
Reports of the Department of Mathematical Information Technology
Series B. Scientific Computing
No. B. 12/2007

Shape optimization of systems governed by
Bernoulli free boundary problems

Jukka I. Toivanen Raino A. E. Mäkinen
Jaroslav Haslinger

University of Jyväskylä
Department of Mathematical Information Technology

P.O. Box 35 (Agora)
FI–40014 University of Jyväskylä

FINLAND
fax +358 14 260 2731

http://www.mit.jyu.fi/

Copyright c© 2007
Jukka I. Toivanen and Raino A. E. Mäkinen and Jaroslav Haslinger

and University of Jyväskylä

ISBN 978-951-39-2860-5
ISSN 1456-436X

Shape optimization of systems governed by
Bernoulli free boundary problems∗

Jukka I. Toivanen† Raino A. E. Mäkinen† Jaroslav Haslinger‡

Abstract
In this work we consider shape optimization of systems, which are gov-

erned by external Bernoulli free boundary problems. A pseudo-solid approach
for solving discrete free boundary problems is introduced. The solution strat-
egy readily allows us to obtain geometrical sensitivities of the system, which
can then be used to solve e.g. inverse design problems. Numerical examples
show that the location of the free boundary can, to some extent, be controlled
by changing the shape of the other component of the boundary.

1 Introduction
Free boundary problems of Bernoulli type arise in mathematical modeling of the
ideal fluid flow and the electro-chemical machining, for example. The exterior
Bernoulli problem can be formally stated as follows: Given domain ω and a con-
stant γ < 0, find a domain Ω ⊃ ω and a potential u such that





∆u = 0 in Ω \ ω
u = 1 on ∂ω

u = 0 and ∂u

∂nnn
= γ on ∂Ω

(1)

(see Figure 1).
Free boundary problems have in common the difficulty that the geometry (here

the domain Ω) has to be determined simultaneously with the solution of the state
problem, which implies that a numerical solution has to be done iteratively [11].

∗This research was supported by the Academy of Finland, grants #112415, #112445, the
Finnish Cultural Foundation, and Tekniikan Edistämissäätiö. The third author acknowledges
MSM0021620839.

†Department of Mathematical Information Technology, University of Jyväskylä, PO
Box 35 (Agora), FI-40014 University of Jyväskylä, Finland, jukka.toivanen@jyu.fi,
raino.makinen@jyu.fi

‡Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University,
Sokolovska 83, 186 75 Praha 8, Czech Republic, hasling@karlin.mff.cuni.cz

1

Possible solution strategies include trial methods, linearization methods (continu-
ous or discrete) [4], and shape optimization methods [9].

In the so-called trial methods one solves a relaxed problem (i.e. one of the bound-
ary conditions on ∂Ω is discarded) on a fixed computational grid and then updates
the location of the free boundary based on the violation of the discarded boundary
condition. The grid is then deformed or regenerated to correspond to the new iter-
ate. This process is continued until the previously discarded boundary condition is
approximately satisfied. In Newton’s method the positions of the grid points on the
free boundary are introduced directly as unknowns. The resulting coupled system
is then solved using the Newton iteration, thus computing the field variables and
the position of the free boundary simultaneously.

In this paper we are interested in the analysis and approximation of the follow-
ing identification/control problem. We are looking for a domain ω ⊂ Ω such that
the free boundary ∂Ω and the corresponding potential u minimize a suitable least
squares cost functional. Thus we solve a “double free boundary problem”, i.e. we
have to identify a design and a physical moving boundary.

Γe(ω)Γi(ω)

Ω \ ω

ω

Figure 1: Geometry of the exterior Bernoulli problem

2 Setting of the problem
We start with the definition of the state problem represented by an exterior Bernoulli
free boundary problem.

Let γ < 0 and an open set ω ⊂ R
2 with a sufficiently regular boundary ∂ω be

2

given. Our aim is to find a set Ω ⊃ ω and a function u : Ω \ ω → R satisfying




∆u = 0 in Ω \ ω
u = 1 on ∂ω

u = 0

∂u

∂nnn
= γ



 on ∂Ω.

(P(ω))

Next we shall consider ω to be a control variable by means of which the shape of
Ω will be governed. To this end we introduce a system Õ of all admissible ω. To
emphasize that solutions of (P(ω)), ω ∈ Õ depend on a particular choice of ω we
shall write Ω(ω), u(ω) in what follows. The outer, inner component of the boundary
of Ω(ω) \ ω will be denoted by Γe(ω) and Γi(ω), respectively (see Figure 1).

Our goal will be to find “an optimal” Γe(ω) by minimizing an appropriate cost
functional J which depends on (Ω(ω), u(ω)) – a solution to (P(ω)). We shall suppose
that Õ is chosen in such a way that (P(ω)) has at least one solution for any ω ∈ Õ.
The set of all solutions of (P(ω)) for a given ω ∈ Õ will be denoted by X(ω).

