max(M) = M1 = −M2 = Fl/2, which gives us the stiffness matrix element
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k21 = M1/u1y = F1l/2 = 6EI/l2. In addition we know that

F2 = −F1 ⇒ k31 = F2

u1y
= −12EI

l3

M2 = M1 ⇒ k41 = M2

u1y
= 6EI

l2 .
(5.16)

The other columns of the stiffness matrix can be determined similarly. Because
of the symmetry of the stiffness matrix (first row is the same as the already de-
termined first column) and we know that for any combination of bending and
rotation we have F2 = −F1, so the elements of the third row are complements
of the first row. What is left to be determined are the elements k22 and k24, as
the symmetry of the stiffness matrix determines k42 = k24 and k44 = k22.
To solve the remaining parts of the second column of the stiffness matrix, we
consider a case where u1θ = 1 and u1y = u2y = u2θ = 0. This means that the
following boundary conditions,

uy(0) = 0

uθ(0) = u ′
y(0) = u1θ

uy(l) = 0

uθ(l) = u ′
y(l) = 0,

(5.17)

are imposed. The moment is now given by M(x) = M1

(
1 − 3

2l
x
)
, and combin-

ing this with Eq. (5.11), we can the calculate solution of the attained differential
equation with the boundary conditions Eq. (5.17). Remembering that we con-
sider now only small deformations in the linear case, we have uθ =

duy

dx
, so the

only thing we need to solve is the first derivative of uy(x). The first derivative
of the displacement in the y direction is

duy

dx
=

M1l

4EI

{
−

3

l2
x2 4

x
x + 1

}
, (5.18)

and we get the angle of rotation for the bending angle of the rod as u1θ = M1l
4EI

,
which defines the element k22 of the stiffness matrix. As we know that M2 =

−M1/2, we find that the element k24 is equal to 2EI/l.
Summarizing the previous calculations, we find for bending and rotations the
stiffness matrix in the form

[K] =


12EI

l3
6EI
l2 −12EI

l3
6EI
l2

6EI
l2

4EI
l

−6EI
l2

2EI
l

−12EI
l3 −6EI

l2
12EI

l3 −6EI
l2

6EI
l2

2EI
l

−6EI
l2

4EI
l

 . (5.19)

This method of getting the stiffness matrix is called the direct method.
Using Eqs. (5.7) and (5.19), we can write down the stiffness matrix for all cases
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treated above. When the displacement vector U for a 2d beam element is writ-
ten in the form U ≡ {u1x, u1y, u1Ω, u2x, u2y, u2Ω}T , the corresponding force
vector as F ≡ {F1x, F1y,M1Ω, F2x, F2y,M2Ω}T , we assume that the fibres are
rigidly bonded to each other at every fibre-fibre crossing, and the segments
are presented as node-node pairs, we can express the stiffness matrix in the
form

K =



EA
l

0 0 −EA
l

0 0

0 12EI
l3

6EI
l2 0 −12EI

l3
6EI
l2

0 6EI
l2

4EI
l

0 −6EI
l2

2EI
l

−EA
l

0 0 EA
l

0 0

0 −12EI
l3 −6EI

l2 0 12EI
l3 −6EI

l2

0 6EI
l2

2EI
l

0 −6EI
l2

4EI
l


. (5.20)

The solving of the random fibre system consisting of fibre segments is started
by calculating the local stiffness matrix for each 2d element. As concluded
above, the matrix Eq. (5.20) defines the interaction between two connected
bonds where the Young’s modulus of a fibre segment is E, the length is l, the
moment of inertia is I, and the cross-sectional area is A. We have considered
fibres with square cross section of area A = w2, so that the moment of inertia is
I = w4/12. The stiffness matrix is valid only for values w � l. For shorter seg-
ments the bending stiffness Ew4/l3 should be replaced by the shear modulus
Ew2/(2(1 + σ)l), at least in the first approximation.

After creating all the local stiffness matrices, they need to be rotated to the
same coordinate system before constructing the global stiffness matrix. This
must be done also for the force and displacement vectors. The global stiffness
matrix is created by summing up all the degrees of freedom corresponding
to the same nodes. Formally this means that the elements aij of the global
stiffness matrix are obtained as a sum of the elements of the corresponding
local stiffness matrices. The degrees of freedom in each node are to be globally
numbered, and the elements of the different local stiffness matrices that refer
to the same node, can be summed.

The procedure is similar in three dimensions; only the number of degrees of
freedom is increased so that the local stiffness matrix becomes a 12×12 matrix
(six degrees of freedom per node).