An optimization problem reads as follows:
{

Find ω∗ ∈ Õ such that
J(Ω(ω∗), u(ω∗)) ≤ J(Ω(ω), u(ω))

(P̃)

holds for any (Ω(ω), u(ω)) ∈ X(ω) and every ω ∈ Õ.
To simplify our presentation and numerical realization we choose Õ in such a

way that (P(ω)) has a unique solution for any ω ∈ Õ. If it is so, problem (P̃) can be
written in the following form:

{
Find ω∗ ∈ Õ such that
J(Ω(ω∗), u(ω∗)) ≤ J(Ω(ω), u(ω)) ∀ω ∈ Õ.

(P)

A possible choice of Õ which guarantees the uniqueness of the solution to (P(ω)) as
well as its stability with respect to ω ∈ Õ is given by

Õ = {ω ⊂ R
2 | ω0 ⊂ ω ⊂ ω1, ω is star-like with respect to

all points in the ball Bδ(0) and ∂ω is of the class C2}, (2)

where ω0, ω1 are given non-empty open sets, ω0 contains the origin, and the radius
δ > 0 is the same for all ω ∈ Õ.

Indeed, in [1] the following results have been proven:

Theorem 1 Let Õ be defined by (2). Then for every ω ∈ Õ problem (P(ω)) has a unique
solution (Ω(ω), u(ω)). The outer component Γe(ω) is of the class C∞ and is star-like with
respect to all points in Bδ(0). In addition, from ∂ωn ⇒ ∂ω (uniformly) (ωn, ω ∈ Õ) it
follows that Γe(ωn) ⇒Γe(ω).

3

In the next sections we shall use the following cost functionals:

J(Ω(ω), u(ω)) = ‖Γe(ω) − Γ̂‖2 (3)
J(Ω(ω), u(ω)) = ‖u(ω) − zd‖2

0,Ω(ω)\ω , (4)

where Γ̂ is the target boundary and zd ∈ L2
loc(R

2) is a given function. The norm
‖ · ‖ in (3) is chosen to be continuous with respect to uniform convergence of free
boundaries:

Γe(ωn) ⇒Γe(ω) =⇒ ‖Γe(ωn) − Γe(ω)‖ → 0, n→ ∞. (5)

To ensure the existence of a solution to (P) one needs also a compactness property
of Õ. This can be obtained by restricting ourselves to an appropriate subset of Õ,
defined by (2). Let O ⊆ Õ be compact in the following sense:

{
for any sequence {ωn}, ωn ∈ O
there exists a subsequence {ωnj

} ⊂ {ωn} and ω ∈ O such that ∂ωnj
⇒ ∂ω.

(6)

Let us comment on the assumption (6). In addition to (2), suppose that the system
O consists of domains possessing the uniform cone property. Then from any sequence
{ωn}, ωn ∈ O one can choose a subsequence {ωnj

} ⊂ {ωn} converging in the Haus-
dorff metric to a domain ω which possesses the same cone property as elements of
{ωn} ([10]). Moreover, it holds that ∂ωnj

⇒ ∂ω implying that ω is star-like with re-
spect to all points in Bδ(0). To get the C2-regularity of ∂ω it is sufficient to suppose
that radial functions describing the boundaries of domains from O are uniformly
bounded in the C2,1-norm. Thus the compactness property (6) is satisfied.

We now are able to prove the main result of this section.

Theorem 2 Let J be defined by (3) or (4) and let O ⊆ Õ satisfy (6). Then (P) has at least
one solution with Õ := O.

Proof: Denote by {ωn}, ωn ∈ O a minimizing sequence of (P):

inf
ω∈O

J(Ω(ω), u(ω)) = lim
n→∞

J(Ω(ωn), u(ωn)).

From (6) we know that there exists a subsequence {ωnj
} ⊂ {ωn} and ω∗ ∈ O such

that
∂ωnj

⇒ ∂ω∗, j → ∞
and consequently

Γe(ωnj
) ⇒Γe(ω

∗)

as follows from Theorem 1. For J defined by (3) we immediately see that (Ω(ω∗), u(ω∗))
is a solution of (P) making use of (5).

Let D be a rectangle containing Ω(ω∗) and Ω(ωn) ∀n ∈ N in its interior. Then it is
easy to show that

ũ(ωn) → ũ(ω∗) in H1
0 (D), (7)

4

where “˜” stands for the zero extension of functions from the domain of their defi-
nition on D (see [9]). From this it easily follows that

‖u(ωn) − zd‖0,Ω(ωn)\ωn
→ ‖u(ω∗) − zd‖0,Ω(ω∗)\ω∗ .

Thus (P) has a solution if J is defined by (4), too.