In this way we construct a linear system of equations,

Ax = b, (5.21)

where A is the global stiffness matrix, the entries in the deformation vector (x)

correspond to the degrees of freedom of each node, and the entries in the force
vector (b) to the forces acting upon them.
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Solving the linear system

Systems like Eq. (5.21) can solved by using direct solvers (usually based on
Gaussian elimination) or iterative methods. The convenience of using iterative
methods comes from the facts that i) the initial values can be approximated
beforehand, and ii) in iterative methods we can define the desired accuracy of
the solution [11].
It can be shown that matrix A in Eq. (5.21) is symmetric and positive-definitive.
We can then represent this equation as a minimatization problem of a quadratic
functional (many efficient iterative methods have been derived for optimiza-
tion problems) [17, 47, 44]

J(x) =
1

2
〈Ax, x〉+ 〈b, x〉, (5.22)

where 〈 · , · 〉 is the usual Euclidean inner product in Rn. The minimum of the
function J is given by the condition ∇J = 0. Thus, by minimizing the function
J, we can solve the initial linear system Eq. (5.21). Given an initial approxima-
tion x0 ∈ Rn of the exact solution x, our task is to find successive approxima-
tions xk ∈ Rn,

xk+1 = xk + αkdk; k = 0, 1, . . . , (5.23)

where αk > 0 is the step size and dk ∈ Rn are the search directions. Itera-
tive methods differ in their choice for the step size and search direction. We
have used a conjugate gradient method in which we select the optimization
directions dk so that they are conjugated to A, e.g.,

〈d(i), Adj〉 = 0, ∀i 6= j. (5.24)

Faster convergence of iterative methods can be achieved by using an appropri-
ate preconditioner. A preconditioner maps the original problem to a different
system,

Āx̄ = b̄, (5.25)

which hopefully exhibits better convergence characteristics. An unsuitable pre-
conditioner, or no preconditioning at all, may result in a very slow rate or lack
of convergence. Preconditioning matrices M for symmetric linear systems, as
the one we consider here, are typically based on incomplete factorizations. The
method used is called incomplete Cholesky factorization in which the precon-
ditioning matrix is of the form

M = PLDLTPT = A − R, (5.26)

where P is a permutation matrix, L is a lower triangular matrix with unit di-
agonal elements, D is a diagonal matrix and R is a remainder matrix.
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In our work we used commercially available NAG-library subroutines. The
F11JAF, which stands for black-box Incomplete Cholesky factorization pre-
conditioner, and F11JCF, which is a conjugate gradient solver [31], were used
to solve the linear system of Eq. (5.21).

Shortest path

A simple Floyd’s (Floyd 1962) algorithm is used to compare the emerging 1d-
structures, the ’elastic paths’, with the geometrically shortest distance across
the mat. The algorithm has been modified so as to give also the actual path in
addition to just calculating the length of the path [2, 3]. Floyd’s algorithm is
of order O(n3), but is used because of its ease of use in comparison with Dijk-
stra’s algorithm, because the networks are not very large, and the distances are
to be calculated just once. Details of the algorithm used are given in Appendix
A.

5.4 A simple analytical model

Our model is based on the assumption that the previously described process
will create an ’elastic path’ which the process tends to strengthen. Its maxi-
mum strength is determined by the shape of the assumed structure, which
would best resist the applied stress.
We limit the mass of one segment to be at most 500% from its original value.
This way we also expect to see an upper bound for the value of the effective
stiffness in the direction of the applied stress. This limit can be calculated by
considering a single long segment with length Lx, cross-sectional area 5w2 and
Young’s modulus E, which extends from the left side to the right side of the
system. This one segment gives the maximum value for the effective Young’s
modulus. For the applied mass transfer constant we get a simple linear equa-
tion for the change of network modulus (En) in terms of iteration steps,

En(t) =
a^̀w2

L2

(
E −

Ee

q

)
t + Ee, (5.27)

where Ee is an effective Young’s modulus (same as in Eq. (3.13)), E is the
Young’s modulus of one segment and is usually set to E = 1, L is the linear sys-
tem size, a is a mass transfer constant, ^̀ is the average segment length (same
as in Eq. (2.1)), w is the width of the fibres, t is the iteration step parameter,
and q is the density of the network.
In the case of tensile stress, the assumed shape is a single segment which ex-
tends through the system in the direction of the applied stress. For pure shear,
we would expect formation of two crossing straight paths; one from the upper
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left corner to the lower right corner and the other from the upper right corner
to the lower left corner. For pure shear Ee should be replaced by Eq. (3.20), and
L by

√
2L (assuming Lx = Ly ≡ L). In the case of bending, two ’elastic’ paths

should be formed at the locations of minimum and maximum strain. The the-
ory could be improved by replacing the system size L by an estimate of the
length of the geometrically shortest paths.

5.5 Results

We have simulated stiffness evolution in a 2d random fibre network with the
rules described above [22]. For applied tensile tensile stress the process creates
a structure shown in Fig. 5.5 as the final result of the iteration process. In this
figure the thicker lines mark the strengthened parts of the fibre network, and
the geometrically shortest path is marked with a thick dash line on the side of
the path (notice the periodic boundary conditions in the vertical direction).