3 Pseudo-solid approach for the free boundary prob-
lem

Positions of the grid points on the free boundary are introduced directly as un-
knowns in Newton’s method. Usually this means that the dependence of the lo-
cation of the internal grid points on the locations of the boundary ones must be
known. In [12], for example, this is done by constructing a conformal mapping
between the computational domain and a simple reference domain. Instead, our
solution strategy for the free boundary problem is as follows. Let Ξ̂ := Ω̂ \ ω̂ ⊂ R

2

be a fixed double connected reference domain. The outer, inner component of its
boundary will be denoted by Γ̂e, Γ̂i, respectively. Our aim will be to find a mapping
F : R

2 → R
2, Ω̂ 7→ F (Ω̂) := Ω, ω̂ 7→ F (ω̂) := ω such that the outer component Γe(Ξ)

of the double connected domain Ξ = Ω \ ω is the free boundary in (1).
To construct a mapping F we use the so-called pseudo-solid approach [13]. We

treat Ξ̂ as an elastic solid that undergoes a deformation such that the deformed solid
defines the domain Ξ (see Figure 2). Thus, problem (1) is strongly coupled with
the linear elasticity system. An external loading applied to Ξ̂ then has the role of
the control variable in the free boundary problem. This approach has been used to
solve free surface flow problems (see e.g. [3, 15]), but to our knowledge it has not
yet been applied to Bernoulli free boundary problems.

Next we present the weak formulation of the pseudo-solid approach for the
Bernoulli problem. For any www ∈ W ad :={”sufficiently” small and regular defor-
mations} we define a domain

Ξwww = {xxx ∈ R
2 | xxx = x̂xx+www(x̂xx), x̂xx ∈ Ξ̂}.

Let c be a constant and g : [0, 2π] → R be a sufficiently smooth function, g(0) = g(2π).
We define the following function spaces:

Wg = {www ∈ [H1(Ξ̂)]2 | www|Γ̂i
= g(θ)(cos θ, sin θ), θ ∈ [0, 2π[} (8)

Vc(Ξ) = {ϕ ∈ H1(Ξ) | ϕ = c on Γi(Ξ)} (9)

where Γi(Ξ) is the inner component of the boundary of Ξ.

5

θ

ω̂

pnnn

Γ̂i Γ̂e

Ξ̂

Γe(Ξ)Γi(Ξ)

ω

Ξ

F

Figure 2: Reference domain (left) and the real geometry of the Bernoulli problem
(right).

The weak pseudo-solid formulation then reads: Given g, find (vvv, u, p) ∈ Wg ×
V1(Ξvvv) × L2(Γ̂e) such that

∫

Ξvvv

∇u · ∇ϕdx = γ

∫

Γe(Ξvvv)

ϕds ∀ϕ ∈ V0(Ξvvv) (10)
∫

Γe(Ξvvv)

uψ ds = 0 ∀ψ ∈ L2(Γe(Ξvvv)) (11)
∫

bΞ

σ(vvv) : ε(www) dx =

∫

Γ̂e

pnnn ·www ds ∀www ∈ W0 (12)

Equations (10) and (11) constitute the weak form of (1) while (12) is the weak
form of the linear elasticity problem in Ξ̂. Here pnnn is the (unknown) external force.
The components of the strain and stress tensors ε = {εij}and σ = {σij} are given by

εij(vvv) =
1

2

(
∂vi

∂xj

+
∂vj

∂xi

)
, σij(vvv) = 2µεij(vvv) + λδij∇ · vvv, i, j = 1, 2,

where vvv is a displacement field and µ and λ are Lamé’s coefficients. Since in our case
the linear elasticity system does not have any physical meaning, Lamé’s coefficients
can be chosen quite freely. In this paper the choice µ = 0.5 and λ = 0 was used.
Prescribed displacements are specified on Γ̂i by the radial function g.

4 Finite element discretization of the direct problem
In the pseudo-solid approach we simultaneously seek the scalar function u, the pres-
sure p, and the deformation field vvv which deforms the reference domain Ξ̂ into the

6

one that solves (1). The elasticity system (12) is thus solved in the undeformed con-
figuration Ξ̂ of the pseudo-solid, whereas equations (10) and (11) are solved in the
deformed one. Therefore, they have to be discretized by different meshes, too. Let
us denote the nodal co-ordinates of a triangulation of Ξ̂ by X̂XX . We simply transform
this triangulation into the one of Ξ byXXX = F (X̂XX), where F is defined by the discrete
displacement field vvvh being the approximation of vvv, i.e.

XXX = X̂XX + vvvh. (13)

The algebraic form of (10), (11) resulting from an appropriate discretization can
be written as rrr1(qqqu, qqqv) = 000, rrr2(qqqu, qqqv) = 000, respectively and the linear elasticity sys-
tem (12) as rrr3(qqqv, qqqp) = 000. Here the dependence of rrr1 and rrr2 on qqqv is through the
mesh nodal co-ordinates, as specified by (13). Dimensions of the vectors qqqu, qqqv and
qqqp are n, 2n and ne respectively, where n is the number of the nodes in the mesh and
ne is the number of the nodes on Γe.

Let us introduce notation

qqq =



qqqu

qqqv

qqqp


 and rrr =



rrr1

rrr2

rrr3


 . (14)

Then the algebraic form of the discretized coupled system (10) – (12) can be written
in short as rrr(qqq) = 000. This system will be solved using Newton’s method:

qqq(k+1) = qqq(k) −
(
∂rrr(qqq(k))

∂qqq

)−1

rrr(qqq(k)) (15)

with the Jacobian matrix

(
∂rrr

∂qqq

)
=




∂rrr1

∂qqqu

∂rrr1

∂qqqv
000

∂rrr2

∂qqqu

∂rrr2

∂qqqv
000

000 ∂rrr3

∂qqqv

∂rrr3

∂qqqp


 (16)

The overall solution process proceeds as follows:

1. Get a good initial guess for Newton’s method:

(a) Solve the linear elasticity system with the function g giving the prescribed
displacement on the inner boundary Γ̂i while the outer boundary Γ̂e is
taken to be pressure free (p(0)

h = 0). An initial guess vvv(0)
h is obtained.

(b) SetXXX = X̂XX + vvv
(0)
h .

(c) Solve the Laplace equation (10) on this new mesh to obtain an initial guess
u

(0)
h .

(d) Set k := 0.

7

2. Assemble the Jacobian (16) at the current iterate qqq(k). The residuals rrr1(qqq
(k))

and rrr2(qqq
(k)) are thus evaluated using the mesh with the nodal co-ordinates

XXX = X̂XX + vvv
(k)
h .

3. If the norm ‖rrr(qqq(k+1))‖ ≤ toler STOP, else perform the Newton update (15) and
go to step 2.

Remark 1 As a result of the Newton iteration, we get an approximation for the po-
tential uh and the corresponding domain Ξ through vvvh. As a side product, we also
obtain the discrete pressure ph, which is needed to deform the mesh of the reference
domain into the mesh of the final domain.

Remark 2 Despite the slightly nonstandard coupling between the equations, the
Jacobian matrix (16) is easy to compute using the automatic differentiation. Intro-
duction to the principles of automatic differentiation can be found for example in
[8].

Remark 3 Since the coupled system is non-linear, it is possible that the Newton iter-
ation will not converge. This usually happens when the deformation of the original
mesh is so large that the resulting mesh would be highly distorted. This problem is
addressed using the mesh regeneration strategy, as will be explained later.

5 Discrete optimization problem
The cost functionals (3) and (4) in the discrete setting are expressed as

J1(vvvh(ααα)) =

∫

Γe(Ξvvvh
)

(R(θ) − R̂(θ))2 ds, (17)

and
J2(uh(ααα), vvvh(ααα)) =

∫

Ξvvvh

(uh − zd)
2 dx (18)

where ααα is the vector of discrete design variables defining the shape of Γi(Ξ) and uh

and vvvh satisfy the discretized coupled system (10) – (12). Here R(θ) is the radius of
the free boundary corresponding to ααα (a suitable discretization of g) and R̂(θ) is the
radius of the target free boundary at the angle θ.

The integration in (18) takes place in the domain which solves the discrete free
boundary problem, and the integration in (17) is carried out along the corresponding
free boundary. That is, for a given design ααα we solve the free boundary problem
using the approach presented in Section 3 to obtain the corresponding domain Ξvvvh

and the outer boundary Γe(Ξvvvh
). The cost related to ααα is then evaluated using either

(17) or (18).
Notice that dependencies of J1 and J2 on vvvh are not trivial at all. The domain Ξvvvh

and in particular, the free boundary Γe(Ξvvvh
) obviously depend on vvvh. In addition,

so do all entities in J1 and J2 that are of the geometric nature, such as the radius R,
angle θ and the function zd, which in general depends on the location.

8

5.1 Shape parametrization
In this work we restrict ourselves to star shaped geometries. The inner boundary
Γi is defined using the polar co-ordinates and the radius g(θ) is parametrized using
uniform B-splines of degree 3 in what follows.

Let ααα = (α0, . . . , αN−1) be the vector of control variables and θ be a given angle in
the interval [0, 2π[. The B-spline of degree 0 is defined as

B0
i (θ) =

{
1, if ti ≤ θ < ti+1

0, otherwise.

Here ti are the knots, i.e. locations of the control points. For uniform B-splines the
distance between successive knots is constant, in this case ti+1 − ti = 2π/N .

The B-splines of a higher degree are defined recursively:

Bk
i (θ) =

θ − ti
ti+k − ti

Bk−1
i (θ) +

ti+k+1 − θ

ti+k+1 − ti+1
Bk−1

i+1 (θ), θ ∈ [0, 2π[.