Figure 5.5. Result of the applied evolution process under tensile stress after
10000 iterations. At this low density q = 2qc the formed ’elastic path’ shown by
the thick line follows closely the geometrically shortest path (thick dash line), but
creates also some bifurcations. Dots denote the contact nodes of the segments.

To understand the effects that our iteration process creates in the structure and
in the stiffness properties of the network, we start by looking at a few statistical
properties. First we look at the concentration of the relative elastic energy in
different parts of the network as the evolution process is iterated.
By following the relative elastic energy content (see Fig. 5.6) of thinner and
thicker segments, and the elastic energy of the segments which do not change
their width, we see that as the iteration process proceeds, the strengthened
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’path’ begins to contain more and more of the total elastic energy. The effective
Young’s modulus of the fibre network saturates to its maximum value at the
same time as the relative elastic energy of the thicker segments approaches
unity. At the same time also the segments whose width stays the same, start to
carry some of the relative elastic energy.
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Figure 5.6. The relative elastic energy of strengthened segments (full line), elas-
tic energy of segments from which mass has been taken off (dashed line), and
the elastic energy of segments whose width stays the same through the iteration
process (dotted line). The effective Young’s modulus (dashed-dotted line) saturates
at the same time as the strengthened structure begins to contain essentially the
whole elastic energy, i.e., its relative proportion of the total elastic energy ap-
proaches unity.

This means that the strengthened parts of the random fibre network begin to
contain essentially the whole elastic energy of the network. This behaviour
is not generally true. For example, at high fibre densities the relative elastic
energy of the strengthened fibres never reaches unity because it would mean
a change in the topology of the network, which is not allowed. The fact is
though that the effective Young’s modulus and the relative elastic energy of
the thick segments in the network saturate at the same time.
Next we analyse the stress-transfer mechanisms, and study the evolution of
the stress distribution during the process. The normalised strain distribution
can be divided into two different distributions as described in Sec. 3.2, and
the whole distribution is given by Eq. (3.3). From Fig. 5.7 we can qualitatively
see how the distribution evolves in the process. During the iteration the load
bearing strain distribution moves towards higher strain, and the compressive
deformation distribution narrows down. This means that the contribution of
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compressive forces to the total elasticity of the network reduces during the
iteration process.
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Figure 5.7. Evolution of the normalised strain distribution in a random fibre
network under tensile stress for Lf/w = 16.67, q = 2qc. Distribution is shown
after 1 (solid line) and 9800 (dashed line) iteration steps.

Finally, we show our main result in Fig. 5.8. In this figure we show simulation
results for the time evolution of the Young’s modulus of a network under ten-
sile stress as a function of iteration steps for nine different runs. At first the
elastic modulus of the whole network grows fast (linearly), but saturates then
due to the fact that there is no more mass to transfer unless the topology of the
network would be changed. In the saturated regime the mass transfer takes
place between such fibres which do not change the stiffness of the network.
Also shown in this figure are the upper limits imposed by our simple theory.
The first upper limit is due to Eq. (5.27), and the upper limit in the saturation
area is due to our naïve assumption that the assumed shape of the strength-
ened structure is a single segment which extends through the system in the
direction of the applied stress as discussed in Sec. 5.4.
The high variation in the results is due to high variation in the structure of the
network at low fibre densities. For higher fibre densities the emerging struc-
ture becomes less localised. The behaviour for increasing fibre density is at
least partly due to the increase of the width over length ratio of the fibre seg-
ments, i.e., the amount of short segments increases in the network as more and
more fibres are added to the network. These results show that our model is to
some extent capable of predicting the effect of this type of evolution process
on random fibre networks.
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Figure 5.8. Dotted lines are the theoretical upper limits discussed in the text.
Simulation results for the Young’s modulus of a network under tensile stress,
for q = 2qc, w = 0.02, Lf = 1.0 and a = 0.09, are shown with full lines.

5.5.1 Tests on 3d random fibre network

We have also done some preliminary tests with 3d networks and the main as-
sumption, that there emerges an elastic path, seems to hold at low densities.
For higher densities the elastic path bifurcates and becomes fragmented. This
may be due to high concentration of short fibres tangential to the external load,
which creates a large amount of singular geometries, and our assumption of
linear elastic fibres does not hold anymore. There is also indication of an al-
most exponential growth (see Fig. 5.9) in the effective Young’s modulus at the
beginning of the iterations, and thus our linear prediction (Eq. (5.27)) seems
not to hold in this case, but these results are only preliminary and need to be
confirmed.
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Figure 5.9. Evolution of the effective Young’s modulus in a 3d random fibre
network.