Finally, the radius function is given by

g(θ) =

N−1∑

i=0

αiB
k
i (θ) (19)

Notice, that at most k+1 basis functions Bk
i are non-zero at each θ. Since the indices

of the control variables are taken modulo N , no end conditions are needed for the
spline parameterization.

5.2 Sensitivity analysis
In this section we explain how the cost functionals J1 and J2 can be differentiated
with respect to ααα, which defines the shape of the inner boundary Γi. The principles
remain the same for both cost functionals, the only difference is the way in which
the cost functional depends on the solution qqq. Therefore, in the following section we
denote by J either J1 or J2.

The sensitivity analysis can be done using either the direct or the adjoint approach.
In both cases, the sensitivity analysis is performed on the discretized coupled sys-
tem. This approach very naturally gives us the sensitivity of the location of the free
boundary on ααα. This results in exact sensitivity analysis for the discretized problem.

5.2.1 Discrete direct differentiation

The solution vector qqq obviously depends on the design ααα through the shape of the
domain, but this dependence is implicit. Using notation (14), the discretized cou-
pled system can be written as

rrr(qqq(ααα),ααα) = 000. (20)

9

The implicit function theorem says that
∂rrr

∂qqq

∂qqq

∂ααα
= − ∂rrr

∂ααα
, (21)

from which the matrix of partial derivatives ∂qqq/∂ααα can be computed.
Since the mesh displacements are also included in qqq through the linear elasticity

system, this analysis also provides the sensitivity of the geometry onααα. In particular,
this analysis gives us the sensitivity of the location of the free boundary with respect
to ααα.

The cost functional J can now be differentiated and its gradient is given by

∇αααJ =

(
∂qqq

∂ααα

)T

∇qqqJ . (22)

5.2.2 Discrete adjoint formulation

Another way of performing the sensitivity analysis is based on the discrete adjoint
approach [7]. We introduce the Lagrangian

L(ααα,qqq) = J (qqq) + νννTrrr(ααα,qqq),

where ννν is the vector of Lagrange multipliers. Now

∇αααL =

(
∂qqq

∂ααα

)T

∇qqqJ +

(
∂rrr

∂qqq

∂qqq

∂ααα
+
∂rrr

∂ααα

)T

ννν (23)

which, by rearranging, yields

∇αααL =

(
∂qqq

∂ααα

)T
{
∇qqqJ +

(
∂rrr

∂qqq

)T

ννν

}
+

(
∂rrr

∂ααα

)T

ννν. (24)

We choose the Lagrangian multipliers satisfying the adjoint equation
(
∂rrr

∂qqq

)T

ννν = −∇qqqJ , (25)

so that the gradient ∇αααL can be expressed by

∇αααL =

(
∂rrr

∂ααα

)T

ννν. (26)

The advantage of this approach over the direct discrete approach consists in solv-
ing only one set of linear equations (25), whereas in (21) there are N different right
hand sides. Both approaches, however, lead to the same discrete gradient (up to
numerical precision), so nothing is lost by using the adjoint approach.

Using a direct solver, the system (21) can be solved efficiently also for multiple
right hand sides. On the other hand, if the problem was more complicated (3D
or matrix factorization is not easy, e.g.), the adjoint approach would significantly
increase the computational efficiency of the sensitivity analysis.

10

5.3 Mesh regeneration
When deformed meshes are used, robustness is always an important issue. If the
mesh gets too distorted, significant errors in the numerical solution and gradient
information may appear.

On the other hand, a regeneration of the mesh always takes some time, and it can
also introduce noise in the cost functional and gradient values. This is due to the fact
that even if two meshes represent exactly the same domain, the obtained solutions
using these meshes are usually a little different. Therefore, also the cost functional
values may be different. As a result, the cost functional value may increase due
to the regeneration of the mesh. This can confuse the optimizer, because the cost
functional value may suddenly increase in a direction that is supposed to be descent.
To avoid this kind of problems we restarted the optimizer using the previous design
as an initial guess every time when the mesh was regenerated.

As mentioned earlier, the Newton iteration used to solve the free boundary prob-
lem can fail. This happens more frequently at the early stage of the optimization
process when the domain changes significantly. One of factors that affect the prob-
ability of failure is the initial guess for the location of the free boundary, i.e. how
much does the mesh have to be deformed to solve the free boundary problem.

We also reject the design candidate in the case when the Newton iteration con-
verges but the quality of some element in the resulting mesh is poor. For evaluating
the element quality, we use the triangle quality metric presented e.g. in [2]. Quality
of a triangle E is given by

Q(E) =
4
√

3|E|
l21 + l22 + l23

, (27)

where |E| is the signed surface area of E and li is the length of the i:th edge of E.
This metric equals 1 if the triangle is equilateral, 0 if it is degenerate, and a negative
value if the element is inverted. The bound indicating a poor element was chosen
to be 0.1.

We use the following strategy to obtain a reasonable compromise between the
mesh quality and the computational overhead caused by the regeneration of the
mesh: If the solver fails or the point gets rejected twice during one line search of
an optimizer, we regenerate the mesh and restart the optimization. Although this
condition seems to be quite limiting, the overall number of mesh regenerations was
still quite modest. Besides, the progress of the optimization without the mesh re-
generation would be quite slow anyway, because we would be forced to reject a
lot of points, and the optimizer would have to take very short steps in the descent
direction.

The new mesh is generated as follows. One fits by least squares a parameter-
ized curve (similar to the inner boundary) to the outer boundary of the previous
feasible mesh (that corresponds to a solution of a direct Bernoulli problem). The
inner boundary is given by the boundary parameterization, corresponding to the
latest feasible mesh. Having these inner and outer boundaries one generates a new
mesh. Doing this, one never needs to excessively deform the mesh for the Laplace

11

equation.

6 Numerical examples
The problem (10) – (12) was discretized by standard triangular finite elements. All
unknowns were approximated by piecewise linear continuous functions. Both in-
ner and outer boundaries were discretized using 400 straight line segments in all
examples. The mesh generator Netgen [14] was used to generate meshes. Systems
of linear equations were solved by a direct linear solver called SuperLU [5].

The coupled system is non-linear, but behaves quite well. Usually 5-6 Newton
iterations are sufficient to solve the free boundary problem up to a high precision.
During the optimization a good initial guess from the previous evaluation can be
used, in which case even less iterations are usually needed.

The exact sensitivity analysis is then performed to obtain the gradient of the cost
functional in question. Finally, the ANSI-C version of a gradient based optimizer
called Donlp2 [16] is used to solve the optimization problem.

6.1 Example 1
We start with an example whose solution is known. Let ω = B1(0) and Ω = BC(0),
where C ≈ 1.76322 is such that C lnC = 1. The function

f = −C ln(r) + 1,

satisfies ∆f = 0 in Ω \ ω, f = 1 on ∂ω and f = 0, ∇f ·nnn = −1 on ∂Ω.
Therefore, setting γ = −1 in (10) and the target boundary in (17) to be R̂(θ) ≡ C,

we see that the circle of radius 1 is the global minimizer of the cost functional J1.
The same holds true for J2 if we set zd = f in (18).

The inner boundary was parameterized using 12 control points with pseudo-
randomly generated initial values between 0.6 and 1.4. The resulting initial inner
boundary Γ̂i was unsymmetric and not very close to the optimum as it can be seen
from Figure 3. Further Γ̂e was set to be a circle of radius C. Notice that with these
boundaries the initial domain does not satisfy the Bernoulli problem. The outer
boundary Γe(Ξvvvh

) representing the free boundary and corresponding to this initial
inner boundary is found using the pseudo-solid approach, and can be seen in Fig-
ure 4.

Optimization was performed using both cost functionals J1 and J2 starting from
the same initial guess. A very low value 8.79 × 10−9 was reached after 34 optimiza-
tion steps for J1. The resulting outer boundary and the target boundary practically
coincide (see Figure 3). The final values of the design variables were as expected:
indeed, |αi − 1.0| < 2 × 10−3 ∀i.

The value 3.17 × 10−7 was obtained for the cost functional J2 after 24 iterations.
Values of the design variables were again as expected: |αi − 1.0| < 7 × 10−4 ∀i. The
final inner and outer boundaries can be seen in Figure 4.

12

-2

-1

 0

 1

 2

-2 -1 0 1 2

Initial design
Final design

Target
Result

Figure 3: Initial and final designs, final free boundary and the target boundary in
Example 1 using the cost functional J1.

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

Initial design
Initial outer boundary

Final design
Final outer boundary

Figure 4: Initial and final inner and outer boundaries in Example 1 using the cost
functional J2.

13

6.2 Example 2
In this example we minimize the cost functional J1 with the target boundary R̂ being
a “square” with rounded corners (see Figure 5). Width and height of the square are
4. Each corner is rounded using a quarter of a circle of radius 1. For the magnitude
of the normal derivative a value γ = −1 was used.

The optimization was performed using different numbers of design variables.
The initial design for Γ̂i was αi = 1 ∀ i, and the initial outer boundary Γ̂e was a
circle of radius C centered at the origin in all cases. We specified box constraints:
0.2 ≤ αi ≤ 2.8 ∀ i.

As expected, the increasing number of design variables enabled us to obtain a
better approximation of the free boundary Γe(Ξvh

) (see Table 1). However, the target
boundary R̂ was not reached exactly in any of the optimizations. The optimum
designs are shown in Figures 5, 6, and 7.

N cost iterations mesh regenerations
16 3.67 × 10−3 19 1
24 9.07 × 10−4 178 7
32 5.18 × 10−4 182 7
40 3.89 × 10−4 312 9

Table 1: Cost functional value, number of optimization iterations, and number of
mesh regenerations as a function of the number of design variables in Example 2.