Chapter 6

Conclusions and Discussion

As random fibre networks offer a good strength over weight ratio in addition
to a relatively easy manufacturing process, the understanding of these mate-
rials is important from an application as well as an academic point of view.
Materials of this kind include human bone, glass-fibre felts and paper. An im-
portant question, e.g., is how to change the properties of constituents in order
to get a desired property in the material as a whole.
A new mean field theory for the elasticity of random two dimensional net-
works of fibres has been developed [50], which for a fairly wide range of pa-
rameters agrees very well with the results of direct numerical simulations. An
essential feature in this theory is the connectivity of the network, i.e., the av-
erage number of contacts per fibre, which together with the properties of in-
dividual fibres completely determines the elasticity, and also the porosity [3],
of the network. The theory has been generalised [52] to three dimensions by
determining numerically the ratio of apparent contacts which appear in the
two dimensional projection of the three dimensional structure. Also in this
case agreement with direct numerical simulations was found to be very good.
Extension to other disordered structures, e.g. granular packings, of the theory
is possible [49].
Organic materials are built up by evolution to be suitable for their job. This
does not mean that nature makes some kind of optimisation. Evolution which
builds up a structure is due to a process which creates alteration (adaptation)
and those alterations which are beneficial will continue [43]. This process is
also called natural selection. In the end, the information about the structure
is not enough for us to understand its properties. We also need to know the
underlying mechanisms involved to know how the structure is formed and
how they interact. This way even a simplistic model for the stiffness evolution
of random fibre structures could shed some light into this process.
Here we considered ’stiffness evolution’ in two dimensional networks of elas-
tic fibres. As a first attempt, the evolution strategy was chosen such that mass
is moved from the least loaded segment to the most loaded one, and the pro-

41
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cess is then iterated. This way the mass of the network stays the same. Evo-
lution of stress bearing structures is then followed under a constant strain. A
second possibility could be to use strain instead of loading.
At first the elastic modulus of the whole network grows fast but saturates then
due to the fact that there is no more mass to transfer. In the saturated regime
the mass transfer takes place between such fibres which do not change the
stiffness of the network.
We found e.g. that for low density networks, the developing stress bearing
structure becomes localised around a single path for applied tensile stress,
while the structure becomes less localised for increasing density of the net-
work. This behaviour for increasing q is at least partly due to the increasing
width over length ratio of the fibre segments with increasing density. In low
density networks the main part of the stress bearing structure is also geomet-
rically the shortest path across the network.
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Appendix A

Floyd’s algorithm

We begin by defining few basics of graph theory. A graph is a collection of
vertices and edges. Each edge has one or two vertices associated with it. These
vertices are called the endpoints of the edge and the edge connects these ver-
tices. A graph is a tree if it contains no loops. A loop means that there is a set
of edges that takes one from some vertex back to itself without visiting any
vertex or edge twice. We can now represent our random fibre network as a
graph where each contact point of fibres is a vertex and each fibre segment is
an edge.

Our task is to find shortest paths in a network. Given a directed, weighted
network G = (V, E, l), where V is the set of all vertices, E is the set of lines
which defines the connectivity between vertices, i.e. the edges, and l is the
given set of weights for edges (in our case the lengths of fibre segments). It is
valid to assume that a weight associated with each of the edges in E is equal to
or greater than zero. For simplicity we also assume that all of the G’s nodes are
numbered as V = 1, 2, . . . , n. Our task is to find the shortest distance between
all node pairs (i, j) ∈ E,

D[i, j] = the shortest path from i to j.

Here the length of the path i
e1−→ k1

e2−→ . . .
et−1−→ kt−1

ej−→ j is defined as a sum
of the lengths of the edges:

l(e1, . . . , et) =

t∑
s=1

l(es). (A.1)

A solution method for the given problem is to create a queue of n× n−arrays
Dk, k = 1, . . . , n, in a such way that Dk[i, j] is the length of the shortest path
from vertex i to j through vertices 1, . . . , k. Clearly we see that D[i, j] ≡ Dn[i, j].
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Arrays Dk can created by recursion in the following way:

D0[i, j] =


0 if i = j;
l(i, j) if i 6= j and (i, j) ∈ E;∞ otherwise.

(A.2)

Dk[i, j] = min(Dk−1[i, j], Dk−1[i, k], Dk−1[k, j]), k ≥ 1. (A.3)

From above we get the following algorithm [2, 3].

Algorithm 1 [Floyd]
for k=1 to n do

for i=1 to n do
for j=1 to n do
D[i, j] = min (D[i, j], D[i, k] + D[k, j])

return D

The algorithm returns an array with elements containing the lengths of the
shortest paths from every vertex to another. From the group of boundary ver-
tices we still have to find the shortest one. As such we only get the length of
the shortest path, but by adding a reference array inside the for-loops, we also
get the actual path. The time requirement for the algorithm is of the order of
O(n3).
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