In all cases some of the design variables attained the lower bound. Also the fact
that R̂ is not of the class C∞ indicates that the target boundary may not be reachable
using star shaped inner boundaries (see Theorem 1). Indeed, no clear convergence
to any specific shape can be seen for the increasing number of the design variables.
On the contrary, the optimal boundaries more and more oscillate.

In this example the optimization problem seems to be ill-conditioned. One rea-
son for the ill-conditioning can be seen in Figure 7, showing the inner boundary
at different optimization iterations. Comparing with the convergence history (Fig-
ure 8) we see that quite significant changes of the inner boundary may have a very
little effect on the value of the cost functional. The resulting free boundaries are not
shown in Figure 7, because they practically coincide.

In practical applications one often has some restrictions on the admissible de-
signs. To study the effect of geometrical bounds on the optimal geometry we speci-
fied the bounds on the second derivative of the radius R:

−c ≤ (αi+2 − 2αi+1 + αi)

δ2
≤ c, (28)

where the indices are taken modulo N . Here δ is the distance between two consec-
utive design variables, namely δ = 2π/N , and the parameter c equals 5. We used
40 and 80 design variables. With 40 variables the optimizer needed 15 iterations to

14

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

Final design
Target
Result

Figure 5: Example 2 with 16 design variables.

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

Final design
Target
Result

Figure 6: Example 2 with 24 design variables.

15

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Design after 70 iterations
Design after 140 iterations
Design after 210 iterations

Final design

Figure 7: Example 2 with 40 design variables. Inner boundary at different stages of
optimization.

 1e-04

 0.001

 0.01

 0.1

 1

 10

 0 50 100 150 200 250 300 350

Optimization iteration

Cost functional value

Figure 8: Example 2 with 40 design variables. Convergence history.

16

reduce the value of J1 to 6.92×10−2. No mesh regenerations were needed. When 80
variables were used, the optimization was done in 18 steps, and up to three digits
the same value of the cost functional was obtained. In this case, one mesh regenera-
tion was performed. As seen from Figure 9, the designs are so alike that the curves
representing the inner component of the boundary practically coincide. The effect
of (28) on the final result is seen from the Figure 9: the inner boundary is indeed
quite smooth, but the resulting free boundary is only a rough match of the target.

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

Final design with 40 variables
Final design with 80 variables

Target
Result with 80 variables

Figure 9: Results of Example 2 with bounds on the second derivative.

In the next two examples we analyze the influence of γ on the final design. It
is known that for exterior Bernoulli free boundary problems with Γi fixed the re-
spective free boundaries are asymptotic to a family of concentric circles with radii
tending to infinity ([6]).

Let the target boundary R̂ in J1 be chosen as follows:

R̂(θ) = 0.5 cos(θ) + 0.8 cos(2θ) + 2, θ ∈ [0, 2π[.

6.3 Example 3
We choose γ = −3 and parametrize the inner boundary by 40 design variables. The
initial guess was the unit circle for the inner boundary Γ̂i and the circle of radius
C for the outer boundary Γ̂e. The final cost after 121 optimization iterations and 4
mesh regenerations was 2.90 × 10−7. The optimum domain is shown in Figure 10.

17

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3 4

Final design
Target
Result

Figure 10: Results of Example 3.

6.4 Example 4
Now we set γ = −2. The inner boundary was now parametrized by 20 design vari-
ables. Our aim was to check whether or not the inner boundary intersects itself for
the higher value of γ. Thus no lower bound was imposed on the radial coordinates
αi describing the inner component of the boundary.

The inner boundary really intersects itself. After 61 optimization steps and two
mesh regenerations the value of the cost was reduced to 2.01 × 10−4. At this stage
the topology of the domain became “defective” and the mesh regeneration failed, so
that the optimization could not continue. The final domain is shown in Figure 11.

This led us to a conclusion that the inner boundary consists of more than one
component. For this reason we used two holes as an initial approximation of the
inner boundary, each parameterized by the radial co-ordinates as previously. We
started with 20 design variables (10 for each hole). The initial guess for the inner
boundary Γ̂i was constructed manually using two curves which are close to the
inner boundary found in the previous example, as seen in Figure 12. The initial
guess for the outer boundary Γ̂e was also taken to be the one found in the previous
example. After 41 additional optimization iterations the cost was reduced to 2.27 ×
10−5. The final domain is shown in Figure 12.

Finally, we repeated the previous computation using 40 design variables. Now
the problem turns out to be ill-conditioned. After 425 optimization steps and 8 mesh
regenerations the cost was reduced to 2.46 × 10−6. Oscillations are visible and the
final domain is shown in Figure 13.

18

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3 4

Final design
Target
Result

Figure 11: The obtained defective geometry in Example 4.

The disconnected character of the inner boundary can be explained by the fact
that the value of γ is high whereas the target R̂ is “tight”. When instead of R̂ we
take 2R̂ the optimal shape of ω is simply connected again. We started with 20 design
variables and the initial guess αi = 2 ∀i. After 28 optimization iterations and one
mesh regeneration the cost was reduced to 1.19 × 10−5. The final domain is shown
in Figure 14.

6.5 Example 5
Finally we run the optimization using the cost functional J2 with

zd = min
{

10,
(
x4 + y4

)− 1

4

}
,

γ = −3 and 40 design variables. The initial guess for the inner boundary Γ̂i was
again a circle of radius 1. The optimizer needed 20 iterations and ended up in a
design shown in Figure 15. One mesh regeneration was needed. The final value of
J2 was 0.289.

19

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3 4

Initial design
Final design

Target
Result

Figure 12: Example 4, two holes parameterized by 20 design variables.

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3 4

Initial design
Final design

Target
Result

Figure 13: Example 4, two holes parameterized by 40 design variables

20

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2 0 2 4 6 8

Final design
Target
Result

Figure 14: Example 4, γ = −2, one hole parameterized by 20 design variables

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

Final design
Final outer boundary

Figure 15: The final domain in Example 5.

21

7 Conclusions
A new numerical method for shape optimization of systems governed by external
Bernoulli free boundary problems is introduced. Numerical results show that the
method is efficient and reliable.

The discrete free boundary problems are solved by the so-called pseudo-solid
approach. This solution strategy readily allows us to obtain geometrical sensitivities
of the system, which can then be used to solve our inverse design problems. The
method relies heavily on automatic differentiation, which is used to compute the
Jacobian matrix of the coupled non-linear system and also other required partial
derivatives.

Numerical examples show that the location of the external free boundary can be
controlled by changing the shape of the inner component of the boundary. How-
ever, the optimization problem is often ill-conditioned in the sens that relative large
changes of the inner boundary have only a little effect on the location of the free
boundary. Without additional constraints the inner boundaries often tend to be-
come oscillatory during the optimization.

22

References
[1] A. Acker and R. Mayer. A free boundary problem for the p-laplacian. Electronic

Journal of Differential Equations, 1995(08):1–20, 1995.

[2] R.E. Bank and J. Xu. An algorithm for coarsening unstructured meshes. Nu-
merische Mathematik, 73(1):1–36, 1996.

[3] R. A. Cairncross, P. R. Schunk, T. A. Baer, R. R. Rao, and P. A. Sackinger. A finite
element method for free surface flows of incompressible fluids in three dimen-
sions. Part I. Boundary fitted mesh motion. International Journal for Numerical
Methods in Fluids, 33:375–403, 2000.

[4] C. Cuvelier and R. M. S. M. Schulkes. Some numerical methods for the com-
putation of capillary free boundaries governed by the Navier-Stokes equations.
SIAM Review, 32(3):355–423, 1990.

[5] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and
Joseph W. H. Liu. A supernodal approach to sparse partial pivoting. SIAM
J. Matrix Analysis and Applications, 20(3):720–755, 1999.

[6] M. Flucher and M. Rumpf. Bernoulli’s free boundary problem, qualitative the-
ory and numerical approximation. J. Reine Angew. Math., 486:165–204, 1997.

[7] Michael B. Giles and Niles A. Pierce. An introduction to the adjoint approach
to design. Flow, Turbulence and Combustion, 65:393–415, 2000.

[8] A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Dif-
ferentiation. SIAM, Philadelphia, 2000.

[9] J. Haslinger and R. A. E. Mäkinen. Introduction to Shape Optimization: Theory,
Approximation, and Computation. SIAM, Philadelphia, 2003.

[10] L. Holzleitner. Hausdorff convergence of domains and their boundaries for
shape optimal design. Control and Cybernetics, 30(1):23–44, 2001.

[11] K. Kärkkäinen and T. Tiihonen. Free surfaces: shape sensitivity analysis and
numerical methods. International Journal for Numerical Methods in Engineering,
44(8):1079–1098, 1999.

[12] G. Mejak. Numerical solution of Bernoulli-type free boundary value problems
by variable domain method. International Journal for Numerical Methods in Engi-
neering, 37:4219–4245, 1994.

[13] P. A. Sackinger, P. R. Schunk, and R. R. Rao. A Newton-Raphson pseudo-solid
domain mapping technique for free and moving boundary problems: A finite
element implementation. Journal of Computational Physics, 125(1):83–103, 1996.

[14] J. Schöberl. Netgen. Sotfware available at http://www.hpfem.jku.at/netgen/.

23

[15] M. Souli and J. P. Zolesio. Arbitrary Lagrangian-Eulerian and free surface meth-
ods in fluid mechanics. Computer Methods in Applied Mechanics and Engineering,
191:451–466, 2001.

[16] P. Spellucci. An SQP method for general nonlinear programs using only equal-
ity constrained subproblems. Mathematical Programming, 82:413–448, 1998. Soft-
ware available at http://plato.la.asu.edu/donlp2.html.

24

